First-order Modal Languages for the Specification of Multi-agent Systems

Joint work with Alessio Lomuscio Department of Computing Imperial College London

November 24, 2011

F. Belardinelli First-order Modal Languages for the Specification of Multi-agent Systems

∃ >

F. Belardinelli First-order Modal Languages for the Specification of Multi-agent Systems

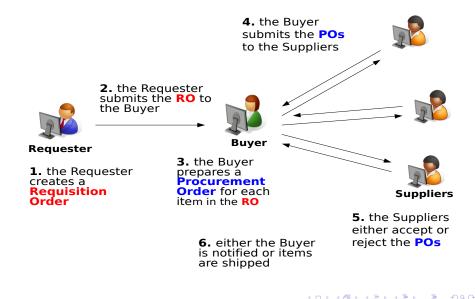
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ─ 置 ─ のへで

- Propositional modal languages (temporal, epistemic, deontic, coalition logic) are a success story on the applications of logic to computer science.
- Today a number of tools and techniques based on (some of) these formalisms are available for the specification and verification of distributed and multi-agent systems.
 - NUSMV
 - McMAS
 - Prism
 - SPIN
 - UPAAL
 - etc...
- Still, as increasing complex scenarios (web services, e-commerce, ACSI project) are tackled by the verification community, the demand for ever more expressive languages is becoming more pressing.

イロト イポト イヨト イヨト

э.

The Equipment Purchase Scenario



First-order logic is typically considered the most "convenient" setting to formalise natural language:

- each of the Requisition Order, Procurement Order can be formalised as a database, i.e., a first-order structure;
- we are interested in model checking formulas like

AG $\forall id, itm, p(RO(id, itm, p, closed)) \rightarrow \exists s \ K_{Buyer}PO(p, s, itm, accepted))$

a Requisition Order can be in state *closed* only if the Buyer knows that the corresponding Procurement Order has been accepted by some Supplier.

However, first-order (modal) logic is known to be highly undecidable:

- [HWZ00] Let *F* be either {⟨N, <⟩} or {⟨Z, <⟩}. Then the set *TL*² ∩ *TL*^{mo} ∩ *TL*(*F*) is not recursively enumerable.
- [HWZ00] Let \mathcal{F} be one of the following classes of temporal frames: $\{\langle \mathbb{N}, < \rangle\}$, $\{\langle \mathbb{Z}, < \rangle\}$, the class of all strict linear orders. Then $\mathcal{TL}^2 \cap \mathcal{TL}^{mo} \cap \mathcal{TL}_{fin}(\mathcal{F})$ is not recursively enumerable.
- [WZ01] The two variable monadic fragment of **QK**^{*} (no matter with constants or expanding domains) is not recursively enumerable.
- [W00] For any first-order common knowledge logic L:
 - The fragment of *L* with monadic predicates only (without equality and function symbols) is not recursively enumerable.
 - The fragment of *L* with local constant symbols and the equality symbol only (without predicates and proper function symbols) is not recursively enumerable.

Definition (Monodic fragment)

Let \mathcal{L} be a first-order modal language, the monodic fragment \mathcal{L}^1 of \mathcal{L} is the set of formulas $\phi \in \mathcal{L}$ such that any subformula of ϕ of the form $\Box \psi$, for some modal operator \Box , contains at most one free variable.

Examples:

• agent *i* knows that every resource is universally available until it is requested,

$$\forall y (Resource(y) \rightarrow K_i (\forall z A vailable(y, z) \mathcal{U} \exists x Request(x, y)) \qquad \checkmark$$

• for every process agent *i* knows that it will eventually try to access every resource,

$$\forall x K_i(Process(x) \to \forall y (Resource(y) \to F \ Access(x, y))$$
 6

The monodic fragment contains all *de dicto* formulas, so the limitation is only on *de re* formulas.

イロト イボト イラト イラト

- [HWZ00] Let *TL'* ⊆ *TL*₁ and suppose there is an algorithm which is capable of deciding, for any *TL'*-sentence φ, whether an arbitrary state candidate for φ is realizable. Let *F* be one of the following classes of flows of time: {⟨ℕ, <⟩}, {⟨ℤ, <⟩}, {⟨ℚ, <⟩}, the class of all finite strict linear orders, any first-order-definable class of strict linear orders. Then the satisfability problem for the *TL'*-sentences in *F*, and so the decision problem for the fragment *TL(F)* ∩ *TL'*, is decidable.
- [WZ01] For $L = \{ \mathbf{QK}^*, \mathbf{QK}, \mathbf{QT}, \mathbf{QK4}, \mathbf{QS4} \}$ the fragments $L \cap \mathcal{ML}_1^2$, $L \cap \mathcal{ML}_1^m$, and $L \cap \mathbf{MGF}_1$ are decidable.
- [SWZ00] Let *L* be any of \mathbf{K}_n^C , \mathbf{T}_n^C , \mathbf{KD}_n^C , $\mathbf{K4}_n^C$, $\mathbf{S4}_n^C$, $\mathbf{K045}_n^C$, $\mathbf{S5}_n^C$. Then the following fragments are decidable: the monodic fragment, the two-variable fragment, the guarded fragment.

However,

• Let *L* be any of the logics above. Then the fragment *L*₁ in the language $\mathcal{QCL}_1^=$ is not recursively enumerable.

• D > 4 B > 4 B > 4 B > 1

- In this talk we show that the axiomatisations for temporal epistemic logic available at the propositional level can be lifted to the monodic fragment.
- This work builds on previous contributions:
 - on the monodic fragment of first-order temporal [WZ02] and epistemic logic [SWZ00, SWZ02];
 - on propositional temporal epistemic logic [HvdMV03].
- We consider well-known properties of multi-agent systems including *perfect recall*, *synchronicity*, *no learning*, and having a *unique initial state*.

(4月) (1日) (日)

Let $A = \{1, \ldots, i, \ldots, m\}$ be a set of agents.

Definition (terms and formulas in \mathcal{L}_m)

$$\begin{array}{ll}t & ::= & x \mid c \\ \phi & ::= & P^{k}(t_{1}, \ldots, t_{k}) \mid \neg \psi \mid \psi \rightarrow \psi' \mid \forall x \psi \mid \bigcirc \psi \mid \psi \mathcal{U} \psi' \mid K_{i} \psi \end{array}$$

The language \mathcal{L}_m combines at first order:

- the LTL operators $next \bigcirc$ and $until \mathcal{U}$, and
- the epistemic operators K_i for each agent $i \in A$.

The language $\mathcal{L}C_m$ extends \mathcal{L}_m with the common knowledge operator C.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Interpreted systems are the typical formalism for reasoning about knowledge in multi-agent systems [FHMV95].

 Let S ⊆ L_e × L₁ × ... × L_m be the set of global states, where L_i is the set of local states for each agent i in A and for the environment e.

Definition (QIS)

A quantified interpreted system is a tuple $\mathcal{P} = \langle R, \mathcal{D}, I \rangle$ such that

- R is a non-empty set of runs $r:\mathbb{N} o\mathcal{S}$
- \mathcal{D} is a non-empty set of individuals
- *I* is a first-order interpretation of individual constants and predicate symbols.

 QIS_m is the class of all quantified interpreted systems P with m agents.

ロト 不得下 不良下 不良下

Consider a formula $\phi \in \mathcal{L}_m$ (resp. $\mathcal{L}C_m$), a point $(r, n) \in \mathcal{P}$, and an assignment $\sigma : Var \to \mathcal{D}$:

 $(\mathcal{P}^{\sigma}, r, n) \models P^{k}(t_{1}, \ldots, t_{k})$ $\langle I^{\sigma}(t_1), \ldots, I^{\sigma}(t_k) \rangle \in I(P^k, r, n)$ iff $(\mathcal{P}^{\sigma}, r, n) \not\models \psi$ $(\mathcal{P}^{\sigma}, r, n) \models \neg \psi$ iff $(\mathcal{P}^{\sigma}, r, n) \models \psi \rightarrow \psi'$ $(\mathcal{P}^{\sigma}, r, n) \not\models \psi$ or $(\mathcal{P}^{\sigma}, r, n) \models \psi'$ iff iff for all $a \in \mathcal{D}$, $(\mathcal{P}^{\sigma_a^{\chi}}, r, n) \models \psi$ $(\mathcal{P}^{\sigma}, r, n) \models \forall x \psi$ $(\mathcal{P}^{\sigma}, r, n) \models \bigcirc \psi$ iff $(\mathcal{P}^{\sigma}, r, n+1) \models \psi$ $(\mathcal{P}^{\sigma}, r, n) \models \psi \mathcal{U} \psi'$ iff there is n' > n such that $(\mathcal{P}^{\sigma}, r, n') \models \psi'$ and for all $n \leq n'' < n'$. $(\mathcal{P}^{\sigma}, r, n'') \models \psi$ $(\mathcal{P}^{\sigma}, r, n) \models K_i \psi$ iff $r'_i(n') = r_i(n)$ implies $(\mathcal{P}^{\sigma}, r', n') \models \psi$ $(\mathcal{P}^{\sigma}, r, n) \models C\psi$ for all $k \in \mathbb{N}$, $(\mathcal{P}^{\sigma}, r, n) \models E^{k}\psi$ iff

where $E^0\psi = \bigwedge_{i\in A} K_i\psi = E\psi$, and $E^{k+1}\psi = EE^k\psi$.

The definitions of truth and validity in a class of QIS are standard.

白玉 不得天 不是天 不是天 一是

A QIS ${\mathcal P}$ satisfies

synchronicity	iff	time is part of the local state of each agent, i.e., $r_i(n) = r'_i(n')$ implies $n = n'$
perfect recall	iff	each agent remembers everything that has happened to her during the run (i.e., local states are histories)
no learning	iff	no agent aquires new knowledge during the run
unique initial state	iff	all runs begin from the same global state, i.e., for all $r, r' \in \mathcal{R}, r(0) = r'(0)$
The superscripts sync, pr,	nl, uis	denote specific subclasses of \mathcal{QIS}_m .

For instance, $QIS_m^{pr,sync}$ contains the synchronous QIS with perfect recall.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The Systems QKT_m

The system QKT_m combines at first order:

- the linear temporal logic LTL, and
- the multi-modal epistemic logic $S5_m$.

Classical first-order logic	classical propositional tautologies
Classical Inst-order logic	
	$\phi \rightarrow \psi, \phi \Rightarrow \psi$
	$orall x \phi o \phi[x/t]$
	$\phi \rightarrow \psi[x/t] \Rightarrow \phi \rightarrow \forall x \psi$, x not free in ϕ
Axioms for Time	$\bigcirc (\phi ightarrow \psi) ightarrow (\bigcirc \phi ightarrow \bigcirc \psi)$
	$\bigcirc \neg \phi \leftrightarrow \neg \bigcirc \phi$
	$\phi \mathcal{U} \psi \leftrightarrow \psi \lor (\phi \land \bigcirc (\phi \mathcal{U} \psi))$
	$\phi \Rightarrow \bigcirc \phi$
	$\chi ightarrow eg \psi \land \bigcirc \chi \Rightarrow \chi ightarrow eg (\phi \mathcal{U} \psi)$
Axioms for Knowledge	${\it K}_i(\phi ightarrow\psi) ightarrow({\it K}_i\phi ightarrow{\it K}_i\psi)$
	$K_i \phi \rightarrow \phi$
	$K_i \phi \rightarrow K_i K_i \phi$
	$\neg K_i \phi \rightarrow K_i \neg K_i \phi$
	$\phi \Rightarrow K_i \phi$
Barcan formulas	$\bigcirc \forall x \phi \leftrightarrow \forall x \bigcirc \phi$
	$K_i orall x \phi \leftrightarrow orall x K_i \phi$

- 不得下 不良下 不良下

Consider the following axioms for common knowledge:

$$\begin{array}{c|c} \mathsf{C1} & \mathsf{C}\phi \leftrightarrow (\phi \land \mathsf{EC}\phi) \\ \mathsf{C2} & \phi \rightarrow (\psi \land \mathsf{E}\phi) \Longrightarrow \phi \rightarrow \mathsf{C}\psi \end{array}$$

The system $QKTC_m$ extends QKT_m with C1 and C2.

Consider the following axioms on the interaction between time and knowledge:

$$\begin{array}{ll} \mathsf{KT1} & \mathsf{K}_i \bigcirc \phi \to \bigcirc \mathsf{K}_i \phi \\ \mathsf{KT2} & \mathsf{K}_i \phi \land \bigcirc (\mathsf{K}_i \psi \land \neg \mathsf{K}_i \chi) \to \bar{\mathsf{K}}_i ((\mathsf{K}_i \phi) \mathcal{U}((\mathsf{K}_i \psi) \mathcal{U} \neg \chi)) \\ \mathsf{KT3} & (\mathsf{K}_i \phi) \mathcal{U} \mathsf{K}_i \psi \to \mathsf{K}_i ((\mathsf{K}_i \phi) \mathcal{U} \mathsf{K}_i \psi) \\ \mathsf{KT4} & \bigcirc \mathsf{K}_i \phi \to \mathsf{K}_i \bigcirc \phi \\ \mathsf{KT5} & \mathsf{K}_i \phi \leftrightarrow \mathsf{K}_j \phi \end{array}$$

We use $1, \ldots, 5$ as superscripts to denote the systems obtained by adding to QKT_m (resp. $QKTC_m$) any combination of KT1-KT5.

For instance, the system $QKT_m^{2,3}$ extends QKT_m with KT2 and KT3.

イロト イポト イヨト イヨト

A QIS ${\cal P}$ satisfies any of KT1-KT5 if ${\cal P}$ satisfies the corresponding condition:

Axiom	Condition on QIS
KT1	perfect recall, synchronicity
KT2	perfect recall
KT3	no learning
KT4	no learning, synchronicity
KT5	all agents share the same knowledge

イロト 不得 トイヨト イヨト

э.

Theorem (Completeness)

The systems in the first and second column are sound and complete w.r.t. the corresponding classes of QIS in the third column.

Sys	tems	QIS
QKT_m	QKTC _m	$QIS_m, QIS_m^{sync}, QIS_m^{uis}, QIS_m^{sync,uis}$
QKT_m^1		$QIS_m^{pr}, QIS_m^{pr,uis}$
QKT_m^2		$QIS_m^{pr,sync}$, $QIS_m^{pr,sync,uis}$
QKT_m^3		QIS_m^{nl}
QKT_m^4		$QIS_m^{nl,sync}$
$QKT_m^{2,3}$		$QIS_m^{nl,pr}$
$QKT_m^{1,4}$		$QIS_m^{nl,pr,sync}$
$QKT_{1}^{2,3}$		$QIS_1^{nl,uis}, QIS_1^{nl,pr,uis}$
$QKT_{m}^{1,4,5}$	$QKTC_{m}^{1,4,5}$	$QIS_{m}^{nl,sync,uis}$, $QIS_{m}^{nl,pr,sync,uis}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- All completeness results available at the propositional level [HvdMV03] can be lifted to the monodic fragment of \mathcal{L}_m (resp. $\mathcal{L}C_m$).
- In the general case there is no complete axiomatisation of the validities on QIS^{n1,uis} and QIS^{n1,pr,uis}.

This is already the case at the propositional level.

• However, for m = 1, $\mathcal{QIS}_1^{nl,pr,uis} = \mathcal{QIS}_1^{nl,uis} = \mathcal{QIS}_1^{nl,pr}$. Hence $\mathsf{QKT}_1^{2,3}$ is a complete axiomatisation for $\mathcal{QIS}_1^{nl,uis}$ and $\mathcal{QIS}_1^{nl,pr,uis}$.

ロト 不得下 イヨト イヨト 二日

Idea of the Completeness Proof

Two ingredients are needed in order to prove completeness:

- quasimodels, introduced in [HWZ00];
- monodic-friendly Kripke models, a Kripke-style semantics for \mathcal{L}_m^1 (resp. $\mathcal{L}\mathcal{C}_m^1$).

Lemma		
For every monodic formula ϕ_i		
satisfiability in mf-Kripke models	\Rightarrow	satisfiability in QIS.
satisfiability in quasimodels	\Rightarrow	satisfiability in mf-Kripke models.

Synchronicity, perfect recall, no learning, and unique initial state are preserved.

Lemma

a monodic ϕ is consistent w.r.t. a system $S \Rightarrow \phi$ is satisfiable in a quasimodel for S.

As a result,

Theorem

The system S is complete for the corresponding class of QIS.

Definition (mf-Kripke model)

A monodic-friendly Kripke model is a tuple $\mathcal{M} = \langle \mathcal{R}, \{\sim_i\}_{i \in A, a \in \mathcal{D}}, \mathcal{D}, I \rangle$ where - \mathcal{R} is a non-empty set of indexes r, r', \ldots

- \mathcal{D} is a non-empty set of individuals
- I is a first-order interpretation of individual constants and predicate symbols
- for $i \in A$, $a \in \mathcal{D}$, $\sim_{i,a}$ is an equivalence relation on the points (r, n), for $r \in \mathcal{R}$ and $n \in \mathbb{N}$

$$\begin{aligned} (\mathcal{M}^{\sigma}, r, n) &\models \mathsf{K}_{i}\psi[y] \quad iff \quad (r, n) \sim_{i,\sigma(y)} (r', n') \text{ implies } (\mathcal{M}^{\sigma}, r', n') &\models \psi \\ (\mathcal{M}^{\sigma}, r, n) &\models C\psi[y] \quad iff \quad \text{for all } k \in \mathbb{N}, (\mathcal{M}^{\sigma}, r, n) &\models E^{k}\psi[y] \end{aligned}$$

- The class of mf-Kripke models with m agents is denoted by \mathcal{K}_m .
- We can consider mf-Kripke models satisfying *synchronicity*, *perfect recall*, *no learning*, or having a *unique initial state*.
- mf-Kripke models do not necessarily satisfy BF and axiom K!!

Monodic-friendly Kripke models are necessary to prove completeness for systems encompassing either perfect recall or no learning.

We are only able to prove that

Lemma		
For every monodic formula ϕ , satisfiability in quasimodels	\Rightarrow	satisfiability in mf-Kripke models.

not in general Kripke models.

However,

Lemma

Let \mathcal{M} be a mf-Kripke model satisfying BF and axiom K. There exists a map $g : \mathcal{K}_m \to \mathcal{QIS}_m$ such that for every ϕ , \mathcal{M} satisfies $\phi \Leftrightarrow g(\mathcal{M})$ satisfies ϕ

• The map g preserves any of synchronicity, perfect recall, no learning, or having a unique initial state.

白玉 不得天 不是天 不是人

- A quasimodel for a monodic formula φ ∈ L¹_m (resp. LC¹_m) is a relational structure whose points are sets of sets of subformulas of φ.
- Quasimodels have been introduced in [HWZ00], and then applied to first-order temporal [WZ02] and epistemic logic [SWZ00, SWZ02].
- Here we combine quasimodels with the techniques in [HvdMV03].

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Quasimodels

- Fix a monodic φ in L¹_m (resp. LC¹_m), sub_xφ is the set of subformulas of φ containing at most the free variable x. Also, sub_xφ is closed under negation.
- For $k \in \mathbb{N}$ we define the closures $cl_k\phi$ and $cl_{k,i}\phi$ by mutual recursion.

Definition

Let $cl_0\phi = sub_x\phi$. For $k \ge 0$, $cl_{k+1}\phi = \bigcup_{i \in Ag} cl_{k,i}\phi$. For $k \ge 0$, $i \in Ag$, $cl_{k,i}\phi = cl_k\phi \cup \{K_i(\psi_1 \lor \ldots \lor \psi_n), \neg K_i(\psi_1 \lor \ldots \lor \psi_n) \mid \psi_1, \ldots, \psi_n \in cl_k\phi\}.$

- Let ι be any finite sequence i_1, \ldots, i_k of agents such that $i_n \neq i_{n+1}$.
- If ι is the empty sequence ϵ then $cl_{\iota}\phi = cl_{ad(\phi)}\phi$. If $\iota = \iota' \sharp i$, then $cl_{\iota}\phi = cl_{k,i}\phi$ for $k = ad(\phi) |\iota|$.

Definition (Type)

A ι -type t is any boolean saturated subset of $cl_{\iota}\phi$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Quasimodels

- Types represent individuals in a particular point. Thus, points are represented by collections of types, i.e., *state candidates*.
 To each state candidate 𝔅 is associated a formula α_𝔅 ∈ L¹_m.
- Now we need a way of identifying the same individual across points.

Definition (Object)

Let a *frame* \mathcal{F} be a tuple $\langle \mathcal{R}, \{\sim_{i,a}\}_{i \in A, a \in \mathcal{D}}, \mathcal{D} \rangle$ where $\mathcal{R}, \sim_{i,a}$ and \mathcal{D} are defined as for mf-Kripke models, and whose points are state candidates.

For $a \in \mathcal{D}$, an object in \mathcal{F} is a map ρ_a associating with every $(r, n) \in \mathcal{F}$ a type $\rho_a(r, n) \in \mathfrak{C}_{r,n}$ such that:

- $\rho_a(r,n) \land \bigcirc \rho_a(r,n+1)$ is consistent
- 2 if $(r, n) \sim_{i,a} (r', n')$ then $\rho_a(r, n) \wedge \overline{K}_i \rho_a(r', n')$ is consistent
- **()** $\chi U \psi \in \rho_a(r, n)$ iff there is $n' \ge n$ such that $\psi \in \rho_a(r, n')$ and $\chi \in \rho_a(r, n'')$ for all $n \le n'' < n'$
- if $\neg K_i \psi \in \rho_a(r, n)$ then there is some (r', n') such that $(r, n) \sim_{i,a} (r', n')$ and $\neg \psi \in \rho_a(r', n')$.

• D • • B • • B • • B • • B

We can now provide the definition of quasimodels.

Definition (Quasimodel)

A quasimodel for ϕ is a tuple $\mathfrak{Q} = \langle \mathcal{R}, \{\sim_{i,\rho}\}_{i \in A, \rho \in \mathcal{O}}, \mathcal{O} \rangle$ such that $\langle \mathcal{R}, \{\sim_{i,\rho}\}_{i \in A, \rho \in \mathcal{O}}, \mathcal{O} \rangle$ is a frame, and

- 2 $\alpha_{\mathfrak{C}_{r,n}} \wedge \bigcirc \alpha_{\mathfrak{C}_{r,n+1}}$ is consistent
- 3 if $(r, n) \sim_{i,\rho} (r', n')$ then $\rho(r, n) \wedge \overline{K}_i \rho(r', n')$ is consistent
- **(**) for all $\mathfrak{t} \in \mathfrak{C}_{r,n}$ there exists an object $\rho \in \mathcal{O}$ such that $\rho(r, n) = \mathfrak{t}$
- **(3)** for all $c \in con\phi$, the function ρ^c such that $\rho^c(r, n) = \mathfrak{t}^c \in \mathfrak{C}_{r,n}$ is an object in \mathcal{O} .

マロト イヨト イヨト

Lemma

For every monodic formula ϕ , satisfiability in quasimodels \Rightarrow satisfiability in QIS.

It's only left to prove that

Lemma

a monodic ϕ is consistent w.r.t. a system $S \Rightarrow \phi$ is satisfiable in a quasimodel for S.

The proof of this lemma depends on the particular system S.

In this talk:

- we presented a number of classes of QIS satisfying *perfect recall, synchronicity, no learning,* and having a *unique initial state*.
- we proved that the axiomatisations available at the propositional level can be lifted to the monodic fragment of L_m (resp. LC_m).

In future work we aim to:

- analyze CTL and epistemic modalities interpreted on QIS.
- explore the issues pertaining to the decidability of the logics here discussed.

(4月) (1日) (日)

Thank you!

・ロト ・個ト ・モト ・モト

э

F. Belardinelli, A. Lomuscio;

A complete first-order logic of knowledge and time. In KR08, pp. 705-714, AAAI Press, 2008.

F. Belardinelli, A. Lomuscio;

First-order linear-time epistemic logic with group knowledge. In WoLLIC, pp. 140-154, Springer, 2009

F. Belardinelli, A. Lomuscio;

Quantified epistemic logics for reasoning about knowledge in multi-agent systems. Artificial Intelligence 173(9-10):982-1013, 2009.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi;

Reasoning about Knowledge. MIT Press, Cambridge, 1995.

D. Gabbay, I. Hodkinson, and M. Reynolds;

Temporal Logic, Mathematical Foundations and Computational Aspects, Volume 1. Oxford University Press, 1993.

J. Halpern, R. Meyden, and M. Vardi;

Complete axiomatisations for reasoning about knowledge and time. SIAM Journal on Computing 33(3):674-703, 2003.

イロト イポト イラト イラト

I. Hodkinson, F. Wolter, and P. Zakharyaschev.

Decidable fragment of first-order temporal logics. Ann. Pure Appl. Logic, 106(1-3):85–134, 2000.

H. Sturm, F. Wolter, and P. Zakharyaschev;

Monodic epistemic predicate logic. In JELIA, volume 1919 of LNCS, pages 329–344. Springer, 2000.

H. Sturm, F. Wolter, and P. Zakharyaschev;

Common knowledge and quantification. Economic Theory, 19:157–186, 2002.

F. Wolter;

First order common knowledge logics. Studia Logica, 65(2):249-271, 2000.

F. Wolter and P. Zakharyaschev.

Decidable fragments of first-order modal logics. J. Symb. Log., 66(3):1415-1438, 2001.

F. Wolter, M. Zakharyaschev.

Axiomatizing the monodic fragment of first-order temporal logic. Annals of Pure and Applied Logic, 118(1-2):133–145, 2002.

< E