
Model Checking Auctions as Artifact Systems:
Decidability via Finite Abstraction

Francesco Belardinelli 1

Abstract. The formal verification of auctions has recently received
considerable attention in the AI and logic community. We tackle this
problem by adopting methodologies and techniques originally de-
veloped for Artifact Systems, a novel paradigm in Service Oriented
Computing. Specifically, we introduce a typed version of artifact-
centric multi-agent systems (AC-MAS), a multi-agent setting for Ar-
tifact Systems, and consider the model checking problem against
typed first-order temporal epistemic specifications. Notably, this for-
mal framework is expressive enough to capture a relevant class of
auctions: parallel English (ascending bid) auctions. We prove decid-
ability of the model checking problem for AC-MAS via finite ab-
straction. In particular, we put forward a methodology to formally
verify interesting properties of auctions.

1 Introduction
The formal verification of game structures is a topic of growing inter-
est in the AI and logic community [2, 18, 29]. Particularly, the model
checking problem for auctions has received considerable attention
recently [3, 20, 31, 32]. Indeed, it is hard to overestimate the rele-
vance of auctions and auction-based mechanisms in a wide range of
distributed systems. Task scheduling [27], power grid management
[11], and resource allocation [21] are all areas where auctions have
found successful applications. However, with some notable excep-
tions, most of the research on this topic has focus on the design of
auctioning mechanisms and the analysis of their formal properties,
while the automated verification of these designs has only partially
been addressed [3, 20, 32, 30].

In this paper we tackle the issues pertaining to model checking
auctions by adopting methodologies and techniques originally de-
veloped for Artifact Systems, a novel paradigm for the specification
and implementation of business processes [23, 24]. Artifact Systems
(AS) are best described in terms of interacting modules, or artifacts,
which typically consist of a data model, accounting for the rela-
tional structure of data, and a lifecycle, describing the evolution of
the system over time. In order to develop secure and reliable busi-
ness processes, automated verification procedures by model check-
ing have been investigated in relation to Artifact Systems; thus pro-
ducing several results on the formal verification of data-aware sys-
tems [9, 14, 23]. However, to keep the verification task tractable,
most contributions disregard the data content of artifacts as well as
the agents implementing the services. Still, in Artifact Systems and
auctions alike it is crucial to reason about the actions agents can
perform, the knowledge they possess, as well as the states they can
jointly reach. Hence, the formal verification of both AS and auctions
can benefit from techniques developed in the area of reasoning about

1 Laboratoire IBISC, Université d’Evry, France, email: belardinelli@ibisc.fr

knowledge. Indeed, knowledge representation and reasoning analy-
ses formally the epistemic properties of rational and proactive actors,
or agents. This line of research has generated a considerable body of
work [17], including the verification of complex temporal epistemic
specifications [25, 26].

Taking inspiration from the works above, this paper aims at pro-
viding a twofold contribution. Firstly, we put forward an agent-based
abstraction techniques to model check Artifact Systems. Secondly,
we apply this methodology to the formal verification of auctions.
This endeavour requires a significant effort and generates interesting
theoretical results. Indeed, the presence of data leads to a potentially
infinite state space, thus making the verification problem undecid-
able in the most general setting. In this paper we focus on parallel
English auctions and model these as artifact-centric multi-agent sys-
tems (AC-MAS) [6, 7], a multi-agent setting for Artifact Systems.
Then, we tackle the model checking problem against specifications
written in a first-order temporal epistemic logic suitable to describe
the agents’ information state during the auction bidding process. No-
tably, the specification language includes predicates whose interpre-
tation might be infinite (for example, total orders on rational num-
bers). This modelling choice, while allowing to express background
information shared by agents, calls for novel abstraction techniques
with respect to the state-of-the-art. Specifically, the notion of unifor-
mity, which has proved to be sufficient for finite abstractions [6, 13],
has to be recast to account for this more complex setting. We then
describe an abstraction techniques for AC-MAS, and prove that a
specification is satisfied by a concrete, infinite-state AC-MAS iff it
is satisfied by its finite abstraction. In particular, this result applies to
parallel English auctions.

Related Work. To our knowledge [3, 20, 31, 32, 30] are among
the first contributions to consider the formal verification of auctions.
In [30] the authors implement a simple auction model in a BDI-based
programming language, to which they apply agent verification tech-
niques. In [20] the problem of model checking strategy-proofness of
Vickrey auctions is investigated; while [31, 32] propose a formal ap-
proach to check for shilling behaviours in auctions. Overall, [3] is
the contribution most closely related to the present work in spirit, as
the authors also analyze the verification of agent-based English auc-
tions, but a key difference is that their models abstract from the data
content of auctions. We also remark that the references above discuss
limited classes of auctions, and the solutions proposed are tailored to
the cases of interest. On the more general subject of Artifact Systems
verification, in [12, 14] this problem is investigated in relation to first-
order linear-time specifications; while [22] considers data-centric dy-
namic systems. In both cases the specification language is synctac-
tically restricted, while no such restriction is here considered. Also,
differently from the above, we adopt an agent-based perspective, as

reflected in the modular abstraction methodology. Other works con-
sidering these features are [5, 6, 7], upon which this paper builds.
However, the task of formally verifying parallel English auctions, in
particular the need for infinite total orders, calls for novel abstraction
techniques with respect to the cited references.

Scheme of the Paper. In Section 2 we present parallel English
auctions and AC-MAS, a framework for Artifact Systems in a multi-
agent setting. Also, we introduce the typed first-order temporal epis-
temic logic tFO-CTLK and state the model checking problem. In
Section 3 we show that AC-MAS are expressive enough to model
parallel English auctions. Sections 4 and 5 contain the main theoret-
ical results of the paper: in Section 4 we define a notion of bisimula-
tion for AC-MAS and in Section 5 we state sufficient conditions for
the model checking problem to be decidable via finite abstraction.
The technique is then applied to the formal verification of parallel
English auctions. We conclude by discussing the proposed approach
and point to future work.

2 Preliminaries
In this section we introduce the notation and formal notions that will
be used in the rest of the paper.

2.1 Auctions
Hereafter we focus on a particular form of auction: the parallel En-
glish (ascending bid) auction [16]. This kind of auction is of partic-
ular interest in the present context, as it is common to a number of
distributed scenarios, including popular auctioning websites. In par-
allel English auctions we typically have a single auctioneer A and a
finite number of bidders B1, . . . , B`. The auctioneer puts on sale a
finite number of items, starting from a base price that is public to all
bidders. For sake of presentation, we consider the bidding process
as structured in discrete rounds. At each round, the bidder can either
choose to bid for a specific item or to skip the round. At the end of the
bidding process, each item is assigned to the bidder with the highest
offer. We assume that our bidders are rational and each of them has
an intrinsic value for each item being auctioned: she is willing to buy
the item for a price up to her true value, but not for any higher price.
Also, each bidder keeps this information private from other bidders
and the auctioneer.

We are interested in verifying auctions against properties concern-
ing the evolution of the bidding process and the knowledge acquired
by bidders. For instance, we might want to check that (i) the base
price for each item is indeed known to all agents, and not only this but
that the base price is actually common knowledge. Also, we might
want to express that (ii) the true value of each bidders for each item is
indeed unknown to the actioneer and the other bidders, and it remains
so throughout the bidding process. Other specifications of interest
might be liveness properties such as (iii) the bidders are always able
to make a higher bid, unless they have already hit their true value.

We remark that model checking such properties is extremely com-
plex, given the distributed nature of auctions. Indeed, bidders can
draw their bids from a set of values that is infinite in general. Also,
the auctioneer can in principle choose any base price for the auc-
tioned items. Since prices are usually represented by real or rational
numbers, we obtain that auctions typically belong to the realm of
infinite-state systems.

In what follows we provide a formal model for auctions and show
that we can model check properties such as (i)-(iii) above by consid-
ering finite abstractions of concrete infinite-state auctions.

2.2 Artifact-centric Multi-agent Systems

We now fix the basic notation for databases used hereafter [1]. In
what follows we assume a finite number of types T1, . . . , Tk.

Definition 1 (Db schema and instance) A (typed) database schema
is a finite set D = {P1/a1, . . . , Pn/an, Q1/b1, . . . , Qm/bm} of
typed relation symbols R with arity c ∈ N and type Tk1 , . . . , Tkc .

Given a countable interpretation domain Uh for each type Th, a
D-instance over U1, . . . , Uk is a mapping D associating in a type-
consistent way (i) each relation symbol P ∈ D with a finite a-ary
relation D(P) over Uk1 × . . .× Uka , and (ii) each relation symbol
Q ∈ D with a (possibly infinite) b-ary relation D(Q) over Uk1 ×
. . .× Ukb .

In Def. 1 we depart from the standard notion of db instance as,
while the intepretation D(P) of a symbol P ∈ D is finite, the in-
terpretation D(Q) of a symbol Q ∈ D can be infinite in principle.
Intuitively, the symbolsQ are used to model background information
on the interpretation domains, such as the total order < on the set Q
of rational numbers.

The set of all D-instances over U1, . . . , Uk is denoted as D(~U).
Also, the interpretation domains are normally assumed to be disjoint
and the db schema D is omitted whenever clear by the context. The
active domain adom(D) = 〈adom1(D), . . . , adomk(D)〉 of a db in-
stanceD is a tuple where each adomh(D) is the set of all individuals
in Uh occurring in some relation D(P). Since D and each D(P)
are finite, so is each adomh(D). Notice that the relations D(Q) do
not contribute to the definition of the active domain. Finally, with
an abuse of notation we write f : Uh → U ′h to express that f is a
function s.t. for each type Th, f(u) ∈ U ′h if u ∈ Uh.

We now introduce the disjoint union ⊕ of db instances. Let the
primed version of the db schema D above be the db schema D′ =
{P ′1/a1, . . . , P

′
n/an, Q

′
1/b1, . . . , Q

′
m/bm}.

Definition 2 (Disjoint union ⊕) GivenD-instancesD andD′,D⊕
D′ is the (D ∪ D′)-instance s.t. for every relation symbol R, D ⊕
D′(R) = D(R) and D ⊕D′(R′) = D′(R).

We now introduce a notion of agent inspired to multi-agent sys-
tems [6, 17].

Definition 3 (Agent) Given a countable interpretation domain Uh
for each type Th, an agent is a tuple A = 〈D, Act, Pr〉 such that

• D is the local database schema;
• Act is a finite set of (typed) actions α(~T), where the tuple ~T of

types are the formal parameters of α;
• Pr : D(~U) 7→ 2Act(

~U) is the local protocol function, where
Act(~U) is the set of ground actions α(~u), for α(~T) ∈ Act and
~u ∈ ~U |~T | a tuple of (type-consistent) ground parameters.

As standard in multi-agent systems (MAS), each agentA performs
the actions in Act according to the protocol function Pr. Moreover,
we assume that A is in some local state D ∈ D(~U), that is, the
information she possesses is structured as a database.

As agents can interact among themselves, we consider their com-
position.

Definition 4 (AC-MAS) Given a countable interpretation domain
Uh for each type Th and a set Ag = {A0, . . . , A`} of agents Ai =
〈Di, Acti, P ri〉, an Artifact-centric Multi-agent System is a tuple
P = 〈Ag, s0, τ〉 such that

• s0 ∈ D0(~U)× . . .×D`(~U) is the initial global state;
• τ : D0(~U) × . . . × D`(~U) × Act(~U) 7→ 2D0(~U)×...×D`(~U) is

the global transition function, where Act(~U) = Act0(~U)× . . .×
Act`(~U) is the set of joint (ground) actions, and the transition
τ(s, 〈α0(~u0), . . . , α`(~u`)〉) is defined iff αi(~ui) ∈ Pri(Di) for
all i ≤ `.

The assumption of a single interpretation domain for each type
does not limit the generality of the approach, as agents’ domains
can always be extended before composition. Also, AC-MAS are rich
enough to formalize the framework of Artifact Systems, as it was
shown in [5, 7] for instance.

We now introduce some basic terminology. We denote a joint
(ground) action as α(~u) for α = 〈α0(~T0), . . . , α`(~T`)〉 and ~u =
〈~u0, . . . , ~u`〉, and define the transition relation → on global states

so that s → s′ iff s
α(~u)−−−→ t, i.e., s′ ∈ τ(s, α(~u)) for some

α(~u) ∈ Act(~U). An s-run r is an infinite sequence s0 → s1 → · · · ,
with s0 = s. For n ∈ N, we set r(n) = sn. A state s′ is reach-
able from s if there is an s-run r s.t. r(i) = s′ for some i ≥ 0.
We can safely assume that the relation → is serial by considering
for each agent Ai a skipi action enabled at every local state. Finally,
we introduce S ⊆ D0(~U) × . . .× D`(~U) as the set of global states
reachable from the initial state s0. The following class of AC-MAS
will feature prominently in the paper.

Definition 5 (Rigidity) An AC-MAS P is rigid iff for every Q ∈ D,
and s, s′ ∈ S, Di ∈ s, Dj ∈ s′, Dj(Q) = Di(Q).

In rigid AC-MAS the symbols Q ∈ D have the same interpreta-
tion in all global states and for all agents, consistently with the in-
tuition that these represent persistent properties of the interpretation
domains known to all agents. We refer to this relation as P(Q). Fur-
ther, two global states s = 〈D0, . . . , D`〉 and s′ = 〈D′0, . . . , D′`〉
in S are indistinguishable for agent Ai, or s ∼i s′, if Di = D′i
[17]. Finally, for technical reasons we refer to the global db schema
D =

S
Ai∈Ag Di of an AC-MAS. Then, each state s is associated

with the D-instance Ds ∈ D(~U) s.t. Ds(R) =
S
Ai∈AgDi(R).

Also, we write adom(s) for adom(Ds). Notice that for every state
s, the associated Ds is unique, whereas the converse is not true in
general. Furthermore, we lift the disjoint union operator ⊕ to global
states so that s⊕ s′ is defined as 〈D0 ⊕D′0, . . . , D` ⊕D′`〉.

2.3 The Typed Logic tFO-CTLK
We now consider the specification language for AC-MAS. For each
type Th let Varh (resp. Conh) be a countable set of (typed) individual
variables (resp. constants). A (typed) term is then any element t ∈
Varh ∪ Conh.

Definition 6 (tFO-CTLK) The typed first-order CTLK formulas ϕ
over a db schema D are defined by the following BNF:

ϕ ::= t = t′ | R(~t) | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ |
Kiϕ | Cϕ

where R ∈ D, ~t is a type-consistent tuple of terms, t, t′ are terms
of the same type, x ∈ Varh, and i ≤ `.

We introduce the abbreviations ∃, ∧, ∨, 6=, and define free and
bound variables as standard. For a formula ϕ, varh(ϕ) (resp. frh(ϕ)
and conh(ϕ)) denotes the set of its variables (resp. free variables and
constants) of type Th. A sentence is a formula with no free variables.
The temporal formulasAXϕ andAϕUϕ′ (resp.EϕUϕ′) are read as

“for all runs, at the next step ϕ” and “for all runs (resp. some run), ϕ
until ϕ′”. The epistemic formulas Kiϕ and Cϕ intuitively mean that
“agent Ai knows ϕ” and “it is common knowledge that ϕ” respec-
tively. We use the standard abbreviations EXϕ, AFϕ, AGϕ, EFϕ,
and EGϕ. By Def. 6 free variables can occur within the scope of
modal operators; this is a major feature of the present framework in
comparison with, for instance, [9, 19]. Hereafter we consider also the
non-modal fragment of tFO-CTLK, i.e., the typed first-order logic
tFO defined by the following BNF:

ϕ ::= t = t′ | R(~t) | ¬ϕ | ϕ→ ϕ | ∀xϕ

We now assign a meaning to tFO-CTLK formulas by using AC-
MAS. Given countable interpretation domains Uh s.t. Conh ⊆ Uh,
a (type-consistent) assignment is a function σ : Varh 7→ Uh. Also,
we denote by σxu the assignment s.t. (i) σxu(x) = u ∈ Uh; and (ii)
σxu(x

′) = σ(x′) for every x′ ∈ Varh different from x. For conve-
nience, we extend assignments to constants so that σ(t) = t when-
ever t ∈ Conh, The semantics of tFO-CTLK formulas is then defined
as follows.

Definition 7 (Satisfaction) We define whether an AC-MAS P satis-
fies a tFO-CTLK formula ϕ in a state s ∈ S for assignment σ, or
(P, s, σ) |= ϕ, as follows (the clauses for propositional connectives
are straightforward and thus omitted):

(P, s, σ) |= R(~t) iff 〈σ(t1), . . . , σ(tc)〉 ∈ Ds(R)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ∀xϕ iff for all u ∈ adomh(s), (P, s, σxu) |= ϕ
(P, s, σ) |= AXϕ iff for all runs r, if r(0) = s then (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all runs r, if r(0) = s then there is k ≥ 0 s.t.

(P, r(k), σ) |= ϕ′, and for all j, 0 ≤ j < k
implies (P, r(j), σ) |= ϕ

(P, s, σ) |= EϕUϕ′ iff for some run r, r(0) = s and there is k ≥ 0 s.t.
(P, r(k), σ) |= ϕ′, and for all j, 0 ≤ j < k
implies (P, r(j), σ) |= ϕ

(P, s, σ) |= Kiϕ iff for all s′, s ∼i s′ implies (P, s′, σ) |= ϕ
(P, s, σ) |= Cϕ iff for all s′, s ∼ s′ implies (P, s′, σ) |= ϕ

where ∼ is the transitive closure of
S
Ai∈Ag ∼i.

Notice that the interpretation of temporal operators is standard of
the braching-time logic CTL; while epistemic modalities are inter-
preted as in the multi-modal logic S5|Ag|. Further, a formula ϕ is
true in s, or (P, s) |= ϕ, if (P, s, σ) |= ϕ for all σ; while ϕ is true
in P , or P |= ϕ, if (P, s0) |= ϕ.

We adopt an active-domain semantics, that is, in each state s quan-
tified variables range only over the active domain of s, which is fi-
nite. Nonetheless, by the unconstrained alternation of free variables
and modal operators, we can refer to these “active” individuals in
successive states, where they might no longer be active. In Section 3
we argue that this form of quantification is sufficient for specifying
interesting properties of auctions.

The key concern of this paper is to investigate the model checking
problem for AC-MAS against tFO-CTLK specifications defined as
follows.

Definition 8 (Model Checking Problem) Model checking an AC-
MAS P against a tFO-CTLK formula ϕ amounts to finding an as-
signment σ0 such that (P, s0, σ0) |= ϕ.

If all Uh are finite, the model checking problem is decidable, as
P is a finite-state system. However, this is not the case in general, as
the following result related to Theorem 4.10 in [15] shows.

Theorem 1 The model checking problem for AC-MAS w.r.t. tFO-
CTLK is undecidable.

In Section 4 and 5 we develop an abstraction technique to tackle
this issue. But first we introduce an auction scenario to illustrate the
formal machinery.

3 Auctions as AC-MAS
In this section we apply the formal framework of AC-MAS devel-
oped in Section 2.2 to model the parallel English auctions in Section
2.1. In particular, bids can be thought of as artifacts exchanged be-
tween the bidders and the auctioneer, and agents’ actions depend on
the data content of these artifacts. The relatively small size of the
data model in auction AC-MAS will allow us to outline in Section 5
the verification procedure for tFO-CTLK specifications via finite ab-
straction. As detailed above, hereafter we consider a single auction-
eer A and a finite number of bidders B1, . . . , B`. The domains of
interpretation include a finite set Items of items, as well as the set
Q of rational numbers to represent values for base prices, true values
and bids. For sake of presentation we use the same names to denote
interpretation domains and types. We start by formally defining the
auctioneer as an agent according to Def. 3.

Definition 9 (Auctioneer) The auctioneer A = 〈DA, ActA, P rA〉
is defined as

• DA = {Base/2, {Bid i/2}i≤`,Status/2, < /2} where
Base(it, bp) represents the base price bp ∈ Q for item
it ∈ Items , each Bid i(it, bd) represents the bid bd ∈ Q of
bidder Bi for item it, Status(it, st) keeps track of the status
of items; status st has two possible values: active if item it is
actively traded, or term if the bidding phase for item it has
terminated. Finally, < is the standard “strictly less” symbol on
Q.

• ActA = {initA(it, bp), time out(it), skipA}.
• initA(it, bp) ∈ PrA(D) if item it does not appear in any tu-

ple in D(Status); time out(it) ∈ PrA(D) if (it, active) ∈
D(Status); while the action skipA is always enabled.

Intuitively, the auctioneer non-deterministically chooses to put
some item it up for auctioning by performing action initA(it, bp).
The base price bp is then registered in Base . She keeps track of bid-
der Bi’s offers in Bid i and non-deterministically stops the bidding
phase for a specific item it by action time out(it). At that point, the
item is withdrawn and can no longer be put on sale.

Further, each bidder Bi can be represented as the following agent.

Definition 10 (Bidder) Each bidder Bi = 〈Di, Acti, P ri〉 is de-
fined as

• Di = {TValuei/2,Base/2, {Bid i/2}i≤`,Status/2, </2}
where TValuei(it, tv) represents the true value tv ∈ Q of item
it for bidder Bi, while Base , Bid i, Status and < are defined as
for the auctioneer.

• Acti = {init i(it, tv), bid i(it, bd), skipi}.
• init i(it, tv) ∈ Pri(D) if (it, active) ∈ D(Status) and item it

does not appear in D(TValuei); bid i(it, bd) ∈ Pri(D) when-
ever the item it appears in D(TValuei), the highest bid bdj in
some Bid j (j 6= i) for item it is strictly less than the true value
tv for bidder Bi, (it, active) ∈ D(Status), and bdj < bd ≤ tv.
The action skipi is always enabled.

By Def. 10 it is apparent that each bidder can bid only for actively
traded items, whenever bids have not exceeded her true value. Af-
ter that point, she stops bidding. Notice that symbols Base , Bid i,

Status and < are shared by all agents. However, each relation can
be modified by at most one agent (Base and Status by the auction-
eer; Bid i by bidder Bi). Hence, the consistency of db instances is
preserved. Also, the information contained in TValuei is private to
each agent Bi.

We can now introduce the formal definition of an auction as an
AC-MAS.

Definition 11 (Auction AC-MAS) Given the set Ag =
{A,B1, . . . , B`} of agents on sets Items , Q, and {active, terms},
the auction AC-MAS is a tuple A = 〈Ag, s0, τ〉 where

• s0 = 〈DA, D1, . . . , D`〉 is the global state where for all j ∈
{A, 1, . . . , `}, Dj(<) is the “strictly less” relation on Q, while
all other relations are empty;

• τ is the global transition function s.t. s
α(~u)−−−→ s′ iff

– αA = initA(it, bp) and s′ modifies s by adding tuples (it, bp)
and (it, active) to relations D′A(Base) and D′A(Status) re-
spectively;

– αi = init i(it, tv) and s′ modifies s by adding tuple (it, tv) to
relation D′i(TValuei) for bidder Bi;

– αi = bid i(it, bd
′) and s′ modifies s by replacing any tuple

(it, bd) in Dj(Bid i) with (it, bd′);

– αA = time out(it) and (it, active) /∈ D′j(Status) and
(it, term) ∈ D′j(Status);

– αA = skipA or αi = skipi for some i ≤ `, and D′i = Di.

Notice that the auction AC-MAS A in Def. 11 respects the intu-
itions on the progress of an auction for multiple items in parallel.
Items are put on sale by the auctioneer and bidders can offer up to
their true value tv. Since bidders can bid any value in Q (up to tv),
there can be an infinite number of bids in principle, so the AC-MAS
A is really an infinite-state system. Of course, in our presentation
we made a number of conceptual abstractions. For instance, agents
are assumed to be perfectly rational and perfect reasoners, as such
they drop from the auction as soon as they hit their true value. Also,
bids can be incremented by any small amount. While, an actual auc-
tion might not allow for some of these behaviours, we maintain that
the present formalisation satisfies an idealised notion of parallel En-
glish auction as it has been successfully analysed in game theory and
rational choice theory [16]. Finally, notice that the interpretation of
symbol < is rigid as it represents the “strictly less” relation on Q in
the initial state s0, and this interpretation is not modified by τ . Since
< is the only symbol with an infinite interpretation graph, the auction
AC-MAS A is rigid.

While A intuitively fulfils the informal description of an auction,
we need to develop formal verification techniques to check this fact.
Hence, we turn to considering properties of interest that can be ex-
pressed in the specification language tFO-CTLK. First, one feature
of the auction we can check is that for each item it ∈ Items there
is exactly one base price bp registered in the relation Base , while
bidders associate at most one true value tv to each item it (possibly
none). This can be expressed as

AG ∀it(∃!bp Base(it, bs) ∧ ∃≤1tv TValuei(it, tv))

where the quantifiers ∃! and ∃≤1 are defined as standard in first-order
logic with identity.

In tFO-CTLK we can also express what agents know or ignore
about the information content of the auction. For instance, specifica-
tion (i) in Section 2.1 requires that the base prices of items remain

common knowledge throughout the auction:

AG ∀it ∃bp C Base(it, bp)

On the contrary, according to (ii) the true value of items for each
bidder Bi is secret to all other bidders and to the auctioneer:

AG ∀it ¬∃tv
_

j 6=i∨j=A

Kj TValuei(it, tv)

Further, we can express properties on the progress of the auction-
ing process. As an example, for each bidder Bi, each bid is less or
equal to her true value:

AG ∀it, bd, tv((Bid i(it, bd) ∧ TValuei(it, tv))→ bd ≤ tv)

Also, specification (iii) states that each bidder Bi can raise her bid
unless she has already hit her true value:

AG ∀it, bd(Bid i(it, bd)→
→ (TValuei(it, bd) ∨ EF ∃bd′(bd′ > bd ∧ Bid i(it, bd

′))))

Finally, in tFO-CTLK we can define when an agent has won the
auction for a specific item, and reason about the knowledge the other
agents have of this fact. These features can be stated as (i) at the be-
ginning it is common knowledge that there will be a winner eventu-
ally, and (ii) the identity of the winner will eventually be common
knowledge. We first introduce the formula Wini(it), which intu-
itively means that the bidder Bi wins the auction for item it, as fol-
lows:

Wini(it) = Status(it, term)
∧∃bd(Bid i(it, bd)
∧

V
j 6=i ∀bd

′(Bid j(it, bd
′)→ bd′ < bd))

Then, statements (i) and (ii) can be respectively formalised as

CAG ∀itAF
_

Bi∈Ag

Wini(it) AG ∀itAF
_

Bi∈Ag

C Wini(it)

Hence, the interplay of quantifiers and epistemic and temporal
modalities allows to express precisely subtly different concepts such
as (i) and (ii) above.

We observe that in all specifications above the quantifiers bind
variables of type Q that appear also as arguments of some non-rigid
symbol (Base , Bid i and TValuei). Thus, these terms are meant to
receive values taken from the active domain of each state. This re-
mark motivates our choice of restricting quantification to the active
domain in first place. Indeed, in the specifications above we are not
interested in expressing general properties of the order < on Q by
comparing generic rational numbers, rather we want to confront val-
ues for bids, base prices and true values for items. Thus, tFO-CTLK
suffices to express properties of auctions.

In the next sections we develop the theory that will allow us to
model check specifications as above on a particular class of artifact-
centric multi-agent systems that includes the auction AC-MAS A.

4 Bisimulation
In this section we introduce a notion of bisimulation for AC-MAS.
Similar notions have already appeared in the literature [6, 7]. How-
ever, in this paper we consider typed languages and, most impor-
tantly, relations Q ∈ D with a possibly infinite interpretation. This
extended framework has an impact notably on the key concept of

uniformity, which allows us to prove that bisimilar AC-MAS sat-
isfy the same tFO-CTLK specifications. Intuitively, the behaviour of
uniform AC-MAS does not depend on data that are not explicitly
named in the systems description. In the rest of the section we let
P = 〈Ag, s0, τ〉 and P ′ = 〈Ag′, s′0, τ ′〉 be AC-MAS and assume
that s = 〈D0, . . . , D`〉 ∈ S and s′ = 〈D′0, . . . , D′`〉 ∈ S ′. Also,
each Ch is a finite set of constants of type Th. We start by introduc-
ing a notion of isomorphism on db instances and global states that
accounts also for symbols Q ∈ D.

Definition 12 (Isomorphism) The db instances D,D′ ∈ D(~U) are
isomorphic, or D ' D′, iff there is a type-consistent bijection ι :
adomh(D) ∪ Ch 7→ adomh(D′) ∪ Ch such that

(i) ι is the identity on each Ch;
(ii) for every R ∈ D and ~u ∈ Uk1 × . . . × Ukc , ~u ∈ D(R) iff

ι(~u) ∈ D′(R).

When this is the case, we say that ι is a witness for D ' D′.
The global states s and s′ are isomorphic, or s ' s′, iff there exists

a type-consistent bijection ι : adomh(s) ∪ Ch 7→ adomh(s′) ∪ Ch
s.t. for every Ai ∈ Ag, ι is a witness for Di ' D′i. Any function ι as
above is a witness for s ' s′.

Isomorphisms preserve the interpretation of individual constants
as well as of relation symbols P ∈ D. As to symbols Q ∈ D,
the witness ι preserves the interpretation only for the individuals in
the active domain. This feature of isomorphisms is key to obtain fi-
nite abstractions. Clearly, ' is an equivalence relation. Also, given a
function f : Uh 7→ U ′h defined on each adomh(s), f(s) denotes the
instance in D(~U ′) obtained from s by renaming each u ∈ Dom(f)
as f(u). If f is also injective on adomh(s) (thus invertible) and the
identity on each Ch, then f(s) ' s.

Example 1 As an example of isomorphic db instances, consider
the auctioneer A in Section 3 with local db schema DA =
{Base/2,Bid1/2,Bid2/2,Status/2, </2} and the interpretation
domain Items = {000, 001, 010, 011, 100, 101, 110, 111}. Also,
fix the sets CItems = {101} and {active, term} of constants. Further,
let DA and D′A be theDA-instances as illustrated in Fig. 1. It can be
readily seen that DA and D′A are isomorphic with witness ι such
that ι(101) = 101, ι(110) = 011, ι(3.23) = 5.78, ι(4.25) = 8.74,
ι(3.50) = 6.13, and ι(6.73) = 10.09. �

DA(Base)

101 3.23
110 4.25

DA(Bid1)

101 3.50

DA(Bid2)

101 6.73

DA(Status)

101 active
110 term

D′A(Base)

101 5.78
011 8.74

D′A(Bid1)

101 6.13

D′A(Bid2)

101 10.09

D′A(Status)

101 active
011 term

Figure 1. Example of isomorphic db instances.

Observe that isomorphisms are such w.r.t. specific sets Ch of con-
stants. Hereafter we assume that the various Ch are always fixed in
advance. While isomorphic states share a common relational struc-
ture, they do not necessarily satisfy the same first-order formulas, as
satisfaction depends also on values assigned to free variables. To ac-
count for this, we have to recast the notion of equivalent assignments
in [6] to deal with types and symbols Q ∈ D.

Definition 13 (Equivalent assignments) Given isomorphic states
s, s′ and sets of variables Vh ⊆ Varh for each type Th, the assign-
ments σ : Varh 7→ Uh and σ′ : Varh 7→ U ′h are equivalent for all Vh
w.r.t. s and s′ iff there exists a bijection γ : adomh(s)∪Ch∪σ(Vh) 7→
adomh(s′) ∪ Ch ∪ σ′(Vh) such that

(i) the restriction γ|adomh(s)∪Ch
is a witness for s ' s′;

(ii) σ′|Vh = γ · σ|Vh ;
(iii) for every ~u ∈ (Dom(γ))kb and Ai ∈ Ag, ~u ∈ Di(Q) iff γ(~u) ∈

D′i(Q).

Intuitively, equivalent assignments preserve the (in)equalities of
the variables in each Vh as well as the interpretation of symbols
Q ∈ D. Two assignments are said to be equivalent for a tFO-CTLK
formula ϕ, also omitting the states s and s′, if they are equivalent
for all frh(ϕ). We can now show that isomorphic states preserve the
interpretation of typed first-order formulas.

Lemma 2 Given isomorphic states s and s′, a typed FO-formula ϕ
with conh(ϕ) ⊆ Ch for every type Th, and assignments σ and σ′

equivalent for ϕ, we have that

(P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ

Proof (sketch). By induction on the structure of ϕ. Con-
sider the base case for an atomic formula ϕ ≡ Q(t1, . . . , tk).
Then (Ds, σ) |= ϕ iff 〈σ(t1), . . . , σ(tk)〉 ∈ Ds(Q). Since σ
and σ′ are equivalent for ϕ, and s ' s′, this is the case iff
〈γ(σ(t1)), . . . , γ(σ(tk))〉 ∈ Ds′(Q), that is, 〈σ′(t1), . . . , σ′(tk)〉 ∈
Ds′(Q). Hence, (Ds′ , σ

′) |= ϕ. The base cases for ϕ ≡ t = t′ and
P (t1, . . . , tk) are proved similarly, The inductive steps for proposi-
tional connectives and quantifiers are straightforward.

An immediate consequence of this result is that isomorphic states
satisfy the same first-order sentences. We aim at extending this
preservation result to the full tFO-CTLK. In particular, plain bisimu-
lations are known to preserve satisfaction in a propositional modal
setting [10]. We now investigate the conditions under which this
applies to AC-MAS as well, and begin by considering a notion of
simulation. Throughout the rest of the paper we assume w.l.o.g. that
conh(ϕ) ⊆ Ch for every type Th.

Definition 14 (Simulation) A relation S on S × S ′ is a simulation
if 〈s, s′〉 ∈ S implies:

1. s ' s′;
2. for t ∈ S, if s→ t then there is t′ ∈ S ′ s.t. s′ → t′, s⊕t ' s′⊕t′

and 〈t, t′〉 ∈ S;
3. for Ai ∈ Ag, t ∈ S, if s ∼i t then there is t′ ∈ S ′ s.t. t ∼i t′,
s⊕ t ' s′ ⊕ t′ and 〈t, t′〉 ∈ S.

Two states s and s′ are similar iff 〈s, s′〉 ∈ S for some simulation
S. Note that similar states are isomorphic by condition (1) above.
Moreover, we impose that the disjoint union s ⊕ t is isomorphic to
s′ ⊕ t′. Simulations can naturally be extended to bisimulations.

Definition 15 (Bisimulation) A relation B on S ×S ′ is a bisimula-
tion iff both B and B−1 = {〈s′, s〉 | 〈s, s′〉 ∈ B} are simulations.

Two states s and s′ are bisimilar iff 〈s, s′〉 ∈ B for some bisim-
ulation B. Also, P and P ′ are bisimilar, or P ≈ P ′, iff so are their
initial states s0 and s′0. By Lemma 2 it follows that bisimilar, hence
isomorphic, states preserve typed FO-formulas. However, this is no
longer the case when we consider the full tFO-CTLK language. We
refer to [4] for an example of this fact. To overcome this difficulty
we make more assumptions on our structures and introduce a novel
notion of uniformity.

Definition 16 (Uniformity) An AC-MAS P is uniform iff for every
s, t, s′ ∈ S, t′ ∈ D(~U),

1. if s
α(~u)−−−→ t and s⊕ t ' s′ ⊕ t′ for some witness ι, then for every

type-consistent constant-preserving extension ι′ of ι to ~u, we have

that s′
α(ι′(~u))−−−−−→ t′;

2. if s ∼i t and s⊕ t ' s′ ⊕ t′, then s′ ∼i t′.

Further, if P is rigid, then (i) the set D(~U) above is restricted
to db instances t′ agreeing on the interpretation P(Q) of sym-
bols Q ∈ D; (ii) for all ~u, there exist ~v, ~v′ s.t. (~v, ~u) ∈ P(Q)
and (~u,~v′) ∈ P(Q); and (iii) for all ~u ∈ P(Q), for all i <
b− 1, there exist v s.t. (u0, . . . , ui, v, ui+1, . . . , ub−2) ∈ P(Q) and
(u1, . . . , ui, v, ui+1, . . . , ub−1) ∈ P(Q) (with an abuse of notation
we assume that for ui+1 = ub−1 or ui = u0 the sequence ends or
begins with v).

Intuitively, conditions (1) and (2) in Def. 16 say that if state t is
reached by executing the ground action α(~u) in s, and v is uniformly
replaced with v′ in s, ~u and t, thus obtaining, say, s′, ~u′ and t′, then
t′ can be reached by executing α(~u′) in s′. This condition is akin to
the notion of genericity in database theory [1]. Further, the condition
on rigid AC-MAS is aimed at obtaining the same uniform transitions
while keeping fixed the interpretation of symbols Q ∈ D. In partic-
ular, we have the following result.

Proposition 17 The auction AC-MAS A is indeed uniform.

Proof (sketch). This follows by definition of the transition func-
tion τ and by the fact that the only relation interpreted rigidly inA is
< on Q. In particular, condition (ii) on rigid and uniform AC-MAS is
satisfied as the order < on Q has no endpoints; while condition (iii)
follows by the density of < on Q.

As a consequence, the auction AC-MAS A is a rigid and uniform
AC-MAS.

We now state the main contribution of this section, which lifts the
result in [6] to AC-MAS with types and predicates with an infinite
interpretation. Hereafter sups∈S{|adomh(s)|} = ∞ whenever an
AC-MAS P is unbounded, i.e., there is no b ∈ N s.t. |adomh(s)| ≤ b
for all s ∈ S.

Theorem 3 Consider bisimilar and uniform AC-MASP andP ′, and
a tFO-CTLK formula ϕ. If for every Th,

1. |U ′h| ≥ 2 sups∈S{|adomh(s)|}+ |Ch|+ |varh(ϕ)|
2. |Uh| ≥ 2 sups′∈S′{|adomh(s′)|}+ |Ch|+ |varh(ϕ)|

then

P |= ϕ iff P ′ |= ϕ

A proof of Theorem 3 is given in Appendix A. By this result
if each {|adomh(s)| | s ∈ S} is bounded, and therefore all
sups∈S{|adomh(s)|} are finite, then an infinite and uniform AC-
MASP can in principle be verified by model checking a finite bisim-
ilar system P ′, whose interpretation domains satisfy condition (1) in
Theorem 3. In the next section we introduce a class of infinite and
uniform AC-MAS that admits finite abstractions.

5 Finite Abstraction
In this section we state sufficient conditions to reduce the model
checking problem for an infinite AC-MAS to the verification of a

finite system. The main result is given as Theorem 7, which guaran-
tees that for bounded and rigid AC-MAS uniformity is sufficient to
obtain bisimilar finite abstractions that preserve tFO-CTLK formu-
las. In the following we assume for technical reasons and w.l.o.g. that
any AC-MAS P is such that adomh(s0) ⊆ Ch (as each adomh(s0)
is finite). Also, Nh is the sum of the maximum numbers of param-
eters of type Th contained in the action types of each agent, i.e.,
Nh =

P
Ai∈Ag max{α(~x)∈Acti,~x∈Varh}{|~x|}.

Definition 18 (Bounded AC-MAS) An AC-MAS P is bh-bounded,
for bh ∈ N, iff for all s ∈ S, |adomh(s)| ≤ bh.

Thus, an AC-MAS is bh-bounded if no active domain of its reach-
able state space contains more than bh distinct elements of type Th.
An AC-MAS P is bounded if for every type Th, P is bh-bounded
for some bh ∈ N. Observe that bounded AC-MAS may still contain
infinitely many states, all bounded by some bh. So, bounded AC-
MAS are infinite-state systems in general, with a non-trivial model
checking problem.

We now introduce abstractions in a modular manner by first defin-
ing abstract agents.

Definition 19 (Abstract agent) Let A = 〈D, Act, Pr〉 be an agent
defined on a countable interpretation domain Uh for each type Th.
Given a countable set U ′h of individuals for each Th, the abstract
agent A′ is a tuple 〈D′, Act′, P r′〉 on U ′1, . . . , U

′
k s.t. (i) D′ = D;

(ii) Act′ = Act; and (iii) Pr′ is the smallest function defined as
follows:

• if α(~u) ∈ Pr(D), D′ ∈ D′(~U ′) and D′ ' D for some witness ι,
then α(~u′) ∈ Pr′(D′), where ~u′ = ι′(~u) for some type-consistent
constant-preserving bijection ι′ extending ι to ~u.

Given a set Ag of agents, let Ag′ be the set of the corresponding
abstract agents.

We remark that A′, as defined in Def. 19, is indeed an agent ac-
cording to Def. 3. In particular, the protocol function Pr′ is well-
defined provided Pr is. We now present the notion of abstraction.

Definition 20 (Abstraction) Let P = 〈Ag, s0, τ〉 be an AC-MAS,
and Ag′ the set of abstract agents as in Def. 19. The AC-MAS P ′ =
〈Ag′, s′0, τ ′〉 is an abstraction of P iff (i) s′0 ' s0, and (ii) τ ′ is the
smallest function defined as follows

• if s
α(~u)−−−→ t, s′, t′ ∈ D′(~U) and s⊕ t ' s′⊕ t′ for some witness ι,

then s′
α(ι′(~u))−−−−−→ t′ for some type-consistent constant-preserving

bijection ι′ extending ι to ~u.

Notice that P ′ is indeed an AC-MAS as it satisfies the relevant
conditions on protocols and transitions in Def. 4. Also, by varying
each U ′h we can obtain different abstractions. Moreover, the abstrac-
tion of a rigid AC-MAS is not itself rigid in general. The last point is
key in the definition of finite abstractions.

We start with a lemma that extends Prop. 3.7 in [6], that is, req. 2
in Def. 16 can be derived from req. 1 whenever adomh(s0) ⊆ Ch.
Notice that, differently from [6], here we have to assume that the
AC-MAS P is rigid.

Lemma 4 If a rigid AC-MAS P satisfies req. 1 in Def. 16, and
adomh(s0) ⊆ Ch for every type Th, then req. 2 is also satisfied.

Proof (sketch). If s ⊕ t ' s′ ⊕ t′, then then there is a witness
ι : adomh(s) ∪ adomh(t) ∪ Ch 7→ adomh(s′) ∪ adomh(t′) ∪ Ch

that is the identity on Ch (and hence on adomh(s0)). Suppose that
s ∼i t, i.e., Di(s) = Di(t). In particular, Di(s′) = ι(Di(s)) =
ι(Di(t)) = Di(t

′) by rigidity. However, it is not guaranteed that
s′ ∼i t′, as we need to prove that t′ ∈ S. This can be done
by showing that t′ is reachable from s0. Since t is reachable from
s0, there exists a run s0 → s1 → . . . → sk s.t. sk = t. We
now extend ι to a total and injective function ι′h : adomh(s0) ∪
· · · ∪ adomh(sk) ∪ Ch 7→ Uh. This can always be done because
|Uh| ≥ |adomh(s0) ∪ · · · ∪ adomh(sk) ∪ Ch|. Moreover, if P is
rigid, by the condition on rigid AC-MAS ι′ can be found so that all
Dsm and Dι′(sm) agree on the interpretation of symbols Q ∈ D. In-
deed, consider ~u ∈ adom(s0)∪· · ·∪adom(sk)∪C s.t. ~u ∈ P(Q). It
might be the case that some v ∈ ~u belongs to adom(s)∪adom(t)∪C.
Hence, ι′(v) = ι(v) is fixed. Let ι′(~v) be the tuple of all such
elements in the order they appear in ~u. By the assumption of uni-
formity, we can find a tuple ~w s.t. either 〈~w, ι′(~v)〉 or 〈ι′(~v), ~w〉
belongs to P(Q). Further, we can insert elements in each tuple so
as to obtain a tuple ~u′ ∈ P(Q) and ~u′ = ι′(~u). Finally, consider
the sequence ι′(s0), ι

′(s1), . . . , ι
′(sk). Since adomh(s0) ⊆ Ch,

ι(s0) = s0 and, since ι′ extends ι, ι′(s0) = ι(s0) = s0. Fur-
ther, ι′(sk) = ι(t) = t′. By repeated applications of req. 1 we can

show that ι′(sm)
α(ι′(~u))−−−−−→ ι′(sm+1) whenever sm

α(~u)−−−→ sm+1, for
m < k. Hence, the sequence is actually a run from s0 to t′. There-
fore, t′ ∈ S, and s′ ∼i t′.

Next, we investigate the relationship between an AC-MAS and its
abstractions.

Lemma 5 Every abstraction P ′ of a rigid AC-MAS P is uniform.

Proof (sketch). In the light of Lemma 4 and the assumption that
adomh(s0) ⊆ Ch, it is sufficient to prove condition 2 in Def. 16.
Hence, suppose that s, t, s′ ∈ S ′, t′ ∈ D(U ′), α(~u) ∈ Act′(~U ′)

s.t. s
α(~u)−−−→ t, and s⊕t ' s′⊕t′ for some witness ζ. We need to show

that P ′ admits a transition from s′ to t′. Since P ′ is an abstraction
of P , given the definition of τ ′, there exist s′′, t′′ ∈ P and α(~u′′) ∈

Act(~U) s.t. s′′
α(~u′′)−−−−→ t′′, s′′ ⊕ t′′ ' s ⊕ t for some witness ι, and

~u = ι′(~u′′) for some type-consistent constant-preserving bijection
ι′ extending ι to ~u′′. Consider now ~u′ ∈ ~U ′|~u| s.t. ~u′ = ζ′(~u) for
some type-consistent constant-preserving bijection ζ′ extending ζ to
~u. The composition ζ′ · ι′ is a type-consistent constant-preserving
bijection s.t. ~u′ = ζ′(ι′(~u′′)). Moreover, it is a witness for s′′⊕t′′ '

s′⊕ t′. Since P ′ is an abstraction of P , this implies that s′
α(~u′)−−−→ t′.

Thus, P ′ is uniform.

The following result guarantees that for every uniform and rigid
AC-MAS there exists a bisimilar abstraction, provided that the latter
is built over sufficiently large interpretation domains.

Lemma 6 Consider a uniform and rigid AC-MAS P over infinite
interpretation domains Uh, and interpretation domains U ′h s.t. Ch ⊆
U ′h. If for every type Th, |U ′h| ≥ 2 sups∈S{|adomh(s)|} + |Ch| +
Nh, then there exists an abstraction P ′ of P over U ′1, . . . , U

′
k that is

bisimilar to P .

Proof (sketch). First consider the abstraction P ′ of P defined
on U ′1, . . . , U ′k as specified in Def. 20. Then, we show that B =
{〈s, s′〉 ∈ P × P ′ | s ' s′} is a bisimulation s.t. 〈s0, s′0〉 ∈ B. We
start by proving that B is a simulation relation. To this end, observe
that 〈s0, s′0〉 ∈ B as s0 ' s′0. Next, consider 〈s, s′〉 ∈ B, thus s '
s′. Suppose that s → t, for some t ∈ P . Then, there exists α(~u) ∈

Act(~U) s.t. s
α(~u)−−−→ t. Moreover, since |U ′h| ≥ 2bh + |Ch| + Nh,P

Ai∈Ag, ~ui∈Uh
|~ui| ≤ Nh, and |adomh(s) ∪ adomh(t)| ≤ 2bh, the

witness ι for s ' s′ can be extended to a bijection ι′ on
S
Ai∈Ag ~ui.

Now let t′ = ι′(t). By the way ι′ has been defined, it can be seen
that s⊕ t ' s′⊕ t′. Further, since P ′ is an abstraction of P , we have

that s′
α(~u′)−−−→ t′ for ~u′ = ι′(~u), that is, s′ → t′ in P ′. As a result,

there exists t′ ∈ P ′ s.t. s′ → t′, s⊕ t ' s′ ⊕ t′, and 〈t, t′〉 ∈ B.
As regards the epistemic relation, suppose that s ∼i t for some

Ai ∈ Ag and t ∈ P . By definition of ∼i and rigidity, we have
that Di(s) = Di(t). Since |U ′h| ≥ 2bh + |Ch|, any witness ι for
s ' s′ can be extended to a witness ι′ for s ⊕ t ' s′ ⊕ t′, where
t′ = ι′(t) ∪

S
Q∈DDi(s

′)(Q). Notice that t′ is well-defined asS
Q∈DDi(s

′)(Q) and ι′(t) coincides on the interpretation of sym-
bols Q ∈ D in adom(s′). Hence, we have Di(s′) = Di(t

′). Thus,
the only thing left to show that s′ ∼i t′ is that t′ ∈ S ′, i.e., t′ is reach-
able in P ′ from s′0. To this end, observe that since t ∈ P , there exists
a run r s.t. r(0) = s0 and r(k) = t, for some k ≥ 0. Thus, there exist

α1(~u1) . . . , αk(~uk) s.t. r(j)
αj+1(~uj+1)−−−−−−−−→ r(j + 1) for 0 ≤ j < k.

Since |U ′h| ≥ 2bh+ |Ch|, we can define, for 0 ≤ j < k, a function ιj
that is a witness for r(j)⊕r(j+1) ' ιj(r(j))⊕ιj(r(j+1)). In par-
ticular, this can be done starting from j = k−1, defining ιk−1 so that
ιk−1(r(k)) = ιk−1(t) = t′, and proceeding backwards to j = 0,
guaranteeing that, for 0 ≤ j < k, ιj(r(j + 1)) = ιj+1(r(j + 1)).
Observe that since adom(s0) ⊆ C, necessarily i0(adom(r(0))) =
i0(adom(s0)) = adom(s0) = adom(s′0). Moreover, as |U ′h| ≥
2bh + |Ch|+Nh, each ιj can be extended to a bijection ι′j , to the el-
ements occurring in ~uj+1. Thus, given that P ′ is an abstraction of P ,

for 0 ≤ j < k, we have that ι′j(r(j))
αj+1(ι′j(~uj+1))
−−−−−−−−−−→ ι′j(r(j + 1)).

Hence, the sequence ι′0(r(0)) → · · · → ι′k−1(r(k)) is a run from
s′0 in P ′, and since t′ = ι′k−1(r(k)), t′ is reachable in P ′. Therefore
s′ ∼i t′. Further, since t ' t′, it is the case that 〈t, t′〉 ∈ B, hence B
is a simulation.

To prove thatB−1 is a simulation, given 〈s, s′〉 ∈ B (thus s ' s′),
suppose that s′ → t′ for some t′ ∈ P ′. Then, there exists α(~u′) ∈

Act(~U ′) s.t. s′
α(~u′)−−−→ t′. Because P ′ is an abstraction of P , there

are s′′, t′′ ∈ P and α(~u′′) ∈ Act(U) s.t. s′′⊕ t′′ ' s′⊕ t′, for some

witness ι, and s′′
α(~u′′)−−−−→ t′′, with ~u′′ = ι′(~u′) for some bijection ι′

extending ι to ~u′. Observe that s′ ' s′′, thus, by transitivity of ',
we have s ' s′′. The fact that there exists t ∈ P s.t. s → t follows
from the uniformity of P . Thus, since t′ ' t, we have 〈t, t′〉 ∈ B.

For the epistemic relation, suppose that s′ ∼i t′, for some t′ ∈ P ′
andAi ∈ Ag. Let ι be a witness for s′ ' s, and let ι′ be an extension
of ι that is a witness for s′ ⊕ t′ ' s ⊕ t. In particular, by reasoning
as in Lemma 4 in Appendix A, we can define ι′ so as to preserve the
interpretation in P of symbols Q ∈ D. Indeed, we have to compose
the finite interpretations Ds′(Q) and Dt′(Q), for a symbol Q ∈ D,
into a unique interpretation P(Q). Suppose that ~u′ ∈ Dt′(Q) and
let ~v′ be the elements of ~u′ appearing in adom(s′). Then, ι(~v′) ∈
adom(s) and by uniformity we can find elements to extend ι(~v′) to
a tuple ~u s.t. ~u ∈ P(Q) and ~u = ι′(~u′) for such extension ι′ of
ι. Then, for t = ι′(t′), it can be seen that Di(s) = Di(t). Using
an argument analogous to the one above, but exploiting the fact that
P is uniform, P ′ is bounded, and |Uh| > 2bh + |Ch| + Nh as Uh
is infinite, we show that t is reachable by constructing a run r of P
s.t. r(k) = t, for some k ≥ 0. As a result, s ∼i t. Further, since
t′ ' t, we have 〈t, t′〉 ∈ B−1. Therefore, B−1 is also a simulation,
and P and P ′ are bisimilar.

Finally, we observe that for bounded AC-MAS the value of
sups∈S{|adomh(s)|} is always finite and equal to bh. Thus, by com-
bining Lemma 6 and Theorem 3 we can prove the main technical
result of the paper.

Theorem 7 Consider a bounded, uniform and rigid AC-MAS P
over infinite interpretation domains Uh, a tFO-CTLK formula ϕ,
and interpretation domains U ′h s.t. Ch ⊆ U ′h. If for every type Th,
|U ′h| ≥ 2bh + |Ch|+ max{|varh(ϕ)|, Nh}, then there exists an ab-
straction P ′ of P over U ′1, . . . , U

′
k such that

P |= ϕ iff P ′ |= ϕ

Proof (sketch). By the hypothesis on the cardinalities of the vari-
ous Uh and U ′h, Lemma 6 applies, so there exists an abstraction P ′
bisimilar to P . Further, by Lemma 5 P ′ is uniform. Obviously, also
P ′ is bounded. Thus, since P and P ′ are bounded, and by the car-
dinality hypothesis on Uh and U ′h, Theorem 3 applies. In particular,
|U ′h| ≥ 2 sups∈S{|adomh(s)|}+ |Ch|+ |varh(ϕ)| as for all s ∈ S,
|adomh(s)| ≤ bh by boundedness. Therefore, P |= ϕ iff P ′ |= ϕ.

We remark that the U ′h in Theorem 7 might as well be finite. So,
by using a sufficient number of abstract values in U ′h, we can in prin-
ciple reduce the model checking problem for infinite-state AC-MAS
to the verification of a finite abstraction. Specifically, we obtain the
following result.

Corollary 8 Given a bounded, uniform and rigid AC-MAS P over
infinite interpretation domains ~U , and a tFO-CTLK formula ϕ, there
exists an abstract AC-MAS P ′ over finite interpretation domains ~U ′

s.t. ϕ is satisfied by P iff P ′ satisfies ϕ.

To conclude this section we briefly outline how to derive a finite
abstraction of the auction AC-MAS A in Section 3.

5.1 Abstract Auction
We observe that the auction AC-MAS A is indeed bounded, uni-
form and rigid. We showed above that A is uniform and rigid. As
to boundedness, notice that the only infinite interpretation domain
in A is the set Q of rational numbers. By definition of A, for each
global state s, there can be at most |Items|(2|Ag|−1) distinct ratio-
nal numbers in the active domain of s: |Items| elements to represent
base prices, |Items|(|Ag|−1) elements to represent true values, and
|Items|(|Ag| − 1) elements for bids. Further, consider the specifi-
cations appearing in Section 3 to be verified. No constant appears in
these formulas and the active domain of the initial state s0 is empty,
therefore so is the set CQ of constants for rational numbers. Finally,
19 variables of type Q appear in our specifications, and this number
exceeds NQ. As a consequence, we consider a finite abstract domain
U ′Q of cardinality greater of equal to 2|Items|(2|Ag| − 1) + 19, as
required in Theorem 7.

We now describe briefly the abstract agents A′ and B′1, . . . , B′`
for the concrete auctioneer A and bidders B1, . . . , B`. By Def. 19
the abstract bd schema D′ and action types in Act′ are the same as
D andAct. As to the protocol functions, now these take values not in
Q but U ′Q. As an example, consider the clause for action bid i(it, bd)
in Def. 10: bid i(it, bd) ∈ Pri(D) whenever the item it appears in
D(TValuei), the highest bid bdj in some Bid j (j 6= i) for item it
is strictly less than the true value tv for bidder Bi, bdj < bd ≤ tv,
and (it, active) ∈ D(Status). Now, the condition on protocols in
Def. 19 requires that for D′ ∈ D′(~U), bid i(it, bd

′) ∈ Pr′i(D
′
i)

whenever D′ ' D for some witness ι. In particular, this means that

bd′ ∈ U ′Q is an abstract value that has not yet been used to represent
any bid in D′. By assumption |U ′Q| ≥ 2|Items|(2|Ag| − 1) + 19 on
the cardinality of U ′Q in Theorem 7 it is always possible to find such
an element.

Finally, given the set Ag′ = {A′, B′1, . . . , B′`} of abstract agents
on Items , {active, term} and U ′Q, we briefly illustrate the abstract
auction AC-MAS A′ = 〈Ag′, s′0, τ ′〉 where

• s′0 = s0|adom(s0);
• τ ′ is the global transition function that mimicks τ . For instance, if

αi = bid i(it, bd
′), then s′

α(~u)−−−→ t′ whenever t′ is the db instance
that modifies s′ by replacing any pair (it, bd) in D′j(Bid i) with
(it, bd′), where the value bd′ ∈ U ′Q has been found as detailed
above.

Moreover, by Def. 20 and the definition of isomorphism, we have
that bd′ is strictly greater than the highest bid bdj in some Bid j in s′

for item it, but less than the true value tv for bidder Bi. This infor-
mation defines the interpretation Dt′(<) of symbol < in t′. Indeed,
the interpretation of < in A′ is not rigid, thus allowing for the reuse
of values. In our example, the old value bd would no longer appear
in the active domain of t′. Hence it might be used again in the next
transition if needed.

Reasoning as above we can generate the whole state space S ′ of
the abstract auction AC-MAS A′, as Items , {active, term} and U ′Q
are finite. Then, we can model check our tFO-CTLK formulas on
this finite abstraction. Indeed, both the concrete AC-MAS A and the
interpretation domain U ′Q satisfy the hypotheses of Theorem 7. Thus,
by this result it is guarantee that the specifications are satisfied in the
abstraction A′ iff they are satisfied in the concrete AC-MAS A.

6 Conclusions and Future Work
In this paper we advanced the state-of-the-art on the verification of
auctions by model checking. First, we extended the framework of
artifact-centric multi-agent systems [6, 7] to support both typed lan-
guages and relations whose interpretation graph may be infinite. We
argued that both features are essential to formalise English (ascend-
ing bid) auctions on multiple sessions running in parallel as AC-
MAS. Most importantly, we provided a novel abstraction technique
within this enhanced setting. As a result, we are now able to model
check a significant class of infinite-state AC-MAS, including parallel
English auctions, against sophisticated specifications in tFO-CTLK,
by verifying their finite bisimilar abstractions.

In future work we aim at applying the theoretical results above to
concrete use cases. Indeed, one relevant issue concerns the bound-
edness check for AC-MAS. In this respect, it would be of interest
to find sufficient conditions ensuring boundedness, similarly to those
discussed in [22]. Further, general constructive techniques to build
abstractions from concrete AC-MAS are also essential for deploy-
ment in business processes.

REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases,

Addison-Wesley, 1995.
[2] T. Ågotnes, P. Harrenstein, W. v. d. Hoek, and M. Wooldridge, ‘Verifi-

able equilibria in boolean games’, In Rossi [28].
[3] A. Badica and C. Badica, ‘Specification and verification of an

agent-based auction service’, in Information Systems Development,
eds., George Angelos Papadopoulos, Wita Wojtkowski, Gregory Wo-
jtkowski, Stanislaw Wrycza, and Joe Zupancic, 239–248, Springer US,
(2010).

[4] F. Belardinelli and A. Lomuscio, ‘Decidability of model checking non-
uniform artifact-centric quantified interpreted systems’, In Rossi [28].

[5] F. Belardinelli, A. Lomuscio, and F. Patrizi, ‘Verification of Deployed
Artifact Systems via Data Abstraction’, in Proc. of the 9th International
Conference on Service-Oriented Computing (ICSOC’11), pp. 142–156,
(2011).

[6] F. Belardinelli, A. Lomuscio, and F. Patrizi, ‘An Abstraction Technique
for the Verification of Artifact-Centric Systems’, in Proc. of the 13th
International Conference on Principles of Knowledge Representation
and Reasoning (KR’12), pp. 319 – 328, (2012).

[7] F. Belardinelli, A. Lomuscio, and F. Patrizi, ‘Verification of GSM-
Based Artifact-Centric Systems through Finite Abstraction’, in Proc. of
the 10th International Conference on Service-Oriented Computing (IC-
SOC’12), pp. 17–31, (2012).

[8] F. Belardinelli, A. Lomuscio, and F. Patrizi, ‘Verification of agent-based
artifact systems’, CoRR, abs/1301.2678, (2013).

[9] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su, ‘Towards For-
mal Analysis of Artifact-Centric Business Process Models’, in Proc. of
the 5th International Conference on Business Process Management
(BPM’07), pp. 288–304, (2007).

[10] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic, volume 53 of
Cambridge Tracts in Theoretical Computer Science, Cambridge Uni-
versity Press, 2001.

[11] J. M. Corera, I. Laresgoiti, and N. Jennings, ‘Using archon, part 2: Elec-
tricity transportation management.’, IEEE Expert, 11(6), 71–79, (1996).

[12] E. Damaggio, A. Deutsch, and V. Vianu, ‘Artifact Systems with Data
Dependencies and Arithmetic’, ACM Transactions on Database Sys-
tems, 37(3), 22:1–22:36, (2012).

[13] G. De Giacomo, Y. Lespérance, and F. Patrizi, ‘Bounded Situation Cal-
culus Action Theories and Decidable Verification’, in Proc. of the 13th
International Conference on Principles of Knowledge Representation
and Reasoning (KR’12), pp. 467–477, (2012).

[14] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu, ‘Automatic Verification
of Data-centric Business Processes’, in Proc. of the 12th International
Conference on Database Theory (ICDT’09), pp. 252–267, (2009).

[15] A. Deutsch, L. Sui, and V. Vianu, ‘Specification and Verification of
Data-Driven Web Applications’, Journal of Computer and System Sci-
ences, 73(3), 442–474, (2007).

[16] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning
About a Highly Connected World, Cambridge University Press, New
York, NY, USA, 2010.

[17] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About
Knowledge, The MIT Press, 1995.

[18] D. Fischer, E. Grädel, and L. Kaiser, ‘Model Checking Games for
the Quantitative mu-Calculus’, Theory Comput. Syst., 47(3), 696–719,
(2010).

[19] C. E. Gerede and J. Su, ‘Specification and Verification of Artifact Be-
haviors in Business Process Models’, in Proc. of the 5th International
Conference on Service-Oriented Computing (ICSOC’07), pp. 181–192,
(2007).

[20] E. M. Tadjouddine F. Guerin and W. Vasconcelos, ‘Abstractions for
model-checking game-theoretic properties of auctions’, in Proceedings
of the 7th international joint conference on Autonomous agents and
multiagent systems - Volume 3, AAMAS ’08, pp. 1613–1616, Richland,
SC, (2008). International Foundation for Autonomous Agents and Mul-
tiagent Systems.

[21] N. Haque, N. R. Jennings, and L. Moreau, ‘Resource allocation in com-
munication networks using market-based agents’, Knowledge-Based
Systems, 18(4-5), 163–170, (August 2005).

[22] B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and
M. Montali, ‘Verification of relational data-centric dynamic systems
with external services’, in PODS, eds., R. Hull and W. Fan, pp. 163–
174. ACM, (2013).

[23] R. Hull, ‘Artifact-Centric Business Process Models: Brief Survey of
Research Results and Challenges’, in Proc. (part II) of Confederated In-
ternational Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008
(On the Move to Meaningful Internet Systems: OTM’08), pp. 1152–
1163, (2008).

[24] R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. T.
Heath, S. Hobson, M. Linehan, S. Maradugu A. Nigam, P. Sukaviriya,
and R. Vaculin, ‘Business Artifacts with Guard-Stage-Milestone Life-
cycles: Managing Artifact Interactions with Conditions and Events’, in
Proc. of the 5th ACM International Conference on Distributed Event-
Based Systems (DEBS’11), pp. 51–62, (2011).

[25] M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola,
M. Szreter, B. Wozna, and A. Zbrzezny, ‘VerICS 2007 - a Model
Checker for Knowledge and Real-Time’, Fundamenta Informaticae,
85(1-4), 313–328, (2008).

[26] A. Lomuscio, H. Qu, and F. Raimondi, ‘MCMAS: A Model Checker
for the Verification of Multi-Agent Systems’, in Proc. of the 21st In-
ternational Conference on Computer Aided Verification (CAV’09), pp.
682–688, (2009).

[27] Daniel M. Reeves, Michael P. Wellman, Jeffrey K. MacKie-Mason,
and Anna Osepayshvili, ‘Exploring bidding strategies for market-based
scheduling’, Decision Support Systems, 39(1), 67–85, (2005).

[28] F. Rossi, ed. IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013.
IJCAI/AAAI, 2013.

[29] Nicolas Troquard, Wiebe van der Hoek, and Michael Wooldridge,
‘Model checking strategic equilibria’, in MoChArt, eds., Doron Peled
and Michael Wooldridge, volume 5348 of Lecture Notes in Computer
Science, pp. 166–188. Springer, (2008).

[30] M. Webster, L. Dennis, and M. Fisher, ‘Model-checking auctions, coali-
tions and trust’, Technical report, University of Liverpool, (2009).

[31] H. Xu and Y. Cheng, ‘Model checking bidding behaviors in internet
concurrent auctions.’, Comput. Syst. Sci. Eng., 22(4), (2007).

[32] Haiping Xu, Christopher K. Bates, and Sol M. Shatz, ‘Real-time model
checking for shill detection in live online auctions’, in Software En-
gineering Research and Practice, eds., Hamid R. Arabnia and Hassan
Reza, pp. 134–140. CSREA Press, (2009).

A Proof of Theorem 3
In this section we give a proof of Theorem 3. Several partial results
are required and presented below. A first, distinctive feature of uni-
form systems is that all isomorphic states are bisimilar.

Lemma 9 If an AC-MAS P is uniform, then for every s, s′ ∈ P ,
s ' s′ implies s ≈ s′.

Proof (sketch). We prove that B = {〈s, s′〉 ∈ S × S | s ' s′}
is a bisimulation. Observe that since ' is an equivalence relation,
so is B. Thus, B is symmetric and B = B−1. Therefore, if B
is a simulation then also B−1 is a simulation. Hence, it is suffi-
cient to prove that B is a simulation. To this end, let 〈s, s′〉 ∈ B,

and assume s → t for some t ∈ S. Then, s
α(~u)−−−→ t for some

α(~u) ∈ Act(~U). Consider a witness ι for s ' s′. By cardinality
considerations ι can be extended to a total and injective function
ι′ : adomh(s) ∪ adomh(t) ∪ {~u} ∪ Ch 7→ Uh. Further, if P is
rigid, by the condition on rigid AC-MAS ι′ can be found so that Ds,
Dt, Ds′ and Dι′(t) agree on the interpretation of symbols Q ∈ D.
Indeed, consider ~u ∈ adom(s) ∪ adom(t) ∪ C s.t. ~u ∈ P(Q). It
might be the case that some v ∈ ~u belongs to adom(s) ∪ C. Hence,
ι′(v) = ι(v) is fixed. Let ι′(~v) be the tuple of all such elements in
the order they appear in ~u. By the assumption of uniformity, we can
find a tuple ~w s.t. either 〈~w, ι′(~v)〉 or 〈ι′(~v), ~w〉 belongs to P(Q).
Further, we can insert elements in each tuple so as to obtain a tuple
~u′ ∈ P(Q) and ~u′ = ι′(~u). Now, consider t′ = ι′(t); it follows that

ι′ is a witness for s⊕ t ' s′⊕ t′. Since P is uniform, s′
α(ι′(~u))−−−−−→ t′,

that is, s′ → t′. Moreover, ι′ is a witness for t ' t′, thus 〈t, t′〉 ∈ B.
Next assume that 〈s, s′〉 ∈ B and s ∼i t, for some t ∈ S. By rea-

soning as above we can find a witness ι for s ' s′ and an extension
ι′ of ι s.t. t′ = ι′(t) and ι′ is a witness for s⊕ t ' s′ ⊕ t′. Since P
is uniform, s′ ∼i t′ and 〈t, t′〉 ∈ B.

Next we extend Lemma 4.6 in [8] to our setting to show that un-
der appropriate cardinality constraints the bisimulation preserves the
equivalence of assignments w.r.t. a given FO-CTLK formula.

Lemma 10 Consider bisimilar and uniform AC-MAS P and P ′,
bisimilar states s ∈ S and s′ ∈ S ′, and an tFO-CTLK formula

ϕ. For every assignments σ and σ′ equivalent for ϕ w.r.t. s and s′,
we have that

1. for every t ∈ S, if (i) s → t, and (ii) for every type Th, |U ′h| ≥
|adomh(s)∪adomh(t)∪Ch∪σ(frh(ϕ))|, then there exists t′ ∈ S ′
s.t. s′ → t′, t ≈ t′, and σ and σ′ are equivalent for ϕ w.r.t. t and
t′.

2. for every t ∈ S, if (i) s ∼i t, and (ii) if for every type Th, |U ′h| ≥
|adomh(s)∪adomh(t)∪Ch∪σ(frh(ϕ))|, then there exists t′ ∈ S ′
s.t. s′ ∼i t′, t ≈ t′, and σ and σ′ are equivalent for ϕ w.r.t. t and
t′.

Proof (sketch). To prove (1), let γ be a bijection witnessing that σ
and σ′ equivalent for ϕ w.r.t. s and s′. Also, suppose that s → t.
Since s ≈ s′, by definition of bisimulation there exists t′′ ∈ S ′
s.t. s′ → t′′, s ⊕ t ' s′ ⊕ t′′, and t ≈ t′′. Now, for every type Th
define Domh(j) = adomh(s)∪ adomh(t)∪Ch and partition it into:

• Dom(γ) = adomh(s) ∪ Ch ∪ σ(frh(ϕ))
• Y = adomh(t) \Domh(γ)

Observe that for each type Th, |Imh(γ)| = |adomh(s′) ∪ Ch ∪
σ′(frh(ϕ))| = |adomh(s) ∪ Ch ∪ σ(frh(ϕ))|, thus from the fact
that |U ′h| ≥ |adomh(s) ∪ adomh(t) ∪ Ch ∪ σ(frh(ϕ))| we have
|U ′h \ Imh(γ)| ≥ |Y |. Since |U ′h \ Imh(γ)| ≥ |Y |, there exists
a (invertible) total function f : Y 7→ U ′h \ Imh(γ). We now define
a function j : Domh(j) 7→ U ′h as follows:

j(u) =

(
γ(u), if u ∈ Dom(γ)

f(u), if u ∈ Y

Obviously, j is invertible. Moreover, ifP ′ is rigid, by the condition
on uniform and rigid AC-MAS, the function j can be defined so as
to preserve the interpretation P ′(Q) of symbols Q ∈ D, similarly as
in the proof of Lemma 9. Thus, j is a witness for s ⊕ t ' s′ ⊕ t′,
where t′ = j(t). In particular, we have that s ⊕ t ' s′ ⊕ t′. Also,
s⊕ t ' s′ ⊕ t′′ implies s′ ⊕ t′ ' s′ ⊕ t′′ by transitivity of '. Thus,
s′ → t′, as P ′ is uniform. Moreover, σ and σ′ are equivalent for ϕ
w.r.t. t and t′, by construction of t′. To check that t ≈ t′, observe
that, since t′ ' t′′ and P ′ is uniform, by Lemma 9 it follows that
t′ ≈ t′′. Thus, since t ≈ t′′ and≈ is transitive, we obtain that t ≈ t′.
The proof for (2) has an analogous structure and is therefore omitted.

For technical convenience we shall use also the concept of
temporal-epistemic run (t.e. run for short). Formally a t.e. run r from
a global state s is an infinite sequence s0 ; s1 ; . . . such that
s0 = s and si → si+1 or si ∼k si+1, for some k ∈ Ag. A state
s′ is t.e. reachable from s if there exists a t.e. run r from the global
state r(0) = s s.t. r(i) = s′, for some i ≥ 0. Obviously, temporal-
epistemic runs include purely temporal runs as a special case. The
following result shows that Lemma 10 generalizes to t.e. runs.

Lemma 11 Consider bisimilar and uniform AC-MAS P and P ′,
bisimilar states s ∈ S and s′ ∈ S ′, a tFO-CTLK formula ϕ, and as-
signments σ and σ′ equivalent for ϕ w.r.t. s and s′. For every t.e. run
r of P , if (i) r(0) = s, and (ii) for all i ≥ 0, for all types Th,
|U ′h| ≥ |adomh(r(i)) ∪ adomh(r(i + 1)) ∪ Ch ∪ σ(frh(ϕ))|, then
there exists a t.e. run r′ of P ′ s.t. for all i ≥ 0:

(i) r′(0) = s′;
(ii) r(i) ≈ r′(i);

(iii) σ and σ′ are equivalent for ϕ w.r.t. r(i) and r′(i);

(iv) for every i ≥ 0, if r(i)→ r(i+ 1) then r′(i)→ r′(i+ 1), and if
r(i) ∼j r(i+ 1), for some Aj ∈ Ag, then r′(i) ∼j r′(i+ 1).

Proof (sketch). The result follows from Lemma 10, the proof
is similar to Lemma 3.10 in [6]. Specifically, let r be a t.e. run
s.t. |U ′h| ≥ |adomh(r(i)) ∪ adomh(r(i+ 1)) ∪ Ch ∪ σ(frh(ϕ))| for
all types h and i ≥ 0. We inductively build r′ and show that the con-
ditions above are satisfied. Suppose that r(i) ≈ r′(i) and σ and σ′

are equivalent for ϕ w.r.t. r(i) and r′(i) (we notice that for i = 0 this
is indeed the case as r(i) = s ≈ s′ = r′(i)). Since r(i) ; r(i+ 1)
and |U ′h| ≥ |adomh(r(i))∪ adomh(r(i+ 1))∪Ch ∪ σ(frh(ϕ))|, by
Lemma 10 there exists t′ ∈ S ′ s.t. r′(i) ; t′, σ and σ′ are equivalent
for ϕ w.r.t. r(i+1) and t′, and r(i+1) ≈ t′. Let r′(i+1) = t′. It is
clear that r′ is a t.e. run in P ′, and that, by Lemma 10, the transitions
of r′ can be chosen so as to fulfill requirement (iv).

We can now prove the following result, which states that FO-
CTLK formulas cannot distinguish bisimilar and uniform AC-MAS.

Theorem 12 Consider bisimilar and uniform AC-MAS P and P ′,
bisimilar states s ∈ S and s′ ∈ S ′, an FO-CTLK formula ϕ, and
assignments σ and σ′ equivalent for ϕ w.r.t. s and s′. If

1. for every t.e. run r s.t. r(0) = s, for all k ≥ 0 we have |U ′h| ≥
|adomh(r(k))∪adomh(r(k+1))∪Ch∪σ(frh(ϕ))|+ |varh(ϕ)\
frh(ϕ)|;

2. for every t.e. run r′ s.t. r′(0) = s′, for all k ≥ 0 we have
|Uh| ≥ |adomh(r′(k))∪ adomh(r′(k+1))∪Ch ∪σ′(frh(ϕ))|+
|varh(ϕ) \ frh(ϕ)|;

then

(P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

Proof (sketch). The proof is by induction on the structure of ϕ
and makes use of Lemma 11 for the inductive cases concerning the
modal operators. The inductive cases for propositional connectives
are straightforward, while the base case for atomic formulas follows
from Lemma 2. The proof details are similar to Theorem 3.11 in [6]

We now state the main contribution of this section, which lifts the
result in [6] to AC-MAS with types and predicates with an infinite
interpretation. Hereafter sups∈S{|adomh(s)|} = ∞ whenever an
AC-MAS P is unbounded, i.e., there is no b ∈ N s.t. |adomh(s)| ≤ b
for all s ∈ S.

Theorem 3 Consider bisimilar and uniform AC-MAS P and P ′, and
a tFO-CTLK formula ϕ. If for every Th,

1. |U ′h| ≥ 2 sups∈S{|adomh(s)|}+ |Ch|+ |varh(ϕ)|
2. |Uh| ≥ 2 sups′∈S′{|adomh(s′)|}+ |Ch|+ |varh(ϕ)|
then

P |= ϕ iff P ′ |= ϕ

Proof (sketch). Equivalently, we prove that if (P, s0, σ) 6|= ϕ
for some σ, then there exists σ′ s.t. (P ′, s′0, σ′) 6|= ϕ, and viceversa.
To this end, notice that hypotheses 1 (resp. 2) of Theorem 3 implies
hypotheses 1 (resp. 2) of Lemma 12. Further, we observe that, by car-
dinality considerations, given assignment σ : Varh 7→ Uh, there ex-
ists an assignment σ′ : Varh 7→ U ′h s.t. σ and σ′ are equivalent for ϕ
w.r.t. s0 and s′0. Thus, by an application of Theorem 12 if there exists
an assignment σ s.t. (P, s0, σ) 6|= ϕ, then there exists an assignment
σ′ s.t. (P ′, s′0, σ′) 6|= ϕ. The converse can be proved analogously, as
the hypotheses are symmetric.

