
Verification of Artifact-Centric Multi-Agent Systems
via Finite Abstraction:

Some Decidability Results

Francesco Belardinelli
Laboratoire IBISC, Université d’Evry

Joint work with Alessio Lomuscio
Imperial College London, UK

and Fabio Patrizi
Sapienza Università di Roma, Italy

within the EU funded project ACSI (Artifact-Centric Service Interoperation)

LACL – 17 June 2013

1

Model Checking in one slide

Model checking: technique(s) to automatically verify that a system design S satisfies a
property P before deployment.

More formally, given

• a model MS of a system S

• a formula φP representing a property P

we check that

MS |= φP

2

Turing Award 2007
www.acm.org/press-room/news-releases-2008/turing-award-07

(a) E. Clarke (CMU,
USA)

(b) A. Emerson
(U. Texas, USA)

(c) J. Sifakis
(IMAG, F)

• Jury justification

For their roles in developing model checking into a highly effective
verification technology, widely adopted in the hardware and software
industries.

3

Overview

1 Motivation: Artifact Systems as data-aware systems

2 Main task: Formal verification of infinite-state AS
I model checking is appropriate for control-intensive applications...
I ...but less suited for data-intensive applications (data typically ranges over infinite

domains) [1].

3 Key contribution: Verification of bounded and uniform AS is decidable

4

Overview

1 Motivation: Artifact Systems as data-aware systems
2 Main task: Formal verification of infinite-state AS

I model checking is appropriate for control-intensive applications...
I ...but less suited for data-intensive applications (data typically ranges over infinite

domains) [1].

3 Key contribution: Verification of bounded and uniform AS is decidable

4

Overview

1 Motivation: Artifact Systems as data-aware systems
2 Main task: Formal verification of infinite-state AS

I model checking is appropriate for control-intensive applications...
I ...but less suited for data-intensive applications (data typically ranges over infinite

domains) [1].

3 Key contribution: Verification of bounded and uniform AS is decidable

4

Artifact Systems
Outline

• Recent paradigm for Service-Oriented Computing [2].

• Motto: let’s give data and processes the same relevance!

• Artifact: data model + lifecycle
I (nested) records equipped with actions
I actions may affect several artifacts
I evolution stemming from the interaction with other artifacts/external actors

• Artifact System: interacting artifacts, representing services, manipulated by agents.

5

Artifact Systems
Order-to-Cash Scenario

6

Artifact Systems
Data Model

PO

id prod code offer status

• createPO(prod code, offer)

• deletePO(id)

• addItemPO(id,itm,qty)

• . . .

MO

id prod code price status

• createMO(id,price)

• deleteMO(id)

• addLineItemMO(id,mat,qty)

• . . .

7

Artifact Systems
Lifecycle

• Agents operate on artifacts.

I e.g., the Customer sends the Purchase Order to the Manufacturer.

• Actions add/remove artifacts or change artifact attributes.
I e.g., the PO status changes from created to submitted.

• The whole system can be seen as a data-aware dynamic system.
I at every step, an action yields a change in the current state.

8

Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?

4 How can we implement this?

9

Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?

4 How can we implement this?

9

Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?

4 How can we implement this?

9

Research questions

1 Which syntax and semantics to specify AS?

2 Is verification of AS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?

4 How can we implement this?

9

Challenges

Multi-agent systems, but . . .

• . . . states have a relational structure,

• data are potentially infinite,

• state space is infinite in general.

⇒ The model checking problem cannot be tackled by standard techniques.

10

Challenges

Multi-agent systems, but . . .

• . . . states have a relational structure,

• data are potentially infinite,

• state space is infinite in general.

⇒ The model checking problem cannot be tackled by standard techniques.

10

Challenges

Multi-agent systems, but . . .

• . . . states have a relational structure,

• data are potentially infinite,

• state space is infinite in general.

⇒ The model checking problem cannot be tackled by standard techniques.

10

Challenges

Multi-agent systems, but . . .

• . . . states have a relational structure,

• data are potentially infinite,

• state space is infinite in general.

⇒ The model checking problem cannot be tackled by standard techniques.

10

Challenges

Multi-agent systems, but . . .

• . . . states have a relational structure,

• data are potentially infinite,

• state space is infinite in general.

⇒ The model checking problem cannot be tackled by standard techniques.

10

Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS): formal model for AS.

Intuition: databases that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀id , pc (∃~x MO(id , pc, ~x)→ KM ∃~y PO(id , pc, ~y))

the manufacturer M knows that each MO has to match a corresponding PO.

3 Abstraction techniques and finite interpretation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Modelling of declarative GSM systems, developed by IBM, as AC-MAS.

11

Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS): formal model for AS.

Intuition: databases that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀id , pc (∃~x MO(id , pc, ~x)→ KM ∃~y PO(id , pc, ~y))

the manufacturer M knows that each MO has to match a corresponding PO.

3 Abstraction techniques and finite interpretation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Modelling of declarative GSM systems, developed by IBM, as AC-MAS.

11

Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS): formal model for AS.

Intuition: databases that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀id , pc (∃~x MO(id , pc, ~x)→ KM ∃~y PO(id , pc, ~y))

the manufacturer M knows that each MO has to match a corresponding PO.

3 Abstraction techniques and finite interpretation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Modelling of declarative GSM systems, developed by IBM, as AC-MAS.

11

Artifact Systems
Results

1 Artifact-centric multi-agent systems (AC-MAS): formal model for AS.

Intuition: databases that evolve in time and are manipulated by agents.

2 FO-CTLK as a specification language:

AG ∀id , pc (∃~x MO(id , pc, ~x)→ KM ∃~y PO(id , pc, ~y))

the manufacturer M knows that each MO has to match a corresponding PO.

3 Abstraction techniques and finite interpretation to tackle model checking.

Main result: under specific conditions MC can be reduced to the finite case.

4 Modelling of declarative GSM systems, developed by IBM, as AC-MAS.

11

Semantics: Databases

The data model of Artifact Systems is given as a database.

• a database schema is a finite set D = {P1/a1, . . . ,Pn/an} of predicate symbols Pi

with arity ai ∈ N.

• an instance on a domain U is a mapping D associating each predicate symbol Pi

with a finite ai -ary relation on U.

• Disjoint union: D ⊕ D ′ is the (D ∪D′)-interpretation s.t.
(i) D ⊕ D′(Pi) = D(Pi)

(ii) D ⊕ D′(P′i) = D′(Pi)

12

Artifact-centric Multi-agent Systems
Agents

Agents have partial access (views) to the artifact system.

• An agent is a tuple i = 〈Di ,Acti ,Pri 〉 where
I Di is the local database schema
I Acti is the set of local actions α(~x) with parameters ~x
I Pri : Di (U) 7→ 2Acti (U) is the local protocol function

• the setting is reminiscent of the interpreted systems semantics for MAS [3],...

• ...but here the local state of each agent is relational.

Intuitively, agents manipulate artifacts and have (partial) access to the information
contained in the global db schema D = D1 ∪ · · · ∪ Dn.

13

Example 1: the Order-to-Cash Scenario

• Agents: Customer, Manifacturer, Supplier.

• Local db schema DC

I Products(prod code, budget)
I PO(id, prod code, offer, status)

• Local db schema DM

I PO(id, prod code, offer, status)
I MO(id, prod code, price, status)

• Local db schema DS

I Materials(mat code, cost)
I MO(id, prod code, price, status)

• Then, D = {Materials,Products,PO,MO}.
• Parametric actions can introduce values from an infinite domain U.

I createPO(prod code, offer) belongs to ActC .
I createMO(prod code, price) belongs to ActM .

14

Artifact-centric Multi-agent Systems
AC-MAS

Agents are modules that can be composed together to obtain AC-MAS.

• Global states are tuples s = 〈D0, . . . ,Dn〉 ∈ D(U).

• An AC-MAS is a tuple P = 〈Ag , s0, τ〉 where:
I Ag = {0, . . . , n} is a finite set of agents
I s0 ∈ D(U) is the initial global state
I τ : D(U)× Act(U) 7→ 2D(U) is the transition function

• Temporal transition: s → s ′ iff there is α(~u) s.t. s ′ ∈ τ(s, α(~u)).

• Epistemic relation: s ∼i s ′ iff Di = D ′i .

• AC-MAS are infinite-state systems in general.

AC-MAS are first-order temporal epistemic structures.
Hence, FO-CTLK can be used as a specification language.

15

Syntax: FO-CTLK

• Data call for First-order Logic.

• Evolution calls for Temporal Logic.

• Agents (operating on artifacts) call for Epistemic Logic.

The specification language FO-CTLK:

ϕ ::= P(~t) | t = t′ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ

Alternation of free variables and modal operators is enabled.

16

Semantics of FO-CTLK
Formal definition

An AC-MAS P satisfies an FO-CTLK-formula ϕ in a state s for an assignment σ, iff

(P, s, σ) |= Pi (~t) iff 〈σ(t1), . . . , σ(tai)〉 ∈ Ds (Pi)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ¬ϕ iff (P, s, σ) 6|= ϕ
(P, s, σ) |= ϕ→ ψ iff (P, s, σ) 6|= ϕ or (P, s, σ) |= ψ
(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s), (P, s, σx

u) |= ϕ
(P, s, σ) |= AXϕ iff for all runs r , r0 = s implies (P, r1, σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all runs r , r0 = s implies (P, rk , σ) |= ϕ′ for some k ≥ 0,

and (P, rk′
, σ) |= ϕ for all 0 ≤ k ′ < k

(P, s, σ) |= EϕUϕ′ iff there exists r s.t. r0 = s, (P, rk , σ) |= ϕ′ for some k ≥ 0,

and (P, rk′
, σ) |= ϕ for all 0 ≤ k ′ < k

(P, s, σ) |= Kiϕ iff for all states s′, s ∼i s′ implies (P, s′, σ) |= ϕ

• Active-domain semantics: adom(D) is the set of all u ∈ U appearing in D

17

Semantics of FO-CTLK
Intuition

(d) AXϕ (e) AϕUψ (f) EϕUψ

18

Verification of AC-MAS

How do we verify FO-CTLK specifications on AC-MAS?

• the manufacturer M knows that each MO has to match a corresponding PO:

AG ∀id , pc (∃pr , s MO(id , pc, pr , s)→ KM ∃o, s′ PO(id , pc, o, s′))

• the client C knows that every PO will eventually be discharged (by M):

AG ∀id , pc (∃pr , s MO(id , pc, pr , s)→ EF KC ∃o PO(id , ps, o, shipped))

Problem: the infinite domain U may generate infinitely many states!

Investigated solution: can we simulate the concrete values from U with a finite set of
abstract symbols?

19

Abstraction: Isomorphism and Bisimulation

• Two states s, s ′ are isomorphic, or s ' s ′, if there is a bijection

ι : adom(s) ∪ C 7→ adom(s ′) ∪ C

such that
I ι is the identity on C
I for every ~u ∈ adom(s)ai , i ∈ Ag , ~u ∈ Di (Pj)⇔ ι(~u) ∈ D′i (Pj)

D
a b
b c
d e

'

D ′

1 2
2 c
4 5

I ι : a 7→ 1
b 7→ 2
c 7→ c
d 7→ 4
e 7→ 5

20

Abstraction: Isomorphism and Bisimulation

• Two states s, s ′ are bisimilar, or s ≈ s ′, if
I s ' s′

I if s → t then there is t′ s.t. s′→ t′, s ⊕ t ' s′ ⊕ t′, and t ≈ t′

s t

≈

s ′

≈

t ′

I the other direction holds as well
I similarly for the epistemic relation ∼i

21

Abstraction: Isomorphism and Bisimulation

• Two states s, s ′ are bisimilar, or s ≈ s ′, if
I s ' s′

I if s → t then there is t′ s.t. s′→ t′, s ⊕ t ' s′ ⊕ t′, and t ≈ t′

s t

≈

s ′

≈

t ′

I the other direction holds as well
I similarly for the epistemic relation ∼i

21

Abstraction: Isomorphism and Bisimulation

However, bisimulation is not sufficient to preserve FO-CTLK formulas:

1 2 3 4 5 6

P

a b

P ′

φ = AG ∀x (P(x)→ AX AG ¬P(x))

22

Uniformity

• Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly
named in the system description.

• More formally, an AC-MAS P is uniform iff for s, t, s ′ ∈ S and t′ ∈ D(U):

I s → t and s ⊕ t ' s′ ⊕ t′ imply s′ → t′

s
a b
b c
d e

t
a f
f c

s ′

1 2
2 c
4 5

t′

1 6
6 c

• Uniform AC-MAS cover a vast number of interesting cases [2, 4].

23

Uniformity

• Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly
named in the system description.

• More formally, an AC-MAS P is uniform iff for s, t, s ′ ∈ S and t′ ∈ D(U):

I s → t and s ⊕ t ' s′ ⊕ t′ imply s′ → t′

s
a b
b c
d e

t
a f
f c

s ′

1 2
2 c
4 5

t′

1 6
6 c

• Uniform AC-MAS cover a vast number of interesting cases [2, 4].

23

Uniformity

• Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly
named in the system description.

• More formally, an AC-MAS P is uniform iff for s, t, s ′ ∈ S and t′ ∈ D(U):

I s → t and s ⊕ t ' s′ ⊕ t′ imply s′ → t′

s
a b
b c
d e

t
a f
f c

s ′

1 2
2 c
4 5

t′

1 6
6 c

• Uniform AC-MAS cover a vast number of interesting cases [2, 4].

23

Bisimulation and Equivalence w.r.t. FO-CTLK

Theorem

Consider

• bisimilar and uniform AC-MAS P1 and P2

• an FO-CTLK formula ϕ

If

1 |U2| ≥ 2 · sups∈P1
|adom(s)|+ |C |+ |vars(ϕ)|

2 |U1| ≥ 2 · sups′∈P2
|adom(s ′)|+ |C |+ |vars(ϕ)|

then

P1 |= ϕ iff P2 |= ϕ

Can we apply this result to finite abstraction?

24

Abstractions

• Abstractions are defined in an agent-based, modular way.

• Let A = 〈D,Act,Pr〉 be an agent defined on the domain U.
Given a domain U ′, the abstract agent A′ = 〈D′,Act′,Pr ′〉 on U ′ is s.t.

I D′ = D
I Act′ = Act
I Pr ′ is the smallest function s.t. if α(~u) ∈ Pr(D), D′ ∈ D′(U′) and D′ ' D for some

witness ι, then α(~u′) ∈ Pr ′(D′) where ~u′ = ι′(~u) for some constant-preserving
bijection ι′ extending ι to ~u.

• Let Ag ′ be the set of abstract agents on U ′.

• Let P = 〈Ag , s0, τ〉 be an AC-MAS. The AC-MAS P ′ = 〈Ag ′, s ′0, τ
′〉 is an

abstraction of P iff
I s′0 ' s0;
I τ ′ is the smallest function s.t. if t ∈ τ(s, α(~u)), s′, t′ ∈ D′(U′) and s ⊕ t ' s′ ⊕ t′ for

some witness ι, then t′ ∈ τ ′(s′, α(~u′)) where ~u′ = ι′(~u) for some constant-preserving
bijection ι′ extending ι to ~u.

25

Bounded Models and Finite Abstractions

• An AC-MAS P is b-bounded iff for all s ∈ P, |adom(s)| ≤ b.

• Bounded systems can still be infinite!

Theorem

Consider

• a b-bounded and uniform AC-MAS P on an infinite domain U

• an FO-CTLK formula ϕ

Given U ′ ⊇ C s.t.
|U ′| ≥ 2b + |C |+ max{|vars(ϕ)|,NAg}

there exists a finite abstraction P ′ of P s.t.

• P ′ is uniform and bisimilar to P
In particular,

P |= ϕ iff P ′ |= ϕ

How can we define finite abstractions constructively?

26

Compact descriptions: AS Programs

Example of uniform AC-MAS written in a FO language.

• for each agent i , Acti is the set of of local (parametric) actions of the form
ω(~x) = 〈π(~y), ψ(~z)〉 s.t.

I ω(~x) is the operation signature and ~x = ~y ∪ ~z is the set of operation parameters
I π(~y) is the operation precondition, i.e., an FO-formula over Di
I ψ(~z) is the operation postcondition, i.e., an FO-formula over D ∪D′

We call the AC-MAS specified in this way Artifact System Programs.

27

Example 2: the Order-to-Cash Scenario

Specification of actions affecting the MO in the order-to-cash scenario:

• createMO(po id , price) = 〈π(po id , price), ψ(po id , price)〉, where:

- π(po id , price) ≡
∃p, o (PO(po id , p, o, prepared) ∧ ∃cost Materials(p, cost) ∧ φb−1

- ψ(po id , price) ≡
∃id (MO ′(id , po id , price, preparation)∧

∀id ′, c, p, s (MO(id ′, c, p, s)→ id 6= id ′)) ∧ φb

where φk is the FO-formula saying that there are at most k objects in the active domain.

The specification of createMO guarantees that the bound b is not violated by action
execution.

28

Verification of Artifact System Programs

Lemma

AS programs generate uniform AC-MAS.

Theorem

Consider

• a b-bounded AS program PAct,U on an infinite domain U

• an FO-CTLK formula ϕ.

Given U ′ ⊇ C s.t.
|U2| ≥ 2b + |C |+ max{NAS , |vars(ϕ)|}

then PAct,U′ is a finite abstraction of PAct,U s.t.

• PAct,U′ is uniform and bisimilar to PAct,U

In particular,

PAct,U |= ϕ iff PAct,U′ |= ϕ

• The abstraction is finite and the procedure is constructive.

• Thus, we can apply standard techniques in model checking.

29

Extensions

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

AG ∀c (shippedPO(c)→ ∀m(related(c,m)→ shippedMO(m))) 4

2 Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS P is bounded, and ϕ ∈ FO-ACTL, then there exists a finite abstraction P ′
such that if P ′ |= ϕ then P |= ϕ.

3 Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

4 Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete
in the size of the formula and data.

5 The finite abstraction result can be extended to typed FO-CTLK including
predicates with an infinite interpretation (< on rationals)

30

Extensions

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

AG ∀c (shippedPO(c)→ ∀m(related(c,m)→ shippedMO(m))) 4

2 Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS P is bounded, and ϕ ∈ FO-ACTL, then there exists a finite abstraction P ′
such that if P ′ |= ϕ then P |= ϕ.

3 Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

4 Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete
in the size of the formula and data.

5 The finite abstraction result can be extended to typed FO-CTLK including
predicates with an infinite interpretation (< on rationals)

30

Extensions

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

AG ∀c (shippedPO(c)→ ∀m(related(c,m)→ shippedMO(m))) 4

2 Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS P is bounded, and ϕ ∈ FO-ACTL, then there exists a finite abstraction P ′
such that if P ′ |= ϕ then P |= ϕ.

3 Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

4 Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete
in the size of the formula and data.

5 The finite abstraction result can be extended to typed FO-CTLK including
predicates with an infinite interpretation (< on rationals)

30

Extensions

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

AG ∀c (shippedPO(c)→ ∀m(related(c,m)→ shippedMO(m))) 4

2 Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS P is bounded, and ϕ ∈ FO-ACTL, then there exists a finite abstraction P ′
such that if P ′ |= ϕ then P |= ϕ.

3 Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

4 Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete
in the size of the formula and data.

5 The finite abstraction result can be extended to typed FO-CTLK including
predicates with an infinite interpretation (< on rationals)

30

Extensions

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

AG ∀c (shippedPO(c)→ ∀m(related(c,m)→ shippedMO(m))) 4

2 Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS P is bounded, and ϕ ∈ FO-ACTL, then there exists a finite abstraction P ′
such that if P ′ |= ϕ then P |= ϕ.

3 Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

4 Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete
in the size of the formula and data.

5 The finite abstraction result can be extended to typed FO-CTLK including
predicates with an infinite interpretation (< on rationals)

30

Results
and main limitations

• We are able to model check AC-MAS w.r.t. full FO-CTLK...

• ...however, our results hold only for uniform and bounded systems.

• This class includes many interesting systems (AS programs, [2, 4]).

• The model checking problem is EXPSPACE-complete.

31

Next Steps

• Techniques for finite abstraction.

• Model checking techniques for finite-state systems are effective on the abstract
system?

• How to perfom the boundedness check.

32

Merci!

33

beamericonarticleChristel Baier and Joost-Pieter Katoen.

Principles of Model Checking.

MIT Press, 2008.

beamericonarticleD. Cohn and R. Hull.

Business Artifacts: A Data-Centric Approach to Modeling Business Operations and
Processes.

IEEE Data Eng. Bull., 32(3):3–9, 2009.

beamericonarticleR. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.

Reasoning About Knowledge.

The MIT Press, 1995.

beamericonarticleB. Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, and P. Felli.

Foundations of Relational Artifacts Verification.

In Proc. of BPM, 2011.

33

