
Model Checking Temporal-Epistemic Logic
Using Tree Automata

Francesco Belardinelli, Andrew V. Jones, and Alessio Lomuscio

Department of Computing
Imperial College London

London, UK

{f.belardinelli,andrew.jones,a.lomuscio}@imperial.ac.uk

Abstract. We introduce an automata-theoretic approach for the verifica-
tion of multi-agent systems. We present a translation between branching
time temporal-epistemic logic and alternating tree automata. Model check-
ing an interpreted system against a temporal-epistemic formula is reduced
to checking the non-emptiness of the composition of two tree automata.
We exemplify this technique using a simple multi-agent scenario.

1 Introduction

Multi-agent systems (MAS) have arisen as a useful paradigm for reasoning about
distributed systems. In such systems, multiple autonomous agents engage in
social activities, such as learning or co-operation, with the aim of achieving their
desired goal. Therefore, when reasoning about multi-agent systems, we are not
only interested in how the system evolves over time, but also about what the
agents in these systems can know. This desire has lead to the application of
modal logics for time and knowledge (temporal-epistemic logic) to MAS [9].

The formal reasoning of agents has lead to the development of automatic
techniques for the verification of multi-agent systems against temporal-epistemic
specifications. Unfortunately, the inherently loose-coupled nature of MAS means
that the state-space explosion problem for these systems is even more acute.
Symbolic model checking approaches have therefore been seen to be a preferential
approach to ameliorating the state-space explosion problem [4,8].

In contrast to symbolic approaches, orthogonal techniques for the temporal-
only reasoning of systems focuses on the use of language acceptance of automata.
If the model is accepted by the corresponding automaton for a formula, then the
model satisfies the formula. When dealing with branching time logics, alternating
tree automata are used that allow for the reasoning about multiple successors of
a state [2]. The application of branching time automata-theoretic approaches to
temporal-epistemic logic has yet to be investigated.

In this paper we propose an automata-theoretic approach to verifying the
branching time temporal-epistemic logic CTLK (Section 2). Part of the approach
involves unravelling both the temporal and the epistemic successors of a model
into distinct successors of its corresponding tree (Section 3). Translating temporal-
epistemic properties into tree automata requires the matching of successor states

mailto:f.belardinelli@imperial.ac.uk
mailto:andrew.jones@imperial.ac.uk
mailto:a.lomuscio@imperial.ac.uk

based upon the current sub-formulae being translated, e.g., when translating
an epistemic sub-formula, it is only necessary to consider epistemic successors
(Section 4). We prove that the product automata of a formula and a model is
empty if and only if the model satisfies the formula (Section 5). We also mention
further applications of the technique developed (Section 6).

1.1 Related Work

Our work directly extends the branching time automata-theoretic approach of
Kupferman et al. [2] to support epistemic transitions. The application of tree
automata to branching time model checking has seen considerable previous
research, focusing on different approaches including those such as “amorphous”
tree automata [1].

Existing approaches to agent verification either verify a restricted class of agent
systems, or are based on symbolic approaches. Automata-theoretic verification of
MAS has been applied to the class of interpreted systems supporting “perfect
recall” [10]. In this class of systems indistinguishability is based on traces and
verification can take place over word automata. Conversely, our technique supports
indistinguishability between global states and knowledge is interpreted as an
multi-modal S5 operator.

There have been two main avenues of research into the symbolic verification
of agent systems. The approach of Lomuscio et al. [4] involves the use of BDDs
for efficient manipulation of Boolean formulae representing sets of states in the
model. Penczek et al. [8] apply bounded model checking (BMC) to epistemic logic;
their work presents a breadth-first translation of interpreted systems models and
CTLK formulae to the Boolean satisfiability problem (SAT). The approach we
present is more tailored towards explicit-state model checking where the states
of the system are explicitly represented. This is a common division between
symbolic and automata-theoretic approaches.

2 Prerequisites

In this section we introduce the temporal-epistemic logic CTLK, which combines
the computation tree logic CTL with the multi-modal epistemic logic S5m for a set
A = {1, . . . ,m} of agents. Then we provide this language with a formal semantics
by means of interpreted systems, which is the typical semantic framework for
temporal-epistemic logics in multi-agent systems [5,9].

2.1 The Temporal Epistemic Logic CTLK

Given a set P = {p1, p2, . . .} of propositional variables, the temporal-epistemic
language Lm contains the propositional variables in P , the connectives ¬ and →,
the linear time operators X and U , the branching time operators A and E, and
the epistemic operator Ki for each agent i ∈ A.

Definition 1. The formulae in Lm are defined in BNF as follows:

φ ::= p | ¬φ | φ→ φ | AXφ | AφUφ | EφUφ | Kiφ

The formulae AXφ and AφUφ′ (resp. EφUφ′) are read as “in all paths, at the
next step φ” and “in all paths (resp. for some path), eventually φ′ and until then
φ”. The formula Kiφ represents “agent i knows φ”. We define the connectives
∧, ∨, ↔ as standard. The operator X is self-dual, that is, EXφ is defined as
¬AX¬φ. The linear time operator U is dual to U , that is, AφUφ′ is defined as
¬E¬φU¬φ′, and EφUφ′ as ¬A¬φU¬φ′. The operator U is also referred to as
the release operator R. The epistemic possibility Ki is dual to Ki for each i ∈ A,
that is, Kiφ is defined as ¬Ki¬φ. Also, the operators AG, AF , EG and EF are
defined as standard.

The U -formulae in Lm are the formulae of the form AφUφ′ or EφUφ′ for some
φ, φ′ ∈ Lm; the U - and Ki-formulae are defined similarly.

2.2 Interpreted Systems

We introduce interpreted systems by assuming a set Li of local states li, l
′
i, . . .

for each agent i ∈ A in a multi-agent system, as well as the environment e. The
set S ⊆ Le × L1 × . . .× Lm contains the global states in the multi-agent system.
To represent the temporal evolution of the MAS we consider the flow of time N
of the natural numbers. A run in an interpreted system is a function ρ : N→ S.
Intuitively, a run represents a possible evolution of the MAS assuming N as the
flow of time. Finally, we define the interpreted systems for the language Lm as
follows.

Definition 2 (IS). An interpreted system is a tuple P = 〈R, s0, I〉 where

(i) R is a non-empty set of runs;
(ii) s0 ∈ S is the initial state;

(iii) I : S → 2P is an assignment for the propositional variables in P .

We denote by ISm the class of interpreted systems with m agents.

Note that in general, in any interpreted system P, we have {s ∈ S | s = ρ(n)
for some ρ ∈ R, n ∈ N} ⊆ S, but the converse is not always true. In what follows
we assume without loss of generality that for every s ∈ S, there exist ρ ∈ R and
n ∈ N such that s = ρ(n).

Following standard notation [9] a pair (ρ, n) is a point in P. If ρ(n) =
〈le, l1, . . . , lm〉 is the global state at point (ρ, n) then ρe(n) = le and ρi(n) = li
are the environment’s and agent i’s local state at (ρ, n) respectively. Further, for
i ∈ A the equivalence relation ∼i is defined such that (ρ, n) ∼i (ρ′, n′) only if
ρi(n) = ρ′i(n

′). We denote by [(ρ, n)]∼i the equivalence class {(ρ′, n′) | (ρ, n) ∼i
(ρ′, n′)}.

Now we assign a meaning to the formulae in Lm by means of interpreted
systems.

Definition 3. The satisfaction relation |= for φ ∈ Lm and (ρ, n) ∈ P is defined
as follows:

(P, ρ, n) |= p iff p ∈ I(ρ(n))
(P, ρ, n) |= ¬ψ iff (P, ρ, n) 6|= ψ
(P, ρ, n) |= ψ → ψ′ iff (P, ρ, n) 6|= ψ or (P, ρ, n) |= ψ′

(P, ρ, n) |= AXψ iff for all runs ρ′, ρ′(n′) = ρ(n) implies (P, ρ′, n′ + 1) |= ψ
(P, ρ, n) |= AψUψ′ iff for all runs ρ′, ρ′(n′) = ρ(n) implies that there is n′′ ≥ n′,

(P, ρ′, n′′) |= ψ′ and n′ ≤ n′′′ < n′′ implies (P, ρ′, n′′′) |= ψ
(P, ρ, n) |= EψUψ′ iff for some run ρ′, ρ′(n′) = ρ(n) and there is n′′ ≥ n′,

(P, ρ′, n′′) |= ψ′ and n′ ≤ n′′′ < n′′ implies (P, ρ′, n′′′) |= ψ
(P, ρ, n) |= Kiψ iff (ρ, n) ∼i (ρ′, n′) implies (P, ρ′, n′) |= ψ

The truth conditions for ∧, ∨, ↔, EX, AU , EU and Ki are defined from
those above. A formula φ is true on a IS P iff it is satisfied at s0; φ is valid on a
class C of IS iff it is true on every IS in C.

3 Alternating Tree Automata

In this section we present alternating tree automata, which generalise nondeter-
ministic automata. These were first introduced in [7] and have been used in [2]
to define an automata-theoretic technique to model check branching time logics.

Let At be the set A ∪ {t} containing all the agents in A plus the temporal
index t. Hence, |At| = m+ 1.

Definition 4 (At-tree). An At-tree is a set T ⊆ (N×At)∗ such that if x·(c, j) ∈
T for x ∈ (N×At)∗ and (c, j) ∈ N×At, then

– x ∈ T ;
– for all 0 ≤ c′ < c, also x · (c′, j) ∈ T .

The elements of T are called nodes; the empty word ε is the root of T . For every
x ∈ T , the nodes x · (c, j) are the j-successors of x. The number of j-successors
of x is called the j-degree of x and is denoted by dj(x); the vector of all successor
degrees of x is denoted by d(x). A leaf is a node with no successors.

Definition 5 (path). A path in a tree T is a set π ⊆ T such that

– ε ∈ π,
– for every x ∈ π, either x is a leaf or there exists a unique (c, j) ∈ N × At

such that x · (c, j) ∈ π.

A temporal path π is a path where j = t.

For any path π, n ∈ N, πn represents the n-th element in the path.
Given an alphabet Σ, a Σ-labelled tree is a pair 〈T, V 〉 where T is a tree and

V : T → Σ maps each node of T to a letter in Σ. Note that an infinite word in
Σω can be viewed as a Σ-labelled tree in which |At| = 1 and the degree of all
nodes is 1.

We focus on Σ-labelled trees in which Σ = S for some set S of global states or
Σ = 2P ; so V can intuitively be seen as an assignment of propositional variables
to nodes. Given an interpreted system P = 〈R, s0, I〉 we can define a tree 〈TP , VP〉
with Σ = S such that VP(ε) = s0 and

1. if VP(x) = s and s0, . . . , sk is an enumeration of all s′ such that s′ ∼i s for
i ∈ A, then VP(x · (c, i)) = sc for 0 ≤ c ≤ k;

2. if VP(x) = s and s0, . . . , sk is an enumeration of all s′ such that there exists
ρ ∈ R, n ∈ N such that ρ(n) = s and ρ(n+ 1) = s′, then VP(x · (c, t)) = sc
for 0 ≤ c ≤ k.

Furthermore, given a tree 〈T, V 〉 with Σ = 2P we can define a satisfaction
relation |= for φ ∈ Lm, x ∈ T and a temporal path π ⊆ T as follows:

(T, x) |= p iff p ∈ V (x)
(T, x) |= ¬ψ iff (T, x) 6|= ψ
(T, x) |= ψ → ψ′ iff (T, x) 6|= ψ or (T, x) |= ψ′

(T, x) |= AXψ iff for all temporal paths π, if π0 = x then (T, π1) |= ψ
(T, x) |= AψUψ′ iff for all temporal paths π, if π0 = x then there is n ≥ 0

such that (T, πn) |= ψ′ and 0 ≤ n′ < n implies (T, πn
′
) |= ψ

(T, x) |= EψUψ′ iff for some temporal path π, π0 = x and there is n ≥ 0

such that (T, πn) |= ψ′ and 0 ≤ n′ < n implies (T, πn
′
) |= ψ

(T, x) |= Kiψ iff for all 0 ≤ c < di(x), (T, x · (c, i)) |= ψ

Given an IS P , there is a tree 〈TP , VP〉 with Σ = S. If we identify each s ∈ S
with {p ∈ P | p ∈ I(s)} ∈ 2P , then 〈TP , VP〉 is also a tree with Σ = 2P , and we
can prove the following result:

Lemma 1. For every φ ∈ Lm, for VP(x) = ρ(n), (TP , x) |= φ iff (P, ρ, n) |= φ

In particular we have that (TP , ε) |= φ iff φ is true in the IS P . In what follows
we will focus on the class T of trees 〈TP , VP〉 for some interpreted system P.

3.1 Example 1 – Unwinding an Interpreted System

A simple interpreted system with a single agent i is shown in Figure 1. We
use solid lines to represent temporal transitions and dashed lines to represent
epistemically indistinguishable states for agent i. In Section 4.1 we assume that
each state is labelled with the atomic proposition p.

w0 w1w2
i

i
ii

t
t

Fig. 1. An example interpreted system.

Figure 2 shows the S-labelled tree 〈T, V 〉 unwinding of Figure 1. Each node
in the tree of Figure 2, of the form x, V (x), represents the node of the tree T (i.e.,
x) along with the mapping in V of that node to a state in S (i.e., V (x) ∈ S). The
interpreted system of Figure 1 is cyclic (i.e., it contains reflexive loops), therefore
its corresponding unwinding is an infinite tree. We only show a truncated part of
the tree, the infinite part of the tree is represented with dotted lines.

ε, w0

(0, t), w1

(0, t)·(0, t), w1 (0, t)·(0, i), w1

(0, i), w0

(0, i)·(0, t), w1 (0, i)·(0, i), w0 (0, i)·(1, i), w2

(1, i), w2

(1, i)·(0, i), w2 (1, i)·(1, i), w0

Fig. 2. The tree automata “unwinding” of the interpreted system in Figure 1.

We now introduce alternating tree automata. Given a set D ⊂ N, a D-tree is
an At-tree in which all the nodes have degrees in D. Further, B+(P) is the set of
positive Boolean formulae over the set P of propositional variables. For instance,
B+({p, q}) includes p ∧ q, p ∨ q, p ∧ p.

Definition 6 (Alternating tree automaton). An alternating tree automaton
is a tuple A = 〈Σ,D, Q, δ, q0, At, F 〉 such that

– Σ, D and At are defined as above;
– Q is a set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q is the set of final states;
– δ : Q×Σ ×D|At| → B+(N×At ×Q) is the transition function.

Also, we require that if the atom (c, j, q′) appears in δ(q, σ, kt, k1, . . . , km) then
0 ≤ c < kj.

When the automaton is in state q as it reads a node that is labelled by a letter σ
and has kj j-successors, it applies the transition δ(q, σ, kt, k1, . . . , km). In what
follows we denote the tuple 〈kt, k1, . . . , km〉 as k.

A run of an alternating tree automaton A over a tree 〈T, V 〉 is a tree 〈Tr, r〉
in which the root is labelled by (ε, q0) and every other node is labelled by an
element of (N×At)∗ ×Q. Each node of Tr corresponds to a node of T . On the
other hand, many nodes of Tr can correspond to the same node of T . Formally, a
run 〈Tr, r〉 is a Σr-labelled tree where Σr = (N×At)∗ ×Q and 〈Tr, r〉 satisfies
the following:

1. r(ε) = (ε, q0)
2. Let y ∈ Tr with r(y) = (x, q). If δ(q, V (x),d(x)) = θ then there are (possibly

empty) sets Sj = {(c0, j, q0), . . . , (cn, j, qn)} ⊆ {0, . . . , dj(x)− 1} × {j} ×Q
such that the following hold:
– the assignment which assigns > to all the atoms in

⋃
j∈At

Sj satisfies θ,
– for all 0 ≤ i < n, we have y · (i, j) ∈ Tr and r(y · (i, j)) = (x · (ci, j), qi).

Note that if, for some y, the transition function δ has value >, then y need
not have successors. Also, δ can never have the value ⊥ in a run.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition.
Here we consider a Büchi acceptance condition. Given a run 〈Tr, r〉 and an infinite
path π ⊆ Tr, let inf (π) ⊆ Q be the set of q ∈ Q such that there are infinitely
many y ∈ π for which r(y) ∈ (N×At)∗×{q}. That is, inf (π) contains exactly all
the states that appear infinitely often in π. The acceptance condition is defined
as follows:

– A path π satisfies a Büchi acceptance condition F ⊆ Q if and only if
inf (π) ∩ F 6= ∅.

An automaton accepts a tree if and only if there exists a run that accepts it.
We denote by L(A) the set of all Σ-labelled trees that A accepts. Note that an
alternating automaton over infinite words is simply an alternating automaton
over infinite trees with D = {1} and |At| = 1. Formally, we define an alternating
automaton over infinite words as A = 〈Σ,Q, δ, q0, F 〉 where δ : Q×Σ → B+(Q).

The model checking procedure for CTLK considers weak alternating automata
(WAAs), a particular class of automata first introduced in [6].

Definition 7. A WAA is an alternating tree automaton with a Büchi acceptance
condition F ⊆ Q. Further, there is a partition of Q into disjoint sets Q1, . . . , Qn
such that for each Qi, either Qi ⊆ F , in which case Qi is an accepting set, or
Qi ∩ F = ∅, in which case Qi is a rejecting set. In addition, there is a partial
order ≤ on the collection of the Qis such that for every q ∈ Qi and q′ ∈ Qj for
which q′ occurs in δ(q, σ,k) for some σ ∈ Σ, k ∈ D|At|, we have Qj ≤ Qi.

Thus, transitions from a state in Qi lead to states in either the same Qi or a
lower one. It follows that every infinite path of a run of a WAA ultimately gets
trapped within some Qi. The path then satisfies the acceptance condition if and
only if Qi is an accepting set. We call the partition of Q into sets the weakness
partition and we call the partial order over the sets of the weakness partition the
weakness order.

4 Model Checking for CTLK

In this section we provide the construction of a weak alternating automaton
AD,ψ that accepts all and only the D-trees in T satisfying a given CTLK formula
ψ ∈ Lm. In the next section the automaton AD,ψ will be used to construct the
product word automaton AP,ψ for a given IS P. Then we will prove that the
language L(AP,ψ) is non-empty iff the tree 〈TP , VP〉 is accepted by AD,ψ, i.e., iff
ψ is true in P. This is the theoretical background for model checking a CTLK
formula ψ in a IS P . By Theorems 3.1 and 4.7 in [2] we know that all these steps
can be performed in linear time.

First, we remark that by using de Morgan’s laws and the definitions of
operators U and Ki, we can draw the negation inwards, such that it applies only
to propositional variables.

Further, we define the closure cl(ψ) of a formula ψ ∈ Lm as follows:

– ψ ∈ cl(ψ);
– if ¬φ ∈ cl(ψ) then φ ∈ cl(ψ);
– if φ→ φ′ ∈ cl(ψ) then φ, φ′ ∈ cl(ψ);
– if AXφ ∈ cl(ψ) or EXφ ∈ cl(ψ) then φ ∈ cl(ψ);
– if AφUφ′ ∈ cl(ψ) or EφUφ′ ∈ cl(ψ) then φ, φ′ ∈ cl(ψ);
– if AφUφ′ ∈ cl(ψ) or EφUφ′ ∈ cl(ψ) then φ, φ′ ∈ cl(ψ);
– if Kiφ ∈ cl(ψ) or Kiφ ∈ cl(ψ) then φ ∈ cl(ψ);

Theorem 1. Given a CTLK formula ψ ∈ Lm and a set D ⊂ N, we can construct
in linear time a WAA AD,ψ = 〈2P ,D, cl(ψ), δ, ψ,At, F 〉 such that the D-tree
〈TP , VP〉 is in L(AD,ψ) iff ψ is true in P.

Proof. The set F of accepting states consists of all the U -formulae and
Ki-formulae in cl(ψ). It remains to define the transition function δ. For all σ ∈ 2P

and k ∈ D|At| we define:

δ (p, σ,k) = > if p ∈ σ
δ (p, σ,k) = ⊥ if p /∈ σ

δ (¬p, σ,k) = > if p /∈ σ
δ (¬p, σ,k) = ⊥ if p ∈ σ

δ (φ1 ? φ2, σ,k) = δ (φ1, σ,k) ? δ (φ2, σ,k), for ? ∈ {∧,∨}

δ (AXφ, σ,k) =
kt−1∧
c=0

(c, t, φ)

δ (EXφ, σ,k) =
kt−1∨
c=0

(c, t, φ)

δ (Aφ1Uφ2, σ,k) = δ (φ2, σ, t) ∨
(
δ (φ1, σ,k) ∧

kt−1∧
c=0

(c, t, Aφ1Uφ2)
)

δ (Eφ1Uφ2, σ,k) = δ (φ2, σ,k) ∨
(
δ (φ1, σ,k) ∧

kt−1∨
c=0

(c, t, Eφ1Uφ2)
)

δ
(
Aφ1Uφ2, σ,k

)
= δ (φ2, σ,k) ∧

(
δ (φ1, σ,k) ∨

kt−1∧
c=0

(
c, t, Aφ1Uφ2

))
δ
(
Eφ1Uφ2, σ,k

)
= δ (φ2, σ,k) ∧

(
δ (φ1, σ,k) ∨

kt−1∨
c=0

(
c, t, Eφ1Uφ2

))
δ (Kiφ, σ,k) =

ki−1∧
c=0

(c, i, φ) ∧
ki−1∧
c=0

(c, i,Kiφ)

δ
(
Kiφ, σ,k

)
=
ki−1∨
c=0

(c, i, φ)

The weakness partition and order of AD,ψ are defined as follows. Each formula
φ ∈ cl(ψ) constitutes a (singleton) set {φ} in the partition. The partial order is
defined by {φ1} ≤ {φ2} iff φ1 ∈ cl(φ2). Since each transition of the automaton
from a state φ leads to states associated with formulae in cl(φ), the weakness
conditions hold. In particular, each set is either contained in F or disjoint from
F .

We now prove the correctness of our construction. By Lemma 1 the formula
ψ is true in P iff 〈TP , ε〉 |= ψ. So it is left to prove that the D-tree 〈TP , VP〉 is in

L(AD,ψ) iff 〈TP , ε〉 |= ψ. We first prove that AD,ψ is sound. That is, given an
accepting run 〈Tr, r〉 of AD,ψ over the tree 〈TP , VP〉, we prove that for every y ∈ Tr
such that r(y) = (x, φ) we have that 〈TP , x〉 |= φ. Thus, in particular, 〈TP , ε〉 |= ψ.
The proof proceeds by induction on the structure of φ. If φ is an atomic proposition
and r(y) = (x, p) then δ(p, VP(x),d(x)) = > iff p ∈ VP(x), i.e., iff 〈TP , x〉 |= φ.
The cases where φ is φ1 ∧ φ2, φ1 ∨ φ2, AXφ1, or EXφ1 follow easily, by the
induction hypothesis, from the definition of δ. If φ is Kiφ1 and r(y) = (x,Kiφ1)

then δ(Kiφ1, VP(x),d(x)) =
∧di(x)−1
c=0 (c, i, φ1) ∧

∧di(x)−1
c=0 (c, i,Kiφ1). Thus, for

all 0 ≤ k < 2di(x) − 1, we have y · (k, i) ∈ Tr. Also, for 0 ≤ k < di(x) and
c = k, r(y · (k, i)) = (x · (c, i), φ1), and for di(x) ≤ k < 2di(x)− 1, c = k − di(x),
r(y · (k, i)) = (x · (c, i),Kiφ1). By induction hypothesis, 〈TP , x · (c, i)〉 |= φ1 for
0 ≤ c < di(x), and therefore 〈TP , x〉 |= Kiφ1. Consider now the case where φ is
of the form Aφ1Uφ2 or Eφ1Uφ2. As 〈Tr, r〉 is an accepting run, it visits the state
φ only finitely often. Since AD,ψ keeps inheriting φ as long as φ2 is not satisfied,
then it is guaranteed, by the definition of δ and the induction hypothesis, that
along all paths or some path, as required in φ, φ2 does eventually holds and
φ1 holds until then. Finally, consider the case where φ is of the form Aφ1Uφ2

or Eφ1Uφ2. Here, it is guaranteed, by the definition of δ and the induction
hypothesis, that φ2 holds either always or until both φ2 and φ1 hold.

We now prove that AD,ψ is complete, that is, if 〈TP , VP〉 is a D-tree such
that 〈TP , ε〉 |= ψ, then AD,ψ accepts 〈TP , VP〉. In fact, we show that there exists
an accepting run 〈Tr, r〉 of AD,ψ over 〈TP , VP〉. We define 〈Tr, r〉 as follows: the
run starts at the initial state; thus ε ∈ Tr and r(ε) = (ε, ψ). The run proceeds
maintaining the invariant that for y ∈ Tr with r(y) = (x, φ), we have 〈TP , x〉 |= φ.
Since 〈TP , ε〉 |= ψ, the invariant holds for y = ε. Also, by the semantics of CTLK
and the definition of δ, the run can always proceed such that all the successors
y · (k, j) of a node y that satisfies the invariant have r(y · (k, j)) = (x′, φ′) with
〈TP , x′〉 |= φ′. Finally, the run always try to satisfy eventualities of U -formulae.
Thus, whenever φ is of the form Aφ1Uφ2 or Eφ1Uφ2 and 〈TP , x〉 |= φ2, it proceeds
according to δ(φ2, VP(x),d(x)). It is easy to see that all the paths in such 〈Tr, r〉
are either finite or reach a state associated with a U -formula or a Ki-formula
and stay there thereafter. Thus, 〈Tr, r〉 is accepting. Finally, it is easy to check
that the construction of the automaton AD,ψ can be performed in linear time in
the length of ψ. ut

4.1 Example 2 – Lm to WAA

Here we demonstrate our technique by showing the translation of a Lm formula
to a weak alternating tree automaton.

We take the formula ϕ = AGKip. To translate ϕ into a WAA, we require the
formula in a negation-normal form, plus with all abbreviations expanded; so we
use ϕ = A

(
falseUKip

)
. The closure of ϕ is cl(ϕ) = {ϕ,Kip, p}. The elements

of cl(ϕ) define the states Q of AD,ϕ. The accepting states F are {ϕ,Kip}. The
alphabet of AD,ϕ has only the letter p; transitions are therefore over 2{p}.

We formally define AD,ϕ =
(
2{p},D, {ϕ,Kip, p} , δ, ϕ, {t, i} , {ϕ,Kip}

)
; the

transition relation δ is defined as follows:

q δ (q, p, k) δ (q, ∅, k)

ϕ
kt−1∧
c=0

(c, t, ϕ) ∧
ki−1∧
c=0

(c, i, p) ∧
ki−1∧
c=0

(c, i,Kip)

Kip
ki−1∧
c=0

(c, i, p) ∧
ki−1∧
c=0

(c, i,Kip)

p > ⊥

In the state ϕ the automata expects that ϕ recursively holds in all temporal
successors and that both p and Kip hold in all i-epistemically related states. This
is highlighted in Rows 2 and 3 of the transition relation above.

The language of the product automaton obtained by composing AD,ϕ and
the tree unwinding of the IS from Figure 1, as specified in the following section,
is non-empty.

5 The Product Automaton

Let AD,ψ = 〈2P ,D, Qψ, δψ, q0, At, Fψ〉 be an alternating tree automaton that
accepts exactly all the D-trees in T that satisfy ψ, as constructed in the previous
section. Let P = 〈R, s0, I〉 be an interpreted system such that the degrees of
〈TP , VP〉 are in D. The product automaton of AD,ψ and P is the alternating
word automaton AP,ψ = 〈{a},S ×Qψ, δ, (s0, q0), F 〉 where δ and F are defined
as follows:

– Let q ∈ Qψ, s ∈ S, [s]∼i
= 〈s0,i, . . . , sdi(s)−1,i〉 and {s′ ∈ S | there is ρ ∈

R, n ∈ N such that s = ρ(n) and s′ = ρ(n + 1)} = 〈s0,t, . . . , sdt(s)−1,t〉.
Further, let δψ(q, I(s),d(s)) = θ. Then δ((s, q), a) = θ′, where θ′ is obtained
from θ by replacing each atom (ci, j, qi) in θ by the atom (sci,j , qi).

– The acceptance condition F is defined according to the acceptance condition
Fψ of AD,ψ. If Fψ ⊆ Qψ is a Büchi condition, then F = S × Fψ is also a
Büchi condition.

It is easy to see that AP,ψ is of the same type as AD,ψ. In particular, if AD,ψ
is a WAA (with a partition {Q1, . . . , Qn}), then so is AP,ψ (with a partition
{S ×Q1, . . . ,S ×Qn}).

Theorem 2. L(AP,ψ) is nonempty iff ψ is true in P.

Proof. We show that L(AP,ψ) is nonempty if and only if AD,ψ accepts the
tree 〈TP , VP〉 built from the IS P as shown in Section 3. Since AD,ψ accepts
exactly all the D-trees in T that satisfy ψ, and since all the degrees of P are in
D, the latter holds if and only if ψ is true in P . Given an accepting run of AD,ψ
over 〈TP , VP〉, we construct an accepting run of AP,ψ. Also, given an accepting
run of AP,ψ, we construct an accepting run of AD,ψ over 〈TP , VP〉.

Assume first that AD,ψ accepts 〈TP , VP〉. Thus, there exists an accepting run
〈Tr, r〉 of AD,ψ over 〈TP , VP〉. Recall that Tr is labelled with (N × At)∗ × Qψ.
A node y ∈ Tr with r(y) = (x, q) corresponds to a copy of AD,ψ that is in
the state q and reads the tree obtained by unwinding P from VP(x). Consider

the tree 〈Tr′ , r′〉 where Tr′ is the tree obtained from Tr by the function f as
follows. Suppose that δψ(q, VP(x),d(x)) = θ and there are (possibly empty) sets
Sj = {(c0, j, q0), . . . , (cnj , j, qnj)} ⊆ {0, . . . , dj(x)−1}×{j}×Q such that

⋃
j∈At

Sj
satisfies θ, and for 0 ≤ i < nj , we have y ·(i, j) ∈ Tr and r(y ·(i, j)) = (x ·(ci, j), qi).
Then,

– f(ε) = ε;

– f(y · (i, j)) = f(y) · (Σj∈At

j′<j nj′ + i).

The tree Tr′ is labelled with 0∗ × S ×Q, and for every y ∈ Tr with r(y) = (x, q),
we have r′(f(y)) = (0|x|, VP(x), q). We show that 〈Tr′ , r′〉 is an accepting run
of AP,ψ. In fact, since F = S × Fψ, we only need to show that 〈Tr′ , r′〉 is a
run of AP,ψ; acceptance follows from the fact that 〈Tr, r〉 is accepting. Consider
a node y ∈ Tr with r(y) = (x, q), VP(x) = s, [s]∼i = 〈s0,i, . . . , sdi(s)−1,i〉 and
{s′ ∈ S | there is ρ ∈ R, n ∈ N such that s = ρ(n) and s′ = ρ(n + 1)} =
〈s0,t, . . . , sdt(s)−1,t〉. Further, we assumed that δψ(q, I(s),k) = θ, and since 〈Tr, r〉
is a run of AD,ψ, there exist sets {(c0, j, q0), . . . , (cn, j, qn)} satisfying θ such
that the j-successors of y in Tr are y · (i, j) for 0 ≤ i ≤ n, each labelled with
(x · (ci, j), qi). In 〈Tr′ , r′〉 by definition, r′(f(y)) = (0|x|, s, q) and the successors of
f(y) are f(y · (i, j)), each labelled with (0|x+1|, sci,j , qi). Let δ((s, q), a) = θ′. By
the definition of δ, the sets {(sc0,j , q0), . . . , (scn,j , qn)} satisfy θ′. Thus, 〈Tr′ , r′〉 is
a run of AP,ψ.

Assume now that AP,ψ accepts aω. Thus, there exists an accepting run 〈Tr, r〉
of AP,ψ. Recall that Tr is labelled with 0∗ × S ×Qψ. Consider the tree 〈Tr′ , r′〉
labelled with (N×At)∗ ×Qψ, where Tr′ and r′ are obtained from Tr and r by
means of a function g : Tr → Tr′ as follows:

– g(ε) = ε and r′(ε) = (ε, q0);
– if y · c ∈ Tr, r′(g(y)) ∈ {x}×Qψ, r(y · c) = (0|x+1|, s, q) and i, j are such that
VP(x · (i, j)) = s, then g(y · c) = g(y) · (i, j) and r′(g(y · c)) = (x · (i, j), q).

As in the previous direction, we can check that 〈Tr′ , r′〉 is an accepting run of
AD,ψ over 〈TP , VP〉. ut

6 Conclusions

In this paper we presented a translation between the branching time temporal-
epistemic logic CTLK and alternating automata over infinite trees. We have
shown that the language accepted by an automata representing the composition
of a temporal-epistemic formula and a interpreted system is non-empty if and
only if the interpreted system satisfies the formula. We illustrated this technique
through an example.

Automata-theoretic approaches for knowledge are only the first step towards
a multitude of other techniques for epistemic knowledge. For example, the imple-
mentation of partial order reduction techniques for temporal logic often relies on
automata-theoretic techniques, while the application of partial order reduction
in agent systems currently only considers the hypothetical reduction in the state

space [3]. Providing an automata-theoretic approach to agent-based logics allows
for the possible implementation of these techniques. Alternating automata over
infinite trees, in a temporal-epistemic context, may also allow for truly on-the-fly
verification of multi-agent systems.

The automata construction of temporal logic formulae allows for reasoning
about problems such as implication and satisfiability of formulae [2]. An automata
construction for temporal-epistemic logic may also lead to a solution to these
problems in the agent realm.

Our initial further work will be focused on constructing an implementation of
these techniques, including a comparison to the existing symbolic approaches to
the same problem.

References

1. O. Bernholtz and O. Grumberg. Branching Time Temporal Logic and Amorphous
Tree Automata. In Proc. of CONCUR ’93, LNCS, pages 262–277. Springer, 1993.

2. O. Kupferman, M. Y. Vardi, and P. Wolper. An Automata-Theoretic Approach to
Branching-Time Model Checking. J. ACM, 47(2):312–360, 2000.

3. A. Lomuscio, W. Penczek, and H. Qu. Partial Order Reduction for Model Checking
Interleaved Multi-Agent Systems. Fund. Informaticae, 2010. To appear.

4. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A Model Checker for the
Verification of Multi-Agent Systems. In Proceedings of CAV ’09, volume 5643 of
LNCS, pages 682–688. Springer, 2009.

5. J.-J. C. Meyer and W. Hoek. Epistemic Logic for AI and Computer Science.
Cambridge University Press, 1995.

6. D. Muller, A. Saoudi, and P. Schupp. Alternating Automata. The Weak Monadic
Theory of the Tree, and its Complexity. In ICALP, volume 226 of LNCS, pages
275–283. Springer, 1986.

7. D. Muller and P. Schupp. Alternating Automata on Infinite Trees. Theoretical
Computer Science, 54:267–276, 1987.

8. W. Penczek and A. Lomuscio. Verifying Epistemic Properties of Multi-Agent
Systems via Bounded Model Checking. In Proceedings of AAMAS 03, pages 209–
216. ACM, 2003.

9. R. Fagin et al. Reasoning About Knowledge. MIT Press, 1995.
10. R. van der Meyden and N. V. Shilov. Model Checking Knowledge and Time in

Systems with Perfect Recall (Extended Abstract). In Proceedings of FSTTCS ’99,
volume 1738 of LNCS, pages 432–445. Springer, 1999.

	Model Checking Temporal-Epistemic Logic Using Tree Automata-0.5em

