Verification of Artifact-Centric Multi-Agent Systems via Finite Abstraction: Some Decidability Results

Francesco Belardinelli Laboratoire IBISC, Université d'Evry

Joint work with Alessio Lomuscio Imperial College London, UK

and Fabio Patrizi Sapienza Università di Roma, Italy

within the EU funded project ACSI (Artifact-Centric Service Interoperation)

LACL - 17 June 2013

Model Checking in one slide

Model checking: technique(s) to **automatically** verify that a system design S satisfies a property P before deployment.

More formally, given

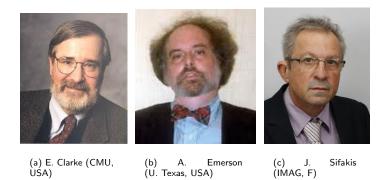
- a model \mathcal{M}_S of a system S
- a formula ϕ_P representing a property P

we check that

$$\mathcal{M}_{S} \models \phi_{P}$$

Turing Award 2007

www.acm.org/press-room/news-releases-2008/turing-award-07



• Jury justification

For their roles in developing model checking into a highly effective verification technology, widely adopted in the hardware and software industries.

Motivation: Artifact Systems as data-aware systems

Overview

- Motivation: Artifact Systems as data-aware systems
- Main task: Formal verification of infinite-state AS
 - model checking is appropriate for control-intensive applications...
 - ...but less suited for data-intensive applications (data typically ranges over infinite domains) [1].

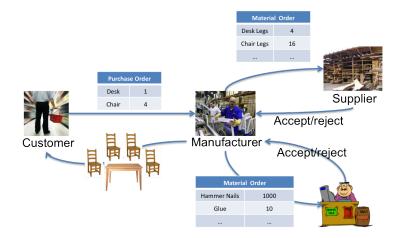
Overview

- Motivation: Artifact Systems as data-aware systems
- Main task: Formal verification of infinite-state AS
 - model checking is appropriate for control-intensive applications...
 - ...but less suited for data-intensive applications (data typically ranges over infinite domains) [1].
- Seventribution: Verification of bounded and uniform AS is decidable

Artifact Systems Outline

- Recent paradigm for Service-Oriented Computing [2].
- Motto: let's give *data* and *processes* the same relevance!
- Artifact: data model + lifecycle
 - (nested) records equipped with actions
 - actions may affect several artifacts
 - evolution stemming from the interaction with other artifacts/external actors
- Artifact System: interacting artifacts, representing services, manipulated by agents.

Artifact Systems Order-to-Cash Scenario



Artifact Systems

PO				
id	prod_code	offer	status	
 createPO(prod_code, offer) 				

- deletePO(id)
- addItemPO(id,itm,qty)
- ...

МО				
id	prod_code	price	status	

- createMO(id, price)
- deleteMO(id)
- addLineItemMO(id,mat,qty)
- . . .

Artifact Systems Lifecycle

- Agents operate on artifacts.
 - e.g., the Customer sends the Purchase Order to the Manufacturer.
- Actions add/remove artifacts or change artifact attributes.
 - e.g., the PO status changes from *created* to *submitted*.
- The whole system can be seen as a *data-aware* dynamic system.
 - at every step, an action yields a change in the current state.

Which syntax and semantics to specify AS?

Research questions

- Which syntax and semantics to specify AS?
- Is verification of AS decidable?

Research questions

- Which syntax and semantics to specify AS?
- Is verification of AS decidable?
- If not, can we identify *relevant* fragments that are reasonably well-behaved?

Research questions

- Which syntax and semantics to specify AS?
- Is verification of AS decidable?
- If not, can we identify relevant fragments that are reasonably well-behaved?
- How can we implement this?

Multi-agent systems, but

Multi-agent systems, but ...

• ... states have a relational structure,

Multi-agent systems, but ...

- ... states have a relational structure,
- data are potentially infinite,

Multi-agent systems, but ...

- ... states have a relational structure,
- data are potentially infinite,
- state space is infinite in general.

Multi-agent systems, but ...

- ... states have a relational structure,
- data are potentially infinite,
- state space is infinite in general.
- $\Rightarrow\,$ The model checking problem cannot be tackled by standard techniques.

Artifact-centric multi-agent systems (AC-MAS): formal model for AS.
 Intuition: databases that evolve in time and are manipulated by agents.

 Artifact-centric multi-agent systems (AC-MAS): formal model for AS. Intuition: databases that evolve in time and are manipulated by agents.
 FO-CTLK as a specification language:

 $AG \forall id, pc (\exists \vec{x} \ MO(id, pc, \vec{x}) \rightarrow K_M \ \exists \vec{y} \ PO(id, pc, \vec{y}))$

the manufacturer M knows that each MO has to match a corresponding PO.

 Artifact-centric multi-agent systems (AC-MAS): formal model for AS. Intuition: databases that evolve in time and are manipulated by agents.
 FO-CTLK as a specification language:

 $AG \ \forall id, pc \ (\exists \vec{x} \ MO(id, pc, \vec{x}) \rightarrow K_M \ \exists \vec{y} \ PO(id, pc, \vec{y}))$

the manufacturer M knows that each MO has to match a corresponding PO.

Abstraction techniques and finite interpretation to tackle model checking.
 Main result: under specific conditions MC can be reduced to the finite case.

 Artifact-centric multi-agent systems (AC-MAS): formal model for AS. Intuition: databases that evolve in time and are manipulated by agents.
 FO-CTLK as a specification language:

 $AG \ \forall id, pc \ (\exists \vec{x} \ MO(id, pc, \vec{x}) \rightarrow K_M \ \exists \vec{y} \ PO(id, pc, \vec{y}))$

the manufacturer M knows that each MO has to match a corresponding PO.

- Abstraction techniques and finite interpretation to tackle model checking.
 Main result: under specific conditions MC can be reduced to the finite case.
- Modelling of declarative GSM systems, developed by IBM, as AC-MAS.

Semantics: Databases

The data model of Artifact Systems is given as a database.

- a *database schema* is a *finite* set $\mathcal{D} = \{P_1/a_1, \dots, P_n/a_n\}$ of predicate symbols P_i with arity $a_i \in \mathbb{N}$.
- an *instance* on a domain U is a mapping D associating each predicate symbol P_i with a *finite* a_i-ary relation on U.
- Disjoint union: $D \oplus D'$ is the $(\mathcal{D} \cup \mathcal{D}')$ -interpretation s.t.
 - (i) $D \oplus D'(P_i) = D(P_i)$ (ii) $D \oplus D'(P'_i) = D'(P_i)$

Artifact-centric Multi-agent Systems Agents

Agents have partial access (views) to the artifact system.

- An *agent* is a tuple $i = \langle D_i, Act_i, Pr_i \rangle$ where
 - *D_i* is the local database schema
 - Act_i is the set of local actions $\alpha(\vec{x})$ with parameters \vec{x}
 - ▶ $Pr_i : D_i(U) \mapsto 2^{Act_i(U)}$ is the *local protocol function*
- the setting is reminiscent of the interpreted systems semantics for MAS [3],...
- ...but here the local state of each agent is relational.

Intuitively, agents manipulate artifacts and have (partial) access to the information contained in the global db schema $\mathcal{D} = \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n$.

Example 1: the Order-to-Cash Scenario

- Agents: <u>Customer</u>, <u>Manifacturer</u>, <u>Supplier</u>.
- Local db schema \mathcal{D}_C
 - Products(prod_code, budget)
 - PO(id, prod_code, offer, status)
- Local db schema D_M
 - PO(id, prod_code, offer, status)
 - MO(id, prod_code, price, status)
- Local db schema D_S
 - Materials(mat_code, cost)
 - MO(id, prod_code, price, status)
- Then, $\mathcal{D} = \{Materials, Products, PO, MO\}.$
- Parametric actions can introduce values from an infinite domain U.
 - createPO(prod_code, offer) belongs to Act_C.
 - createMO(prod_code, price) belongs to Act_M.

Artifact-centric Multi-agent Systems AC-MAS

Agents are modules that can be composed together to obtain AC-MAS.

- Global states are tuples s = ⟨D₀,..., D_n⟩ ∈ D(U).
- An AC-MAS is a tuple $\mathcal{P} = \langle Ag, s_0, \tau \rangle$ where:
 - $Ag = \{0, \ldots, n\}$ is a finite set of agents
 - $s_0 \in \mathcal{D}(U)$ is the *initial global state*
 - $\tau : \mathcal{D}(U) \times Act(U) \mapsto 2^{\mathcal{D}(U)}$ is the *transition function*
- Temporal transition: $s \to s'$ iff there is $\alpha(\vec{u})$ s.t. $s' \in \tau(s, \alpha(\vec{u}))$.
- Epistemic relation: $s \sim_i s'$ iff $D_i = D'_i$.
- AC-MAS are infinite-state systems in general.

AC-MAS are first-order temporal epistemic structures. Hence, FO-CTLK can be used as a specification language.

Syntax: FO-CTLK

- Data call for First-order Logic.
- Evolution calls for Temporal Logic.
- Agents (operating on artifacts) call for Epistemic Logic.

The specification language FO-CTLK:

$$\varphi ::= P(\vec{t}) \mid t = t' \mid \neg \varphi \mid \varphi \rightarrow \varphi \mid \forall x \varphi \mid AX\varphi \mid A\varphi U\varphi \mid E\varphi U\varphi \mid K_i \varphi$$

Alternation of free variables and modal operators is enabled.

Semantics of FO-CTLK

Formal definition

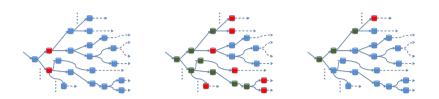
An AC-MAS $\mathcal P$ satisfies an FO-CTLK-formula φ in a state s for an assignment σ , iff

$$\begin{array}{lll} (\mathcal{P},s,\sigma) \models P_i(\vec{t}) & \text{iff} & \langle \sigma(t_1), \ldots, \sigma(t_{a_i}) \rangle \in D_s(P_i) \\ (\mathcal{P},s,\sigma) \models t = t' & \text{iff} & \sigma(t) = \sigma(t') \\ (\mathcal{P},s,\sigma) \models \neg \varphi & \text{iff} & (\mathcal{P},s,\sigma) \not\models \varphi \\ (\mathcal{P},s,\sigma) \models \varphi \rightarrow \psi & \text{iff} & (\mathcal{P},s,\sigma) \not\models \varphi \text{ or } (\mathcal{P},s,\sigma) \models \psi \\ (\mathcal{P},s,\sigma) \models \forall x\varphi & \text{iff} & \text{for all } u \in adom(s), (\mathcal{P},s,\sigma_u^x) \models \varphi \\ (\mathcal{P},s,\sigma) \models AX\varphi & \text{iff} & \text{for all runs } r, r^0 = s \text{ implies } (\mathcal{P},r^1,\sigma) \models \varphi \\ (\mathcal{P},s,\sigma) \models A\varphi U\varphi' & \text{iff} & \text{for all runs } r, r^0 = s \text{ implies } (\mathcal{P},r^k,\sigma) \models \varphi' \text{ for some } k \ge 0, \\ and & (\mathcal{P},r^{k'},\sigma) \models \varphi \text{ for all } 0 \le k' < k \\ (\mathcal{P},s,\sigma) \models K_i\varphi & \text{iff} & \text{for all states } s', s \sim_i s' \text{ implies } (\mathcal{P},s',\sigma) \models \varphi \end{array}$$

• Active-domain semantics: adom(D) is the set of all $u \in U$ appearing in D

Semantics of FO-CTLK

Intuition



(d) *AX \varphi*

(e) *AφU***ψ**

(f) *EφU*ψ

Verification of AC-MAS

How do we verify FO-CTLK specifications on AC-MAS?

• the manufacturer M knows that each MO has to match a corresponding PO:

 $AG \ \forall id, pc \ (\exists pr, s \ MO(id, pc, pr, s) \rightarrow K_M \ \exists o, s' \ PO(id, pc, o, s'))$

• the client C knows that every PO will eventually be discharged (by M): $AG \ \forall id, pc \ (\exists pr, s \ MO(id, pc, pr, s) \rightarrow EF \ K_C \ \exists o \ PO(id, ps, o, shipped))$

<u>Problem</u>: the infinite domain U may generate infinitely many states!

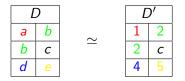
Investigated solution: can we simulate the concrete values from U with a finite set of abstract symbols?

• Two states s, s' are *isomorphic*, or $s \simeq s'$, if there is a bijection

$$\iota: \textit{adom}(s) \cup \textit{C} \mapsto \textit{adom}(s') \cup \textit{C}$$

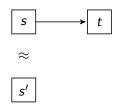
such that

- ι is the identity on C
- ▶ for every $\vec{u} \in adom(s)^{a_i}$, $i \in Ag$, $\vec{u} \in D_i(P_j) \Leftrightarrow \iota(\vec{u}) \in D'_i(P_j)$

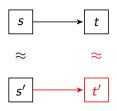


$$\iota : a \mapsto 1 b \mapsto 2 c \mapsto c d \mapsto 4 e \mapsto 5$$

- Two states s, s' are *bisimilar*, or $s \approx s'$, if
 - s ≃ s'
 - if $s \to t$ then there is t' s.t. $s' \to t'$, $s \oplus t \simeq s' \oplus t'$, and $t \approx t'$

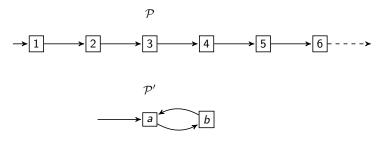


- Two states s, s' are *bisimilar*, or $s \approx s'$, if
 - s ≃ s'
 - if $s \to t$ then there is t' s.t. $s' \to t'$, $s \oplus t \simeq s' \oplus t'$, and $t \approx t'$



- the other direction holds as well
- similarly for the epistemic relation \sim_i

However, bisimulation is not sufficient to preserve FO-CTLK formulas:



 $\phi = AG \forall x (P(x) \rightarrow AX AG \neg P(x))$

Uniformity

• Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly named in the system description.

Uniformity

- Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly named in the system description.
- More formally, an AC-MAS \mathcal{P} is *uniform* iff for $s, t, s' \in S$ and $t' \in \mathcal{D}(U)$:

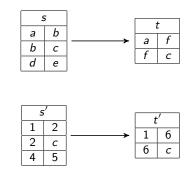
• $s \to t$ and $s \oplus t \simeq s' \oplus t'$ imply $s' \to t'$

$$\begin{array}{c|c} s \\ \hline a & b \\ \hline b & c \\ \hline d & e \end{array} \longrightarrow \begin{array}{c} t \\ \hline a & f \\ f & c \end{array}$$

	s'		1	+	./
ĺ	1	2		1	6
Ì	2	С		6	0
Ì	4	5	l	0	C

Uniformity

- Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly named in the system description.
- More formally, an AC-MAS \mathcal{P} is *uniform* iff for $s, t, s' \in S$ and $t' \in \mathcal{D}(U)$:



• $s \to t$ and $s \oplus t \simeq s' \oplus t'$ imply $s' \to t'$

• Uniform AC-MAS cover a vast number of interesting cases [2, 4].

Bisimulation and Equivalence w.r.t. FO-CTLK

Theorem

Consider

- bisimilar and uniform AC-MAS \mathcal{P}_1 and \mathcal{P}_2
- an FO-CTLK formula φ

lf

$$|U_2| \ge 2 \cdot \sup_{s \in \mathcal{P}_1} |adom(s)| + |C| + |vars(\varphi)|$$

$$|U_1| \geq 2 \cdot \sup_{s' \in \mathcal{P}_2} |adom(s')| + |C| + |vars(\varphi)|$$

then

$$\mathcal{P}_1 \models \varphi \quad iff \quad \mathcal{P}_2 \models \varphi$$

Can we apply this result to finite abstraction?

Abstractions

- Abstractions are defined in an agent-based, modular way.
- Let A = ⟨D, Act, Pr⟩ be an agent defined on the domain U.
 Given a domain U', the *abstract agent* A' = ⟨D', Act', Pr'⟩ on U' is s.t.
 - $\blacktriangleright \ \mathcal{D}' = \mathcal{D}$
 - Act' = Act
 - ▶ Pr' is the smallest function s.t. if $\alpha(\vec{u}) \in Pr(D)$, $D' \in \mathcal{D}'(U')$ and $D' \simeq D$ for some witness ι , then $\alpha(\vec{u}') \in Pr'(D')$ where $\vec{u}' = \iota'(\vec{u})$ for some constant-preserving bijection ι' extending ι to \vec{u} .
- Let Ag' be the set of abstract agents on U'.
- Let $\mathcal{P} = \langle Ag, s_0, \tau \rangle$ be an AC-MAS. The AC-MAS $\mathcal{P}' = \langle Ag', s'_0, \tau' \rangle$ is an *abstraction* of \mathcal{P} iff
 - $s'_0 \simeq s_0;$
 - ▶ τ^{\prime} is the smallest function s.t. if $t \in \tau(s, \alpha(\vec{u}))$, $s', t' \in D'(U')$ and $s \oplus t \simeq s' \oplus t'$ for some witness ι , then $t' \in \tau'(s', \alpha(\vec{u}'))$ where $\vec{u}' = \iota'(\vec{u})$ for some constant-preserving bijection ι' extending ι to \vec{u} .

Bounded Models and Finite Abstractions

- An AC-MAS \mathcal{P} is *b*-bounded iff for all $s \in \mathcal{P}$, $|adom(s)| \leq b$.
- Bounded systems can still be infinite!

Theorem

Consider

- a b-bounded and uniform AC-MAS \mathcal{P} on an infinite domain U
- an FO-CTLK formula φ

Given $U' \supseteq C$ s.t.

 $|U'| \geq 2b + |C| + \max\{|vars(\varphi)|, N_{Ag}\}$

there exists a finite abstraction \mathcal{P}' of \mathcal{P} s.t.

• \mathcal{P}' is uniform and bisimilar to $\mathcal P$

In particular,

$$\mathcal{P} \models \varphi \quad iff \quad \mathcal{P}' \models \varphi$$

How can we define finite abstractions constructively?

Example of uniform AC-MAS written in a FO language.

- for each agent *i*, Act_i is the set of of local (parametric) actions of the form $\omega(\vec{x}) = \langle \pi(\vec{y}), \psi(\vec{z}) \rangle$ s.t.
 - $\omega(\vec{x})$ is the operation signature and $\vec{x} = \vec{y} \cup \vec{z}$ is the set of operation parameters
 - $\pi(\vec{y})$ is the operation precondition, i.e., an FO-formula over \mathcal{D}_i
 - $\psi(\vec{z})$ is the operation postcondition, i.e., an FO-formula over $\mathcal{D} \cup \mathcal{D}'$

We call the AC-MAS specified in this way Artifact System Programs.

Example 2: the Order-to-Cash Scenario

Specification of actions affecting the MO in the order-to-cash scenario:

- createMO(po_id, price) = $\langle \pi(po_id, price), \psi(po_id, price) \rangle$, where:
- $\pi(po_id, price) \equiv \exists p, o \ (PO(po_id, p, o, prepared) \land \exists cost \ Materials(p, cost) \land \phi_{b-1}$
- $\psi(po_id, price) \equiv \exists id (MO'(id, po_id, price, preparation) \land$

$$\forall id', c, p, s (MO(id', c, p, s) \rightarrow id \neq id')) \land \phi_b$$

where ϕ_k is the FO-formula saying that there are at most k objects in the active domain.

The specification of createMO guarantees that the bound b is not violated by action execution.

Verification of Artifact System Programs

Lemma

AS programs generate uniform AC-MAS.

Theorem

Consider

- a b-bounded AS program $\mathcal{P}_{Act,U}$ on an infinite domain U
- an FO-CTLK formula φ .

Given $U' \supseteq C$ s.t.

 $|U_2| \geq 2b + |C| + \max\{N_{AS}, |vars(\varphi)|\}$

then $\mathcal{P}_{Act,U'}$ is a finite abstraction of $\mathcal{P}_{Act,U}$ s.t.

• $\mathcal{P}_{Act,U'}$ is uniform and bisimilar to $\mathcal{P}_{Act,U}$

In particular,

$$\mathcal{P}_{Act,U} \models \varphi \quad iff \quad \mathcal{P}_{Act,U'} \models \varphi$$

- The abstraction is finite and the procedure is constructive.
- Thus, we can apply standard techniques in model checking.

() Non-uniform AC-MAS: for *sentence-atomic* FO-CTL the results above still hold.

 $AG \ \forall c \ (shippedPO(c) \rightarrow \forall m(related(c, m) \rightarrow shippedMO(m))) \qquad \checkmark$

1 Non-uniform AC-MAS: for *sentence-atomic* FO-CTL the results above still hold.

 $AG \ \forall c \ (shippedPO(c) \rightarrow \forall m(related(c, m) \rightarrow shippedMO(m))) \qquad \checkmark$

In Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS \mathcal{P} is bounded, and $\varphi \in$ FO-ACTL, then there exists a finite abstraction \mathcal{P}' such that if $\mathcal{P}' \models \varphi$ then $\mathcal{P} \models \varphi$.

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

 $AG \ \forall c \ (shippedPO(c) \rightarrow \forall m(related(c, m) \rightarrow shippedMO(m))) \qquad \checkmark$

In Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS \mathcal{P} is bounded, and $\varphi \in$ FO-ACTL, then there exists a finite abstraction \mathcal{P}' such that if $\mathcal{P}' \models \varphi$ then $\mathcal{P} \models \varphi$.

Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

On-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

 $AG \ \forall c \ (shippedPO(c) \rightarrow \forall m(related(c, m) \rightarrow shippedMO(m))) \qquad \checkmark$

② Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS \mathcal{P} is bounded, and $\varphi \in$ FO-ACTL, then there exists a finite abstraction \mathcal{P}' such that if $\mathcal{P}' \models \varphi$ then $\mathcal{P} \models \varphi$.

- Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.
- Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete in the size of the formula and data.

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

 $AG \ \forall c \ (shippedPO(c) \rightarrow \forall m(related(c, m) \rightarrow shippedMO(m))) \qquad \checkmark$

② Non-uniform AC-MAS: one-way preservation result for FO-ACTL.

Theorem

If an AC-MAS \mathcal{P} is bounded, and $\varphi \in$ FO-ACTL, then there exists a finite abstraction \mathcal{P}' such that if $\mathcal{P}' \models \varphi$ then $\mathcal{P} \models \varphi$.

- Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.
- Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete in the size of the formula and data.

The finite abstraction result can be extended to typed FO-CTLK including predicates with an infinite interpretation (< on rationals)</p>

- We are able to model check AC-MAS w.r.t. full FO-CTLK...
- ...however, our results hold only for *uniform* and *bounded* systems.
- This class includes many interesting systems (AS programs, [2, 4]).
- The model checking problem is EXPSPACE-complete.

Next Steps

- Techniques for finite abstraction.
- Model checking techniques for finite-state systems are effective on the abstract system?
- How to perfom the boundedness check.

Merci!

eamericonart@hristel Baier and Joost-Pieter Katoen.

Principles of Model Checking.

MIT Press, 2008.

eamericonartØe Cohn and R. Hull.

Business Artifacts: A Data-Centric Approach to Modeling Business Operations and Processes.

IEEE Data Eng. Bull., 32(3):3-9, 2009.

eamericonartRe Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.

Reasoning About Knowledge. The MIT Press, 1995.

eamericant®: Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, and P. Felli. Foundations of Relational Artifacts Verification.

In Proc. of BPM, 2011.