Verifying Auctions as Artifact Systems: Decidability via Finite Abstraction

Francesco Belardinelli Laboratoire IBISC, Université d'Evry

> based on work with Alessio Lomuscio Imperial College London, UK

and Fabio Patrizi Sapienza Università di Roma, Italy

Imperial College London - 13 March 2014

Model Checking in one slide

Model checking: technique(s) to **automatically** verify that a system design S satisfies a property P **before** deployment.

More formally, given

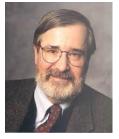
- a model \mathcal{M}_S of system S
- ullet a formula ϕ_P representing property P

we check that

$$\mathcal{M}_{\mathcal{S}} \models \phi_{\mathcal{P}}$$

Turing Award 2007

www.acm.org/press-room/news-releases-2008/turing-award-07



(b) A. Emerson (U. Texas, USA)

(c) J. Sifakis (IMAG, F)

Jury justification

"For their roles in developing model checking into a highly effective verification technology, widely adopted in the hardware and software industries."

Overview

- Motivation and Background:
 - Artifact Systems as data-aware systems
 - ► Parallel English (ascending bid) Auctions as Artifact Systems (eBay, etc.)

Overview

- Motivation and Background:
 - Artifact Systems as data-aware systems
 - ► Parallel English (ascending bid) Auctions as Artifact Systems (eBay, etc.)
- 2 Main task: formal verification of infinite-state AS
 - model checking is appropriate for control-intensive applications...
 - ...but less suited for data-intensive applications (data typically range over infinite domains) [1]

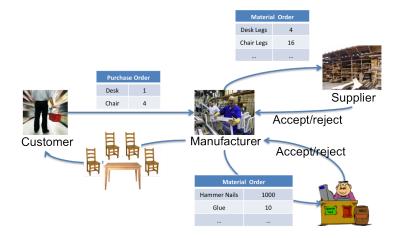
Overview

- Motivation and Background:
 - Artifact Systems as data-aware systems
 - ► Parallel English (ascending bid) Auctions as Artifact Systems (eBay, etc.)
- 2 Main task: formal verification of infinite-state AS
 - model checking is appropriate for control-intensive applications...
 - ...but less suited for data-intensive applications (data typically range over infinite domains) [1]
- Mey contribution:
 - Verification of rigid, bounded and uniform AS is decidable
 - ⇒ Verification of Parallel English Auctions is decidable

- Recent paradigm in Service-Oriented Computing [2].
- Motto: let's give data and processes the same relevance!
- Artifact: data model + lifecycle
 - (nested) records equipped with actions
 - actions may affect several artifacts
 - evolution stemming from the interaction with other artifacts/external actors
- Artifact System: interacting artifacts, representing services, manipulated by agents.
- Auctions as Artifact Systems
- Logical Perspective: first-order modal (temporal epistemic) Kripke models

p

Artifact Systems Order-to-Cash Scenario



Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders $B_1,\ldots,B_\ell.$

Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders $B_1,\ldots,B_\ell.$

 the auctioneer puts on sale a finite number of items, starting from a base price that is public to all bidders;

Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders B_1, \ldots, B_ℓ .

- the auctioneer puts on sale a finite number of items, starting from a base price that is public to all bidders;
- at each round the bidder can either choose to bid for a specific item or to skip the round;

Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders B_1, \ldots, B_ℓ .

- the auctioneer puts on sale a finite number of items, starting from a base price that is public to all bidders;
- at each round the bidder can either choose to bid for a specific item or to skip the round;
- at the end of the bidding process, the item is assigned to the bidder with the highest offer.

Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders B_1, \ldots, B_ℓ .

- the auctioneer puts on sale a finite number of items, starting from a base price that is public to all bidders;
- at each round the bidder can either choose to bid for a specific item or to skip the round;
- at the end of the bidding process, the item is assigned to the bidder with the highest offer.

Assumptions:

Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders B_1, \ldots, B_ℓ .

- the auctioneer puts on sale a finite number of items, starting from a base price that is public to all bidders;
- at each round the bidder can either choose to bid for a specific item or to skip the round;
- at the end of the bidding process, the item is assigned to the bidder with the highest offer.

Assumptions:

each bidder is rational;

Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders B_1, \ldots, B_ℓ .

- the auctioneer puts on sale a finite number of items, starting from a base price that is public to all bidders;
- at each round the bidder can either choose to bid for a specific item or to skip the round;
- 3 at the end of the bidding process, the item is assigned to the bidder with the highest offer.

Assumptions:

- each bidder is rational;
- he has an intrinsic value for each item being auctioned;

Parallel English (ascending bid) Auctions

A single auctioneer A and a finite number of bidders B_1, \ldots, B_ℓ .

- the auctioneer puts on sale a finite number of items, starting from a base price that is public to all bidders;
- at each round the bidder can either choose to bid for a specific item or to skip the round;
- 3 at the end of the bidding process, the item is assigned to the bidder with the highest offer.

Assumptions:

- each bidder is rational;
- he has an intrinsic value for each item being auctioned;
- and he keeps this information private from other bidders and the auctioneer.

Auction Data Model

Bidding					
item	base_price	bid_1		bidℓ	status

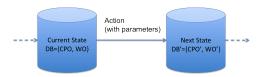
- init_A(item,base_price)
- bid; (item, bid)
- time_out(item)
- skip_A
- skip_i
- ...

trueValue; item true_value

- init;(item,true_value)
- ..

Artifact Systems Auction Lifecycle

- Agents operate on artifacts.
 - e.g., the bidder sends a new bid to the auctioneer.
- Actions add/remove artifacts or change artifact attributes.
 - e.g., the auctioneer puts a new item on auction.
- The whole system can be seen as a *data-aware* dynamic system.
 - at every step, an action yields a change in the current state.



ç

Research questions

• Which syntax and semantics to specify AS?

Research questions

- Which syntax and semantics to specify AS?
- Is verification of AS decidable?

Research questions

- Which syntax and semantics to specify AS?
- Is verification of AS decidable?
- If not, can we identify *relevant* fragments that are reasonably well-behaved?

 ${\sf Multi-agent\ systems,\ but\ \dots}$

Multi-agent systems, but ...

• ... states have a relational structure,

Multi-agent systems, but ...

- ... states have a relational structure,
- data are potentially infinite,

Multi-agent systems, but ...

- ... states have a relational structure,
- data are potentially infinite,
- the state space is infinite in general.

Multi-agent systems, but . . .

- ... states have a relational structure,
- data are potentially infinite,
- the state space is infinite in general.
- ⇒ The model checking problem cannot be tackled by standard techniques.

Artifact Systems Results

Artifact-centric multi-agent systems (AC-MAS) as a formal model for AS.
 Intuition: databases (?) that evolve in time and are manipulated by agents.

- Artifact-centric multi-agent systems (AC-MAS) as a formal model for AS. Intuition: databases (?) that evolve in time and are manipulated by agents.
- FO-CTLK as a specification language:

 $\textit{AG} \ \forall \textit{it}, \vec{\textit{bd}}, \textit{s}(\exists ! \textit{bp} \ \textit{Bidding}(\textit{it}, \vec{\textit{bd}}, \textit{bp}, \textit{s}) \land \exists^{\leq 1} \textit{tv} \ \textit{trueValue}_{\textit{i}}(\textit{it}, \textit{tv}))$

for each item there is exactly one base price, while bidders associate at most one true value to each item (possibly none).

- Artifact-centric multi-agent systems (AC-MAS) as a formal model for AS.
 Intuition: databases (?) that evolve in time and are manipulated by agents.
- FO-CTLK as a specification language:

$$\textit{AG} \ \forall \textit{it}, \vec{\textit{bd}}, \textit{s}(\exists ! \textit{bp} \ \textit{Bidding}(\textit{it}, \vec{\textit{bd}}, \textit{bp}, \textit{s}) \land \exists^{\leq 1} \textit{tv} \ \textit{trueValue}_{\textit{i}}(\textit{it}, \textit{tv}))$$

for each item there is exactly one base price, while bidders associate at most one true value to each item (possibly none).

Model theory of FO modal logic: abstraction and bisimulation to tackle model checking. Main result: under specific conditions MC can be reduced to the finite case.

- Artifact-centric multi-agent systems (AC-MAS) as a formal model for AS. Intuition: databases (?) that evolve in time and are manipulated by agents.
- PO-CTLK as a specification language:

$$\textit{AG} \ \forall \textit{it}, \vec{\textit{bd}}, \textit{s}(\exists ! \textit{bp} \ \textit{Bidding}(\textit{it}, \vec{\textit{bd}}, \textit{bp}, \textit{s}) \land \exists^{\leq 1} \textit{tv} \ \textit{trueValue}_{\textit{i}}(\textit{it}, \textit{tv}))$$

for each item there is exactly one base price, while bidders associate at most one true value to each item (possibly none).

- Model theory of FO modal logic: abstraction and bisimulation to tackle model checking. Main result: under specific conditions MC can be reduced to the finite case.
- Case study: modelling and veryfing auctions as AC-MAS.

Semantics: Databases

The data model of AS is given as a particular kind of database.

- a database schema is a finite set $\mathcal{D} = \{P_1/a_1, \dots, P_n/a_n, Q_1/b_1, \dots, Q_m/b_m\}$ of relation symbols R_i with arity $c_i \in \mathbb{N}$.
- an *instance* on a domain *U* is a mapping *D* associating
 - ightharpoonup each symbol P_i with a *finite* a_i -ary relation on U
 - ightharpoonup each symbol Q_i with a (possibly infinite) b_i -ary relation on U
- the active domain adom(D) is the set of all $u \in U$ appearing in some $D(P_i)$.
- the *disjoint union* $D \oplus D'$ is the $(\mathcal{D} \cup \mathcal{D}')$ -interpretation s.t.
 - (i) $D \oplus D'(R_i) = D(R_i)$
 - (ii) $D \oplus D'(R'_i) = D'(R_i)$

We consider untyped languages; the extension to types is not problematic.

Artifact-centric Multi-agent Systems Agents

Agents have partial access (views) to the artifact system.

- An *agent* is a tuple $A_i = \langle \mathcal{D}_i, Act_i, Pr_i \rangle$ where
 - D_i is the local database schema
 - Act_i is the set of local actions $\alpha(\vec{x})$ with parameters \vec{x}
 - ▶ $Pr_i : \mathcal{D}_i(U) \mapsto 2^{Act_i(U)}$ is the local protocol function
- the setting is reminiscent of the interpreted systems semantics for MAS [3],...
- ...but here the local state of each agent is relational.

Intuitively, agents manipulate artifacts and have (partial) access to the information contained in the global db schema $\mathcal{D}=\mathcal{D}_1\cup\cdots\cup\mathcal{D}_\ell.$

Example 1: Parallel English Auction

- Agents: \underline{A} uctioneer, \underline{B} idder₁, ..., \underline{B} idder_{ℓ}
- ullet local db schema \mathcal{D}_A for the auctioneer
 - ▶ Bidding(item, base_price, bid₁, . . ., bid_ℓ, status)
 - ightharpoonup < on $\mathbb Q$
- ullet local db schema \mathcal{D}_i for the bidders
 - ▶ Bidding(item, base_price, bid₁, ..., bid_ℓ, status)
 - ► TValue; (item, true_value)
 - ightharpoonup < on $\mathbb Q$
- then, $\mathcal{D} = \{\textit{Bidding}, \textit{TValue}_1, \dots, \textit{TValue}_\ell, <\}$
- Actions introduce values from an infinite domain $U = Items \cup \mathbb{Q} \cup \{active, term\}$:
 - ▶ $init_A$ (item, base_price), time out(item), $skip_A$ belong to Act_A
 - init_i (item, true_value), bid_i (item, bid), skip_i belong to Act_i
- The protocol function specifies the preconditions for actions:
 - e.g., $bid_i(item, bid) \in Pr_i(D)$ whenever
 - ★ item appears in D(TValue_i)
 - ★ the highest bid bid_j in Bidding, $j \neq i$, for item is $< true_value$ for bidder B_i
 - \star bid_j < bid \leq true_value
 - \star D(status) = active for item
 - the skip actions are always enabled.

Artifact-centric Multi-agent Systems AC-MAS

Agents are modules that can be composed together to obtain AC-MAS.

- Global states are tuples $s = \langle D_0, \dots, D_\ell \rangle \in \mathcal{D}(U)$.
- An AC-MAS is a tuple $\mathcal{P} = \langle Ag, s_0, \rightarrow \rangle$ where
 - ▶ $Ag = \{A_0, ..., A_\ell\}$ is a finite set of agents
 - ▶ $s_0 \in \mathcal{D}(U)$ is the *initial global state*
 - $ightharpoonup s \xrightarrow{\alpha(\vec{u})} s'$ is the transition relation
- Epistemic relation: $s \sim_i s'$ iff $D_i = D_i'$
- An AC-MAS \mathcal{P} is *rigid* iff for all states s, s', symbols Q, and agents A_i , $A_j \in Ag$, $D_i(Q) = D_i'(Q)$.
- AC-MAS are infinite-state systems in general

AC-MAS are first-order temporal epistemic structures.

 \Rightarrow FO-CTLK can be used as a specification language.

Example 2: the Auction AC-MAS

The Auction AC-MAS $A = \langle Ag, s_0, \rightarrow \rangle$ is defined as

- $Ag = \{A, B_1, \dots, B_\ell\}$
- s_0 is the *empty interpretation* of $\mathcal{D} = \{Bidding, TValue_1, \dots, TValue_\ell, <\}$ but for <
- \rightarrow is the *transition relation* s.t. $s \xrightarrow{\alpha(\vec{u})} s'$ whenever
 - $\sim \alpha_i = bid_i(item, bid')$ and s' modifies s by replacing any tuple (item,..., bid_i,..., status) in $D_s(Bidding)$ with (item,..., bid_i',..., status) $\alpha_A = timeout(item)$ and the value of status in $D_{s'}(Bidding)$ for item is term

Notice: the auction AC-MAS A is *rigid*

Syntax: FO-CTLK

- Data call for First-order Logic.
- Evolution calls for Temporal Logic.
- Agents (operating on artifacts) call for Epistemic Logic.

The specification language FO-CTLK:

$$\varphi ::= R(t_1, \ldots, t_c) \mid t = t' \mid \neg \varphi \mid \varphi \rightarrow \varphi \mid \forall x \varphi \mid AX\varphi \mid A\varphi U\varphi \mid E\varphi U\varphi \mid K_i \varphi$$

Alternation of free variables and modal operators is enabled.

Semantics of FO-CTLK

Formal definition

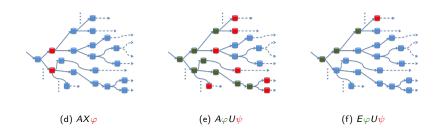
An AC-MAS $\mathcal P$ satisfies an FO-CTLK-formula φ in a state s for an assignment σ , iff

```
 \begin{array}{lll} (\mathcal{P},s,\sigma) \models R(\overline{t}) & \text{iff} & \langle \sigma(t_1),\ldots,\sigma(t_c)\rangle \in D_s(R) \\ (\mathcal{P},s,\sigma) \models t=t' & \text{iff} & \sigma(t)=\sigma(t') \\ (\mathcal{P},s,\sigma) \models \neg\varphi & \text{iff} & (\mathcal{P},s,\sigma) \not\models \varphi \\ (\mathcal{P},s,\sigma) \models \forall x\varphi & \text{iff} & (\mathcal{P},s,\sigma) \not\models \varphi \text{ or } (\mathcal{P},s,\sigma) \models \varphi \\ (\mathcal{P},s,\sigma) \models \forall x\varphi & \text{iff} & \text{for all } u \in adom(s), \ (\mathcal{P},s,\sigma_u^{\times}) \models \varphi \\ (\mathcal{P},s,\sigma) \models A\mathcal{X}\varphi & \text{iff} & \text{for all runs } r,\ r(0)=s \text{ implies } (\mathcal{P},r(t),\sigma) \models \varphi \\ (\mathcal{P},s,\sigma) \models A\varphi U\varphi' & \text{iff} & \text{for all runs } r,\ r(0)=s \text{ implies } (\mathcal{P},r(k),\sigma) \models \varphi' \text{ for some } k \geq 0, \\ & & \text{and } (\mathcal{P},r(k'),\sigma) \models \varphi \text{ for all } 0 \leq k' < k \\ (\mathcal{P},s,\sigma) \models K_i\varphi & \text{iff} & \text{for all states } s',\ s \sim_i s' \text{ implies } (\mathcal{P},s',\sigma) \models \varphi \end{array}
```

- Active-domain semantics, but...
 - ...we can refer to individuals that no longer exist
 - the number of states is infinite in general

Semantics of FO-CTLK

Intuition



Verification of AC-MAS

How do we check FO-CTLK specifications on auctions?

• the true value of items for each bidder is secret to all other bidders and to the auctioneer:

$$\textit{AG } \forall \textit{item } \neg \exists \textit{true_value} \bigvee_{j \neq i \lor j = A} \textit{K}_j \; \textit{TValue}_i(\textit{item}, \textit{true_value})$$

• for each bidder, each bid is less or equal to her true value:

$$\textit{AG} \ \forall \textit{it}, \vec{x}, \textit{bd}_{\textit{i}}, \vec{y}, \textit{tv}(\textit{Bidding}(\textit{it}, \vec{x}, \textit{bd}_{\textit{i}}, \vec{y}) \land \textit{TValue}_{\textit{i}}(\textit{it}, \textit{tv}) \rightarrow \textit{bd}_{\textit{i}} \leq \textit{tv})$$

each bidder can raise her bid unless she has already hit her true value:

$$\begin{array}{l} \textit{AG} \ \forall \textit{it}, \vec{x}, \textit{bd}_{\textit{i}}, \vec{\textit{y}}(\textit{Bidding}(\textit{it}, \vec{x}, \textit{bd}_{\textit{i}}, \vec{\textit{y}}) \rightarrow \\ \rightarrow (\textit{TValue}_{\textit{i}}(\textit{it}, \textit{bd}_{\textit{i}}) \lor \textit{EF} \ \exists \vec{x}', \textit{bd}_{\textit{i}}', \vec{\textit{y}}'(\textit{bd}_{\textit{i}}' > \textit{bd}_{\textit{i}} \land \textit{Bidding}(\textit{it}, \vec{x}', \textit{bd}_{\textit{i}}', \vec{\textit{y}}')))) \end{array}$$

Problem: the infinite domain U may generate infinitely many states!

Investigated solution: can we *simulate* the concrete values in U with a finite set of *abstract* symbols?

• two states s, s' are *isomorphic*, or $s \simeq s'$, if there is a bijection

$$\iota: \mathit{adom}(s) \cup \mathit{C} \mapsto \mathit{adom}(s') \cup \mathit{C}$$

such that

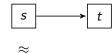
- $\triangleright \iota$ is the identity on C
- for every \vec{u} in adom(s), $A_i \in Ag$, $\vec{u} \in D_i(R) \Leftrightarrow \iota(\vec{u}) \in D_i'(R)$

	D(R)		
A_1	a	b	
A_2	Ь	С	
A_3	d	e	

	D'(R)		
A_1	1	2	
A_2	2	С	
A_3	4	5	

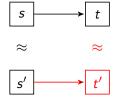
$$\begin{array}{c}
\iota: a \mapsto 1 \\
b \mapsto 2 \\
c \mapsto c \\
d \mapsto 4 \\
e \mapsto 5
\end{array}$$

- two states s, s' are *bisimilar*, or $s \approx s'$, if
 - \bullet $s \simeq s'$
 - ② if $s \to t$ then there is t' s.t. $s' \to t'$, $s \oplus t \simeq s' \oplus t'$, and $t \approx t'$



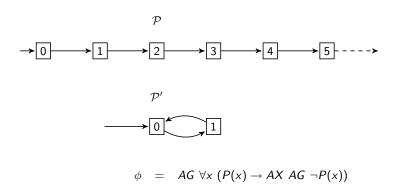
s'

- two states s, s' are *bisimilar*, or $s \approx s'$, if
 - \bullet $s \simeq s'$
 - ② if $s \to t$ then there is t' s.t. $s' \to t'$, $s \oplus t \simeq s' \oplus t'$, and $t \approx t'$



- the other direction holds as well
- lacktriangle similar conditions for the epistemic relation \sim_i

However, bisimulation is not sufficient to preserve FO-CTLK formulas:



• Intuitively, the behaviour of uniform AC-MAS is *independent* from data not explicitly named in the system description.

- Intuitively, the behaviour of uniform AC-MAS is *independent* from data not explicitly named in the system description.
- More formally, an AC-MAS \mathcal{P} is *uniform* iff for $s, t, s' \in \mathcal{S}$ and $t' \in \mathcal{D}(U)$:

		;			
ı	a	, h		1	t
	а	U		а	f
	Ь	C	•	-	<u> </u>
	А	6		Ť	C
	u	-			

s'		
1	2	
2	С	
4	5	

t'			
1	6		
6	С		

- Intuitively, the behaviour of uniform AC-MAS is *independent* from data not explicitly named in the system description.
- More formally, an AC-MAS $\mathcal P$ is *uniform* iff for $s,t,s'\in\mathcal S$ and $t'\in\mathcal D(U)$:

	5			+
а	b	_	2	ı F
Ь	С		f f	-
d	е		ı	C

	S	:'			,
1	_	2		1	-
1				1	6
2		C	•	-	-
		5		0	C
1 7	•	را			

 ${\color{red} 2}{\color{black} 2}$ Also, rigid AC-MAS must satisfy a condition akin to density of < on $\mathbb{Q}.$

- Intuitively, the behaviour of uniform AC-MAS is independent from data not explicitly named in the system description.
- More formally, an AC-MAS $\mathcal P$ is *uniform* iff for $s,t,s'\in\mathcal S$ and $t'\in\mathcal D(U)$:

9	5			+
а	Ь	_	-	ı f
Ь	С		a f	-
d	е		- 1	C

	S	,		-	./
Γ	1	2		1	6
h	2	С	→	1	О
H	1	5		6	С
	4	J			

- ② Also, rigid AC-MAS must satisfy a condition akin to density of < on \mathbb{Q} .
- ullet Uniform AC-MAS cover many interesting cases [2, 4], including the auction AC-MAS ${\cal A}.$

Bisimulation and Equivalence w.r.t. FO-CTLK

Theorem

Consider

- bisimilar and uniform AC-MAS $\mathcal P$ and $\mathcal P'$
- ullet an FO-CTLK formula arphi

lf

- $|U'| \ge 2 \cdot \sup_{s \in \mathcal{P}} \{|adom(s)|\} + |C| + |vars(\varphi)|$
- $|U| \geq 2 \cdot \sup_{s' \in \mathcal{P}'} \{|adom(s')|\} + |C| + |vars(\varphi)|$

then

$$\mathcal{P} \models \varphi \quad \textit{iff} \quad \mathcal{P}' \models \varphi$$

Can we apply this result to finite abstraction?

Abstraction

Abstractions are defined in an agent-based, modular way.

- Let $A = \langle \mathcal{D}, Act, Pr \rangle$ be an agent defined on the domain U. Given a domain U', the abstract agent $A' = \langle \mathcal{D}, Act, Pr' \rangle$ on U' is s.t.
 - ▶ Pr' is the smallest function s.t. if $\alpha(\vec{u}) \in Pr(D)$, $D' \in \mathcal{D}'(U')$ and $D' \simeq D$ for some witness ι , then $\alpha(\iota(\vec{u})) \in Pr'(D')$.
- Let $\mathcal{P} = \langle Ag, s_0, \rightarrow \rangle$ be an AC-MAS. The abstraction $\mathcal{P}' = \langle Ag', s'_0, \rightarrow' \rangle$ of \mathcal{P} is an AC-MAS s.t.
 - ▶ Ag' be the set of abstract agents on U'
 - $ightharpoonup s_0' \simeq s_0$
 - ▶ \rightarrow' is the smallest function s.t. if $s \xrightarrow{\alpha(\vec{u})} t$, and $s \oplus t \simeq s' \oplus t'$ for some witness ι , then $s' \xrightarrow{\alpha(\iota(\vec{u}))} t'$.

Notice: the abstraction of a rigid AC-MAS is not necessarily rigid!

Abstraction

• Let $N_{Ag} = \sum_{A_i \in A_g} \max_{\{\alpha(\vec{x}) \in Act_i\}} |\vec{x}|$ be the sum of the maximum numbers of parameters contained in the action types of each agent

Lemma

Consider

- ightharpoonup a rigid and uniform AC-MAS ${\cal P}$
- ightharpoonup a set $U'\supseteq C$ s.t. $|U'|\ge 2\sup_{s\in\mathcal{P}}|adom(s)|+|C|+N_{Ag}$

Then, there exists an abstraction \mathcal{P}' of \mathcal{P} that is uniform and bisimilar to \mathcal{P} .

How can we define finite abstractions?

Bounded Models and Finite Abstractions

- An AC-MAS \mathcal{P} is *b-bounded* iff for all $s \in \mathcal{P}$, $|adom(s)| \leq b$.
- Bounded systems can still be infinite!

Theorem

Consider

Moreover.

- ightharpoonup a b-bounded, rigid and uniform AC-MAS ${\mathcal P}$ on an infinite domain U
- an FO-CTLK formula φ

Given a finite $U' \supseteq C$ s.t.

$$|U'| \ge 2b + |C| + \max\{|vars(\varphi)|, N_{Ag}\}$$

there exists a finite abstraction \mathcal{P}' of \mathcal{P} s.t.

 $ightharpoonup \mathcal{P}'$ is uniform and bisimilar to \mathcal{P}

$$\mathcal{P} \models \varphi \quad \textit{iff} \quad \mathcal{P}' \models \varphi$$

⇒ Under specific circumstances, we can model check an infinite-state system by verifying its finite abstraction.

Finite Abstract Auction I

- Notice: the auction AC-MAS \mathcal{A} is bounded by b = |Items|(2|Ag| 1) + 2
- Consider a finite $U' \geq 2b + vars(\phi)$
- Abstract agents <u>A</u>uctioneer A' and <u>B</u>idders B'_i
 - the local db schemas \mathcal{D}'_A and \mathcal{D}'_i are the same as for A and B_i
 - ▶ the sets of actions Act'_A and Act'_i are the same as for A and B_i
 - the protocol function Pr_A is the same as for A
 - ▶ as to Pr'_i , $bid_i(item, bid) \in Pr'_i(D')$ whenever
 - \star
 - \star *bid* is an abstract value that does not represent any bid in D'

Finite Abstract Auction II

The abstract auction AC-MAS $\mathcal{A}' = \langle \mathit{Ag}', \mathit{s}'_0, \tau' \rangle$ is defined as

- $Ag' = \{A', B'_1, \dots, B'_{\ell}\}$
- ullet s_0' is the empty interpretation of ${\cal D}$
- \rightarrow mimics \rightarrow
 - e.g., if $\alpha_i = bid_i(item, bid)$, then $s \xrightarrow{\alpha(\vec{u})}{}' t$ whenever t modifies s by replacing any tuple $(item, \ldots, bid_i, \ldots, status)$ in $D_s(Bidding)$ with $(item, \ldots, bid_i', \ldots, status)$, where the value $bid' \in U'$ has been found as above. In particular, $bid < bid' \le true_value$ in t.
- By the assumption that $U' \geq 2b + vars(\phi)$ and Theorem 3 we have that \mathcal{A}' is a finite abstraction of \mathcal{A} .
- In particular, \mathcal{A}' is uniform and bisimilar to \mathcal{A} (but not rigid) and

$$\mathcal{A} \models \varphi \quad \text{iff} \quad \mathcal{A}' \models \varphi$$

Q Non-uniform AC-MAS: for *sentence-atomic* FO-CTL the results above still hold. $AG \forall it, \vec{bd}, s(\exists! bp \ Bidding(it, \vec{bd}, bp, s) \land \exists^{\leq 1}tv \ TValue_i(it, tv))$

• Non-uniform AC-MAS: for *sentence-atomic* FO-CTL the results above still hold.

$$\textit{AG } \forall \textit{it}, \vec{\textit{bd}}, \textit{s}(\exists ! \textit{bp Bidding}(\textit{it}, \vec{\textit{bd}}, \textit{bp}, \textit{s}) \land \exists^{\leq 1} \textit{tv TValue}_\textit{i}(\textit{it}, \textit{tv}))$$

Non-uniform and unbounded AC-MAS: one-way preservation result for FO-ACTLK-.

Theorem

For every AC-MAS \mathcal{P} and $\varphi \in FO$ -ACTLK $^-$, there exists a finite abstraction \mathcal{P}' s.t.

$$\mathcal{P}' \models \varphi \quad \Rightarrow \quad \mathcal{P} \models \varphi$$

- 1 Non-uniform AC-MAS: for *sentence-atomic* FO-CTL the results above still hold.
 - $AG \ \forall it, \vec{bd}, s(\exists!bp \ Bidding(it, \vec{bd}, bp, s) \land \exists^{\leq 1}tv \ TValue_i(it, tv))$
- Non-uniform and unbounded AC-MAS: one-way preservation result for FO-ACTLK-.

Theorem

For every AC-MAS \mathcal{P} and $\varphi \in FO$ -ACTLK $^-$, there exists a finite abstraction \mathcal{P}' s.t.

$$\mathcal{P}' \models \varphi \quad \Rightarrow \quad \mathcal{P} \models \varphi$$

Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.

1 Non-uniform AC-MAS: for sentence-atomic FO-CTL the results above still hold.

$$AG \ \forall it, \vec{bd}, s(\exists!bp \ Bidding(it, \vec{bd}, bp, s) \land \exists^{\leq 1}tv \ TValue_i(it, tv))$$

Non-uniform and unbounded AC-MAS: one-way preservation result for FO-ACTLK-.

Theorem

For every AC-MAS \mathcal{P} and $\varphi \in FO$ -ACTLK $^-$, there exists a finite abstraction \mathcal{P}' s.t.

$$\mathcal{P}' \models \varphi \quad \Rightarrow \quad \mathcal{P} \models \varphi$$

- Model checking bounded AC-MAS w.r.t. FO-CTL is undecidable.
- Complexity result:

Theorem

The model checking problem for finite AC-MAS w.r.t. FO-CTLK is EXPSPACE-complete in the size of the formula and data.

Results and main limitations

- Bisimulation and finite abstraction for first-order Kripke models.
- We are able to model check AC-MAS w.r.t. full FO-CTLK...
- ...however, our results hold only for rigid, uniform and bounded systems.
- This class includes many interesting systems (AS programs, [2, 4],
- including parallel English auctions.

Next Steps

- Constructive techniques for finite abstraction.
- Model checking techniques for finite-state systems are effective on AC-MAS?
- How to perfom the boundedness check?
- What if the system is *unbounded/not uniform*?

Thank you!

References

mericonart@Aristel Baier and Joost-Pieter Katoen.

Principles of Model Checking.

MIT Press, 2008.

eamericonartDe Cohn and R. Hull.

Business Artifacts: A Data-Centric Approach to Modeling Business Operations and Processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.

eamericon artRle Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.

Reasoning About Knowledge.

The MIT Press, 1995.

eamericonart®!• Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, and P. Felli.

Foundations of Relational Artifacts Verification.

In Proc. of BPM, 2011.