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ABSTRACT. We present a family of quantified epistemic logics for
reasoning about knowledge in multi-agent systems. The language en-
joys flexible terms with different denotations depending on the epis-
temic context in which they are interpreted. We present syntax and
semantics of the language formally and show completeness of an ax-
iomatisation. We discuss the expressive features of the language by
means of an example.

1 Introduction

Propositional modal languages have been extensively used to reason about
attitudes of multi-agent systems (MAS)!. In particular, a successful field of
investigation in Artificial Intelligence and philosophy is the one of epistemic
logic [FHMV95, MH95, PR85]. Several frameworks have been explored to
reason about various notions of knowledge (implicit, explicit, algorithmic,
etc.) either in isolation or in combination with time (discrete or dense,
branching or linear, etc.). A wealth of results covering axiomatisability, de-
cidability and computational complexity of various underlying semantical
classes (synchronous, no-learning, perfect recall systems) have been made
available, as well as model checking techniques for automatic verification
[GvdMO04, PL03, RL05]. However, little attention has so far been devoted
to the extensions to first-order. Although quantified modal logic is ridden
with technical difficulties, the power of full quantification is necessary if we
wish to represent properties of individuals and relationships between objects
and agents (as in “Robot a knows that all wheels of all other robots but
b are faulty”). In addition, it is known that first-order modal logic allows
for additional expressivity, including being able to distinguish between de
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re and de dicto knowledge. A major technical challenge in using first-order
modal languages for modelling MAS is axiomatisability, as many first-order
modal logics are not axiomatisable [Gar84, HWZ00, WZ01]. In this paper
we aim at extending the current state of the art by introducing a family of
provably complete first-order epistemic logics with global and local terms.
While the denotation of the former is rigid, i.e., it is the same in every com-
putational state, the latter’s depends on the state in which these expressions
are evaluated. The importance of this distinction has long been recognized
[FM99, MP92], but it is also well-known that local terms increase the expres-
sive power of first-order modal languages; as a result, certain frameworks are
incomplete [Gar84, Sza86]. Our first aim is to retain both local and global
terms, without incurring in unaxiomatisability, by suitably restricting the
range of local terms according to the substantial interpretation of quantified
modal logic in [Gar84]. Further, in the language presented below we allow
each agent to reason about a possibly different set of objects. This choice is
motivated by the fact that, as agents are autonomous, they may be aware of
only a subset of all the existing individuals, possibly different from those of
the other agents. In what follows we define systems of global states fulfilling
both features above. Then, we present a first-order epistemic language for
describing these structures and a sound and complete axiomatisation.

2 Systems of Global States and Equivalence Frames

In this section we present systems of global states [FHMV95, HF89] and
Kripke frames [BARVO01, CZ97]. We adopt the “static” perspective on
the systems of global states [LR97], rather than their “dynamic” version
[FHMV95]. Altough the evolution of knowledge over time is worth study-
ing, for simplicity we do not consider transitions explicitly. We assume a
set of agents A = {1,...,n} and for i € A, a set L; of local states I;,1}, ...,
and a set L. of local states I, 1., ... for the environment.

DEFINITION 1 (SGS). A system of global states is a 5-ple § = (S, D,
{D;}ica, F,{F;}ica) such that S C L. x L1 x ... x L, is a non-empty set
of global states; D is a non-empty set of individuals and for ¢ € A, D; is a
possibly empty subset of D; F'is a non-empty set of functions from S to D
and for i € A, F; : S — D is a possibly empty subset of F'. SGS is the class
of the systems of global states.

Remarks: This definition fulfils both features referred to in the intro-
duction. Intuitively, we can assign a fixed meaning to global terms like “7”
by including the corresponding real number in the domain D of individuals.
Expressions like “the tallest man in the world” will instead be modelled by

a function f € F, which returns the tallest man in a particular situation.
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As to the second feature, we have possibly different domains D; and F;, for
each agent i € A. Note that the various D; and F; are independent from
global states. Although this assumption is consistent with the external ac-
count of knowledge, it can be relaxed: just assume that for i € A, s € S,
D; s is a possibly empty subset of D, and F; s C F' is a possibly empty
domain of functions from S to D. Henceforth we refer to these structures
as varying systems of global states. We will show that our results apply to
these structures with minor changes.

In order to study the formal properties of SGSs we introduce a particular
class of Kripke frames.

DEFINITION 2. An equivalence frame is a 6-tuple F = (W, {~;}ica, D,
{D;}ica, F,{F;}ica) such that W is a non-empty set; for i € A, ~; is an
equivalence relation on W; D is a non-empty set of individuals and for
i € A, D; is a possibly empty subset of D; F'is a non-empty set of functions
from W to D and for i € A, F; : W — D is a possibly empty subset of F.
The class of all equivalence frames is denoted by Fg.

Remarks: It is straightforward to consider varying equivalence frames,
where for i € A, w € W, D, ,, and F;,, are possibly empty subsets of D
and F respectively. Finally, note that the individuals in D of both SGSs
and equivalence frames can be seen as constant functions from S (resp. W)
to D itself. This remark will be useful when interpreting individual terms.

3 Maps between SGS and Fg

We explore the relationship between SGSs and equivalence frames through
the maps f : SGS — Fg and g : Fg — SGS. By the lemma below and
Theorem 16 we will show that the axiomatisation of equivalence frames in
Section 8 is sound and complete also for SGS.

We now show that every equivalence frame F = (W, {~; }ica, D,{D;}ica,
F,{Fi}ica) is isomorphic to f(g(F)) = (W' {~i}tica, D', {Di}tica, F,
{F!}ica), that is, there are bijections between W and W', between D and
D', between F and F’, between the various D; and D}, and between the
various F; and F/. In addition, w ~; w' iff (f o g)(w) ~; (f o g)(w’).

We start with the map f. Let S = (S, D, {D; }ica, F,{Fi}ica) be an SGS,
define f(S) as (S, {~i}ica, D,{Di}ica, F\{Fi}ica) where S, D, {D;}ica,
F, and {F;};ca are the same as in S, and for i € A, the relation ~; on S
such that (le,l1,...,ln) ~; (IL,15,..., 1) iff [; = I} is an equivalence relation.
Clearly, f(S) is an equivalence frame.

For the converse map g, let 7 = (W, {~i}ica, D,{Di}ica, F,{Fi}ica)
be an equivalence frame. For every equivalence relation ~;, for w € W,
let the equivalence class [w]., = {w'|lw ~; w'} be a local state of agent
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i; while W is the set of local states for the environment. Let g(F) =
(S, D,{D;}ica, F',{F!}ica,), where S contains all the n+1-tuples (w, [w]~,,

.y wle,); D and {D;}ica are the same as in F, and each F] is the set
of functions f” such that f'({(w, [W]~,, ..., [w]~,)) = f(w), for f € F;. The
structure g(F) is an SGS and the composition of maps is an isomorphism.

LEMMA 3. Ewvery equivalence frame F is isomorphic to f(g(F))

The proof directly extends the propositional case [LS03], so we omit it.

It is straightforward to extend the maps f, g to cover also varying systems
of global states and equivalence frames: let m;({a1,...,a,)) = a;, for i < n;
define f as above and ¢’ as g but D} ; = D; ,, and F} , = {f'[f'(s') = f(w),
for f € F;,w = m1(s')}, whenever m(s) = w. It is easy to check that
Lemma 3 holds also for the structures with varying domains.

4 Syntax

Our first-order epistemic formulas are defined on an alphabet containing

global variables z1, xs, . . ., local variables z1, 2, . . ., global constants ¢y, co, . ..

and local constants dy, ds, . ... Moreover, we have n+ 1-ary function symbols
1”“, 2”H7 ..., and n-ary predicative constants P/*, P},..., for n € N, the

identity =, the propositional connectives = and —, the universal quantifier
V, and for every i € A, the epistemic operator K; and the unary predica-
tive constant Adm;. Terms and formulas in the language £,, are formally
defined as follows:

tu=x|z|cld|ff(ty,... t)

¢ = PR(tr,..., 1) |t =t' | Admi(t) | ~6 | ¢ — &' | Kig) | Yad | Vzo

The symbols L, A, V, <, 3 are defined standardly, while y,/, ... refer to
(local and global) variables in £,,. A global term s is defined as follows:

su=a|cl| f¥(s1,...,s1)
otherwise, it is local. The metavariables s, s’, ... and u,v’, ... refer to global
and local terms respectively; while v,v’,... and r,7’, ... refer to global and

local closed terms where no variable appears. The sign “s” can represent
either a state or a global term, the context will disambiguate.

t[g] (resp. ¢[y]) means that § = yi,...,y, are all the (local and global)
free variables in t (resp. ¢); while t[g/Z] (resp. #[7/t]) denotes the term
(resp. formula) obtained by simultaneously substituting some, possibly
all, free occurrences of y1,...,y, in ¢ (resp. ¢) with ¢,...,¢,, renaming
bounded variables if necessary. We stress that local variables are to be sub-
stituted by local terms only, while there is no restriction on global terms.

The indexed quantifiers V;, J; are defined by restricting the universal and
existential quantifier through the predicate Adm;, that is, V;y¢ and 3;y¢
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are shorthands for Yy(Adm;(y) — ¢) and Jy(Adm;(y) A ¢) respectively.
Intuitively, the predicate Adm; holds for the admissible individuals for agent
1 and the quantifiers V;, 3; range over the individuals considered by 1.

We write GVar, LVar, GCon and LCon to denote the sets of global and
local variables, and the sets of global and local constants in £,, respectively.

5 Semantics

We interpret £,, on an equivalence frame F by means of an interpretation
I mapping the syntactic features of £,, into the elements of F.

DEFINITION 4. An equivalence model M = (F,I) is such that:
o for c € GCon and d € LCon, I(c) € D and I(d) € F}
e I(f¥): F* — Fisak-ary function and I(f*)(§)(w) = I(f*)(g1(w),. .., gr(w));
e [(P* w) C D¥; I(Adm;,w) = D; U F;; I(=,w) is the equality on D.

The global constants are interpreted rigidly. Instead, it can be the case
that I(d)(w) is different from I(d)(w’), for w # w’. Each I(f*) is a function
from F* to F, but if the arguments are constant functions, i.e., elements
in D, then also the output belongs to D. The condition on I(f*) guaran-
tees that it commutes. Finally, Adm; is an intensional predicate, i.e., its
interpretation is D; U F;, not just a subset of D.

Let 0 be an assignment, i.e., a function from GVar to D and from LVar
to F'; the valuation I9(t,w) of a term ¢ at a world w is defined as follows:

I'(z,w)=1°(x) =o(x)

17(z,w) = I?(2)(w) = o(2)(w)

I7(c,w) =1(c) =1I(c)

17(d, w) = 1°(d) (1) = T(d)(w)

Ig(fk(tla ’tk)’w) = ](fk)(]U(tl’w)7.,_’I”(tk’w)) = I(fk)(lg(tl)a"'aIU(tk))(w)

A variant U(g) of an assignment ¢ assigns b € D U F to y and coincides

with o on all the other variables.

DEFINITION 5. The satisfaction relation |= for ¢ € £,,, w € M and an
assignment ¢ is inductively defined as follows:

(M, w) = P*(#) iff  (I7(t1,w),..., 17 (tg,w)) € I(P* w)

Mo w)Et=1 iff  I9(t,w) =I°(t', w)

(./\/l",w) ': Adml(t) iff Ia(t) S D7 U Fl

(Mo w) b~ (MO w) o

(M7, w) =y — ' iff (M, w) B or (M7,w) |

(M w) E K iff forallwe W, w~; w' implies (M7, w’) = ¢
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(M, w) = Var) iff for all a € D, (M), w) = ¢
(M7, w) = V) iff forall fe F, (M G, w) =y

The truth conditions for the formulas containing the symbols L, A, V, <,
3 are defined from the ones above, and we can check that:

x
a

(M?,w) = Vexp iff for all a € Dy, (M) w) = 2
(M7, w) EVizyp iff forall f e F; (M”(;),w) E

As we pointed out, the formula Adm;(t) means that 17(¢) is among the indi-
viduals in D; U F; admissible for agent i. If we consider varying equivalence
frames, the definition of satisfaction above is to be modified as follows:

(M7, w) = Adm;(t) iff I9(t) € DiwUF;,,
(M7, w) EVyay iff forall a € D;p, (M), w) = o
(M7, w) =Yz iff forall f € Fip, (M) w) = o

A formula ¢ € L, is true at a world w iff it is satisfied at w by every
assignment o, ¢ is valid on a model M iff it is true at every world in M,
¢ is valid on a frame F iff it is valid on every model on F, ¢ is valid on a
class C of frames iff it is valid on every frame in C.

Let A be a set of formulas in £,, M is a model for A iff every formula
in A is valid on M. Further, F is a frame for A iff every model on F is a
model for A. We can now introduce the quantified interpreted systems.

DEFINITION 6 (QIS). Given an SGS S, a quantified interpreted systems
is a pair P = (S, I) such that [ is an interpretation of £, in f(S).

The notions of satisfaction, truth and validity are defined as above, i.e.,
let Py = (f(S),I) be the equivalence model associated with the quantified
interpreted system P = (S, I), then (P7,s) = ¢ iff (P¢,s) = ¢. A formula
¢ € L, is valid on a quantified interpreted systems P iff ¢ is valid on P;.

The definitions above apply to varying systems of global states and equiv-
alence frames as well.

6 Some validities

Since the domains of quantification D; and F; are independent from global
states, both the Barcan formula and its converse [FM99] are valid in their
indexed form on the class Q7S of all QISs, i.e., they hold in every quantified
interpreted system:

QIS EViyK;¢ — K;Viyo BF;_;
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For the same reason we have also

QIS = Admj(t) — K; Adm,(t) NecAdm
QTS = -~Adm;(t) — K;,—Adm;(t) Nec—Adm

These validities say that each agent knows which are the individuals he and
the other agents reason about.

These principles seem rather strong even for an external account of knowl-
edge. After all, we introduced different domains of quantification for ex-
pressing that each agent has only a limited access to the totality of individ-
uals. If they know all other agents’ domains as well as theirs, the whole con-
struction becomes questionable. Given this, we can focus on varying SGSs,
where the formulas above fail. But this undermines the agents’ knowledge of
their own domains. Our solution consists in admitting BF;_; and CBF;_;
only for ¢ = j. In fact, the equivalences below hold on any varying SGS S:

S ): VZLUKZ(b — Klvll'(b iff lZ(S) = li(S/) = Di,s = Di,s’
S ): VIZKl(ﬁ > KN12¢ iff ll(S) = li(s') = Fz’,s = Fi7s'

By restricting our attention to the SGSs satisfying the conditions above, we
can model the scenario where an agent knows his domains of quantification,
but not necessarily the other agents’. We call these SGSs regular and pro-
vide a sound and complete axiomatisation also for this class of structures.

A varying equivalence frame F is regular iff the corresponding system of
global states g(F) is, i.e., iff

F ': szKm — KNquﬁ iff w ~j w = Di,w = Di,w’
F ': szKz(b > KleZqZS iff w ~; w = Fi,w = I'jw’

For what concerns identity, the following formulas hold for global terms
on every quantified interpreted system:

QIS |= (s = §') = (dlx/s] — ¢[z/s]) Subst
QIS E(s=¢")— Ki(s=¢) K;1d
QISE (s#5)— Ki(s#£§) K;Dif

but not for local terms. These (in)validities justify the names of flexible and
rigid variables given in [MP92]. For local terms we have only:

OIS E (u=1u') — (P[z/u] — ¢[z/u]), for atomic ¢
but
QIS (u =) — (Adm;(u) — Adm;(u')),

as Adm, is an intensional predicate and it can be that 17 (u, w) = I (v, w),
I°(u) € F; but I7(v') ¢ F;.
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7 A case study: Battlefield

In this paragraph we present a MAS modelled as a quantified interpreted
systems, and describe it by means of the language £,,. We start by consid-
ering the set of agents A = {1,2, 3,4}, each agent is assigned a quadrant in
Z x Z clockwise:

Dy={(z,y) |z €L,y LT} Dy ={(z,y) | z,y € ZT}
Dy ={(z,y) | 2,y € Z7} Dy ={(z,y) |z €ZT,ycZ}

Intuitively, the set D; is the country of agent . We assume that each
agent has b military units, whose positions are recorded in his local state.
Further, we consider couples (z,y) € D; and triples (k,x,y), for 1 <k <5,
to express that there is a military unit at (z,y) and that the k** military
unit is at (x,y) respectively.

The local state I; of agent i is a 4-tuple (ay, ag, a3, ) such that:

e «; is a 5-tuple ((1,z,y),...,(5,2',y")) with the positions of i’s units.

e for j # i, a; is a possibly empty sequence of (k, z,y) and (x,y) record-
ing the positions and identities of i’s enemies’ units.

Finally, [. is the local state of the environment recording the positions and
identities of all the units.

The set S contains the global states s = (l., 13,12, 13, 14) such that if either
(x,y) € a(l;) or (k,z,y) € a;(l;), then (k,z,y) € o;(l;). So, an agent may
not know the position or the identity of an enemy unit, but if she does, she
cannot be wrong. Each F; is the set of functions mu; j, for 1 < k < 5, such
that mu, k(s) = (z,y) iff the expression (k,x,y) appears in «; of 1;(s).

We assume that our language has global and local constants for denoting
the individuals in the various D; and F;. We use the same notation for
syntactic and semantic elements as the former mirror the latter, the context
will disambiguate. Finally, D and F' contain the real numbers and functions
on them.

Let us suppose that the initial state s = (l¢,l1,l2,13,14) - describing the
position of the military units at the beginning - is defined as follows:

o hi(s) =(((1,2,2),(2,6,5),(3,2,7),(4,4,12),(5,7,9)), (), (), ())

o la(s) = ((),((1,3,-3),(2,7,-2),(3,6,-5),(4,3,-6),(5,8,-9)), (), ())

e I3(s) = (), (), ((1,=3,-3),(2,-3,-6),(3, =6, =3), (4, =6, —8), (5, =8, =5)), ())
o la(s) = (0,0, 0, ((1,-4,4),(2,-3,9), (3, =7,7), (4, =5,12), (5, =8, 11)))

The system of global states containing s describes a situation in which

the first military unit of agent 1 is positioned at (2,2). In particular, agent
1 knows this fact while agent 3 is uncertain about it:
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(P,s) = K1312(z = (2,2)) andalso (P,s) | J12K1(z =(2,2))
(P,s) = 3120 K3(z =(2,2)) and also (P,s) = Viz=K3(z = (2,2))

Consider now a function dist returning the distance between two points in
Z x 7 as a real number: I(dist)((z,y), (z',y")) = /(xz —2")2 + (y — y')%

It is easy to check that agent 2 starts with all his military units within a
distance of less than 8, and he knows this fact, which is ignored by agent 4:

(P,s) & Vaz,2' Ko(dist(z,2') < 8) but (P,s) b Vaz, 2/ Ky(dist(z,2') < 8)

Consider a global constant firedist representing the maximum range of fire
of the military units and set it to 8, i.e. I(firedist) = 8. We can express
the fact that units z,2’ are within fire range by the formula dist(z,2') <
firedist, that we abbreviate as F'Dist(z,z"). Further, suppose hostilities
break out in our scenario and agent 3 somehow acquires the knowledge that
an unidentified 1’s military unit is at (2,2). The resulting state s’ differs
from s only for the local state of agent 3:

hd l3(5/) = <<(2, 2)>? <>7 <(1> _37 _3)7 (2a _Sa _6)7 (37 —6, _3)> (47 _67 _8)7 (57 -3, _5)>7 <>>

As a consequence, agent 3 has de dicto knowledge that the first of his
units is within the range of enemy fire, even if she does not know this de re:

(P,s') |E 332K3312' FDist(z,2") but (P,s’) ¥ 312'332K3F Dist(z,2')
while agent 1 ignores this fact, let alone that agent 3 knows this:
(P,s") E ~K1332K3312' FDist(z, 2')

Now suppose that agent 1 discovers unit mus.1’s position; the change in his
local state is recorded in the global state s” differing from s’ as to I1:

hd 11(5”) = <<(17 27 2)7 (27 67 5)7 (37 27 7)7 (47 47 12)7 (51 77 9))7 <>7 <(_37 _3)>7 <>>

Then, also agent 1 knows that one of his units is within the range of
enemy fire, even if she is uncertain whether agent 3 is aware of this:

(P,s") E 312K1332' FDist(z,2') but (P,s") ¥~ 312K1332' KsFDist(z,2")

Obviously, when one of agent ¢’s units is within the enemy fire range, agent
i is in a dangerous situation. Thus, our QIS validates the following de dicto
specification:

Viz(K;3;2' FireDist(z,2') — Danger(z)), for j # i
which is stronger than this de re specification on danger:
Viz(3;2' K;FireDist(z,z") — Danger'(z)), for j # i

In fact, both agent 1 and agent 3 know to be in Danger, but not in Danger':
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(P,s") = 312K1Danger(z) but (P,s”) = 312K1Danger’(z)
(P,s") E 33zK3Danger(z) but (P,s”) £ IszK3Danger'(z)

They can try to find a way out of this situation either by attacking or
by withdrawing. In order to analyse these alternatives, we introduce a
knowledge based protocol [FHMV95]. First of all, we define a predicate
Access such that Access((x,y)(z',y")) iff |z —2'| < 1 and |y —y/| < 1.
Intuitively, the set {p’| Access(p,p’)} contains the points recheable from p in
a single move. Moreover, we consider two actions: ATTACK and MOV E.
The protocol for agent i # j, k,l can be written in pseudo-code as follows:

if K;Danger(z) then
if Jjx(Access(z,x) AV;j2'Vp2"V 12" K;(—F Dist(x, 2') AN =F Dist(x, 2" )A
A=FDist(x,2""))) then
MOVE(z,x)
else if K;3;2' FireDist(z, z") then
ATTACK(?)

This protocol says that if agent ¢ knows that the unit z is in danger, then
he has to move it to an area known to be out of the enemy fire range. If it
is not possible, then he has to attack first the enemy unit threatening his
unit. Note that this protocol is extremely strict, as it requires knowledge of
safety before moving. In the present case

(P,s") = J12(K 1 Danger(z) ANV1x(Access(z,x) — K1332' F Dist(x,2)))

thus agent 1 is bound to attack the first unit of agent 3.

By suitably extending our language, we can express interesting topologi-
cal relationships on the various D, like the presence of obstacles. Moreover,
we can introduce intensional predicate for describing in detail the character-
istics of the military units. We conclude that our language and structures
are a sound formalism for modelling agents moving units on a grid.

8 System (.55,

The system @Q.55,, on the language £, is a first-order multi-modal version
of the propositional system S5. While resolution and natural deduction
systems are more natural when dealing with automated reasoning, for the
purpose of the completeness proof Hilbert-style calculi are easier to handle.
Moreover, a natural deduction version of ).55,, can be easily obtained from
the system presented in [FM99] for instance. Hereafter we list the postulates
of Q.55,,, note that = is the inference relation between formulas.

DEFINITION 7. The system Q.S5, on L,, contains the following schemes
of axioms and inference rules:
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Taut every classic propositional tautology

Dist Ki(¢p — ) — (K¢ — Kip)

T Kip— ¢

4 K¢ — K;K;¢

5 K¢ — K;=K;¢

MP ¢—=Y, o=

Nec ¢ = K;¢

Ex Yyo — 9ly/t]

Gen ¢ — Y[y/t] = ¢ — Yy, for y not free in ¢

BF,—; | ViyK;¢ — K;Viyo

Id t=1

Fune | £ =1t — (¢"[y/t] = '[y/t))

Subst t=1t" — (¢ly/t] — Jly/t']), for atomic ¢
K;1d s=8 = K;(s=¢")

K;Dif s#£s — Ki(s# ')

The first group of postulates is an axiomatisation of the propositional
multi-modal system S55,,. Then we have the classic postulates for quantifi-
cation for both global and local terms. The Barcan formula and its converse
guarantee that the domains of admissible individuals are independent from
global states. Finally, we have the axioms Id, Func and Subst for all terms,
while K;Id and K;Dif hold only for global terms.

We define proofs and theorems as standard: - ¢ means that ¢ € L, is a
theorem in Q.55,,. Moreover, we say that ¢ € L,, is deriwvable in Q).55,, from
the set A of formulas in £,, - A F ¢ in short - iff there are ¢1,...,¢, € A
such that - g1 A ... A @y — .

Among the theorems and derived rules of Q).55,, we have:

NecAdm Admz (t) — K]Adml (t)

Nec—Adm | =Adm;(t) — K;—~Adm;,(t)

ExAdm Viyp — (Adm,(t) — ¢oly/t])

GenAdm | ¢ — (Adm;(t) — Y[y/t]) = ¢ — Yy, for y not free in ¢

For reasons of space we omit the proofs. We can easily check that every
equivalence frame is a frame for Q.S5,. As a consequence, we have the
following soundness result:

LEMMA 8 (Soundness). The system Q.S5, is sound with respect to the
class Fg of equivalence frames.

By this lemma and the definition of validity on the systems of global
states, the following implications hold: Q.S5, F ¢ = Fg |E ¢ = SGS = ¢.
Thus, we have soundness for the systems of global states:
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COROLLARY 9 (Soundness). The system Q.S5,, is sound with respect to
the class SGS of the systems of global states.

By wvarying and regular @Q.S5, we denote the systems obtained from
Q.S5,, respectively by eliminating BF;_;, CBF;_; and by restricting these
postulates to ¢ = j. We have only restricted versions of NecAdm and
Nec—Adm for reqular @.S5,,. On the other hand, varying and reqular Q.S5,
are sound for wvarying and regular equivalence frames, therefore also for
varying and regular SGSs:

LEMMA 10 (Soundness). Varying Q.S5,, is sound for varying equivalence
frames, therefore it is sound also for varying systems of global states.

LEMMA 11 (Soundness). Regular Q.S5,, is sound for regular equivalence
frames, therefore it is sound also for regular systems of global states.

9 Completeness

The completeness of ().S5,, with respect to equivalence frames is proved by
means of the canonical model method. For the case in hand this technique
basically consists in showing the following fact:

If Q.55,, does not prove a formula ¢ € L,, then the canonical model
MOS8 for ).55,, does not validate ¢.

This result relies on two lemmas: the saturation and the truth lemmas.
Their proofs need the following definitions, where A is a set of formulas:

A is consistent iff A ¥ L;

A is maximal iff for every ¢ € L, ¢ € A or =¢p € A;

A is maz-cons iff A is consistent and maximal;

A is rich iff Jxp € A = ¢[z/c] € A, for some ¢ € GCon, and
Jz¢ € A = ¢[z/d] € A, for some d € LCon;

A is saturated iff A is max-cons and rich.

We observe that the following lemma holds, we refer to [Gar84] for a proof:

LEMMA 12 (Saturation lemma). If A is a consistent set of the formulas
in Ly, then it can be extended to a saturated set I of formulas on some
expansion L of Ly,.

If ¥ ¢ then the set {—¢} is consistent and by the lemma above we obtain
a saturated set II O {—¢}. By this remark, the set W of saturated sets
w,w’, ... of formulas in £} is non-empty.

To introduce the other elements in the canonical model for Q.S5, we
need few more definitions. For closed global terms v,v’, define v ~, v’ iff
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(v =1") € w. This is an equivalence relation and [v], = {V'|v ~y '} is
the equivalence class of v in w. Since the accessibility relation in M®-5%»
is defined so that wR;w’ iff {¢|K;¢ € w} C w', by K;Id and K;Dif we
can show that the definition of [v],, is independent from w - ie. wR;w’
implies [v]y = [v]y - S0 we simply write [v]. We define D, ,, as the set
{[v]|Adm;(v) € w}. By Subst, Func, NecAdm and Nec—Adm we can show
that this definition is independent from v and w, therefore we simply write
D;. Further, for every closed local term r define a function f, such that

£ (w) [v] if there is a v such that (r = v) € w;
r (W =
{r'|(r" =) € w} otherwise.

Each F; ., is the set {f,|Adm;(r) € w}; by NecAdm and Nec—Adm this
definition is provably independent from w, so we simply write F;. Finally,
the canonical model for ().S5,, is defined as follows:

DEFINITION 13. The canonical model M%-5° for ().S5,, on the language
L,,, with an expansion £, is the 5-tuple (W, {R; }ica, D, {D;}ica, F,{F;}ica,
I) such that:

e IV is the set of saturated sets of formulas in £;;

wR;w iff {¢|K;¢ € w} C w';

D= {p)lvettu{fr(w)|relt,weW}and F = {f.]r e L]},
while D;, F; are defined as above;

I is an interpretation such that:

— I(c) =[] and I(d) = fq;
— for ay,...,ar € DUF, I(f*)(a@) is a function such that

. e if each a; = [v;];
1@ = ) o = o o
Tre@(w) for e; = v; if a; = [vg], or e = 1y if a; = f,
— for ay,...,a; € D, (@) € I(P*,w) iff P*(&) € w, for ¢; = v; and
a; = [v;] or e; = r; and a; = f, (w).

Note that the interpretation of functions and predicates is well defined by
the axioms Func and Subst. Moreover, the definition of D guarantees that
the symbol = is interpreted as identity. Thus, we can prove the following
lemma by extending the propositional case and the remarks above.

LEMMA 14. The canonical model M5 for Q.S5, exists and satisfies
the constraints on equivalence models.
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If a formula ¢ € L, is not provable in varying @Q.S5,, then we can
still construct the canonical model as above. Since neither NecAdm nor
Nec—Adm are theorems in varying @.55,, we cannot show that D, ,, and
F; ., are independent from w. But this is not a problem as our canonical
model is a varying Kripke model anyway. Similarly, the canonical model for
reqular @.S5, satisfies the conditions on regular models by the restricted
versions BF;_; and CBF;_;.

Now let ¢ be an assignment to local and global variables, we can show
that for every w € W, I°(t[g], w) = I(t[§/e])(w), whenever o(y;) = I(e;).
By this result the base case of the truth lemma below hold. In what follows
we simply write M for M%-55n,

LEMMA 15 (Truth lemma). For everyw € M, ¢[y] € L}, for o(y;) = I(e;)
(M7, w) = oly] it ¢ly/e] € w

The proof of this lemma relies on the Barcan formula for showing that
if K;¢[y/e] ¢ w, then the consistent set {¢|K;¢ € w} U {—[y/€]} can be
extended to a saturated set w’ on L} such that wR;w’ and (M7, w’) |
—[y] by the induction hypothesis.

By the truth lemma we conclude that the canonical model is a model for
Q.55,,, based on an equivalence frame, falsifying any unprovable formula ¢.
Thus, we state the following completeness result.

THEOREM 16 (Completeness). The system Q.S5,, is complete with respect
to the class Fg of equivalence frames.

We note without proof that Lemma 15 holds also for varying and regular
Q.S55,,, therefore these systems are complete with respect to the classes of
varying and regular equivalence frames respectively.

Further, we have completeness also with respect to the systems of global
states. In fact, if ¥ ¢ then by Theorem 16 there exists a model M = (F,T)
based on an equivalence frame F, which falsifies ¢. Define the quantified
interpreted system P as (g(F),I): by definition P |= ¢ iff Py = (f(g(F)),I)
models ¢, but by Lemma 3 f(g(F)) is isomorphic to F. Hence P [~ ¢. As
a result, we can state the main result of this paper.

COROLLARY 17 (Soundness and Completeness). For every formula ¢ €
Ly, SGS = ¢ iff Q.S5, F ¢.
Finally, by analogous reasoning we can prove the following results:

COROLLARY 18. Varying Q.S55,, is sound and complete for the class of
varying systems of global states.

COROLLARY 19. Regular Q.S5,, is sound and complete for the class of
regular systems of global states.
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10 Conclusions

In this paper we presented a framework for quantified epistemic logics with
flexible terms based on quantified interpreted systems, an extension to first-
order of interpreted systems, the popular formalism for MAS. The language
is very expressive and particularly suited for representing relationships, it
also supports full quantification over infinite sets of objects. In Section 6 we
pointed out some problems related to agents’ knowledge of their domains
and of other agents’ domains. It is worth noting that these difficulties arise
from the specific epistemic interpretation of the modality. We put forward
a solution by suitably restricting the validity of the Barcan formula and
its converse. By outlining completeness results we have shown that this
expressiveness can be achieved while still retaining axiomatibility.
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