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Outline

1 Motivation and Background:
I the Dynamics of Argumentation

2 Main task: formal verification of infinite-state Dynamic Argumentation Systems (DAS)
I model checking is appropriate for control-intensive applications...

...but less suited for data-intensive applications (data typically range over infinite domains) [1]

3 Key contributions:
I DAS: a formal model for the dynamics of argumentation
I FO-ATL: a specification language for DAS
I truth preserving static and dynamic bisimulations
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The Dynamics of Argumentation
Background

• The dialectical and dynamic dimensions of argumentation have been investigated since the
inception of Dung’s abstract argumentation theory [15, 16].

• However, the definition and analysis of ‘static’ justifiability criteria (i.e., argumentation
semantics [2]) has come to form the backbone of abstract Argumentation Theory.

• Comparatively little work has been devoted to study forms of dynamic and multi-agent
interaction.

I Operationalizations of argumentation semantics via two-player games [19]
I Analysis of strategic behavior in abstract forms of argumentation games [20, 22, 23]
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The Dynamics of Argumentation
Setting

We focus on the formal analysis of multi-agent strategic interactions (dialogues) on
possibly infinite argumentation frameworks.

• agents are assumed to exchange arguments from possibly infinite AF

• they have private AF representing their ’views’ on how arguments attack each other

• they interact by taking turns and attacking relevant arguments . . .

• . . . thus expanding the AF underlying the interaction

Claim: Dynamic Argumentation Systems (DAS) are general enough to model a wide range of
dialogue protocols and games on abstract AF.
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The Dynamics of Argumentation
Objectives

1 To specify (formally) dynamic properties of strategic interactions in argumentation
I the proponent is able to respond to all attacks by maintaining a conflict-free set of arguments
I the opponent has a strategy to force the proponent to run out of arguments

2 To develop techniques to tackle the verification problem (by model-checking)

I how static/structural properties of argumentation frameworks influence their dynamic behavior?

Methodology: we capitalize on recent results on the verification of Data-aware Systems [7, 13, 18]
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Model Checking in one slide

Model checking: technique(s) to automatically verify that a system design S satisfies a property
P before deployment.

More formally, given

• a model MS of system S

• a formula φP representing property P

we check that

MS |= φP
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Turing Award 2007
www.acm.org/press-room/news-releases-2008/turing-award-07

(a) E. Clarke (CMU, USA) (b) A. Emerson (U. Texas, USA) (c) J. Sifakis (IMAG, F)

• Jury justification

“For their roles in developing model checking into a highly effective verification
technology, widely adopted in the hardware and software industries.”

7



Research questions

1 Which syntax and semantics to specify Dynamic Argumentation Systems?

2 Is verification of DAS decidable?

3 If not, can we identify relevant fragments that are reasonably well-behaved?
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Challenges

Multi-agent systems, but . . .

• . . . states have a relational structure (argumentation frameworks),

• arguments are potentially infinite,

• the state space is infinite in general.

⇒ The model checking problem cannot be tackled by standard techniques.
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Related Work

• Dynamics of argumentation: how to change AF by performing operations on their structure?
[5, 8, 9, 11, 14]

I all references assume finite AF

• Infinite Argumentation Frameworks: infinite AF are gaining attention [3, 4, 6]

I an infinity of arguments is critical in applications where upper bounds on the number of arguments
cannot be established a priori

I how to generalize known results for the finite case to the infinite case?

• Logics for Abstract Argumentation: several formalizations of argumentation theory have
been put forward [12, 17]

I languages sufficiently expressive to represent argumentation semantics
I here the stress is on specifying the strategic abilities of agents engaging in a dialogue/dispute.
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Dynamics of Argumentation Frameworks
Results

1 Dynamic Argumentation Systems (DAS) as a formal model.

2 FO-ATL as a specification language:

〈〈o〉〉X∀x¬∃yAp(y , x)

opponent o can force proponent p to run out of moves in the next state.

3 Bisimulation to tackle model checking.

Main result: under specific conditions static features determine dynamic properties.
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Basics: Argumentation Frameworks

Let Ag = {a1, . . . , an} be a set of agent names.

Definition (Argumentation Framework)

A (multi-agent) argumentation framework is a tuple A = 〈A, {←a}a∈Ag 〉 s.t.

• A is a (possibly infinite) set of arguments

• for every agent a ∈ Ag , ←a⊆ A2 is an attack relation between arguments.

• We allow AF that include infinitely many arguments.

• F(A,Ag) is the set of all AF on sets A of arguments and Ag of agent names.
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Language: First-order Logic

• Arguments call for First-order Logic.

The specification language FO:

ϕ ::= P(x) | ¬ϕ | ϕ→ ϕ | ∀y(Aa(y , x)→ ϕ[y ]) | ∀yϕ[y ]

where y is the only free variable in ϕ.

• The language FO is the dyadic fragment of first-order logic with one free variable.
I equivalent to the multi-modal logic K with the universal modality [10].
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Semantics: First-order Logic

Definition (IAF)

An interpreted argumentation framework is a couple (A, π) where

• π is an interpretation assigning a subset π(P) ⊆ A to each predicate symbol P.

An argument u ∈ A satisfies an FO-formula ϕ in an interpreted AF (A, π) iff

(A, π, u) |= P(x) iff u ∈ π(P)
(A, π, u) |= ¬ψ iff (A, π, u) 6|= ψ
(A, π, u) |= ψ → ψ′ iff (A, π, u) 6|= ψ or (A, π, u) |= ψ′

(A, π, u) |= ∀y(Aa(y , x)→ ψ) iff for every v ∈ A, u ←a v implies (A, π, v) |= ψ
(A, π, u) |= ∀yψ iff for every v ∈ A, (A, π, v) |= ψ
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First-order Logic: Expressiveness

FO suffices to suffices to formalize several of the key notions from [16] (see also [17]).

π(P) is conflict-free in A iff (A, π) |= ∀x(P(x)→ ¬(∃y(A(y , x) ∧ P(y))) CFr(P)
π(P) is acceptable in A iff (A, π) |= ∀x(P(x)→ ∀y(A(y , x)→ ∃zA(z, y) ∧ P(z))) CFree(P)
π(P) is admissible in A iff π(P) is conflict-free and

acceptable Adm(P)
π(P) is complete in A iff π(P) is conflict-free and

(A, π) |= ∀x(P(x)↔ ∀y(A(y , x)→ ∃zA(z, y) ∧ P(z))) Cmp(P)
π(P) is a stable in A iff (A, π) |= ∀x(P(x)↔ ¬(∃y(A(y , x) ∧ P(y))) Stb(P)

However, properties such as

• a belongs to the grounded extension

• a belongs to P, which is a preferred extension

are not expressible in FO.
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Dynamic Argumentation Systems
Agents

To introduce interaction we start with a notion of agent.

Definition (Agent)

An agent is a tuple a = 〈A,Act,Pr〉 where

• A ∈ F(a) is the agent’s argumentation framework

• the set Act contains actions
I attack(x, x′), to attack argument x′ with argument x
I skip

• Pr :
⋃

A′⊆A F(A′,Ag) 7→ 2Act(A) is the local protocol function, where

I for every A′ ∈ F(A′,Ag), attack(u, u′) ∈ Pr(A′) only if u′ ∈ A′ and u′ ←a u holds in A
I the skip action is always enabled.

• The local state of agent a is modelled as an argumentation framework A.

• By definition of protocol Pr, attacks must be relevant and truthful . . .

. . . but they are not compulsory.
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Example 1: Games for the Grounded Extensions

• Agents o and p hold the same private AF (i.e., Ao = Ap)

• for both agents we define the following protocol: if the current AF contains ti then attack ti

with ui or ti+1, otherwise skip (i odd for opponent, i even for proponent)

t1

u1

t2

u2

t3

u3

Figure : An infinite AF: each ui and ti+1 attack each ti .
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Dynamic Argumentation Systems
DAS

Agents interact and generate DAS.

Definition (Global State)

Given a set Ag of agents ai = 〈Ai ,Acti ,Pri 〉 defined on the same (possibly infinite) set A of
arguments, a global state is a couple (s, a) where

• s ∈ F(A′,Ag) is an argumentation framework for some A′ ⊆ A

• a ∈ Ag

• G is the set of all globales states.

• Some literature on agents and argumentation assumes that each agent is endowed with a
distinct set of arguments (e.g., [21]).

• However, we can always consider the union of the sets of arguments for each agent.
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Dynamic Argumentation System
DAS

We focus on dialogues between a proponent p and an opponent o.

Definition (DAS)

A dynamic argumentation system is a tuple P = 〈Ag , I , τ, π〉 where

• Ag = {o, p}
• I ⊆ A× {o} is the set of initial global states (s0, o)

• τ : G × (Actp(A) ∪ Acto (A)) 7→ G is the transition function, where
1 τ((s, a), attacka′ (u, u′)) is defined iff a = a′ and attacka′ (u, u′) ∈ Pra′ (s)
2 (s′, a′) = τ((s, a), attack(u, u′)) iff a′ 6= a and s′ = 〈A′,←′〉 for A′ = A ∪ {u} and
←′

a=←a ∪{(u′, u)}
3 (s′, a′) = τ((s, a), skip) iff a′ 6= a and s′ = s

• π is an interpretation of predicate symbols P as above.

• A DAS evolves from an initial state (s0, o) ∈ I as specified by the transition function τ .

• DAS are infinite-state systems in general.

• DAS are first-order temporal structures.
⇒ FO-ATL can be used as a specification language.
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Example 2: Games for the Grounded Extensions

• the initial state is t1

• the possible runs contain all sub-graphs of the AF generated from t1

t1

u1

t2

u2

t3

u3

Figure : An infinite AF: each ui and ti+1 attack each ti .

20



Generated DAS

We consider the AF generated by a DAS.

Definition (Generated DAS)

Given a DAS P we define the corresponding (joint) AF AP = 〈A, {←a}a∈Ag 〉 so that

• u ←a u′ holds in AP iff u ←a u′ holds in the AF Aa for agent a ∈ Ag .

Remark

Every reachable global state in P is a subgraph of AP (∗)

• states in P are truthful, yet partial, representations of AP
• the converse of (∗) does not hold in general, i.e., P needs not to include all subgraphs of AP

as states

• this remark motivates the following definition
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Generated DAS

Definition (Naive Agent)

An agent a is naive iff for every A′ ∈ F(A′,Ag), attack(u, u′) ∈ Pr(A′) iff u′ ∈ A′ and u′ ←a u
holds in Aa.

An agent is naive if her protocol allows her to perform any available attack

Example

• the agents in the example above are naive

• therefore, we endow opponent o with a more restrictive protocol: if the current framework
contains ti then attack ti with ui , otherwise skip;

• this protocol makes o play more rationally, selecting arguments to which p cannot reply.
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Specification Language: FO-ATL

• Arguments call for First-order Logic.

• Evolution calls for Temporal Logic.

The specification language FO-ATL:

ϕ ::= ψ | ¬ϕ | ϕ→ ϕ | ∀y(Aa(y , x)→ ϕ) | ∀yϕ | 〈〈N〉〉Xϕ | 〈〈N〉〉Gϕ | 〈〈N〉〉ϕUϕ

where N ⊆ Ag and y is the only free variable in ϕ.

• An N-strategy is a mapping fN : S+ 7→
⋃

a∈N Acta(A) s.t. fN (κ · (s, a)) ∈ Pra(s) for every κ ∈ S+.

• the outcome out((s, a), fN ) of strategy fN at state (s, a) is the set of all (s, a)-runs λ s.t. for every b ∈ N,
(λ(i + 1), b′) = τ((λ(i), b), fN (λ[0, i ])) for all i ≥ 0.

Definition (Semantics of FO-ATL)

An argument u satisfies a formula ϕ at state s in a DAS P iff

(P, s, u) |= ψ iff (s, π, u) |= ψ, if ψ is an FO-formula
(P, s, u) |= 〈〈N〉〉Xϕ iff for some N-strategy fN , for all λ ∈ out(s, fN ), (P, λ(1), u) |= ϕ
(P, s, u) |= 〈〈N〉〉Gϕ iff for some N-strategy fN , for all λ ∈ out(s, fN ), i ≥ 0, (P, λ(i), u) |= ϕ
(P, s, u) |= 〈〈N〉〉ϕUϕ′ iff for some N-strategy fN , for all λ ∈ out(s, fN ), for some k ≥ 0, (P, λ(k), u) |= ϕ′

and for all j , 0 ≤ j < k implies (P, λ(j), u) |= ϕ
(P, s, u) |= ∀y(Aa(y , x)→ ϕ) iff for every v ∈ s, u ←a v implies (P, s, v) |= ϕ
(P, s, u) |= ∀yϕ iff for every v ∈ s, (P, s, v) |= ϕ
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The Model Checking Problem

• opponent o can force proponent p to run out of moves in the next state:

〈〈o〉〉X∀x¬∃yAp(y , x) (1)

this formula is true at argument t1 in the DAS in the example above.

• proponent p has a strategy enforcing the set of arguments in P, which includes the current
argument, to be conflict-free (respectively, acceptable, admissible, complete, stable):

P(x) ∧ 〈〈p〉〉G χ(P) (2)

where χ ∈ {Cfr ,Acc,Adm,Cmp,Stb}.

Definition (Model Checking Problem)

Given a DAS P and an FO-ATL sentence ϕ, determine whether P |= ϕ.

Problem: the infinite domain A of arguments may generate infinitely many states!

Investigated solution: can we derive the dynamic properties of DAS from their static features?
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Static Bisimulation

• A notion of bisimulation can naturally be defined on AF [17].

Definition (Static Bisimulation)

Let (A, π) = 〈A, {←a}a∈Ag , π〉 and (A′, π′) = 〈A′, {←′a}a∈Ag , π
′〉 be interpreted AF defined on a

set Ag of agents.
A static bisimulation is a relation S ⊆ A× A′ s.t. for u ∈ A, u′ ∈ A′, S(u, u′) implies

(i) for every predicate symbol P, u ∈ π(P) iff u′ ∈ π′(P);

(ii) for every v ∈ A, if u ←a v then for some v ′ ∈ A′, u′ ←′
a v ′ and S(v , v ′);

(iii) for every v ′ ∈ A′, if u′ ←′
a v ′ then for some v ∈ A, u ←a v and S(v , v ′).

• two arguments u and u′ are bisimilar (u ' u′) iff S(u, u′) for some static bisimulation S.

• two interpreted AF A and A′ are statically bisimilar (A ' A′) iff
I for every u ∈ A, u ' u′ for some u′ ∈ A′

I for every u′ ∈ A′, u′ ' u for some u ∈ A

Lemma

Given bisimilar interpreted AF (A, π) and (A′, π′), and bisimilar arguments u ∈ A and u′ ∈ A′,
then for every FO-formula ϕ,

(A, π, u) |= ϕ iff (A′, π′, u′) |= ϕ
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Dynamic Bisimulation
• We extend bisimulation to dynamics.

Definition (Dynamic Bisimulation)

Given DAS P and P ′, a dynamic simulation is a relation R ⊆ S × S′ s.t. for s ∈ S, s′ ∈ S′,
R(s, s′) implies:

1 s ' s′ for some static bisimulation S

2 for every t ∈ S, if s −→a t then for some t′ ∈ S′, s′−→′
a t′, t ' t′ for some bisimulation S′ ⊇ S, and

R(t, t′).

A relation D ⊆ S × S′ is a dynamic bisimulation iff both D and D−1 = {〈s′, s〉 | D(s, s′)} are
dynamic simulations.

s t

'

s′

'

t′

• two states s and s′ are bisimilar (s ≈ s′) iff D(u, u′) for some dynamic bisimulation D.
• two DAS P and P ′ are dynamically bisimilar (P ≈ P ′) iff

I for every initial state s0 ∈ P, s0 ≈ s′0 for some s′0 ∈ P
′

I for every s′0 ∈ P
′, s0 ≈ s′0 for some s0 ∈ P

• two DAS P and P ′ are statically bisimilar iff AP and AP′ are.
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Static and Dynamic Bisimulation

Remark

Static bisimilarity does not imply dynamic bisimilarity, that is, there exist naive, statically bisimilar
DAS P and P ′ such that P 6≈ P ′.

u0 u1

o

p '
u0 u1 u2 u3 . . .o

p
o

p

(a) the AF AP and AP′ are statically bisimilar.

u0 ' u0

⇓ ⇓

u0 u1

o

' u0 u1
o

⇓ ⇓

u0 u1

o

p 6'
u0 u1 u2

o
p

⇓ ⇓
.
.
.

.

.

.

Figure : the DAS P and P′ are statically bisimilar, but not dynamically bisimilar.
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Preservation Result

Dynamically bisimilar DAS preserve the interpretation of FO-ATLformulas.

Theorem

Suppose that s ≈ s′, and u ' u′ w.r.t. s and s′. Then for every FO-ATL formula ϕ,

(P, s, u) |= ϕ iff (P ′, s′, u′) |= ϕ
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From Static Properties to Dynamics

We can apply the result above to derive dynamic properties of DAS from their static features.

Theorem

Let P and P ′ be DAS. Suppose that P ′ is naive and for every u ∈ s ∈ S, u′ ∈ s′ ∈ S′, if s ' s′,
u ' u′ w.r.t. s and s′, and u ←a v in AP for some v ∈ A, then u′ ←′a v ′ in AP′ for some
v ′ ∈ A′ and either

1 v ∈ s and either (i) v ′ ∈ s′ and v ' v ′ w.r.t. s and s′, or (ii) v ′ /∈ s′ and for no w ∈ s,
v ←a w in s,

2 or v /∈ s and either (i) v ′ /∈ s′, or (ii) v ′ ∈ s′ and for no w ′ ∈ s′, v ′ ←′a w ′ in s′.

Then, D = {(s, s′) | s ' s′} is a dynamic simulation between P and P ′.

Corollary

Suppose that DAS P and P ′ are naive and statically bisimilar, and that AP and AP′ are DAG
where every argument is attacked by some other argument.
Then, P and P ′ are dynamically bisimilar and therefore satisfy the same FO-ATL formulas.
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Results
and main limitations

• Dynamic Argumentation Systems: a formal model for dialogues/disputes in AT

• The Specification Language FO-ATL

• Static and Dynamic Bisimulations for DAS

• Under specific conditions the static properties of DAS entail their dynamics
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Next Steps

• Can we abstract a concrete, infinite-state DAS into a finite-state bisimilar DAS?

• If not, can we abstract the corresponding AF and then tranfer the result?

• What other dynamic properties of DAS can be derived from structural features?

• How can we develop efficient verification methods and techniques for DAS?

31



Thank you!
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