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Introduction. A key feature of the frontier between decidability
and undecidability in the verification of multi-agent systems (MAS)
with respect to strategy-based specifications is the assumptions
made on the agents’ information. For instance, the complexity of
model checking MAS against ATL is markedly different for agents
with complete information compared with agents with incomplete
information, i.e., PTIME-complete [1] and undecidable [7], respec-
tively, assuming agents with perfect recall. It follows that the verifi-
cation problem for agents with incomplete information and perfect
recall remains undecidable in any formalism stronger than ATL,
such as Strategy Logic and most of its variants [4-6, 12]. It there-
fore remains of importance to identify expressive fragments whose
model checking problem is decidable.

A way of achieving this consists in identifying classes of MAS,
still endowed with perfect recall and incomplete information, for
which model checking is decidable. For example, such a result is
proved in [2, 3] for MAS where all communication is via public
actions. In this paper we further pursue this line and show that the
work in [2] can be generalised much further. Specifically, we show
that: i) model checking remains decidable even if non-public actions
are permitted a bounded number of times along any execution; ii)
the temporal language underlying epistemic SL can be considerably
extended from LTL to LDL [13] at no extra computational cost. By
doing so, we show decidability for a much larger class of MAS
against a considerably expressive specification language.

Interpreted Systems (IS) with Explicit Public Actions. In-
terpreted systems [8] are a formal setting for multi-agent systems
(MAS), where each agent a is defined by its set of local states L,
set of actions actg, local protocol function P, : L, — P(acty)\{0}
(specifying available actions), and a local transition function 7, :
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Ly X Jact — L, where Jact = [], act, is the set of joint actions.
This induces a transition system with state set S = [], L, initial
states in Sp C S, and transition function 7 : S X Jact — S. An
interpreted system S is such a transition system with a valuation
function z : AP — P(S), where APis a set of atomic predicates.

A run (resp. history) is an infinite (resp. finite) sequence r of
global states such that r(0) € Sy and for every n < |r| there exists a
joint action J € Jact such that i) all agent actions are allowed by
the respective individual protocols, and ii) 7(r(n), J) = r(n + 1). For
a € Ag and n < |r|, let ra(n) be the local state of agent a in the nth
global state of r. The set of all histories is denoted by Hist.

We now define a variant of IS in which some actions are public.

DEFINITION 1. Aninterpreted system with explicit public actions
is an IS such that, for every a € Ag, there exists a set pb_act, C act,
of public actions, and a set L_pr , of private components such that:
i)La = L pr, x Jacte where Jact = [1aeag(pb_act, U {e}).

ii) The local transition function t, satisfies that t4((p,v), J) = (p’,J’)
implies that for all a € Ag, if Jo € pb_act, then J, = Jg, else J; = €.
iii) The initial global states are of the form (la, (€, - €))acAg-

That is, a local state is a pair (p, v) where p € L_pr, is the private
local state proper, and v € Jact, represents the last joint action
performed in the system, with public actions only being visible and
non-public actions represented by €.

Any system conforming to Def. 1 is an IS. Also, any IS is isomor-
phic to some system conforming to Def. 1 (set pb_act, = 0 for all
a). Thus, for convenience we will call systems conforming to Def. 1
simply IS. Also if acty, = pb_act, for all a € Ag, we obtain systems
with public actions only. These are closely related to the recording
contexts in [8], game structures with public actions only [3], and
MAS with broadcasting environment [10].

DEFINITION 2 (BMNPA). A joint action J € Fact is called public if
J(a) € pb_act, foralla € Ag. Let A denote the set of all public joint
actions.

An interpreted system has only public actions after time b if
for every history h € Hist, joint action | € Jact, and n > b, if
t(h(n), J) = h(n + 1) then J is a public joint action. An interpreted
system that has only public actions after time b, for some bound b, is
said to have boundedly-many non-public actions; the class of such
systems is denoted by BMNPA.



If an action is not in pb_act,, it may still be observed by all agents,
e.g., by being recorded in their private components. Thus, pb_act,
should not be considered as the set of all public actions of agent a,
but only those explicitly identified as such.

Epistemic Dynamic Strategy Logic We now define EDSL, an
extension of Strategy Logic [12] in two directions: its temporal
component is based on LDL [13] rather than LTL, and it adds an
epistemic dimension.

Syntax. Fix a finite set AP of atomic propositions (atoms), a finite
set Ag of agents , and a finite set Var of strategy variables xg, x1, . . .

DEFINITION 3 (EDSL). The EDSL formulas ¢ and EDSL expres-
sions p over AP, Ag, and Var are built according to the following
grammar:

o == ploelorel{p)e|{xNe|(x,a)p|Cap|Dae
p = ¢le?lp+tplpplp’
wherep € AP, x € Var,a € Ag, A C Ag, and ¢ is a propositional
formula (i.e., a Boolean combination over AP).

Semantics. We interpret the logic EDSL on interpreted systems.
To interpret the epistemic operators we introduce an indistinguisha-
bility relation ~, on S, for every agent a € Ag, such thats ~, s’ iff
s(a) = s’(a) [8]. We extend ~, to histories as follows: for h, h’ € Hist
define h =, b’ if |h| = |h’| and h(i) ~4 h’(i) for all i < |h|. Let ~S
be (Ugea ~q)*, where * denotes the reflexive and transitive closure
(w.r.t. relation composition), and its extension to histories Eg. Also,

let ~g be Ngea ~a, and let Eg be its extension to histories.

A strategy is a function of the form o : Hist — Act, and let
Str denote the set of all strategies. Strategy o is coherent for a if
action o(h) is available to a in local state last(h)(a); it is uniform
foraif h ~4 b’ implies o4(h) = o4(h’), that is, in indistinguishable
states a is bound to play the same action [9]. An assignment is a
function y : VarU Ag — Str such that for every a € Ag the strategy
x(a) is coherent and uniform for a. For x € Varand o € Str, the
variant yX is the assignment that maps x to ¢ and coincides with
x on all other variables and agents. Similarly, if a € Ag and ¢ is
coherent and uniform for a, then the variant y& is the assignment
that maps a to o € Str and coincides with y on all other variables
and agents. An assignment y is ¢-compatible if, for every x €
Var, the strategy y(x) is coherent and uniform for every agent in
shr(x, ) = {a € Ag | (x,a)y is a subformula of ¢}. Here shr(x, ¢)
represents the set of agents using strategy x in evaluating formula
@. We write out(h, y) for the set of histories b’ generated by y, i.e.,
h’ € out(h, y)iff his a prefix of b’ and for every i with |h| < i < |h’,
By = 7 Taeag X(@(RL,))

DEFINITION 4 (SATISFACTION). Define the satisfaction relation
(S,h, x) |= @, where h € Hist, ¢ is an EDSL-formula, and y is a
@-compatible assignment as follows:!

S, hy)Ep iff last(h) € n(p), forp € AP

(S, h, x) I= -1 iff it is not the case that (S, h, x) |= ¢1

Shx)Eeirhez i (S hx)FEeiforie{l,2}

(S, h, x) = {xhor iff  there exists a ¢1-compatible variant
X% such that (S, h, x3) = ¢1

Sk Eaer iff (Shxy) Fer

It can be shown by induction that satisfaction is well-defined: In expressions
(S, h, ¥’) = ¢, on the right-hand sides assignment y’ is always ¢’-compatible.

(S, h, x) = Capr iff  for every history h’ € Hist,

n =€ himplies (S, 1, ¥) = o1
(S,h, x) E Dag1 iff  for every history h’ € Hist,

h' =B h implies (S, h', x) = o1
(S.h. x) E (p)o1 iff  for someh’ € out(h, y),

(hv h,) € R(P, X) and (S’ hl’ )() |: ?1
where R(p, y) C Hist X Hist (which also depends on S, although we
supress it) is defined as follows:

R(¢, x) = AWK F] =1l +1,(S,h x) F ¢}
R(¢?, x) = {(W |G hy) E e}

R(p1 +p2,x) = R(p1. x) UR(p2, )

R(p1; p2, X) = R(p1, x) o R(p2, x)

R(p™, %) = R'(p.x)

where R o R’ is the sequential composition of relations R and R’, and
R* is the reflexive and transitive closure of R under the sequential
composition operation.

Write S |= ¢ to mean that (S, s, y) |= ¢ for every initial state s €
So (note that states are histories of length 1) and every assignment
x- Given an interpreted system S and an EDSL formula ¢, the model
checking problem concerns establishing whether S |= ¢.

THEOREM 1. Model checking IS against EDSL is undecidable.

We can now state the main result of this abstract. The theorem
below shows that verifying BMNPA against EDSL is decidable. This
is in contrast with general undecidability results of the verification
and synthesis of MAS for agents with perfect recall and incomplete
information for much weaker logics [1, 11]. Define exp(k, n) by
recursion as follows: exp(1, n) = 2" foralln € N, and exp(k+1,n) =
exp(1, exp(k,n)) for k > 1.

THEOREM 2. Model checking BMINPA against EDSL is decidable:
model checking interpreted systems of size n against formulas of size

k isin exp(ZZO(nk), O(n))-time and is exp(k, O(1))-space hard.

Discussion. The results above show that the BMNPA class of
MAS admits decidable verification. In common with existing pro-
posals [3], a key ingredient of BMNPA is infinite runs generated
by public actions, but, differently from the existing state of the art,
BMNPA admit bounded rounds of non-public communication. This
permits the modelling of properties such as collusion and, generally,
properties resulting from non-public, or hidden, actions. This is rel-
evant in a number of contexts including when studying unreliable
communication channels where some of the actions, or messages,
may not reach all its intended recipients.

In the future we intend to study applications of BVMNPA. We
believe that this will be facilitated by the set-up based on interpreted
systems, rather than more abstract models such as CGS as in [3], and
by the considerable expressive power offered by the specification
language here used. We also intend to try and identify a noteworthy
subclass of BMNPA for which the verification problem admits a
lower complexity.
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