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Overview

1 Background:
I from temporal logic to strategy logic

2 The Problem:
I imperfect information in reasoning about strategies
I weaker semantical properties (w.r.t. perfect information)
I failure of relevant fixed-point characterisations of ATL operators

3 The Proposed Solution:
I Methodology: an agent knows the stragy she’s using (at least)
I E-ATL: an epistemic extension of ATL

4 The Contribution:
I (partial) characterisations of ATL modalities 〈〈Σ〉〉F , 〈〈Σ〉〉G , 〈〈Σ〉〉U in contexts of imperfect

information

5 Conclusions and Future Work
I applications to the model checking and satisfiability problems
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Background
An essential history of temporal logics in CS

’70: Linear-time Temporal Logic (LTL [Pnu77])

Xp:

p
. . .

qUp:

q q q p
. . .

’80: Computation-tree Temporal Logic (CTL [EC82])

AXϕ: AϕUψ: EϕUψ:

’90: Alternating-time Temporal Logic (ATL [AHK02])
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Background
Alternating-time Temporal Logic

ATL: a logic of strategic abilities

• strategy modality 〈〈Σ〉〉 expressing that ‘the agents in coalition Σ have a strategy to enforce . . . ’

• LTL modalities next X and until U

• interpreted on Concurrent Game Structures . . .

• . . . with a variety of semantical options:
I perfect v. imperfect information
I perfect v. imperfect memory
I objective v. subjective strategies

• Perfect information: fixed-point characterisations of ATL operators

〈〈Σ〉〉Gφ ↔ φ ∧ 〈〈Σ〉〉X〈〈Σ〉〉Gφ (1)

〈〈Σ〉〉Fφ ↔ φ ∨ 〈〈Σ〉〉X〈〈Σ〉〉Fφ (2)

〈〈Σ〉〉(φUφ′) ↔ φ
′ ∨ (φ ∧ 〈〈Σ〉〉X〈〈Σ〉〉(ψUφ′)) (3)

• useful validities: techniques for satisfiability [GS09] and model checking [AHK02, BDJ10]

• The Problem: (1)-(3) do not hold in the imperfect information semantics!
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The Problem
ATL with Imperfect Information

εA, εB

|= 〈〈A〉〉X〈〈A〉〉F win〈〈A〉〉F win 6 |=

λ, 0

〈〈A〉〉F win |=

λ, 1

|= 〈〈A〉〉F win

0, 0win |= 1, 0 0, 1 1, 1 |= win

(∗, 0) (∗, 1)

(0, ∗)
(1, ∗) (0, ∗)

(1, ∗)

A

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

• Bob chooses secretly between 0 and 1

• at the next step Anne also chooses between 0 and 1

• Anne wins the game iff the values provided by the two players coincide

• the dotted line indicates epistemic indistinguishability

• Anne knows that there exists a strategy to win the game . . .

. . . however, she is not able to point this strategy out

⇐ Anne has imperfect information of the game
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The Problem
ATL with Imperfect Information

εA, εB

λ, 0

〈〈A〉〉KAF win 6 |=

λ, 1

|= KA〈〈A〉〉F win

0, 0win |= 1, 0 0, 1 1, 1 |= win

(∗, 0) (∗, 1)

(0, ∗)
(1, ∗) (0, ∗)

(1, ∗)

A

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

It looks like it’s a question of knowledge

• Anne knows that there is some strategy to win (knowledge de dicto)

• but there is no strategy known to her to guarantee a win (knowledge de re)

. . . Let’s try and express this distinction explicitly in our language!
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Knowledge and Strategies
Logics of strategic abilities

• Extensions of logics for reactive systems with epistemic operators to reason about the
knowledge agents have of the system’s evolution:

I combinations of CTL and LTL with multi-modal epistemic logic S5n [HV86, HV89, FHMV95]
I successfully applied to MAS specification and verification [GvdM04, KNN+08, LQR09]

• Along these lines, [vdHW03] introduced ATEL.
I spawned a wealth of contributions:

F imperfect information/uniform strategies [Sch04, JvdH04]
F constructive knowledge [JÅ07]
F irrevocable/feasible strategies [AGJ07, Jon03]

• E-ATL: a logic of knowledge and strategies (under imperfect information)

I not the first attempt to distinguish knowledge de re/de dicto (ATOL [JvdH04])
I but here knowledge is not masked by strategy operators
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Epistemic Concurrent Game Models
Agents

We adopt an agent-oriented perspective.

Definition (Agent)

An agent i is

• situated in some local state li ∈ Li and . . .

• performs the actions in Acti

• . . . according to her protocol function Pri : Li 7→ 2Acti

The setting is reminiscent of the Interpreted Systems semantics for MAS [FHMV95].

Example

Anne = 〈LA,ActA,PrA〉 is defined as

• LA = {εA, λ, 0, 1}
• ActA = {0, 1, ∗}, where ∗ is the skip action

• PrA(εA) = PrA(0) = PrA(1) = {∗}, PrA(λ) = {0, 1}
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Epistemic Concurrent Game Models
ECGM

Interactions amongst agents generate ECGM.

• related to CGS [AHK02, MMPV14] and AETS [vdHW03]

• global states are not primitive: s = 〈l0, . . . , l`〉 ∈ G = Πi∈Ag Li

• joint actions are tuples σ = 〈σ0, . . . , σ`〉 ∈ Act = Πi∈Ag Acti

Definition (ECGM)

Given

I a set Ag = {i0, . . . , i`} of agents

I a set AP of atomic propositions

an ECGM P includes

I a finite set I ⊆ G of initial global states

I a transition function τ : G × Act → G

I an interpretation π : AP → 2G of atomic propositions

• we denote with S the set of reachable global states

• the epistemic indistinguishability relation is not primitive: s ∼i s′ iff li = l′i
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Epistemic Alternating-time Temporal Logic
E-ATL

E-ATL extends ATL with epistemic operators Ki for individual knowledge.

Definition (E-ATL)

E-ATL state formulas φ and path formulas ψ are defined in BNF as follows:

φ ::= p | ¬φ | φ→ φ | 〈〈Σ〉〉ψ | Kiφ

ψ ::= Xφ | φUφ | Kiψ

where p ∈ AP, i ∈ Ag and Σ ⊆ Ag .

• Syntatically,
I ATEL ⊂ E-ATL
I E-ATL and ATEL∗ are uncomparable

• KA〈〈A〉〉F win: Anne knows that there is some strategy to win the game

• ¬〈〈A〉〉KAF win: but there is no strategy known to her to guarantee a win
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Epistemic Concurrent Game Models
Strategies

Definition (Strategy)

An i -strategy fi : G + 7→ Acti maps finite sequences of states to enabled i-actions (i.e., fi (s) ∈ Pri (li )).

• for a group Σ = {i0, . . . , i`} of agents, a group strategy fΣ is a tuple 〈f0, . . . , f`〉
• a run λ is a sequence s0 → s1 → . . . of states s.t. s i+1 = τ(s i , σ) for some joint action σ ∈ Act

• a run λ belongs to outcome out(s, fΣ) iff λ(i + 1) ∈ τ(λ(i), (fΣ, fΣ)(λ(i))) for some Σ-strategy fΣ.

Under imperfect information, strategies depend on the local state of agents only.

Definition (Uniform Strategy [JvdH04])

An i-strategy is uniform iff for all states s, s′ ∈ S , s ∼i s′ implies fi (s) = fi (s′).

• A uniform i -strategy fi : Li 7→ Acti maps local states to enabled i-actions (i.e., fi (li ) ∈ Pri (li )).
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Semantics of E-ATL
Formal definition

Definition (Satisfaction)

An ECGM P satisfies a formula ϕ in a state s (possibly w.r.t. a strategy profile fAg ) as follows:

(P, s) |= p iff s ∈ π(p)

(P, s) |= 〈〈Σ〉〉ψ iff for some Σ-strategy fΣ, for all Σ-strategies fΣ, (P, s, (fΣ, fΣ)) |= ψ
(P, s) |= Kiφ iff for every s′ ∈ S , s ∼i s′ implies (P, s′) |= φ
(P, s, fAg ) |= Xφ iff for λ = out(s, fAg ), (P, λ(1)) |= φ
(P, s, fAg ) |= φUφ′ iff for λ = out(s, fAg ), for some k ≥ 0, (P, λ(k)) |= φ′

and 0 ≤ j < k implies (P, λ(j)) |= φ
(P, s, fAg ) |= Kiψ iff for every s′ ∈ S , s ∼i s′ implies (P, s′, fAg ) |= ψ
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The Working Hypothesis
Fixed-point Characterisations

〈〈i〉〉Gφ ↔ φ ∧ 〈〈i〉〉X (〈〈i〉〉Gφ ∧ (Ki 〈〈i〉〉Gφ→ 〈〈i〉〉Ki Gφ)) (4)

〈〈i〉〉Fφ ↔ φ ∨ 〈〈i〉〉X (〈〈i〉〉Fφ ∧ (Ki 〈〈i〉〉Fφ→ 〈〈i〉〉Ki Fφ)) (5)

〈〈i〉〉(ψUφ) ↔ φ ∨ (ψ ∧ 〈〈i〉〉X (〈〈i〉〉(ψUφ) ∧ (Ki 〈〈i〉〉(ψUφ)→ 〈〈i〉〉Ki (ψUφ)))) (6)

• Single agent case only.

• Also, negations appear in (4)-(6),
I hence, the corresponding functions are not monotonous.

⇒ Least and greatest fixed points might not exist.
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The Working Hypothesis
The puzzle revisited

εA, εB〈〈A〉〉F win 6 |=

λ, 0KA〈〈A〉〉F win → 〈〈A〉〉KAF win 6 |= λ, 1 6|= KA〈〈A〉〉F win → 〈〈A〉〉KAF win

0, 0win |= 1, 0 0, 1 1, 1 |= win

(∗, 0) (∗, 1)

(0, ∗)
(1, ∗) (0, ∗)

(1, ∗)

A

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

• (λ, 0) |= KA〈〈A〉〉F win: Anne knows that there is some strategy to win the game

• (λ, 0) 6|= 〈〈A〉〉KAF win: but there is no strategy known to her to guarantee a win
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More Problems . . .
. . . and a first solution

εA, εB〈〈A〉〉F win |=

λ, 0

KA〈〈A〉〉F win → 〈〈A〉〉KAF win 6 |=

λ, 1

1, 0 0, 1 1, 1 |= win0, 0win |=

(0, ∗) (1, ∗)

(0, ∗)
(0, ∗)(1, ∗)

(1, ∗)

A

(∗, ∗)(∗, ∗) (∗, ∗)(∗, ∗)

• Methodology: agents know the strategy they are using (context)

• ECGM P satisfies formula ϕ in state s w.r.t. strategy profile fAg and context VAg = 〈V0, . . . ,V`〉 iff

(P, s,VAg ) |= Kiφ iff for every s′ ∈ Vi , s ∼i s′ implies (P, s′,VAg ) |= φ
(P, s,VAg , fAg ) |= Kiψ iff for every s′ ∈ Vi , s ∼i s′ implies (P, s′,VAg , fAg ) |= ψ
(P, s,VAg ) |= 〈〈Σ〉〉ψ iff for some Σ-strategies fΣ, for all Σ-strategies fΣ,

(P, s, out(V1, f1), . . . , out(V`, f`), (fΣ, fΣ)) |= ψ

• A formula φ is satisfied at s iff it is satisfied in context 〈{s}, . . . , {s}〉.
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Yet More Problems . . .
. . . and a second attempt
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(∗, ∗)(∗, ∗) (∗, ∗)

(∗, ∗)

• Let’s consider a perfect memory semantics

• ECGM P satisfies formula ϕ at history h w.r.t. strategy profile fAg and context VAg = 〈V0, . . . ,V`〉 iff

(P, h,VAg ) |= Kiφ iff for every h′ ∈ Vi , h ∼i h′ implies (P, h′,VAg ) |= φ
(P, h,VAg , fAg ) |= Kiψ iff for every h′ ∈ Vi , h ∼i h′ implies (P, h′,VAg , fAg ) |= ψ
(P, h,VAg ) |= 〈〈Σ〉〉ψ iff for some Σ-strategies fΣ, for all Σ-strategies fΣ,

(P, h, out(V1, f1), . . . , out(V`, f`), (fΣ, fΣ)) |= ψ
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A (Fixed-point) Characterisation

• by considering a semantics with imperfect information but perfect memory, formulas (4)-(6)
are valid.

• actually, they can be reduced to the following equivalences:

〈〈Σ〉〉Gφ ↔ φ ∧ 〈〈Σ〉〉X (〈〈Σ〉〉EΣGφ)

〈〈Σ〉〉Fφ ↔ φ ∨ 〈〈Σ〉〉X (〈〈Σ〉〉EΣFφ)

〈〈Σ〉〉(φUφ′) ↔ φ′ ∨ (φ ∧ 〈〈Σ〉〉X (〈〈Σ〉〉EΣ(φUφ′)))

Limitations:

• φ must be purely temporal!

• no unfolding!
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Conclusions

Results:

• E-ATL: a logic for reasoning about knowledge and strategies in a multi-agent setting

• Methodology: agents know the strategy they are using, that is, their context

• under perfect memory E-ATL allows us to (partially) recover the characterisation of ATL
operators

and Future Work:

• Extension to arbitrary formulas (arbitrary contexts)

• Application (algorithms?) to satisfiability

Ir IR ir iR
sub obj sub obj

SAT EXPTIME EXPTIME no result no result no result no result

I perfect (I) and imperfect (i) information
I perfect (R) and imperfect (r) memory
I subjective and objective strategies
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Questions?
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