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1. Introduction

Propositional modal logics to reason about knowledge and time have beeughly investigated by
researchers in logic and artificial intelligence both as regards their fioeak@l theoretical properties
(completeness, decidability, complexity) [3, 8, 10], as well as their suitabdityfe specification and
verification of multi-agent systems [5, 21, 31].

In one line of research epistemic modalities have been added to represemkgowledge such as
distributed and common knowledge [9, 11]. In another one, the tempaghint has been modified
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according to different models of time (e.g., linear or branching, discretemtinuous) [17, 19]. In yet
another line, temporal epistemic logic has been studied within a first ordegdditi®, 15].

In this paper we extend a combination of epistemic and temporal logic to the aiedibwel. We
provide this language with a computationally grounded semantics [30] givemits ofquantified inter-
preted systemd, 2], and we present a sound and complete axiomatisation ehtimodicfragment of
this logic, where at most one free variable appears in the scope of aral opetator. Finally, we apply
this formalism to the modeling of message passing systems, a typical framewdisitributed systems
[18, 5].

Our starting point is a number of results by Hodkinson, Wolter, and Zgklsahev, among others,
regarding the axiomatisability [25, 29], decidability [15, 28], and complexig; [L4] of first-order modal
logics, including both positive [12, 24] and negative results [16, 26, Zpecifically, we prove the
completeness of our first-order temporal epistemic logic jaasimodetonstruction. These structures
have been introduced in [15] to prove decidability foonodicfragments of first-order temporal logic
(FOTL) on a variety of flows of time. These investigations were further put&ugl6], where branching
flows of time are analysed, and in [12], which deals with the packed fragofi¢foTL. In [13, 14] the
complexity of the decision problem for a number of monodic fragmentsodilHs considered.

As regards general first-order modal logic, the decidability of monodignfrents has been investi-
gated in [28]. In [27] it is proved that first-order epistemic logic with commpawdedge is not axioma-
tisable. However, in [26] it is shown that its monodic fragment is. Finally, thizap relies on results in
[25, 29]. In [29] the authors present a complete axiomatisation for the diofragment of ©TL on the
natural numbers. In [25] we have a similar result for a variety of firdeoepistemic logics with com-
mon knowledge. None of these references use interpreted systen@§ & the underlying semantics,
as we do here.

Our motivation for this contribution comes from an interest in reactive, amaus, distributed
systems, or multi-agent systems (MAS), whose high-level properties nedyliyde modeled by first-
order temporal epistemic formalisms [4, 23, 31], and behaviours progrdrbgnéanguages based on
interpreted systems such as ISPL [22]. While temporal epistemic logics dreivaderstood at the
propositional level, their usefulness has been demonstrated in a numapplafations (security and
communication protocols, robotics), and model checking tools have beeioded for them [7, 22],
still we believe there is a growing need in web-services, security, as sether areas, to extend these
languages to the first order. As a preliminary contribution, in [2] we intcedua “static” version of
guantified interpreted systems to model a first-order epistemic formalism. Thihem extended to the
temporal dimension in [1]. Differently from these previous works, heeewplicitly assume linear-time
operators and the natural numbers as the flow of time. Both featuresiaral ¢or applications, but they
also increase the complexity of the formalism.

Scheme of the paper.In Section 2 we introduce the first-order temporal epistemic langdage
for a setA = {1,...,m} of agents, and in Section 3 we provide it with a computationally grounded
semantics in terms of quantified interpreted systems, and present its momguinefit. In Section 4 we
explore its expressive power in specifying message passing syster@isctions 5 and 6 we introduce
an axiomatisation for the monodic fragmentdf, and prove its completeness.
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2. Syntax

The first-order temporal epistemic languafjg contains individual variables,, x», . . ., individual con-
stantscy, co, . . ., andn-ary predicative letter&}*, P}, . .. for n € N, the propositional connectivesand
—, the universal quantifier, the linear-time operatorS) andi/, the epistemic operatois; for i € A,
the distributed knowledge operatby, and the common knowledge operafor

The only termg, ¢, ... in £, are individual variables and constants.

Definition 2.1. Formulas inZ,,, are defined in the Backus-Naur form as follows:
¢ u= PM(ta,.. tk) [ | — ¢ | Ve | OY | YUy’ | Kig | Dy | Cy

The formulas))¢ and¢l{¢’ are read as¢ holds at the next sté@nd “¢’ will eventually hold and
¢ is the case until that moméntThe formula K;¢ representsdgent: knowse¢”, while formulas D¢
and C'¢ respectively meand is distributed knowleddgeand “¢ is common knowledgén the group A
of agents.

We define the symbols, v, «, 3, G (always in the future), andl (some time in the future) as stan-
dard; while ;¢ and D¢ are shorthands forK;—¢ and—D—-¢ respectively. Furthel¢ = Nica Kio,
and forA equal toFE or O, A ¢ is defined as follows for everly € N: A% = ¢ andAFtlp = AAF.

Finally, by 4[] we mean thaf/ = y1,...,y, are all the free variables in; while ¢[ij/t] is the
formula obtained by substituting simultaneously some, possibly all, free ermas ofy in ¢ with
t=t1,...,1t, renaming bounded variables if necessary.

3. Quantified Interpreted Systems

In this section we present a dynamic version of the “static” quantified irgrgrsystems in [2] by
assuming the natural numbeé¥sas the underlying flow of time. Specifically, for each agest A in a
multi-agent system we introduce a ggtof local states;, I/, . . ., and a setAct; of actionsa;, a/, . ... We
consider local states and actions for the environmestwell. The sef C L, x L1 x ... x L,, contains
the global states of the MAS, whiléct C Act. x Acty x ... x Act,, is the set of joint actions. We also
introduce a transition function: Act — (S — S). Intuitively, 7(a)(s) = s’ encodes that agents access
the global stata’ from s by performing the joint action. We say that the global statéis reachable in
one stedrom s, or s C ¢, iff there isa € Act such thatr(a)(s) = s'.

To represent the temporal evolution of the MAS we consider the flow of tife<) of natural
numbersN with the strict total ordek. A runr over (S, Act, ,N) is a function fromN to S such that
r(n) C r(n+1). Intuitively, a run represents a possible evolution of the MAS accordititgteransition
functionT and assumind¥ as the flow of time. We now define the quantified interpreted systems for the
language’,,, as follows:

Definition 3.1. (QIS)
A quantified interpreted system ov&$, Act, 7,N) is a triple? = (R, D, I') such that:

(i) R is anon-empty set of runs ovés$, Act, 7,N);

(i) Dis anon-empty set of individuals;
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(iii) I is an interpretation of,, such thatl(c) € D, and forr € R, n € N, I(P*,r,n) is ak-ary
relation onD.

We denote byQZS the class of all quantified interpreted systems.

Note that the individual constants ify,, are interpreted rigidly, that is, their interpretation is the
same in every global state. Following standard notation [5] a (pait) is apointin P. If r(n) =
(le,l1, ..., ly) is the global state at the poifit, n), thenr.(n) = I, andr;(n) = [; are the environment’s
and agent’s local state atr, n) respectively. Further, a QIS synchronousf for everyi € A, r;i(n) =
ri(n) impliesn = 7/, that is, time is part of the local state of any agent. We denot@B§*¥"¢ the
class of all synchronous QIS.

Now we assign a meaning to the formulas®yf, in quantified interpreted systems. Letbe an
assignment from the variables to the individual®inthe valuation/? (¢) of a termt is defined ag (y)
for ¢t = y, andI7(t) = I(c) fort = c. A varianto(?) of an assignment assignsz € D to z and
coincides witho on all the other variables.

Definition 3.2. The satisfaction relatiop= for ¢ € £,,, (r,n) € P, and an assignmentis defined as
follows:

(P7,r,n) = PF(ty,...,tx) iff  (I9(t1),..., I7(ty)) € I(P*,r,n)
(P, r,n) = iff (P7,7r,n) W=
(P7,r,n) = — iff (P?,r,n) = or(P?,r,n) =
(P7,r,n) &= Vay iff forall a € D, (P”(Z),r, n) E ¢
(P?,r,n) = Oy iff (P,r,n+1) Ev
(P?,r,n) = YUY’ iff  thereisn’ > n such tha{P?,r,n) = ¢’

and for alln”,n < n” < n’ implies(P?,r,n") = ¢
(P, r,n) = Ky ifft ~ forall (+',n),ri(n) =ri(n') implies(P?,r',n') E ¢
(P?,r,n) = Dy iff  ri(n)=ri(n)foralli e A, implies(P?,r',n') =4
(P?,r,n) = Cib iff forall k € N,(P%,r,n) = EFy

The truth conditions fon, Vv, <, 3, G, andF’ are defined from those above. A formulee £,, is
true at a point(r, m) iff it is satisfied at(r, m) by everyo; ¢ is valid on a QISP iff it is true at every
point in P; ¢ is valid on a clas< of QISiff it is valid on every QIS inC.

3.1. The monodic fragment

In the rest of the paper we focus on the monodic fragment of the langliage

Definition 3.3. The monodic fragment!, is the set of formulag € £,, such that any subformula gf
of the form K+, D1, C, O, or ¢1Urpe contains at most one free variable.

The monodic fragments of a number of first-order modal logics have beeouihly investigated
[14, 15, 25, 28, 29]. In the case 4f,, this fragment is quite expressive as it contains formulas like the
following:

Vy(Resourcgy) — C(VzAvailablgy, z)/{3zRequedtr,y)) (1)
D O Vryz(Requestr, y) — —Availablgy, z)) — ODVzyz(Requedtr, y) — —Availablgy, z)) (2)
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Formula (1) states that it is common knowledge that every resource wilti@algnbe requested, but
until that time the resource remains universally available. Formula (2)gepi®that if it is distributed
knowledge that at the next step any resource is not available whehé&veequested, then at the next
step it is distributed knowledge that this is the case. However, note thatrthalfo

VzK;(Proces$r) — VyF Accesér, y)) (3)

which intuitively means that agehknows that every process will eventually try to access every respurce
is not monodic. Still, the monodic fragment 6§, is quite expressive as it containsdd dictoformulas,
i.e., formulas where no free variable appears in the scope of modakoei@s in (2).

4. Message Passing Systems

In this section we model message passing systems [5, 18] in the framewQis oA message passing
system (MPS) is a MAS in which the only actions for the agents are sendthgeariving messages.
This setting is common to a variety of distributed systems, well beyond the realiMé&8fand Al.
Indeed, any synchronous or asynchronous networked systelrecsgen as an MPS.

To define our message passing QIS we introduce Msgtof messageg, p2, - - ., and define the
local state/; for agenti as ahistoryoverMsg that is, a sequence of events of the faemdj, j, ) and
rec(i, j, u) fori,j € A, u € Msg Intuitively, sends, j, ;) represents the event in whielgenti sends
message to j, while the meaning ofec(s, j, 1) is thatagenti: receives messagefrom j. A global state
s e Sisatuple(le,ly,...,1,) wherely, ..., [, are local states as above, dpdontains all the events in
liy. oy ln.

A runr over(S,N) is a function from the natural numbeisto S such that:

MP1 r;(0) is a sequence of length zero, andm + 1) is either identical tor;(m) or results from
appending an event tg(m).

By MPL1 the local state of each agent records the messages she hasrsertved, and at each step
at most a single event occurs to any agent. We define message pasSiiglRDIS) as the class of
quantified interpreted systerf’s = (R, D, I) whereR is a non-empty set of runs satisfying MP,
contains the agents iA and the messages Msg and! is an interpretation foc,,. We use the same
notation for objects in the model and syntactic elements, the distinction will be nestdy the context.

For the specification of MPS we introduce a predicative |&trdsuch thatP?, r, n) = Sendi, j, i)
iff eventsends, j, ) occurs to agentat timen inrunr, i.e.,r;(n) is the result of appendirgendq, j, 1)
to r;(n — 1). Also, we introduce the predicatentsuch that(P?,r,n) = Senti,j, u) iff event
sendsi, j, 1) occurs to agent before timen in runr, i.e.,sendi, j, 1) appears in;(n). The predicates
RecandRec’edare similarly defined for eveméc(i, j, u).

Let us now explore the range of specifications that can be expressigid fiormalism. A property
often required in MPS ighannel reliability We express this by stating that every sent message is
eventually received. Note that, according to the definition of messagm@43kS, it is possible that a
message is lost during a run of the system. We can force channel relialyiligghiring the following
specification to hold on MPQIS:

Vu(3ijSendi, j, p) — F3i'j'Redj’, i, 1)) (4)
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In fact, we can be more specific and require that every message igagatmost(at leas) . steps
after being sent, aexactlyk steps after being sent:

Vu(3ijSendi, j, p) — O"3i'j'Reced;’, i, 1)) (5)
Vu(3ijSenti, j, ) — OF3i'j'Redj’,i', ) 6)
Vu(3ijSendi, j, p) — O"3i'j'Red;’, i', 1)) (7)

Note that all of (4)-(7) are monodic. In these specifications the identitigkeofender and the
receiver are left unspecified. So, in cases in which we are not itdergssingling out the addresser and
the addressee, the monodic fragment suffices.

Another property often required on MPQIS is that there are no “ghosssages: if agernitreceives
a message, then: knows thaty must actually have been sent by some agenthis specification is
expressible as a monodic formula:

Vu(3jReds, j, ) — K;3j'Sents’, i, ) (8)
We compare (8) with a further relevant property of MPQIS, igithentication if agenti receives
a message from agentj, theni knows thatu has actually been sent y This specification can be
expressed as ttde reversion of (8):
Vuj(Regi, j, p) — K;Sentj, i, 1)) ©)
Note that, differently from (8), (9) is not monodic.
Even if we allow an agentnot to know whether a received messagkas actually been sent, that
is, we reject (8), it can be checked on arbitrary MPQIS that the follofidngula holds:
Vu(Jij(Senti, j, 1) A Rec'edj, i, p)) — D3i'j'(Sentd’, j', ) A Rec’edj’,i’, 1))
In other words, it is distributed knowledge that a messagas been sent and received as soon as it has
been received. On the other hand, the corresponding monodic formulas
Vu(3j(Senti, j, ) A Rec’edy, i, ) — K;3j'(Senti, 5, u) A Rec’edy’, i, 1))
Vu(Ji(Senti, j, 1) A Rec'ed, i, p)) — K;3i'(Senti’, j, ) A Rec'edj, ', p)))
are not valid for any agerit ;.
Furthermore, inC}, we can express that an agémannot aquire the knowledge that messagdes
been sent to her, other than by receiving the message:
Vu(3jSents, i, p) — (~K;3j'Senty’, i, n)U3j"Redi, ", 1))
Finally, we might want to check whether at a certain point in the evolution oMRIS it will be
common knowledge that a message has been sent or received:
Wu(JijSenti, j, ) — FC(37j'Sent’, j', ) (10)
Wu(JijRecedi, j, i) — FC(3i'j'Recedd’, ', i) (11)
From results in [5] regarding the attainability of common knowledge in systems uwitéliable
communication, we may infer that some assumption on channel reliability in MP@kied in order
to validate specifications (10) and (11).
The conclusion we draw from the observations above is that the monagimént of the language

L., allows for rich specifications on MPS, notwithstanding the limitation on free bi$ain modal
contexts.



F. Belardinelli, A. Lomuscio/ First-Order Linear-time Epistemic Logic wittoGp Knowledge 1007

5. Axiomatisation

In this section we present a sound and complete axiomatisation of the set otlimealidities in the
class of quantified interpreted systems. This result shows that, everhttangiageC., is highly ex-
pressive, QIS provide a perfectly adequate semantics for it. This aéstsdpe possibility of developing
automated verification methods for this formalism.

The systemQ KT} is a first-order multi-modal version of the propositional epistemic systém
combined with the linear temporal logicT' L. Hereafter we list the postulates QK 7T).,. Note that=-
is the inference relation between formulas, whilés a placeholder for any of the epistemic operators
K,forie A, D,orC.

Definition 5.1. The systen@) KT\ contains the following schemes of axioms and inference rules, where
¢, 1 andy are formulas inC}.,:

Taut | instances of classic propositional tautologies
MP | ¢—9,0=19

K O(¢ =) = (O¢ — Ov)

T1 O¢<=-0¢

T2 | ¢Up <V (oA O(UY))
Nec | o = O¢

T3 | x = Y AOx=x— ~(oUy)
K O(¢ — ) — (O¢ — Oy)

T Lo — ¢
4 O¢ — O0g
5 —-O¢ — O-0¢

Nec | ¢ = U¢

D Ki¢p — D¢

Cl | C¢« (¢ AECH)

C2 | o= WAEP) = ¢—Cy

BF | OVz¢ = Vz o

BF OVx¢ «— Vo

Ex Vg — olx/t]

Gen | ¢ — lx/t] = ¢ — Vai for z not free ing

Table 1. the syste@KT.,

The operatords;, D, andC' are.S5 modalities, while the next) and untill/ operators are axioma-
tised as linear-time modalities. To this we add the classic postulateand Gen for quantification,
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which are both sound as we are considering a unigue daofairindividuals for each QIS. We consider
the standard definitions @oof andtheorem I ¢ means thap € £} is a theorem iQKT}.,.

It is a routine exercise to check that the axiomdt T}, are valid on every QIS and the inference
rules preserve validity. As a consequence, we have the following sesedesult:

Theorem 5.1. (Soundness)
The systenQ KT}, is sound with respect to the cla@Z S of quantified interpreted systems.

The next corollary directly follows from the fact th@Z S*¥" is a subset 0DZS.

Corollary 5.1. (Soundness)
The systenQ KT}, is sound with respect to the cla@2S*¥"* of synchronous QIS.

Now we show that the axioms i@ KT}, are not only necessary, but also sufficient to prove all
monodic validities orQZS and QZS%V"°.
5.1. Kripke Models

Although quantified interpreted systems are useful for modeling MAS, teeptite completeness of
QKT we first introduce an appropriate class of Kripke models, and prove letemgss for these
models. Then we apply a correspondence result between Kripke mak(318 to obtain the desired
result.

Definition 5.2. A Kripke modefor £,, is a tupleM = ((N;, <;)jes,{~i}ica, D, I) such that:
(i) for j € J, N, is a copy of the natural numbers with the strict total ordgy
(ii) for i € A, ~; is an equivalence relation QUJEJ
(i) D is a non-empty set of individuals;
(iv) the interpretation is such thatl (c) € D, and forn; € N;, I(P*, n;) is ak-ary relation orD.
The class of all Kripke models is denoted Ky

A Kripke model issynchronousf for everyi € A, n; ~; n’, impliesn = n’. By £*¥"*¢ we denote the
class of all synchronous Kripke models. The satisfaction relatidior an assignment is inductively
defined as follows:

(M° nJ)&P (t1,...,te) 0ff (I7(t1),..., I9(tk)) € I(P* ) n;)

(M7, n5) = = iff (M%) =y
(M7m;) I it (M7, ) B or (M7,ny) = o
(M, n;) = Var) iff  forall aeD, (M) ny) =1
(M7, 1) = OY it (M0t 1)
(/\/l" nj) = YUy’ iff  thereisn; >; n; such tha{ M7, n’) = '
and for alln, n; <; n <; n’; implies (M7, n) = 1
(M?,nj) = K iff  forall ny, n; ~; nl;, implies(M7,n),) = ¢
(M?,n;) = Dy iff ~ forall n/,, (n],n;,) € (Mica ~ )|mpl|es (M7, nl) =1

(M7,nj) = Cy iff ~ forall ni,, (nj,n%) € (Uijea ~i)" implies (M7, n LB
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where(|J;c 4 ~:)* is the reflexive and transitive closure of the relatiofy. 4, ~;).

We compare Kripke models and quantified interpreted systems by means of @:nfap—~ 9ZS.
Let M = ((Nj, <j)jes. {~i}ica, D, I) be a Kripke model. For every equivalence relatiop for
n; € Nj;, let the equivalence clags;]., = {n), | n; ~; n/,} be a local state for agert while
N; is the set of local states for the environment. Then dejiet) as the tupleR, D, I’) whereR
contains the runs; for j € J such that-;(n) = (nj, [nj]~,, ..., [nj]~,), D is the same as i, and
I'(P* r;,n) = I(P* n;). The structurg/(M) is a QIS that satisfies the following result:

Lemma 5.1. Foreveryp € L,,,n € N,
(Ma7nj) ): ¢ iff (g(M>o—7Tj7n) ): Cb

We omit the proof of this lemma, which can be easily proved by induction on tighteri . Note
that if M is synchronous, then alsg{ M) is synchronous, i.eg also defines a map frolt*¥"¢ to
QLS®Y"e.

6. Completeness

The completeness of the systepi T}, with respect to the class&3ZS and QZS*"¢ of quantified
interpreted systems is proved by means of a quasimodel constructiom[fhrticular, the version of
guasimodels here considered combines the purely epistemic structure}witfRthe purely temporal
structures in [29]. Intuitively, a quasimodel for a monodic formglac L. is a relational structure
whose points are sets of sets of subformulag.dEach set of sets of subformulas describes a “possible
state of affairs”, and contains sets of subformulas defining the indilgdighe point. In what follows

we provide the exact definitions.

Definition 6.1. Given a formulap € £. we denote byubg the set of subformulas af, and define
subcp = subp U {ECY | C € subp} U{K;Cy | Cy € subgp,i € A}. Further, letsubco¢ =
subcp U{= | Y € subcp} U{OY | ¢ € subcop} U{O— | ¢ € subcop}.

Let sub, ¢ be the subset ofubc¢ containing formulas with at most free variables and let be
a variable not occurring ip, we definesub,¢ = {¢[y/z] | ¥[y] € subi¢}. Clearly,z is the only free
variable insub, ¢. By con¢ we denote the set of all constants occurringin

Definition 6.2. (Type)
A typefor ¢ is any subset of sub, ¢ such that for every, x € sub, o, (i) Y A x € tiff » € tandy € ¢,
and (i) ) € tiff ¢ ¢ t.

This definition of type is completely standard [6, 25, 29]. In what followsdeenot distinguish
between a type and the conjunctiorj\%tw of its formulas. Note thatuby¢ is the set of sentences
in sub,¢. Two typest, t' agreeon suby¢ iff t N subgp = t' N subyg, i.e., they share the same set of
sentences. Finally, given a typéor ¢ and a constant € cong, the pair(t, ¢) is called arnindexed type
for ¢.

The following definition of state candidate is also standard.
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Definition 6.3. (State Candidate)
Let T be a set of types fap that agree oruby¢, and1“°" a set containing for eache con¢ an indexed
type(t, c) such that € T, then the paic = (T, 7°°") is astate candidatéor ¢.

Given a state candidate= (7', 7°"") we define the formula as follows:
ae = /\ Jzt[z] AV \/ tfx] A /\ tlxz/d]
teT teT (t,cyeTeon

Note thatae is monodic. A state candidatg is consistentff the formula a¢ is consistent with
QKT., i.e. ¥ —ae Consistent state candidates will be the points of our quasimodel. We nove defi
relation ofsuitability for types and state candidates that constitute the relational part of csingsel.

Definition 6.4. 1. A pair (t;, t3) of types isO-suitableiff the formulat; A Ot. is consistent. A
pair (’51, to) is i-suitableiff the formulat; A K;t, is consistent, and it i®-suitableiff the formula
t1 A D—ty is consistent.

2. Apair(¢;, ¢,) of state candidates {S-suitableiff the formulaae, A Oag, is consistent. A pair
(€1, &) is i-suitableiff the formulaae, A K;ag, is consistent, and it i®-suitableiff the formula

ag, N\ Dag, is consistent.
We now introduce the frame underlying the quasimodetsfor

Definition 6.5. (Frame)
Let AT = AU{D}. A frameF is atuple((N;, <;) ez, {<i}ica+) such that:

(i) for j € J, eachN; is a copy of the natural numbers with the strict total order
(ii) the pair{J;c; N;, U;ca+ =1) is a set of disjoint intransitive treks

A frame issynchronousf for everyl € A™, n; <, n;-/ impliesn = n’. Further, we introduce state
functions mapping points iff to consistent state candidates.

Definition 6.6. (State Function)
A state functiorfor ¢ over F is a mapf associating with each; € F a consistent state candidate
f(nj) = &, for ¢ such that:

(i) the domain off is not empty;
(i) if fis defined om; thenf is defined om + 1;;
(iii) if fis defined om; andn; <; n’, thenf is defined om’,.

In what follows we often do not distinguish between a stateand its associated state candidate
f(n]) = Q:nj'

Finally, we provide the definition abbjects which correspond to theuinsin [25, 29]. We use this
denomination to avoid confusion with the runs in QIS.

The pair(U, R) is an intransitive tree iff (i) there is a roat € U such thatuoR*u for everyu € U, whereR* is the reflexive
and transitive closure aR; (i) for everyu € U the set{v’ € U | v’ R*u} is finite and linearly ordered b*; (iii) every
u € U but the rootuy has exactly one predecessor; (iv) the rogis irreflexive.
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Definition 6.7. (Object)
Let f be a state function fap over 7. An objectin (F, f) is a mapp associating with every; € Dom(f)
atypep(n;) in T,,, such that:

(i) the pair(p(n;), p(n + 1;)) is O-suitable;
(ii) if n; < nls thenp(n;) andp(n],) arel-suitable;
(it)y xUY € p(ny) iff there isn’; >; n; such that) € p(n’;) andx € p(n}) for all n; <; nj <; n’;
(iv) if =K;9 € p(n;) then for somen),, n; <; n, andy) ¢ p(n);
(v) if =Dy € p(n;) then for somex’,, n; <p n), andy ¢ p(n’,);

(vi) if ~C¢ € p(n;) then for somer),, (nj, ny) € (Ujea+ <0)* andy & p(n,).

A map p associating with every; € Dom(f) a typep(n;) € T, such that only conditions (i)
and (i) hold is atemporalobject. Similarly, a magp associating with every,; € Dom(f) a type
p(nj) € Tp,, such that only conditions (ii) and (iv)-(vi) hold is @pistemicmbject. Now we have all the
elements to give the definition of quasimodels.

Definition 6.8. (Quasimodel)
A quasimodefor ¢ is a tupleQ = (F, f, O) such thaf is a state function oveF and

(i) ¢ €t, forsomet € T,,, andT,,; € &, ;

(i) every pair(¢,,, &, 11,) is O-suitable, and if; <; n;., thend,,; and@n;_, arel-suitable;
(iii) for everyt c T}, there exists an objegtc O such thap(n;) = t;
(iv) for everyc € con¢ the functionp. such thap.(n;) = tfor (t,c) € T is an object inO.

As the first step in the completeness proof we show that for monodic forreateability in quasi-
models implies satisfability in Kripke models.

Lemma 6.1. If a monodic formulap € £1, has a quasimodel, theng is satisfiable in a Kripke model.

Proof:
The proof of this lemma is similar to those of Lemmas 11.72 and 12.9 in [6].

First of all, for every monodic formula € £, of the formK;x, Dx, Cx, Ox, or x1ildxa, if ¥ is a
sentence then we introduce a propositional variaplandp,, is thesurrogateof 1, if = is the only free
variable iny then we introduce a unary predicative Iettej and the formulaﬂi(x) is thesurrogateof

1. Given a formulap € £}, we denote by) the formula obtained from by substituting all its modal
subformulas that are not within the scope of another modal operator wittsthieogates.

Since every state candidatan the quasimodel is consistent and the syste@K 7T}, is based on
first-order logic, the formulas is consistent with first-order (non-modal) logic. As a consequence, by
completeness of first-order logic, there is a first-order struciute (I, D) whereD is a non-empty set
of individuals and! is an interpretation of», which satisfiegv¢, that is,/? = a¢ for some assignment
otoD.
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Now consider a cardinat > X, greater than the cardinality of the sBtof all objects inQ and
defineD = {(p,&) | p € O,¢ < k}. By the theory of first-order logic, we can assume without loss of
generality thaD is the domain of the first-order structufg; = (I,,;, D) satisfyinga%, that is, all the
structuresZ,,; share a common domaid. Moreover, we can assume that for every 7, , (p,§) € D,
p(n;) = tiff I7 = t[z] for o(z) = (p, &), andly, (c) = (p,0) for everyc € cong.

Let us now define the Kripke modeé¥1. Let F = ((N;, <;);ecs, {<i}ica+) be the frame of the
quasimodel, we defineM as((Nj, <;) e, {Ri}ica, D, I) where each sequendg of naturals inF
belongs also toV; each relatiorR; is the reflexive, symmetric and transitive closure<gfu <p; D is
defined as above; and the interpretatias obtained by gluing together the variol}s.

By induction on the length of € sub, ¢ we can show that for every assignment

IEv it (M7 ny) =

The base of induction follows by the definition 6f The step for propositional connectives and
quantifiers follows by the induction hypothesis and equatipns- 1p = 11 — b, —9h1 = =y,
Vri1 = Vrep1. To deal with modal operators we state the following remark; the relevaesadirectly
follow.

Remark 6.1. For everyp € O andn; € N;

(i) Oveplny) iff e pn+y)
(i1) Ky € p(ny) iff for everyn), (nj,n}) € R; impliest € p(n,)
(111) Dy € p(ny) iff foreverynly, (nj,n) € ﬂ R; impliesy € p(n’y)
icA
(iv) Co € p(ny) iff foreverynl, (nj,n) € ( U Ri>* impliesy € p(n)
icA

The proof of this remark is similar to the one of Lemma 12.10 in [6].
To complete the proof of Lemma 6.1 we remark that by definition of quasimpdelt, for some
te T, andT,, € ¢,;, therefore we obtain that is satisfied in the Kripke modeW1. O

Note that ifQ is a synchronous quasimodel for then the Kripke model built fronfd in Theorem
6.1 is also synchronous.
Now it is left to prove the existence of such a quasimodelsor

Lemma 6.2. If ¢ € L] is a consistent monodic formula, then there exists a (synchronous) quigtimo
for ¢.

In the proof we use the following partial results. These lemmas, which we\siidteut proof, are
modifications of Lemmas 11.73 and 12.11 in [6].

Lemma 6.3. Let € be a consistent state candidate, then we can construct an infinite seqdghgen
of state candidates such tiat= ¢, and

(i) every pair(¢,, €,41) is O-suitable;
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(i) for everyt € T,, there exists a temporal objeesuch thap(n) = t,

(iii) for every c € cong the functionp. such thaip.(n) = t, for (t,c) € T);°", is a temporal object.

Lemma6.4.If € is a consistent state candidate, then we can construct a strudture (W,
<1,.-.,=m,=p) such thath’ is a non-empty set of state candidates, and the d&it J,. ,+ <i) is
a tree. Furthermore,

(i) € <; & onlyif € and¢’ arel-suitable;
(i) foreveryte T, w € W, there exists an epistemic objecsuch thap(w) = t;
(iii) for every c € cong the functionp. such thap.(w) = t, for (t,c) € T:°", is an epistemic object.

We can now prove Lemma 6.2.

Proof:

Let 7y be the disjunction of all formulas, for all state candidatesfor ¢. We denote byr,, the formula
obtained fromr,, by substituting all its modal subformulas that are not within the scope of anuithaal
operator with their surrogates. Note thgtis true in every first-order model, so by completeness of first-
order logic we have that 7. Sinceg is consistent, alsg A 7 is consistent. Then there is a consistent
state candidaté = (7', 7°°") such thatp € t for somet € T

We define the structuréF, f) underlying the quasimodel in steps. At step2+1 we extend the
structure with a chailNy of state candidates for every state candidAt@troduced at step/2 At stage
2n+2 we provide every state candidate introduced at stefd 2vith a tree of state candidates as shown
in Lemma 6.4.

We start with the base of induction. Defity = ((N;, <) e, {=<V} e a+) WhereJy is empty and
for everyl € AT, <? is also empty. The functiofy is empty as well. We also consider a ggtwhich
contains only the state candidaalefined above, and assurtie; = ().

At step Zi+1 the frameZFy,, 1 is defined as the tupl&N;, <;)jeson.ys {=7"" }ica+) Such that
Jont1 = Ja U {Uzp \ Uz,—1} @nd for eachi € AT, <?"T1=<2" Further, for every € Us,, \ Uan—1
by Lemma 6.3 there exists a sequedeg } < Of state candidates such that = u. Thus, the state
functionfy, is extended tds,, 11 such thate,1(n,) = u, for u € Us, \ Uzp—1, andfa, 41 is equal to
for, ON all the othew € Uy, —1. Finally, Us,11 = U]EJ%+1 N;.

For definingFa,,+2 we takeJs, 12 = Jon4+1. Moreover, by Lemma 6.4 for every € Usp,11 \ Uay,
there is a structuréW,, {<;};c4+) such that the paitW,, U,c 4+ <) is a tree. We define?" "2 as
<2ty <, foreachl € A*. Finally, font2 = font1 andUsno = Uzpiq U Unicton o 1\Ua, W

Now consider the quasimodel = (F,f, O) whereF = ((N;, <;)jecs, {<i}iea+) such that] =
Uren Ik and <= Uyey <F fori € A", § = ey fr andO is the set of all objects o7, f). By
Lemmas 6.3 and 6.4 and by constructiontdive can show that) is non-empty and the objects &
satisfy the constraints on quasimodels. Since t for somet € € and¢ € 9, we have that) is a
guasimodel foks.

Furthermore, if we want to obtain a synchronous quasimodel from thercmtion above we modify
the step 2+1 forn > 1 as follows. For every, € Uy, \ Usa,—1 by construction there exists a structure
(W, {=<1}1ca+) for somew’ € Us,—1 such thatu € W,,. Moreover, for somg € Jo,, m € N,

u’ = m;. Now, by Lemma 6.3 there exists a sequefigg},cn Of State candidates such that = v,
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but now we define the state functi¢gn,; such thats,1((m + k),) = ug for £ € N. Itit not difficult
to show that by this construction the quasimoglefor ¢ is synchronous. This completes the proof of
Lemma 6.1. O

By combining Lemmas 6.2 and 6.1 we can state the main result of this paper.

Theorem 6.1. (Completeness)
The systenQ KT}, is complete with respect to the cla@4 S of quantified interpreted systems.

Assume that* ¢, then—¢ is consistent and by Lemmas 6.2 and 6.1 there is a Kripke mbdel
satisfying—¢. By Lemma 5.1 the QIg (M) does not validate, thereforeQZS = ¢. The following
result can be proved similarly.

Theorem 6.2. (Completeness)
The systenQ KT}, is complete with respect to the cla@2S*¥" of synchronous QIS.

7. Conclusions and Further Work

In this paper we analysed a quantified version of interpreted systemsptbal fiprmalism for temporal
epistemic logic in multi-agent systems, and proved completeness for the sygtai) defined on the
monodic fragment of the first-order language, that includes linear-time modalities and epistemic
operators for group knowledge. This result makes use of previousmations on the axiomatisation of
first-order epistemic and temporal logic [25, 29]. Further, we showedathade range of specifications
on message passing systems can be expressed in the monodic fragfgnt of

Still, further work is needed in this line of research. The present pageds dvith the clas®ZS
of all quantified interpreted systems and the cl@gs5°Y"¢ of synchronous QIS. In the axiomatisation
QKT. forthese classes there is no interaction between temporal and epistenaitocgdsut interaction
is essential to express epistemic concepts supledsct recallandno learning These refinements have
been widely studied at the propositional level [8, 10], but it is not cleaich extent these results apply
to the first order.

Finally, another issue not tackled in this paper is decidability. We believe thabimbining the
techniques in [15, 28] it is likely to find decidable monodic fragments of firdepbtemporal epistemic
logic. However, this topic demands further investigations.
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