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Abstract. We investigate quantified interpreted systems, a computationally grounded semantics for
a first-order temporal epistemic logic on linear time. We report a completeness result for the monodic
fragment of a language that includes LTL modalities as well as distributed and common knowledge.
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1. Introduction

Propositional modal logics to reason about knowledge and time have been thoroughly investigated by
researchers in logic and artificial intelligence both as regards their fundamental theoretical properties
(completeness, decidability, complexity) [3, 8, 10], as well as their suitability for the specification and
verification of multi-agent systems [5, 21, 31].

In one line of research epistemic modalities have been added to represent group knowledge such as
distributed and common knowledge [9, 11]. In another one, the temporal fragment has been modified

Address for correspondence: Department of Computing
Imperial College London, UK
CCorresponding author



1002 F. Belardinelli, A. Lomuscio / First-Order Linear-time Epistemic Logic with Group Knowledge

according to different models of time (e.g., linear or branching, discrete orcontinuous) [17, 19]. In yet
another line, temporal epistemic logic has been studied within a first order setting [1, 6, 15].

In this paper we extend a combination of epistemic and temporal logic to the predicate level. We
provide this language with a computationally grounded semantics [30] given interms ofquantified inter-
preted systems[1, 2], and we present a sound and complete axiomatisation of themonodicfragment of
this logic, where at most one free variable appears in the scope of any modal operator. Finally, we apply
this formalism to the modeling of message passing systems, a typical framework indistributed systems
[18, 5].

Our starting point is a number of results by Hodkinson, Wolter, and Zakharyaschev, among others,
regarding the axiomatisability [25, 29], decidability [15, 28], and complexity [13, 14] of first-order modal
logics, including both positive [12, 24] and negative results [16, 26, 27]. Specifically, we prove the
completeness of our first-order temporal epistemic logic via aquasimodelconstruction. These structures
have been introduced in [15] to prove decidability formonodicfragments of first-order temporal logic
(FOTL) on a variety of flows of time. These investigations were further pursued in [16], where branching
flows of time are analysed, and in [12], which deals with the packed fragment of FOTL. In [13, 14] the
complexity of the decision problem for a number of monodic fragments of FOTL is considered.

As regards general first-order modal logic, the decidability of monodic fragments has been investi-
gated in [28]. In [27] it is proved that first-order epistemic logic with common knowledge is not axioma-
tisable. However, in [26] it is shown that its monodic fragment is. Finally, this paper relies on results in
[25, 29]. In [29] the authors present a complete axiomatisation for the monodic fragment of FOTL on the
natural numbers. In [25] we have a similar result for a variety of first-order epistemic logics with com-
mon knowledge. None of these references use interpreted systems [5, 20] as the underlying semantics,
as we do here.

Our motivation for this contribution comes from an interest in reactive, autonomous, distributed
systems, or multi-agent systems (MAS), whose high-level properties may usefully be modeled by first-
order temporal epistemic formalisms [4, 23, 31], and behaviours programmed by languages based on
interpreted systems such as ISPL [22]. While temporal epistemic logics are well understood at the
propositional level, their usefulness has been demonstrated in a number ofapplications (security and
communication protocols, robotics), and model checking tools have been developed for them [7, 22],
still we believe there is a growing need in web-services, security, as well as other areas, to extend these
languages to the first order. As a preliminary contribution, in [2] we introduced a “static” version of
quantified interpreted systems to model a first-order epistemic formalism. This was then extended to the
temporal dimension in [1]. Differently from these previous works, here we explicitly assume linear-time
operators and the natural numbers as the flow of time. Both features are crucial for applications, but they
also increase the complexity of the formalism.

Scheme of the paper.In Section 2 we introduce the first-order temporal epistemic languageLm
for a setA = {1, . . . ,m} of agents, and in Section 3 we provide it with a computationally grounded
semantics in terms of quantified interpreted systems, and present its monodic fragment. In Section 4 we
explore its expressive power in specifying message passing systems. InSections 5 and 6 we introduce
an axiomatisation for the monodic fragment ofLm and prove its completeness.
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2. Syntax

The first-order temporal epistemic languageLm contains individual variablesx1, x2, . . ., individual con-
stantsc1, c2, . . ., andn-ary predicative lettersPn1 , P

n
2 , . . . for n ∈ N, the propositional connectives¬ and

→, the universal quantifier∀, the linear-time operators© andU , the epistemic operatorsKi for i ∈ A,
the distributed knowledge operatorD, and the common knowledge operatorC.

The only termst1, t2, . . . in Lm are individual variables and constants.

Definition 2.1. Formulas inLm are defined in the Backus-Naur form as follows:

φ ::= P k(t1, . . . , tk) | ¬ψ | ψ → ψ′ | ∀xψ | ©ψ | ψUψ′ | Kiψ | Dψ | Cψ

The formulas©φ andφUφ′ are read as “φ holds at the next step” and “φ′ will eventually hold and
φ is the case until that moment”. The formulaKiφ represents “agenti knowsφ”, while formulasDφ
andCφ respectively mean “φ is distributed knowledge” and “φ is common knowledge” in the groupA
of agents.

We define the symbols∧, ∨, ↔, ∃,G (always in the future), andF (some time in the future) as stan-
dard; whileK̄iφ andD̄φ are shorthands for¬Ki¬φ and¬D¬φ respectively. Further,Eφ =

∧

i∈AKiφ,
and for△ equal toE or©, △kφ is defined as follows for everyk ∈ N: △0φ = φ and△k+1φ = △△kφ.

Finally, by φ[~y] we mean that~y = y1, . . . , yn are all the free variables inφ; while φ[~y/~t] is the
formula obtained by substituting simultaneously some, possibly all, free occurrences of~y in φ with
~t = t1, . . . , tn, renaming bounded variables if necessary.

3. Quantified Interpreted Systems

In this section we present a dynamic version of the “static” quantified interpreted systems in [2] by
assuming the natural numbersN as the underlying flow of time. Specifically, for each agenti ∈ A in a
multi-agent system we introduce a setLi of local statesli, l′i, . . ., and a setActi of actionsai, a′i, . . .. We
consider local states and actions for the environmente as well. The setS ⊆ Le×L1× . . .×Lm contains
the global states of the MAS, whileAct ⊆ Acte×Act1 × . . .×Actm is the set of joint actions. We also
introduce a transition functionτ : Act→ (S → S). Intuitively, τ(a)(s) = s′ encodes that agents access
the global states′ from s by performing the joint actiona. We say that the global states′ is reachable in
one stepfrom s, or s ⊏ s′, iff there isa ∈ Act such thatτ(a)(s) = s′.

To represent the temporal evolution of the MAS we consider the flow of time〈N, <〉 of natural
numbersN with the strict total order<. A run r over〈S, Act, τ,N〉 is a function fromN to S such that
r(n) ⊏ r(n+1). Intuitively, a run represents a possible evolution of the MAS according tothe transition
functionτ and assumingN as the flow of time. We now define the quantified interpreted systems for the
languageLm as follows:

Definition 3.1. (QIS)
A quantified interpreted system over〈S, Act, τ,N〉 is a tripleP = 〈R,D, I〉 such that:

(i) R is a non-empty set of runs over〈S, Act, τ,N〉;

(ii) D is a non-empty set of individuals;
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(iii) I is an interpretation ofLm such thatI(c) ∈ D, and forr ∈ R, n ∈ N, I(P k, r, n) is ak-ary
relation onD.

We denote byQIS the class of all quantified interpreted systems.

Note that the individual constants inLm are interpreted rigidly, that is, their interpretation is the
same in every global state. Following standard notation [5] a pair(r, n) is a point in P. If r(n) =
〈le, l1, . . . , lm〉 is the global state at the point(r, n), thenre(n) = le andri(n) = li are the environment’s
and agenti’s local state at(r, n) respectively. Further, a QIS issynchronousif for every i ∈ A, ri(n) =
r′i(n

′) impliesn = n′, that is, time is part of the local state of any agent. We denote byQISsync the
class of all synchronous QIS.

Now we assign a meaning to the formulas ofLm in quantified interpreted systems. Letσ be an
assignment from the variables to the individuals inD, the valuationIσ(t) of a termt is defined asσ(y)
for t = y, andIσ(t) = I(c) for t = c. A variantσ

(

x
a

)

of an assignmentσ assignsa ∈ D to x and
coincides withσ on all the other variables.

Definition 3.2. The satisfaction relation|= for φ ∈ Lm, (r, n) ∈ P, and an assignmentσ is defined as
follows:

(Pσ, r, n) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , I
σ(tk)〉 ∈ I(P k, r, n)

(Pσ, r, n) |= ¬ψ iff (Pσ, r, n) 6|= ψ
(Pσ, r, n) |= ψ → ψ′ iff (Pσ, r, n) 6|= ψ or (Pσ, r, n) |= ψ′

(Pσ, r, n) |= ∀xψ iff for all a ∈ D, (Pσ(x

a), r, n) |= ψ
(Pσ, r, n) |= ©ψ iff (Pσ, r, n+ 1) |= ψ
(Pσ, r, n) |= ψUψ′ iff there isn′ ≥ n such that(Pσ, r, n′) |= ψ′

and for alln′′, n ≤ n′′ < n′ implies(Pσ, r, n′′) |= ψ
(Pσ, r, n) |= Kiψ iff for all (r′, n′), ri(n) = r′i(n

′) implies(Pσ, r′, n′) |= ψ
(Pσ, r, n) |= Dψ iff ri(n) = r′i(n

′) for all i ∈ A, implies(Pσ, r′, n′) |= ψ
(Pσ, r, n) |= Cψ iff for all k ∈ N, (Pσ, r, n) |= Ekψ

The truth conditions for∧, ∨, ↔, ∃, G, andF are defined from those above. A formulaφ ∈ Lm is
true at a point(r,m) iff it is satisfied at(r,m) by everyσ; φ is valid on a QISP iff it is true at every
point inP; φ is valid on a classC of QISiff it is valid on every QIS inC.

3.1. The monodic fragment

In the rest of the paper we focus on the monodic fragment of the languageLm.

Definition 3.3. The monodic fragmentL1
m is the set of formulasφ ∈ Lm such that any subformula ofφ

of the formKiψ,Dψ, Cψ, ©ψ, orψ1Uψ2 contains at most one free variable.

The monodic fragments of a number of first-order modal logics have been thoroughly investigated
[14, 15, 25, 28, 29]. In the case ofLm this fragment is quite expressive as it contains formulas like the
following:

∀y(Resource(y) → C(∀zAvailable(y, z)U∃xRequest(x, y)) (1)

D©∀xyz(Request(x, y) → ¬Available(y, z)) → ©D∀xyz(Request(x, y) → ¬Available(y, z)) (2)
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Formula (1) states that it is common knowledge that every resource will eventually be requested, but
until that time the resource remains universally available. Formula (2) represents that if it is distributed
knowledge that at the next step any resource is not available wheneverit is requested, then at the next
step it is distributed knowledge that this is the case. However, note that the formula

∀xKi(Process(x) → ∀yF Access(x, y)) (3)

which intuitively means that agenti knows that every process will eventually try to access every resource,
is not monodic. Still, the monodic fragment ofLm is quite expressive as it contains allde dictoformulas,
i.e., formulas where no free variable appears in the scope of modal operators, as in (2).

4. Message Passing Systems

In this section we model message passing systems [5, 18] in the framework ofQIS. A message passing
system (MPS) is a MAS in which the only actions for the agents are sending and receiving messages.
This setting is common to a variety of distributed systems, well beyond the realms ofMAS and AI.
Indeed, any synchronous or asynchronous networked system canbe seen as an MPS.

To define our message passing QIS we introduce a setMsgof messagesµ1, µ2, . . ., and define the
local stateli for agenti as ahistoryoverMsg, that is, a sequence of events of the formsend(i, j, µ) and
rec(i, j, µ) for i, j ∈ A, µ ∈ Msg. Intuitively, send(i, j, µ) represents the event in whichagenti sends
messageµ to j, while the meaning ofrec(i, j, µ) is thatagenti receives messageµ fromj. A global state
s ∈ S is a tuple〈le, l1, . . . , ln〉 wherel1, . . . , ln are local states as above, andle contains all the events in
l1, . . . , ln.

A run r over〈S,N〉 is a function from the natural numbersN to S such that:

MP1 ri(0) is a sequence of length zero, andri(m + 1) is either identical tori(m) or results from
appending an event tori(m).

By MP1 the local state of each agent records the messages she has sentor received, and at each step
at most a single event occurs to any agent. We define message passing QIS (MPQIS) as the class of
quantified interpreted systemsP = 〈R,D, I〉 whereR is a non-empty set of runs satisfying MP1,D
contains the agents inA and the messages inMsg, andI is an interpretation forLm. We use the same
notation for objects in the model and syntactic elements, the distinction will be made clear by the context.

For the specification of MPS we introduce a predicative letterSendsuch that(Pσ, r, n) |= Send(i, j, µ)
iff eventsend(i, j, µ) occurs to agenti at timen in runr, i.e.,ri(n) is the result of appendingsend(i, j, µ)
to ri(n − 1). Also, we introduce the predicateSentsuch that(Pσ, r, n) |= Sent(i, j, µ) iff event
send(i, j, µ) occurs to agenti before timen in run r, i.e.,send(i, j, µ) appears inri(n). The predicates
RecandRec’edare similarly defined for eventrec(i, j, µ).

Let us now explore the range of specifications that can be expressed inthis formalism. A property
often required in MPS ischannel reliability. We express this by stating that every sent message is
eventually received. Note that, according to the definition of message passing QIS, it is possible that a
message is lost during a run of the system. We can force channel reliability by requiring the following
specification to hold on MPQIS:

∀µ(∃ijSend(i, j, µ) → F∃i′j′Rec(j′, i′, µ)) (4)
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In fact, we can be more specific and require that every message is receivedat most(at least) k steps
after being sent, orexactlyk steps after being sent:

∀µ(∃ijSend(i, j, µ) → ©k∃i′j′Rec’ed(j′, i′, µ)) (5)

∀µ(∃ijSent(i, j, µ) → ©k∃i′j′Rec(j′, i′, µ)) (6)

∀µ(∃ijSend(i, j, µ) → ©k∃i′j′Rec(j′, i′, µ)) (7)

Note that all of (4)-(7) are monodic. In these specifications the identities ofthe sender and the
receiver are left unspecified. So, in cases in which we are not interested in singling out the addresser and
the addressee, the monodic fragment suffices.

Another property often required on MPQIS is that there are no “ghost” messages: if agenti receives
a messageµ, theni knows thatµ must actually have been sent by some agentj. This specification is
expressible as a monodic formula:

∀µ(∃jRec(i, j, µ) → Ki∃j
′Sent(j′, i, µ)) (8)

We compare (8) with a further relevant property of MPQIS, i.e.,authentication: if agenti receives
a messageµ from agentj, theni knows thatµ has actually been sent byj. This specification can be
expressed as thede reversion of (8):

∀µj(Rec(i, j, µ) → KiSent(j, i, µ)) (9)

Note that, differently from (8), (9) is not monodic.
Even if we allow an agenti not to know whether a received messageµ has actually been sent, that

is, we reject (8), it can be checked on arbitrary MPQIS that the followingformula holds:

∀µ(∃ij(Sent(i, j, µ) ∧ Rec’ed(j, i, µ)) → D∃i′j′(Sent(i′, j′, µ) ∧ Rec’ed(j′, i′, µ)))

In other words, it is distributed knowledge that a messageµ has been sent and received as soon as it has
been received. On the other hand, the corresponding monodic formulas

∀µ(∃j(Sent(i, j, µ) ∧ Rec’ed(j, i, µ)) → Ki∃j
′(Sent(i, j′, µ) ∧ Rec’ed(j′, i, µ)))

∀µ(∃i(Sent(i, j, µ) ∧ Rec’ed(j, i, µ)) → Kj∃i
′(Sent(i′, j, µ) ∧ Rec’ed(j, i′, µ)))

are not valid for any agenti, j.
Furthermore, inL1

m we can express that an agenti cannot aquire the knowledge that messageµ has
been sent to her, other than by receiving the message:

∀µ(∃jSent(j, i, µ) → (¬Ki∃j
′Sent(j′, i, µ)U∃j′′Rec(i, j′′, µ))

Finally, we might want to check whether at a certain point in the evolution of theMPQIS it will be
common knowledge that a message has been sent or received:

∀µ(∃ijSent(i, j, µ) → FC(∃i′j′Sent(i′, j′, µ))) (10)

∀µ(∃ijRec’ed(i, j, µ) → FC(∃i′j′Rec’ed(i′, j′, µ))) (11)

From results in [5] regarding the attainability of common knowledge in systems withunreliable
communication, we may infer that some assumption on channel reliability in MPQIS isneeded in order
to validate specifications (10) and (11).

The conclusion we draw from the observations above is that the monodic fragment of the language
Lm allows for rich specifications on MPS, notwithstanding the limitation on free variables in modal
contexts.
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5. Axiomatisation

In this section we present a sound and complete axiomatisation of the set of monodic validities in the
class of quantified interpreted systems. This result shows that, even though languageL1

m is highly ex-
pressive, QIS provide a perfectly adequate semantics for it. This also opens the possibility of developing
automated verification methods for this formalism.

The systemQKT 1
m is a first-order multi-modal version of the propositional epistemic systemS5

combined with the linear temporal logicLTL. Hereafter we list the postulates ofQKT 1
m. Note that⇒

is the inference relation between formulas, while� is a placeholder for any of the epistemic operators
Ki for i ∈ A,D, orC.

Definition 5.1. The systemQKT 1
m contains the following schemes of axioms and inference rules, where

φ, ψ andχ are formulas inL1
m:

Taut instances of classic propositional tautologies

MP φ→ ψ, φ⇒ ψ

K ©(φ→ ψ) → (©φ→ ©ψ)

T1 ©¬φ↔ ¬© φ

T2 φUψ ↔ ψ ∨ (φ ∧©(φUψ))

Nec φ⇒ ©φ

T3 χ→ ¬ψ ∧©χ⇒ χ→ ¬(φUψ)

K �(φ→ ψ) → (�φ→ �ψ)

T �φ→ φ

4 �φ→ ��φ

5 ¬�φ→ �¬�φ

Nec φ⇒ �φ

D Kiφ→ Dφ

C1 Cφ↔ (φ ∧ ECφ)

C2 φ→ (ψ ∧ Eφ) ⇒ φ→ Cψ

BF ©∀xφ↔ ∀x© φ

BF �∀xφ↔ ∀x�φ

Ex ∀xφ→ φ[x/t]

Gen φ→ ψ[x/t] ⇒ φ→ ∀xψ for x not free inφ

Table 1. the systemQKT 1

m

The operatorsKi, D, andC areS5 modalities, while the next© and untilU operators are axioma-
tised as linear-time modalities. To this we add the classic postulatesEx andGen for quantification,
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which are both sound as we are considering a unique domainD of individuals for each QIS. We consider
the standard definitions ofproof andtheorem: ⊢ φ means thatφ ∈ L1

m is a theorem inQKT 1
m.

It is a routine exercise to check that the axioms ofQKT 1
m are valid on every QIS and the inference

rules preserve validity. As a consequence, we have the following soundness result:

Theorem 5.1. (Soundness)
The systemQKT 1

m is sound with respect to the classQIS of quantified interpreted systems.

The next corollary directly follows from the fact thatQISsync is a subset ofQIS.

Corollary 5.1. (Soundness)
The systemQKT 1

m is sound with respect to the classQISsync of synchronous QIS.

Now we show that the axioms inQKT 1
m are not only necessary, but also sufficient to prove all

monodic validities onQIS andQISsync.

5.1. Kripke Models

Although quantified interpreted systems are useful for modeling MAS, to prove the completeness of
QKT 1

m we first introduce an appropriate class of Kripke models, and prove completeness for these
models. Then we apply a correspondence result between Kripke models and QIS to obtain the desired
result.

Definition 5.2. A Kripke modelfor Lm is a tupleM = 〈〈Nj , <j〉j∈J , {∼i}i∈A,D, I〉 such that:

(i) for j ∈ J , Nj is a copy of the natural numbers with the strict total order<j ;

(ii) for i ∈ A, ∼i is an equivalence relation on
⋃

j∈J Nj ;

(iii) D is a non-empty set of individuals;

(iv) the interpretationI is such thatI(c) ∈ D, and fornj ∈ Nj , I(P k, nj) is ak-ary relation onD.

The class of all Kripke models is denoted byK.

A Kripke model issynchronousif for everyi ∈ A, nj ∼i n
′
j′ impliesn = n′. ByKsync we denote the

class of all synchronous Kripke models. The satisfaction relation|= for an assignmentσ is inductively
defined as follows:

(Mσ, nj) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , I
σ(tk)〉 ∈ I(P k, nj)

(Mσ, nj) |= ¬ψ iff (Mσ, nj) 6|= ψ
(Mσ, nj) |= ψ → ψ′ iff (Mσ, nj) 6|= ψ or (Mσ, nj) |= ψ′

(Mσ, nj) |= ∀xψ iff for all a ∈ D, (Mσ(x

a), nj) |= ψ
(Mσ, nj) |= ©ψ iff (Mσ, n+ 1j) |= ψ
(Mσ, nj) |= ψUψ′ iff there isn′j ≥j nj such that(Mσ, n′j) |= ψ′

and for alln′′j , nj ≤j n
′′
j <j n

′
j implies(Mσ, n′′j ) |= ψ

(Mσ, nj) |= Kiψ iff for all n′j′ , nj ∼i n
′
j′ implies(Mσ, n′j′) |= ψ

(Mσ, nj) |= Dψ iff for all n′j′ , (nj , n
′
j′) ∈ (

⋂

i∈A ∼i) implies(Mσ, n′j′) |=ψ

(Mσ, nj) |= Cψ iff for all n′j′ , (nj , n
′
j′) ∈ (

⋃

i∈A ∼i)
∗ implies(Mσ, n′j′) |=ψ
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where(
⋃

i∈A ∼i)
∗ is the reflexive and transitive closure of the relation(

⋃

i∈A ∼i).
We compare Kripke models and quantified interpreted systems by means of a mapg : K → QIS.

Let M = 〈〈Nj , <j〉j∈J , {∼i}i∈A,D, I〉 be a Kripke model. For every equivalence relation∼i, for
nj ∈ Nj , let the equivalence class[nj ]∼i

= {n′j′ | nj ∼i n
′
j′} be a local state for agenti, while

Nj is the set of local states for the environment. Then defineg(M) as the tuple〈R,D, I ′〉 whereR
contains the runsrj for j ∈ J such thatrj(n) = 〈nj , [nj ]∼1

, . . . , [nj ]∼m
〉, D is the same as inM, and

I ′(P k, rj , n) = I(P k, nj). The structureg(M) is a QIS that satisfies the following result:

Lemma 5.1. For everyφ ∈ Lm, n ∈ N,

(Mσ, nj) |= φ iff (g(M)σ, rj , n) |= φ

We omit the proof of this lemma, which can be easily proved by induction on the lenght ofφ. Note
that if M is synchronous, then alsog(M) is synchronous, i.e.,g also defines a map fromKsync to
QISsync.

6. Completeness

The completeness of the systemQKT 1
m with respect to the classesQIS andQISsync of quantified

interpreted systems is proved by means of a quasimodel construction [6]. In particular, the version of
quasimodels here considered combines the purely epistemic structures in [25] with the purely temporal
structures in [29]. Intuitively, a quasimodel for a monodic formulaφ ∈ L1

m is a relational structure
whose points are sets of sets of subformulas ofφ. Each set of sets of subformulas describes a “possible
state of affairs”, and contains sets of subformulas defining the individuals in the point. In what follows
we provide the exact definitions.

Definition 6.1. Given a formulaφ ∈ L1
n we denote bysubφ the set of subformulas ofφ, and define

subCφ = subφ ∪ {ECψ | Cψ ∈ subφ} ∪ {KiCψ | Cψ ∈ subφ, i ∈ A}. Further, letsubC©φ =
subCφ ∪ {¬ψ | ψ ∈ subCφ} ∪ {©ψ | ψ ∈ subCφ} ∪ {©¬ψ | ψ ∈ subCφ}.

Let subnφ be the subset ofsubC©φ containing formulas with at mostn free variables and letx be
a variable not occurring inφ, we definesubxφ = {ψ[y/x] | ψ[y] ∈ sub1φ}. Clearly,x is the only free
variable insubxφ. By conφ we denote the set of all constants occurring inφ.

Definition 6.2. (Type)
A typefor φ is any subsett of subxφ such that for everyψ, χ ∈ subxφ, (i) ψ ∧χ ∈ t iff ψ ∈ t andχ ∈ t;
and (ii)¬ψ ∈ t iff ψ /∈ t.

This definition of type is completely standard [6, 25, 29]. In what follows wedo not distinguish
between a typet and the conjunction

∧

ψ∈t
ψ of its formulas. Note thatsub0φ is the set of sentences

in subxφ. Two typest, t′ agreeon sub0φ iff t ∩ sub0φ = t′ ∩ sub0φ, i.e., they share the same set of
sentences. Finally, given a typet for φ and a constantc ∈ conφ, the pair〈t, c〉 is called anindexed type
for φ.

The following definition of state candidate is also standard.
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Definition 6.3. (State Candidate)
LetT be a set of types forφ that agree onsub0φ, andT con a set containing for eachc ∈ conφ an indexed
type〈t, c〉 such thatt ∈ T , then the pairC = 〈T, T con〉 is astate candidatefor φ.

Given a state candidateC = 〈T, T con〉 we define the formulaαC as follows:

αC :=
∧

t∈T

∃xt[x] ∧ ∀x
∨

t∈T

t[x] ∧
∧

〈t,c〉∈T con

t[x/c]

Note thatαC is monodic. A state candidateC is consistentiff the formulaαC is consistent with
QKT 1

m, i.e.,0 ¬αC. Consistent state candidates will be the points of our quasimodel. We now define a
relation ofsuitability for types and state candidates that constitute the relational part of our quasimodel.

Definition 6.4. 1. A pair (t1, t2) of types is©-suitableiff the formula t1 ∧ ©t2 is consistent. A
pair (t1, t2) is i-suitableiff the formulat1 ∧ K̄it2 is consistent, and it isD-suitableiff the formula
t1 ∧ D̄¬t2 is consistent.

2. A pair(C1,C2) of state candidates is©-suitableiff the formulaαC1
∧©αC2

is consistent. A pair
(C1,C2) is i-suitableiff the formulaαC1

∧ K̄iαC2
is consistent, and it isD-suitableiff the formula

αC1
∧ D̄αC2

is consistent.

We now introduce the frame underlying the quasimodel forφ.

Definition 6.5. (Frame)
LetA+ = A ∪ {D}. A frameF is a tuple〈〈Nj , <j〉j∈J , {≺l}l∈A+〉 such that:

(i) for j ∈ J , eachNj is a copy of the natural numbers with the strict total order<j ;

(ii) the pair〈
⋃

j∈J Nj ,
⋃

l∈A+ ≺l〉 is a set of disjoint intransitive trees1.

A frame issynchronousif for every l ∈ A+, nj ≺l n
′
j′ impliesn = n′. Further, we introduce state

functions mapping points inF to consistent state candidates.

Definition 6.6. (State Function)
A state functionfor φ over F is a mapf associating with eachnj ∈ F a consistent state candidate
f(nj) = Cnj

for φ such that:

(i) the domain off is not empty;

(ii) if f is defined onnj thenf is defined onn+ 1j ;

(iii) if f is defined onnj andnj ≺l n
′
j′ thenf is defined onn′j′ .

In what follows we often do not distinguish between a statenj and its associated state candidate
f(nj) = Cnj

.
Finally, we provide the definition ofobjects, which correspond to theruns in [25, 29]. We use this

denomination to avoid confusion with the runs in QIS.

1The pair〈U, R〉 is an intransitive tree iff (i) there is a rootu0 ∈ U such thatu0R
∗u for everyu ∈ U , whereR∗ is the reflexive

and transitive closure ofR; (ii) for every u ∈ U the set{u′ ∈ U | u′R∗u} is finite and linearly ordered byR∗; (iii) every
u ∈ U but the rootu0 has exactly one predecessor; (iv) the rootu0 is irreflexive.
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Definition 6.7. (Object)
Let f be a state function forφ overF . An objectin 〈F , f〉 is a mapρ associating with everynj ∈ Dom(f)
a typeρ(nj) in Tnj

such that:

(i) the pair(ρ(nj), ρ(n+ 1j)) is ©-suitable;

(ii) if nj ≺l n
′
j′ thenρ(nj) andρ(n′j′) arel-suitable;

(iii) χUψ ∈ ρ(nj) iff there isn′j ≥j nj such thatψ ∈ ρ(n′j) andχ ∈ ρ(n′′j ) for all nj ≤j n
′′
j <j n

′
j ;

(iv) if ¬Kiψ ∈ ρ(nj) then for somen′j′ , nj ≺i n
′
j′ andψ /∈ ρ(n′j′);

(v) if ¬Dψ ∈ ρ(nj) then for somen′j′ , nj ≺D n′j′ andψ /∈ ρ(n′j′);

(vi) if ¬Cψ ∈ ρ(nj) then for somen′j′ , (nj , n
′
j′) ∈ (

⋃

l∈A+ ≺l)
∗ andψ /∈ ρ(n′j′).

A map ρ associating with everynj ∈ Dom(f) a typeρ(nj) ∈ Tnj
such that only conditions (i)

and (iii) hold is atemporalobject. Similarly, a mapρ associating with everynj ∈ Dom(f) a type
ρ(nj) ∈ Tnj

such that only conditions (ii) and (iv)-(vi) hold is anepistemicobject. Now we have all the
elements to give the definition of quasimodels.

Definition 6.8. (Quasimodel)
A quasimodelfor φ is a tupleQ = 〈F , f,O〉 such thatf is a state function overF and

(i) φ ∈ t, for somet ∈ Tnj
andTnj

∈ Cnj
;

(ii) every pair(Cnj
,Cn+1j

) is ©-suitable, and ifnj ≺l n
′
j′ thenCnj

andCn′

j′
arel-suitable;

(iii) for every t ∈ Tnj
there exists an objectρ ∈ O such thatρ(nj) = t;

(iv) for everyc ∈ conφ the functionρc such thatρc(nj) = t for 〈t, c〉 ∈ T connj
is an object inO.

As the first step in the completeness proof we show that for monodic formulassatisfability in quasi-
models implies satisfability in Kripke models.

Lemma 6.1. If a monodic formulaφ ∈ L1
m has a quasimodelQ, thenφ is satisfiable in a Kripke model.

Proof:
The proof of this lemma is similar to those of Lemmas 11.72 and 12.9 in [6].

First of all, for every monodic formulaψ ∈ L1
m of the formKiχ,Dχ, Cχ, ©χ, orχ1Uχ2, if ψ is a

sentence then we introduce a propositional variablepψ andpψ is thesurrogateof ψ, if x is the only free
variable inψ then we introduce a unary predicative letterP 1

ψ and the formulaP 1
ψ(x) is thesurrogateof

ψ. Given a formulaφ ∈ L1
m we denote byφ the formula obtained fromφ by substituting all its modal

subformulas that are not within the scope of another modal operator with their surrogates.
Since every state candidateC in the quasimodelQ is consistent and the systemQKT 1

m is based on
first-order logic, the formulaαC is consistent with first-order (non-modal) logic. As a consequence, by
completeness of first-order logic, there is a first-order structureI = 〈I,D〉 whereD is a non-empty set
of individuals andI is an interpretation onD, which satisfiesαC, that is,Iσ |= αC for some assignment
σ toD.
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Now consider a cardinalκ ≥ ℵ0 greater than the cardinality of the setO of all objects inQ and
defineD = {〈ρ, ξ〉 | ρ ∈ O, ξ < κ}. By the theory of first-order logic, we can assume without loss of
generality thatD is the domain of the first-order structureInj

= 〈Inj
,D〉 satisfyingαCnj

, that is, all the
structuresInj

share a common domainD. Moreover, we can assume that for everyt ∈ Tnj
, 〈ρ, ξ〉 ∈ D,

ρ(nj) = t iff Iσnj
|= t[x] for σ(x) = 〈ρ, ξ〉, andInj

(c) = 〈ρ, 0〉 for everyc ∈ conφ.
Let us now define the Kripke modelM. Let F = 〈〈Nj , <j〉j∈J , {≺l}l∈A+〉 be the frame of the

quasimodelQ, we defineM as〈〈Nj , <j〉j∈J , {Ri}i∈A,D, I〉 where each sequenceNj of naturals inF
belongs also toM; each relationRi is the reflexive, symmetric and transitive closure of≺i ∪ ≺D; D is
defined as above; and the interpretationI is obtained by gluing together the variousInj

.
By induction on the length ofψ ∈ subxφ we can show that for every assignmentσ,

Iσnj
|= ψ iff (Mσ, nj) |= ψ

The base of induction follows by the definition ofI. The step for propositional connectives and
quantifiers follows by the induction hypothesis and equationsψ1 → ψ2 = ψ1 → ψ2, ¬ψ1 = ¬ψ1,
∀xψ1 = ∀xψ1. To deal with modal operators we state the following remark; the relevant cases directly
follow.

Remark 6.1. For everyρ ∈ O andnj ∈ Nj

(i) © ψ ∈ ρ(nj) iff ψ ∈ ρ(n+ 1j)

(ii) Kiψ ∈ ρ(nj) iff for every n′j′ , (nj , n
′
j′) ∈ Ri impliesψ ∈ ρ(n′j′)

(iii) Dψ ∈ ρ(nj) iff for every n′j′ , (nj , n
′
j′) ∈

⋂

i∈A

Ri impliesψ ∈ ρ(n′j′)

(iv) Cψ ∈ ρ(nj) iff for every n′j′ , (nj , n
′
j′) ∈

(

⋃

i∈A

Ri

)∗
impliesψ ∈ ρ(n′j′)

The proof of this remark is similar to the one of Lemma 12.10 in [6].
To complete the proof of Lemma 6.1 we remark that by definition of quasimodelφ ∈ t, for some

t ∈ Tnj
andTnj

∈ Cnj
, therefore we obtain thatφ is satisfied in the Kripke modelM. ⊓⊔

Note that ifQ is a synchronous quasimodel forφ, then the Kripke model built fromQ in Theorem
6.1 is also synchronous.

Now it is left to prove the existence of such a quasimodel forφ.

Lemma 6.2. If φ ∈ L1
m is a consistent monodic formula, then there exists a (synchronous) quasimodel

for φ.

In the proof we use the following partial results. These lemmas, which we statewithout proof, are
modifications of Lemmas 11.73 and 12.11 in [6].

Lemma 6.3. Let C be a consistent state candidate, then we can construct an infinite sequence {Cn}n∈N

of state candidates such thatC = C0 and

(i) every pair(Cn,Cn+1) is ©-suitable;
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(ii) for every t ∈ Tn there exists a temporal objectρ such thatρ(n) = t;

(iii) for every c ∈ conφ the functionρc such thatρc(n) = t, for 〈t, c〉 ∈ T conn , is a temporal object.

Lemma 6.4. If C is a consistent state candidate, then we can construct a structureW = 〈W,
≺1, . . . ,≺m,≺D〉 such thatW is a non-empty set of state candidates, and the pair〈W,

⋃

l∈A+ ≺l〉 is
a tree. Furthermore,

(i) C ≺l C′ only if C andC′ arel-suitable;

(ii) for every t ∈ T , w ∈W , there exists an epistemic objectρ such thatρ(w) = t;

(iii) for every c ∈ conφ the functionρc such thatρc(w) = t, for 〈t, c〉 ∈ T conw , is an epistemic object.

We can now prove Lemma 6.2.

Proof:
Letπφ be the disjunction of all formulasαC for all state candidatesC for φ. We denote byπφ the formula
obtained fromπφ by substituting all its modal subformulas that are not within the scope of another modal
operator with their surrogates. Note thatπφ is true in every first-order model, so by completeness of first-
order logic we have that⊢ πφ. Sinceφ is consistent, alsoφ ∧ πφ is consistent. Then there is a consistent
state candidateC = 〈T, T con〉 such thatφ ∈ t for somet ∈ T .

We define the structure〈F , f〉 underlying the quasimodelQ in steps. At step 2n+1 we extend the
structure with a chainNC′ of state candidates for every state candidateC′ introduced at step 2n. At stage
2n+2 we provide every state candidate introduced at step 2n+1 with a tree of state candidates as shown
in Lemma 6.4.

We start with the base of induction. DefineF0 = 〈〈Nj , <j〉j∈J0
, {≺0

l }l∈A+〉 whereJ0 is empty and
for everyl ∈ A+, ≺0

l is also empty. The functionf0 is empty as well. We also consider a setU0 which
contains only the state candidateC defined above, and assumeU−1 = ∅.

At step 2n+1 the frameF2n+1 is defined as the tuple〈〈Nj , <j〉j∈J2n+1
, {≺2n+1

l }l∈A+〉 such that
J2n+1 = J2n ∪ {U2n \ U2n−1} and for eachl ∈ A+, ≺2n+1

l =≺2n
l . Further, for everyu ∈ U2n \ U2n−1

by Lemma 6.3 there exists a sequence{uk}k∈N of state candidates such thatu0 = u. Thus, the state
function f2n is extended tof2n+1 such thatf2n+1(nu) = un for u ∈ U2n \ U2n−1, andf2n+1 is equal to
f2n on all the otheru ∈ U2n−1. Finally,U2n+1 =

⋃

j∈J2n+1
Nj .

For definingF2n+2 we takeJ2n+2 = J2n+1. Moreover, by Lemma 6.4 for everyu ∈ U2n+1 \ U2n

there is a structure〈Wu, {≺l}l∈A+〉 such that the pair〈Wu,
⋃

l∈A+ ≺l〉 is a tree. We define≺2n+2

l as
≺2n+1

l ∪ ≺l for eachl ∈ A+. Finally, f2n+2 = f2n+1 andU2n+2 = U2n+1 ∪
⋃

u∈U2n+1\U2n
Wu.

Now consider the quasimodelQ = 〈F , f,O〉 whereF = 〈〈Nj , <j〉j∈J , {≺l}l∈A+〉 such thatJ =
⋃

k∈N
Jk and≺l=

⋃

k∈N
≺k
l for l ∈ A+, f =

⋃

k∈N
fk, andO is the set of all objects on〈F , f〉. By

Lemmas 6.3 and 6.4 and by construction ofQ we can show thatO is non-empty and the objects inO
satisfy the constraints on quasimodels. Sinceφ ∈ t for somet ∈ C andC ∈ Q, we have thatQ is a
quasimodel forφ.

Furthermore, if we want to obtain a synchronous quasimodel from the construction above we modify
the step 2n+1 for n ≥ 1 as follows. For everyu ∈ U2n \ U2n−1 by construction there exists a structure
〈Wu′ , {≺l}l∈A+〉 for someu′ ∈ U2n−1 such thatu ∈ Wu′ . Moreover, for somej ∈ J2n, m ∈ N,
u′ = mj . Now, by Lemma 6.3 there exists a sequence{uk}k∈N of state candidates such thatu0 = u,
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but now we define the state functionf2n+1 such thatf2n+1((m+ k)u) = uk for k ∈ N. It it not difficult
to show that by this construction the quasimodelQ for φ is synchronous. This completes the proof of
Lemma 6.1. ⊓⊔

By combining Lemmas 6.2 and 6.1 we can state the main result of this paper.

Theorem 6.1. (Completeness)
The systemQKT 1

m is complete with respect to the classQIS of quantified interpreted systems.

Assume that0 φ, then¬φ is consistent and by Lemmas 6.2 and 6.1 there is a Kripke modelM
satisfying¬φ. By Lemma 5.1 the QISg(M) does not validateφ, thereforeQIS 6|= φ. The following
result can be proved similarly.

Theorem 6.2. (Completeness)
The systemQKT 1

m is complete with respect to the classQISsync of synchronous QIS.

7. Conclusions and Further Work

In this paper we analysed a quantified version of interpreted systems, the typical formalism for temporal
epistemic logic in multi-agent systems, and proved completeness for the systemQKT 1

m defined on the
monodic fragment of the first-order languageLm that includes linear-time modalities and epistemic
operators for group knowledge. This result makes use of previous contributions on the axiomatisation of
first-order epistemic and temporal logic [25, 29]. Further, we showed that a wide range of specifications
on message passing systems can be expressed in the monodic fragment ofLm.

Still, further work is needed in this line of research. The present paper deals with the classQIS
of all quantified interpreted systems and the classQISsync of synchronous QIS. In the axiomatisation
QKT 1

m for these classes there is no interaction between temporal and epistemic operators, but interaction
is essential to express epistemic concepts such asperfect recallandno learning. These refinements have
been widely studied at the propositional level [8, 10], but it is not clear towhich extent these results apply
to the first order.

Finally, another issue not tackled in this paper is decidability. We believe that by combining the
techniques in [15, 28] it is likely to find decidable monodic fragments of first-order temporal epistemic
logic. However, this topic demands further investigations.
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