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Introduction. A key feature of the frontier between decidability

and undecidability in the verification of multi-agent systems (MAS)

with respect to strategy-based specifications is the assumptions

made on the agents’ information. For instance, the complexity of

model checking MAS against ATL is markedly different for agents

with complete information compared with agents with incomplete

information, i.e., PTIME-complete [1] and undecidable [7], respec-

tively, assuming agents with perfect recall. It follows that the verifi-

cation problem for agents with incomplete information and perfect

recall remains undecidable in any formalism stronger than ATL,

such as Strategy Logic and most of its variants [4–6, 12]. It there-

fore remains of importance to identify expressive fragments whose

model checking problem is decidable.

A way of achieving this consists in identifying classes of MAS,

still endowed with perfect recall and incomplete information, for

which model checking is decidable. For example, such a result is

proved in [2, 3] for MAS where all communication is via public

actions. In this paper we further pursue this line and show that the

work in [2] can be generalised much further. Specifically, we show

that: i) model checking remains decidable even if non-public actions

are permitted a bounded number of times along any execution; ii)

the temporal language underlying epistemic SL can be considerably

extended from LTL to LDL [13] at no extra computational cost. By

doing so, we show decidability for a much larger class of MAS

against a considerably expressive specification language.

Interpreted Systems (IS) with Explicit Public Actions. In-
terpreted systems [8] are a formal setting for multi-agent systems

(MAS), where each agent a is defined by its set of local states La ,
set of actions acta , local protocol function Pa : La → P(acta )\{∅}
(specifying available actions), and a local transition function τa :
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La × Jact → La where Jact =
∏

a acta is the set of joint actions.

This induces a transition system with state set S =
∏

a La , initial
states in S0 ⊆ S , and transition function τ : S × Jact → S . An
interpreted system S is such a transition system with a valuation

function π : AP → P(S), where AP is a set of atomic predicates.

A run (resp. history) is an infinite (resp. finite) sequence r of

global states such that r (0) ∈ S0 and for every n < |r | there exists a
joint action J ∈ Jact such that i) all agent actions are allowed by

the respective individual protocols, and ii) τ (r (n), J ) = r (n + 1). For
a ∈ Ag and n < |r |, let ra (n) be the local state of agent a in the nth
global state of r . The set of all histories is denoted by Hist.

We now define a variant of IS in which some actions are public.

Definition 1. An interpreted systemwith explicit public actions

is an IS such that, for every a ∈ Ag, there exists a set pb_acta ⊆ acta
of public actions, and a set L_pra of private components such that:
i) La = L_pra × Jactϵ where Jactϵ =

∏
a∈Ag(pb_acta ∪ {ϵ}).

ii) The local transition function τa satisfies that τa ((p,v), J ) = (p′, J ′)
implies that for all a ∈ Ag, if Ja ∈ pb_acta then J ′a = Ja , else J

′
a = ϵ .

iii) The initial global states are of the form (la , (ϵ, · · · ϵ))a∈Ag .

That is, a local state is a pair (p,v)where p ∈ L_pra is the private

local state proper, and v ∈ Jactϵ represents the last joint action

performed in the system, with public actions only being visible and

non-public actions represented by ϵ .
Any system conforming to Def. 1 is an IS. Also, any IS is isomor-

phic to some system conforming to Def. 1 (set pb_acta = ∅ for all

a). Thus, for convenience we will call systems conforming to Def. 1

simply IS. Also if acta = pb_acta for all a ∈ Ag, we obtain systems

with public actions only. These are closely related to the recording

contexts in [8], game structures with public actions only [3], and

MAS with broadcasting environment [10].

Definition 2 (BMNPA). A joint action J ∈ Jact is called public if
J (a) ∈ pb_acta for all a ∈ Ag. Let ∆ denote the set of all public joint
actions.

An interpreted system has only public actions after time b if
for every history h ∈ Hist, joint action J ∈ Jact, and n ≥ b, if
τ (h(n), J ) = h(n + 1) then J is a public joint action. An interpreted
system that has only public actions after time b, for some bound b, is
said to have boundedly-many non-public actions; the class of such
systems is denoted by BMNPA.



If an action is not in pb_acta it may still be observed by all agents,

e.g., by being recorded in their private components. Thus, pb_acta
should not be considered as the set of all public actions of agent a,
but only those explicitly identified as such.

Epistemic Dynamic Strategy Logic We now define EDSL, an

extension of Strategy Logic [12] in two directions: its temporal

component is based on LDL [13] rather than LTL, and it adds an

epistemic dimension.

Syntax. Fix a finite set AP of atomic propositions (atoms), a finite
set Ag of agents , and a finite set Var of strategy variables x0,x1, . . .

Definition 3 (EDSL). The EDSL formulas φ and EDSL expres-

sions ρ over AP, Ag, and Var are built according to the following
grammar:

φ ::= p | ¬φ | φ ∧ φ | ⟨ρ ⟩φ | ⟨⟨x ⟩⟩φ | (x, a)φ | CAφ | DAφ

ρ ::= ϕ | φ? | ρ + ρ | ρ ; ρ | ρ∗

where p ∈ AP, x ∈ Var, a ∈ Ag, A ⊆ Ag, and ϕ is a propositional
formula (i.e., a Boolean combination over AP).

Semantics. We interpret the logic EDSL on interpreted systems.

To interpret the epistemic operators we introduce an indistinguisha-

bility relation ∼a on S , for every agent a ∈ Ag, such that s ∼a s ′ iff
s(a) = s ′(a) [8].We extend∼a to histories as follows: forh,h

′ ∈ Hist
define h ≡a h′ if |h | = |h′ | and h(i) ∼a h′(i) for all i ≤ |h |. Let ∼CA
be (∪a∈A ∼a )

∗
, where ∗ denotes the reflexive and transitive closure

(w.r.t. relation composition), and its extension to histories ≡CA . Also,

let ∼DA be ∩a∈A ∼a , and let ≡DA be its extension to histories.

A strategy is a function of the form σ : Hist → Act, and let

Str denote the set of all strategies. Strategy σ is coherent for a if

action σ (h) is available to a in local state last(h)(a); it is uniform
for a if h ∼a h′ implies σa (h) = σa (h

′), that is, in indistinguishable

states a is bound to play the same action [9]. An assignment is a
function χ : Var∪Ag → Str such that for every a ∈ Ag the strategy
χ (a) is coherent and uniform for a. For x ∈ Var and σ ∈ Str, the
variant χxσ is the assignment that maps x to σ and coincides with

χ on all other variables and agents. Similarly, if a ∈ Ag and σ is

coherent and uniform for a, then the variant χaσ is the assignment

that maps a to σ ∈ Str and coincides with χ on all other variables

and agents. An assignment χ is φ-compatible if, for every x ∈

Var, the strategy χ (x) is coherent and uniform for every agent in

shr (x ,φ) = {a ∈ Aд | (x ,a)ψ is a subformula of φ}. Here shr (x ,φ)
represents the set of agents using strategy x in evaluating formula

φ. We write out(h, χ ) for the set of histories h′ generated by χ , i.e.,
h′ ∈ out(h, χ ) iffh is a prefix ofh′ and for every i with |h | ≤ i < |h′ |,
h′i+1 = τ (h

′
i ,
∏

a∈Ag χ (a)(h
′
≤i )).

Definition 4 (Satisfaction). Define the satisfaction relation
(S,h, χ ) |= φ, where h ∈ Hist, φ is an EDSL-formula, and χ is a
φ-compatible assignment as follows:1

(S,h, χ ) |= p iff last(h) ∈ π (p), for p ∈ AP
(S,h, χ ) |= ¬φ1 iff it is not the case that (S,h, χ ) |= φ1
(S,h, χ ) |= φ1 ∧ φ2 iff (S,h, χ ) |= φi for i ∈ {1, 2}

(S,h, χ ) |= ⟨⟨x⟩⟩φ1 iff there exists a φ1-compatible variant
χxσ such that (S,h, χxσ ) |= φ1

(S,h, χ ) |= (x ,a)φ1 iff (S,h, χaχ (x )) |= φ1

1
It can be shown by induction that satisfaction is well-defined: In expressions

(S, h, χ ′) |= φ ′
, on the right-hand sides assignment χ ′

is always φ ′
-compatible.

(S,h, χ ) |= CAφ1 iff for every history h′ ∈ Hist,
h′ ≡C

A h implies (S,h′, χ ) |= φ1
(S,h, χ ) |= DAφ1 iff for every history h′ ∈ Hist,

h′ ≡D
A h implies (S,h′, χ ) |= φ1

(S,h, χ ) |= ⟨ρ⟩φ1 iff for some h′ ∈ out(h, χ ),
(h,h′) ∈ R(ρ, χ ) and (S,h′, χ ) |= φ1

where R(ρ, χ ) ⊆ Hist × Hist (which also depends on S, although we
supress it) is defined as follows:

R(ϕ, χ ) = {(h,h′) | |h′ | = |h | + 1, (S,h, χ ) |= ϕ}
R(φ?, χ ) = {(h,h) | (S,h, χ ) |= φ}
R(ρ1 + ρ2, χ ) = R(ρ1, χ ) ∪ R(ρ2, χ )
R(ρ1; ρ2, χ ) = R(ρ1, χ ) ◦ R(ρ2, χ )
R(ρ∗, χ ) = R∗(ρ, χ )

where R ◦ R′ is the sequential composition of relations R and R′, and
R∗ is the reflexive and transitive closure of R under the sequential
composition operation.

Write S |= φ to mean that (S, s, χ ) |= φ for every initial state s ∈
S0 (note that states are histories of length 1) and every assignment

χ . Given an interpreted system S and an EDSL formula φ, the model

checking problem concerns establishing whether S |= φ.

Theorem 1. Model checking IS against EDSL is undecidable.

We can now state the main result of this abstract. The theorem

below shows that verifying BMNPA against EDSL is decidable. This

is in contrast with general undecidability results of the verification

and synthesis of MAS for agents with perfect recall and incomplete

information for much weaker logics [1, 11]. Define exp(k,n) by
recursion as follows: exp(1,n) = 2

n
for alln ∈ N, and exp(k+1,n) =

exp(1, exp(k,n)) for k ≥ 1.

Theorem 2. Model checking BMNPA against EDSL is decidable:
model checking interpreted systems of size n against formulas of size
k is in exp(22

O (nk )
,O(n))-time and is exp(k,O(1))-space hard.

Discussion. The results above show that the BMNPA class of

MAS admits decidable verification. In common with existing pro-

posals [3], a key ingredient of BMNPA is infinite runs generated

by public actions, but, differently from the existing state of the art,

BMNPA admit bounded rounds of non-public communication. This

permits the modelling of properties such as collusion and, generally,

properties resulting from non-public, or hidden, actions. This is rel-

evant in a number of contexts including when studying unreliable

communication channels where some of the actions, or messages,

may not reach all its intended recipients.

In the future we intend to study applications of BMNPA. We

believe that this will be facilitated by the set-up based on interpreted

systems, rather thanmore abstract models such as CGS as in [3], and

by the considerable expressive power offered by the specification

language here used. We also intend to try and identify a noteworthy

subclass of BMNPA for which the verification problem admits a

lower complexity.
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