
Verification of GSM-based Artifact-centric Systems
through Finite Abstraction

Francesco Belardinelli1, Alessio Lomuscio1, and Fabio Patrizi2

1 Department of Computing, Imperial College London
{f.belardinelli,a.lomuscio}@imperial.ac.uk

2 DIIAG, Sapienza Università di Roma
patrizi@dis.uniroma1.it

Abstract. The GSM framework provides a methodology for the development
of artifact-centric systems, an increasingly popular paradigm in service-oriented
computing. In this paper we tackle the problem of verifying GSM programs in a
multi-agent system setting. We provide an embedding from GSM into a suitable
multi-agent systems semantics for reasoning about knowledge and time at the
first-order level. While we observe that GSM programs generate infinite mod-
els, we isolate a large class of “amenable” systems, which we show admit finite
abstractions and are therefore verifiable through model checking. We illustrate
the contribution with a procurement use-case taken from the relevant business
process literature.

1 Introduction

The Artifact-centric paradigm [6, 7] has recently gained considerable prominence in the
business processes and services communities as a promising and novel methodology for
quick and inexpensive deployment of data-intensive web-services. In the artifact-centric
approach data feature prominently and drive the execution of the system, together with
the associated process-based description of the services. The Guard-Stage-Milestone
(GSM) language [10], together with its Barcelona production and execution suite, pro-
vides a declarative framework to deploy artifact-centric systems. In a nutshell, GSM
offers the constructs for the definition of artifacts as typed records of data, their evolu-
tion (or lifecycles) through a dedicated rule-driven semantics, and the interface for the
interaction of the artifact-systems with possible users. Such interface is in fact com-
posed of services, i.e., operations (or tasks), each with its interface and semantics, that
external actors can invoke, which affect the current state of the artifacts in the system,
and may in turn trigger the execution of other operations.

In this paper we tackle the topic above from a verification perspective. We see two
considerable deficiencies in the GSM approach as it currently stands. Firstly, similarly
to the database-inspired techniques, GSM programs only define the evolution of the
artifact-system and provide no precise mechanism for accounting for any users or au-
tomatic agents interacting with the system. Yet, if we wish to follow an approach of
implementing services through agents, these need to be present in the model. Secondly,
GSM currently lacks any support for automatic verification. Yet, validation through ver-
ification is increasingly being regarded as an important aspect of service deployment
[12, 15, 17].

This paper aims to make a direct contribution towards these two key problems.
To solve the first concern, we provide a semantics, based on multi-agent systems, to
GSM programs where we give first-class citizenship to human actors and automatic
agents present in the service composition. To solve the second, we observe that GSM
programs generate infinite-state systems thereby making traditional model checking
impracticable. Our key contribution here is to show that GSM programs admit, under
the rather general conditions we identify below, finite models, thereby opening the way
for their effective verification. We show through one example that the finite models
required are indeed of manageable size. The rest of the paper is organised as follows. In
Section 2 we introduce artifacts and GSM programs, which are illustrated by the RPO
scenario in Section 3. In Section 4 we adopt the semantics of AC-MAS to deal with
the verification of GSM programs. Finally, in Section 5 we show how to embed GSM
programs into AC-MAS; thus obtaining finite abstractions for the former.

Related work. The exploration of finite abstraction in the context of artifact-centric
environments has attracted considerable attention recently [2–5, 8, 9, 14]. While all works
cited make a noteworthy contribution and are in some cases used here as a stepping
stone for our results [2–4], the key point of departure from the literature of the present
contribution is that we here operate directly on GSM programs and not on logical mod-
els derived manually from them. We see this as an essential step towards the construc-
tion of automatic verification techniques for GSM programs.

2 GSM Programs

Artifact-centric systems are based on the notion of artifact, or a record of structured
data, that are born, evolve, and die during a system run either as a consequence of chains
of internal actions of other artifacts, or through external actions performed by actors.
GSM [10] is a declarative language, interpreted by specialised toolkits, that enables the
user to implement sophisticated guard-stage-milestone models for artifact systems.

For simplicity, here we work on an untyped version of GSM programs in which we
also neglect timestamps: while GSM programs are richer, the version we consider en-
ables us to present concisely our decidability results while at the same time supporting
complex use-cases as we show in Section 3. The present section makes use of notions
and definitions from [10].

Definition 1 (Artifact Type). An artifact type is a tuple AT = 〈P, x,Att, Stg,Mst,
Lcyc〉 s.t.

– P is the name of the artifact type;
– x is a variable that ranges over the IDs of instances of AT ; this is the context

variable of AT , which is used in the logical formulas in Lcyc;
– Att is the set of attributes, which is partitioned into the setAttdata of data attributes

and Attstatus of status attributes;
– Stg is the set of stages;
– Mst is the set of milestone;
– Lcyc is the lifecycle model of the artifact typeAT , which is formally defined below.

Intuitively, artifact types can be seen as records of structured data. Stages, mile-
stones and lifecycles will be introduced shortly. Also, Attdata includes the attribute
mostRecEventType, which holds the type of the most recent event. Milestones and
stages describe the evolution of the artifact type. For each milestone m ∈ Mst, in
Attstatus there is a boolean milestone status attribute, denoted as m. Analogously, for
each stage S ∈ Stg, in Attstatus there is a boolean stage status attribute, activeS .

While the data content of an artifact type is specified by its datamodel, i.e., all its
attributes excluding the lifecycle, its execution is described by its lifecycle.

Definition 2 (Lifecycle). The lifecycle of an artifact typeAT is a tupleLcyc = 〈Substg,
Task,Owns,Guards,Ach, Inv〉 s.t.

– Substg is a function from Stg to finite subsets of Stg, where the relation {(S, S′)|S′ ∈
Substg(S)} is a forest. The leaves of this forest are called atomic stages.

– Task is a function from the atomic stages in Stg to tasks.
– Owns is a function from Stg to finite, non-empty subsets of Mst. A stage S owns

a milestone m if m ∈ Owns(S).
– Guards is a function from Stg to finite sets of sentries, as defined in Section 2.1.

An element of Guards(S) is called a guard for S.
– Ach is a function from Mst to finite sets of achieving sentries.
– Inv is a function from Mst to finite sets of invalidating sentries.

We will give all details on the notions above in Section 2.1. Intuitively, every artifact
goes through a number of stages, which are activated by the relevant guards. A stage
is closed when the tasks associated with it and its substages are fulfilled. When this
happens, the milestones associated with the stage become true and possibly trigger the
guards associated with another stage.

We now introduce GSM programs.

Definition 3 (GSM program). A GSM program Γ is a set of artifact types ATi for
i ≤ n.

As a convenience, we assume that all context variables are distinct. Artifact in-
stances are then defined as mappings from artifact types to a possibly infinite interpre-
tation domain U of data values.

Definition 4 (AT and GSM snapshot). A snapshot for the artifact type AT is a map-
ping σ from x,Att to the interpretation domain U .

A snapshot for the GSM program Γ is a mapping Σ from each type AT ∈ Γ to a
set Σ(AT) of snapshots for type AT .

Intuitively, a snapshot for the artifact type AT is an assignment of the values in U
to the attributes of AT . A GSM snapshot is then a collection of AT snapshots. Notice
that different instances of the same artifact type are distinguished by their IDs σ(x),
hereafter denoted as ρ.

2.1 Execution of GSM Programs

In GSM programs events are responsible for the evolution of the system from one snap-
shot to the next. Three types of incoming events are considered: 1-way messages M ,
2-way service call returns F return, and artifact instance creation requests createcallAT . A
ground event e has a payload (A1 : c1, . . . , An : cn) where Ai is a data attribute and
ci is a value in the domain U . Intuitively, incoming events are processed by the sentries
associated with guards and milestones, and the payload determines the evolution of the
stage as detailed below.

Definition 5 (Immediate effect). The immediate effect of a ground event e on a snap-
shot Σ, or ImmEffect(Σ, e), is the snapshot that results from incorporating e into Σ,
including (i) changing the values of the mostRecEventType attribute of affected (or
created) artifact instances; (ii) changing the values of data attributes of affected artifact
instances, as indicated by the payload of e.

The operational semantics for GSM programs is built around the notion of business
step, or B-step, which represents the impact of a single ground incoming event e on a
snapshot Σ. The semantics of B-steps is characterised by 3-tuples (Σ, e,Σ′) s.t.

1. Σ is the previous snapshot;
2. e is a ground incoming event;
3. Σ′ is the next snapshot;
4. there is a sequence Σ0, Σ1, . . . , Σn of snapshots s.t. (i) Σ0 = Σ; (ii) Σ1 =

ImmEffect(Σ, e); (iii) Σn = Σ′; and (iv) for 1 ≤ j ≤ n − 1, Σj+1 is obtained
from Σj by a PAC rule.

Business steps involve Prerequisite-Antecedent-Consequent (PAC) rules. To intro-
duce PAC rules we first define formally event expressions and sentries. In what follows
τAT is a path expression x. < path > where x is the ID variable for some artifact type
AT ∈ Γ . An example of a path expression is ρ.S.m, which refers to the milestone m
of stage S, for some AT instance ρ.

Definition 6 (Event expression). An event expression ξ(x) for an artifact type AT
with ID variable x has one of the following forms:

– Incoming event expression x.e: (i) x.M for 1-way message typeM ; (ii) x.F return

for service call return from F ; (iii) x.createcallAT for a call to create an artifact
instance of type AT .

– Internal event expression: (i) +τAT ′ .m and−τAT ′ .m, wherem is a milestone for
type AT ′; (ii) +τAT ′ .activeS and −τAT ′ .activeS , where S is a stage of type AT ′.

Intuitively, an event occurrence of type +τAT ′ .m (resp. −τAT ′ .m) arises when-
ever the milestone m of the instance identified by x. < path > changes value from
false to true (resp. true to false). Similarly, an event occurrence of type +τAT ′ .activeS
(resp. −τAT ′ .activeS) arises whenever the stage S of the instance identified by x. <
path > changes value from closed to open (resp. open to closed).

We can now define sentries for guards and milestones. These represent the condi-
tions to open and close stages.

Definition 7 (Sentry). A sentry for an artifact type AT is an expression χ(x) having
one of the following forms: on ξ(x) if ϕ(x)∧x.activeS , on ξ(x), or if ϕ(x)∧x.activeS
s.t. (i) ξ(x) is an event expression; and (ii) ϕ(x) is an FO-formula over the artifact types
occurring in Γ that has exactly one free variable.

We now discuss the interpretation of sentries, i.e., when a snapshotΣ satisfies a sen-
try χ, or Σ |= χ. Satisfaction of an FO-formula ϕ at Σ is defined as standard. Further,
the expression ρ.e for an artifact instance ρ is true at Σ if ρ.mostRecEventType = e.
Finally, the internal event expression �ρ.τ.s for polarity � ∈ {+,−}, path expression
τ , and status attribute s, is true at Σ if the value of ρ.τ.s matches the polarity.

We can now introduce PAC rules.

Definition 8 (PAC rules). A PAC rule is a tuple 〈π(x), α(x), γ(x)〉 s.t.

– π(x) is of the form τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS;
– α(x) is of the form χ(x) ∧ ψ(x), where χ(x) is a sentry and ψ(x) is of the form
τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS;

– γ(x) is an internal event expression as in Def. 6.

Given a B-step Σ = Σ0, Σ1, . . . , Σj for a ground event e, the PAC rule 〈π, α, γ〉 is
applicable if Σ |= π and Σj |= α. Applying such a rule yields a new snapshot Σj+1,
which is constructed from Σj by applying the effect called for by γ.

Additional conditions can also be assumed for the application of PAC rules, which
notably ensure the absence of cycles. We do not present these here and refer to [10] for
further information.

3 The RPO Scenario

The Requisition and Procurement Orders (RPO) scenario is a business process use-case
in which a GSM program is used to implement the procurement process in a business
setting [10]. We illustrate the notions presented in Section 2 in the context of a fragment
of this scenario. In RPO a Requisition Order is sent by a Customer to a Manufacturer
to request some goods or services. The Requisition Order has one or more Line Items,
which are bundled into Procurement Orders and sent to different Suppliers. A Supplier
can either accept or reject a Procurement Order. In the latter case, the rejected Line
Items are bundled into new Procurement Orders. Otherwise, the order is fulfilled by the
Supplier and sent to the Manufacturer, who in turn forwards it to the Customer.

In GSM programs it is natural to model the Requisition and Procurement Orders as
artifact types RO and PO respectively. In particular, the datamodel of the Requisition
Order, i.e., all its attributes excluding the lifecycle, can be encoded as in Fig. 1, which
is adapted from [10]. The definition of the Procurement Order datamodel is similar.
Notice that in the datamodel we have both data and status attributes; the latter contain
milestone and stage data as detailed in Def. 1.

Further, Fig. 2 illustrates part of the lifecycle for the Requisition Order [10]. Stages
are represented as rounded boxes. The stage Create Proc Orders contains the child-
stages Launching Line Items and Planning Proc Orders; the former is atomic. Mile-
stones are shown as small circles associated with stages. For instance, the milestones All

ID

Lin
e

Ite
m

s
Pr

oc
Or

de
rs

…

Milestone
data

Stage
data

Status AttributesData Attributes

M
os

t R
ec

en
t

Ev
en

t T
yp

e
M

os
t R

ec
en

t
Ev

en
t T

im
e

Fig. 1. The Requisition Order datamodel.

Create Proc Orders

Planning Proc OrdersLaunching Line Items

Initiate
Req.

Order

Re-Order
Line Items

of Rejected
Proc

Orders

All Line
Items
ordered

Req.
Order
cancelled

Fig. 2. A stage of the Requisition Order lifecycle.

Line items ordered and Req Order cancelled are associated with the stage Create
Proc Orders. The former is an achieving milestone, i.e., when All Line items ordered
becomes true the stage is closed; while the latter is invalidating, that is, when Req Or-
der cancelled holds, the stage is reopened. The diamond nodes are guards. The stage
Create Proc Orders is triggered by guards Initiate Req Order and Re-order Line
Items of Rejected Proc Orders. A diamond with a cross represents a “bootstrapping”
guard, which indicates the conditions to create new artifact instances. Similar represen-
tations can be given for all other stages in the Requisition and Procurement Orders.

As discussed in Section 2 the execution of GSM programs is governed by PAC rules.
To illustrate these we consider PAC2 as given in [10]:

Prerequisite π Antecedent α Consequent γ
PAC2 x.activeS on e(x) if ϕ(x) +x.m

where stage S has milestone m and on e(x) if ϕ(x) is an achieving sentry for
m. Suppose that Σ0, Σ1, . . . , Σj is a sequence of snapshots in a B-step. Intuitively, if
Σ |= π then there is an artifact instance ρ s.t. ρ.activeS is true, i.e., the stage S is active
for ρ. Furthermore, if Σj |= α then ρ.mostRecEventType = e and the achieving
condition ϕ for milestone m holds. Finally, Σj+1 is obtained by applying +ρ.m, i.e.,
by toggling true the flag m for the milestone status of S.

As a result, we clearly see that GSM programs are expressive enough to formalise
business processes such as the Requisition and Procurement Orders scenario.

4 Artifact-Centric MAS with Parametric Actions

In Section 5 we introduce a sufficient condition for obtaining finite abstractions for a
notable class of the GSM programs. In order to define an embedding into an agent-

based semantics, as well as to state precisely the model checking problem for these
structures, we here begin our contribution by generalising the framework of [4] to para-
metric actions. As we will see later, this is required to obtain effective model checking
procedures. While the material extends [4], it follows its structure and some of the def-
initions.

We start by introducing some terminology on databases [1].

Definition 9 (Database schema and instance). A database schema is a setD = {P1/q1,
. . . , Pn/qn} of predicate symbols Pi with arity qi ∈ N.

A D-instance on a (possibly infinite) domain U is a mapping D associating each
predicate symbol Pi with a finite qi-ary relation over U , i.e., D(Pi) ⊆ Uqi .

The set D(U) denotes all D-instances on the domain U . The active domain ad(D)
ofD is the finite set of all individuals occurring in some predicate interpretationD(Pi).
The primed version of a database schema D as above is the schema D′ = {P ′1/q1, . . . ,
P ′n/qn}. Given two D-instances D and D′, D ⊕ D′ is the (D ∪ D′)-instance s.t. (i)
D ⊕ D′(Pi) = D(Pi); and (ii) D ⊕ D′(P ′i) = D′(Pi). The ⊕ operator will be used
later in relation with temporal transitions in artifact systems.

We now extend the definition of AC-MAS in [4] to accommodate parametric ac-
tions, where U is the interpretation domain.

Definition 10 (Agent). An agent is a tuple i = 〈Di, Li, Acti, P ri〉 s.t.

– Di is the local database schema;
– Li ⊆ Di(U) is the set of local states li;
– Acti is the set of local actions αi(~x) with parameters ~x;
– Pri : Li 7→ 2Acti(U) is the local protocol function, where Acti(U) is the set of

ground actions αi(~u) for ~u ∈ U |~x|.

Given a set Ag = {0, . . . , n} of agents, we define the global database schema of
Ag as D = D0 ∪ · · · ∪Dn, i.e., the set of all predicate symbols appearing in some local
database schema. Also, agent 0 is usually referred to as the environment E.

Agents can be thought of as modules that can be composed together to obtain AC-
MAS.

Definition 11 (AC-MAS). Given a set Ag of agents, an artifact-centric multi-agent
system is a tuple P = 〈S, U, s0, τ〉 s.t.

– S ⊆ LE × L1 × · · · × Ln is the set of reachable global states;
– U is the interpretation domain;
– s0 ∈ S is the initial global state;
– τ : S × Act(U) 7→ 2S is the transition function, where Act = ActE × Act1 ×
· · · × Actn is the set of global actions, Act(U) is the set of ground actions, and
τ(〈lE , l1, . . . , ln〉, ~α(~u)) is defined iff αi(~u) ∈ Pri(li) for every i ∈ Ag.

In the rest of the paper we assume the function τ to be computable. In particular, for
any state s ∈ S and ground action α(~u) ∈ Act(U), the set |τ(s, α(~u))| of successors
of s is finite. This allows us to abstract from the way τ is actually defined. As it will

become apparent in Section 5, GSM programs induce a τ that fulfills this requirement.
Also, we assume that no confusion arises with path expressions in GSM programs.

We can interpret a global state s = 〈lE , l1, . . . , ln〉 as theD-instanceD s.t.D(Pi) =⋃
j∈Ag lj(Pi), for Pi ∈ D. Notice that for each s ∈ S there exists a unique D-instance

D as above, however the converse is not true in general. The wayD has to be interpreted
will be clear from the context. We define the transition relation s → s′ if there exists
~α(~u) ∈ Act(U) and s′ ∈ τ(s, ~α(~u)). The notion of reachability is defined as in [4].
In what follows we assume that the relation→ is serial, and that S is the set of states
reachable from s0. Notice that by definition S is infinite in general. Hence, the AC-
MAS P is an infinite-state system. Finally, s and s′ are epistemically indistinguishable
for agent i, or s ∼i s′, if li(s) = li(s′). This is consistent with the standard definition
of knowledge as identity of local states [11].

As we are working in a multi-agent system setting, we require to specify temporal-
epistemic properties of the system and be able to quantify on individuals.

Definition 12 (FO-CTLK). Given a set V ar of individual variables and a set Con ⊆
U of individual constants, the FO-CTLK formulas ϕ on the database schema D are
defined in BNF as follows:

ϕ ::= t = t′ | Pi(~t) | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ

where Pi ∈ D, ~t is a qi-tuple of terms, and t, t′ are terms, i.e., elements in V ar ∪Con.

The language FO-CTLK is the extension to first-order of the branching time logic
CTL enriched with an epistemic operator Ki for each agent i ∈ Ag [2]. For a formula
ϕ we denote the set of variables as var(ϕ), the set of free variables as fr(ϕ), and
the set of constants as con(ϕ). We consider also the non-modal first-order fragment of
FO-CTLK, obtained by omitting the modal operators in Def. 12.

An assignment is a function σ : V ar 7→ U . We denote by σ
(
x
u

)
the assignment

s.t. (i) σ
(
x
u

)
(x) = u; and (ii) σ

(
x
u

)
(x′) = σ(x′) for x′ 6= x. We assume that no confusion

will arise between assignments in AC-MAS and snapshots in GSM programs. Also, we
assume a Herbrand interpretation of constants.

Definition 13 (Semantics of FO-CTLK). We define whether an AC-MAS P satisfies a
formula ϕ in a state s under assignment σ as standard [4]. In particular,

(P, s, σ) |= Pi(t1, . . . , tqi) iff 〈σ(t1), . . . , σ(tqi)〉 ∈ s(Pi)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ∀xϕ iff for all u ∈ ad(s), (P, s, σ

(
x
u

)
) |= ϕ

(P, s, σ) |= Kiϕ iff for all s′, s ∼i s′ implies (P, s′, σ) |= ϕ

A formula ϕ is true at s, written (P, s) |= ϕ, if (P, s, σ) |= ϕ for all assignments σ; ϕ
is true in P , written P |= ϕ, if (P, s0) |= ϕ.

Note that we adopt an active domain semantics, that is, quantified variables range over
the active domain of s.

Given an AC-MAS P and an FO-CTLK formula ϕ, the model checking problem
amounts to finding an assignment σ such that (P, s0, σ) |= ϕ. Since P has infinitely
many states, the corresponding model checking problem is undecidable in general.
However, in Section 5.1 we show that there are notable exceptions.

4.1 Finite Abstractions

In this section we extend the techniques in [4] to define finite abstractions for AC-
MAS with parametric actions. We omit proofs for reasons of space. We fix a finite
set C ⊇ ad(s0) of constants. Further, whenever we consider an FO-CTLK formula
ϕ, we assume w.l.o.g. that con(ϕ) ⊆ C. Finally, the states s and s′ are defined on
the interpretation domains U and U ′ respectively, and P = 〈S, U, s0, τ〉 and P ′ =
〈S ′, U ′, s′0, τ ′〉 are AC-MAS.

To introduce the notion of bisimulation as defined in [4], we first need to state when
two states are isomorphic.

Definition 14 (Isomorphism). The states s and s′ are isomorphic, or s ' s′, iff there
exists a bijection ι : ad(s) ∪ C 7→ ad(s′) ∪ C s.t. (i) ι is the identity on C; and (ii) for
every Pi ∈ D, j ∈ Ag, and ~u ∈ Uqi , ~u ∈ lj(Pi) iff ι(~u) ∈ l′j(Pi).

Any function ι as above is a witness for s ' s′. Notice that isomorphic instances
preserve first-order (non-modal) formulas:

Proposition 1. Let ϕ be an FO-formula, assume that s ' s′, and let σ : V ar 7→ U and
σ′ : V ar 7→ U ′ be assignments s.t. (i) there is a bijection γ : ad(s)∪C ∪ σ(fr(ϕ)) 7→
ad(s′) ∪ C ∪ σ′(fr(ϕ)); (ii) γ is a witness for s ' s′; and (iii) σ′ = γ ◦ σ. Then
(P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

Essentially, Prop. 1 says that isomorphic instances cannot distinguish FO-formulas.
We now generalise this result to the language FO-CTLK.

Definition 15 (Similarity). The AC-MAS P ′ simulates P , or P � P ′, iff there exists a
simulation relation on S × S ′, i.e., a relation � s.t. (i) s0 � s′0; and (ii) if s � s′ then

1. s ' s′;
2. for every t, if s→ t then there is t′ s.t. s′ → t′, s⊕ t ' s′ ⊕ t′ and t � t′;
3. for every t, if s ∼i t then there is t′ s.t. s′ ∼i t′, s⊕ t ' s′ ⊕ t′ and t � t′.

Moreover, we say that P and P ′ are bisimilar, or P ≈ P ′, iff there exists a bisimu-
lation relation on S × S ′, i.e., a relation ≈ s.t. both ≈ and ≈−1= {〈s′, s〉 | s ≈ s′} are
simulation relations.

Finally, we introduce the class of AC-MAS of interest.

Definition 16 (Uniformity). An AC-MAS P is uniform iff for every s, t, s′ ∈ S , t′ ∈
D(U), if t ∈ τ(s, α(~u)) and s⊕ t ' s′ ⊕ t′ for some witness ι, then for every bijection
ι′ extending ι, t′ ∈ τ(s′, α(ι′(~u))).

Intuitively, uniformity requires that transitions do not depend on the data content
of each state, apart from constants in C. This definition of uniformity extends [4] as
parametric actions are considered explicitly, thus allowing for effective abstraction.

We now show that uniformity, together with bisimilarity and boundedness, is suffi-
cient to preserve FO-CTLK formulas, where an AC-MAS P is b-bounded, for b ∈ N,
if for all s ∈ S, |ad(s)| ≤ b. Observe that boundedness imposes no restriction on the
domain U of P . Thus, if U is infinite, so is the state space of P in general.

The next results show that, although infinite-state, an uniform and b-bounded AC-
MAS P can be verified by model checking the finite abstraction of P . In what follows
NAg = maxα(~x)∈Act{|~x|}.

Definition 17. Let Ag be a set of agents, and let U ′ be a set. For each agent i =
〈D, L,Act, Pr〉 in Ag we define an agent i′ = 〈D′, L′, Act′, P r′〉 s.t. (i) D′ = D; (ii)
L′ = D′(U ′); (iii) Act = Act; (iv) α(~u) ∈ Pr′(l′) iff there is l ∈ L s.t. l′ ' l for some
witness ι, and α(ι′(~u)) ∈ Pr(l) for some bijection ι′ extending ι. Let Ag′ be the set of
all i′ thus defined.

Notice that the definition of i′ depends on the set U ′. However, we omit U ′ when it
is clear from the context.

Definition 18 (Abstraction). Let P be an AC-MAS over Ag, the abstraction P ′ over
Ag′ is defined as follows:

– s′0 = s0;
– t′ ∈ τ ′(s′, α(~u)) iff there are s, t, and ~u′ s.t. t ∈ τ(s, α(~u′)), s ⊕ t ' s′ ⊕ t′ for

some witness ι, and ~u = ι′(~u′) for some bijection ι′ extending ι;
– S ′ is the set of reachable states.

Notice that P ′ is an AC-MAS. In particular, P ′ satisfies the conditions on protocols
and transitions, and it is finite whenever U ′ is.

We can now prove the main result of this section, which extends Theorem 4.7 in [4]
to AC-MAS with parametric actions.

Theorem 1. Given an infinite, b-bounded and uniform AC-MAS P , an FO-CTLK for-
mula ϕ, and a finite set U ′ ⊇ C s.t. |U ′| ≥ 2b + |C| + max{var(ϕ), NAg}, the
abstraction P ′ is finite, uniform and bisimilar to P . In particular, P |= ϕ iff P ′ |= ϕ

This result states that by using a sufficient number of elements in P ′, we can reduce
the verification of an infinite AC-MAS to verifying a finite one. Also notice that U ′

can be taken to be any finite subset of U satisfying the condition on cardinality. By
doing so, the finite abstraction P ′ can be defined simply as the restriction of P to U ′.
Thus, every infinite, b-bounded and uniform AC-MAS is bisimilar to a proper finite
subsystem, which can be effectively generated.

5 Embedding of GSM Programs into AC-MAS

In this section we introduce an embedding of GSM programs into AC-MAS. By doing
so we achieve two results. Firstly, we provide a formal semantics to GSM programs via
AC-MAS that can be used to interpret FO-CTLK specifications. Secondly, this enables
us to apply the finite abstraction methodology in Section 4 to GSM programs.

To begin with, for each artifact type AT = 〈P, x,Att, Stg,Mst, Lcyc〉 we in-
troduce a predicate symbol P with attributes x, Att. Hence, the arity of P is qP =
1 + |Att|.

Definition 19. Given a GSM program Γ = {ATj}j≤n we define a database schema
DΓ = {Pj}j≤n s.t. each Pj is the predicate symbol corresponding to the artifact type
ATj .

We now introduce agents in GSM programs.

Definition 20. Given a GSM program Γ and an interpretation domain U , an agent is
a tuple i = 〈Di, Li, Acti, P ri〉 s.t.

– Di ⊆ DΓ is the local database schema, and DE = DΓ ;
– Li = Di(U) is the set of local states, and LE = DΓ (U);
– Acti is the set of actions αe(~y) for each event type ewith formal payload ~y. Further,

we introduce a skip action skipi for each agent i. ActE is defined similarly.
– For every ground action αi(~u), for every local state li, αi(~u) ∈ Pri(li), i.e., a

ground action αi(~u) is always enabled.

We observe that the original formulation of GSM programs in [10] does not ac-
count for agents. In fact, artifacts are bundled together in the Artifact Service Center
(ASC), which interacts with the external environment through incoming and generated
events. According to Def. 20 the Artifact Service Center of GSM programs is mapped
into the environment of AC-MAS; while the environment of GSM programs is mapped
to agents in AC-MAS. So, the notion of environment corresponds to different entities
in GSM programs and AC-MAS. We keep the original terminology, as the distinction
is clear. Furthermore, each agent, including the environment, perform actions corre-
sponding to sending an event to the ASC. As illustrated in Section 2.1, these include
1-way messages M , 2-way service call returns F return, and artifact instance creation
requests createcallAT . Actions are always enabled as no protocol is explicitly given for
GSM programs.

Given a set of agents defined as above, the AC-MAS PΓ associated to the GSM
program Γ is defined according to Def. 11. Specifically,

Definition 21. Given a set Ag of agents over the GSM program Γ and a snapshot Σ0,
the AC-MAS associated with Γ is a tuple PΓ = 〈S, U, sΣ0 , τ〉 s.t.

– S ⊆ Le × L1 × · · · × Ln is the set of reachable global states;
– U is the interpretation domain;
– sΣ0 ∈ S is the initial global state corresponding to Σ0;
– τ : S × Act(U) 7→ 2S is the global transition function s.t. t ∈ τ(s, α(~u)) iff (i) if
α = 〈αe, α1, . . . , αn〉 then at most one αi is different from skipi; (ii) if αi = αe
then (Σs, e, Σt) holds in Γ , where ~u is the payload of event e.

Notice that, given a set Ag of agents, there is a one-to-one correspondence between
snapshots in Γ and states in the AC-MAS PΓ . Given a snapshot Σ we denote the
corresponding state as sΣ . Similarly, Σs is the snapshot corresponding to the global
state s. Also, GSM programs do not specify initial states; therefore the definition of PΓ
is parametric in Σ0, i.e., the snapshot chosen as the initial state of Γ . Most importantly,
the transition function τ mirrors the B-step semantics of GSM programs. Since each
B-step consumes a single event, we require that at most one agent performs an event
action at each given time, while all other agents keep idle. This has correspondences
with other approaches based on multi-agent systems, such as interleaved interpreted
systems [16].

5.1 Finite abstractions of GSM programs

In this section we show that GSM programs admit finite abstractions. Specifically, by
suitably restricting the language of sentries we can prove that the AC-MASPΓ obtained
from a GSM program Γ is uniform. So, by applying Theorem 1 we obtain that if PΓ is
also bounded, then it admits a finite abstraction, hence its model checking problem is
decidable. The key notion of this subsection is that of amenable GSM program. Here-
after, LDΓ is the first-order (non-modal) language of formulas built on the predicate
symbols in the database schema DΓ in Def. 19.

Definition 22 (Amenable GSM programs). A sentry χ(x) is amenable iff the FO-
formula ϕ(x) in χ(x) belongs to the language LDΓ . A GSM program is amenable iff
all sentries occurring in any guard or milestone are amenable.

It is known that, given a database schema D, the language LD built on it is suffi-
ciently expressive to define a wide range of systems [4, 14]. As an example, the scenario
in Section 3 adheres to this property. Therefore we see amenable GSM programs as an
interesting and powerful class of GSM programs with potentially wide applicability.

The next results show that the AC-MAS PΓ is uniform whenever Γ is amenable.

Lemma 1. For every states s, t ∈ PΓ , if s ' t for some witness ι, then Σt = ι(Σs).

Proof. Notice that if ι is a witness for s ' t, then in particular the attributes x and Att
in Σs are mapped to the corresponding attributes in Σt. Further, the attributes in Stg,
Mst and Lcyc remain the same.

The next result is key in the proof of uniformity for PΓ .

Lemma 2. For every s, t , s′ ∈ S, t′ ∈ DΓ (U), if s ⊕ t ' s′ ⊕ t′ for some witness ι,
then (Σs, e, Σt) implies (Σs′ , ι′(e), Σt′) where ι′ is any bijection extending ι

Proof. Assume that (Σs, e, Σt) and ι is a witness for s ⊕ t ' s′ ⊕ t′. We show
that (Σs′ , ι′(e), Σt′) where ι′ is a bijection extending ι. If (Σs, e, Σt) then there is
a sequence Σ0, . . . , Σk of snapshots s.t. Σ0 = Σs, Σ1 = ImmEffect(Σs, e), and
Σk = Σt. Also, for 1 ≤ j ≤ k − 1, Σj+1 is obtained from Σj by the application
of a PAC rule. We show that we can define a sequence Σ′0, . . . , Σ

′
k s.t. Σ′0 = Σs′ ,

Σ′1 = ImmEffect(Σs′ , ι′(e)), Σ′k = Σt′ , and for 1 ≤ j ≤ k − 1, Σ′j+1 is obtained from
Σ′j by the application of a PAC rule. This is sufficient to show that (Σs′ , ι′(e), Σt′).
First, for 0 ≤ j ≤ k defineΣ′j = ι′(Σj). By Lemma 1 we have thatΣ′0 = ι′(Σs) = Σs′

and Σ′k = ι′(Σt) = Σt′ . Also, it is clear that if Σ1 = ImmEffect(Σs, e), then we
have that Σ′1 = ι′(Σ1) = ι′(ImmEffect(Σs, e)) is equal to ImmEffect(ι′(Σs), ι′(e)) =
ImmEffect(Σs′ , ι′(e)). Finally, we show that ifΣj+1 is obtained fromΣj by an applica-
tion of a PAC rule, then also Σ′j+1 is obtained from Σ′j by the same PAC rule. Consider
the PAC rule 〈π(x), α(x), γ(x)〉. We have that if Σs |= π(ρ) for some artifact ID ρ in
Σs, then clearly Σs′ |= π(ι′(ρ)). Further, let Σj |= α(ρ) ≡ χ(ρ) ∧ ψ(ρ), where χ(x)
is an amenable sentry and ψ(x) is of the form τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS .
Clearly, ifΣj |= ψ(ρ) thenΣ′j |= ψ(ι′(ρ)). Further, since χ(x) is of the form on ξ(x) if
ϕ(x) and ϕ(x) is an FO-formula in LDΓ , then by Prop. 1 we have that Σ′j |= χ(ι′(ρ)).

Hence, Σ′j |= α(ι′(ρ)). Finally, if Σj+1 is constructed from Σj by applying the effect
called for by γ(ρ), then Σ′j+1 is constructed from Σ′j by applying the effect called for
by γ(ι′(ρ)). Thus, we have the desired result.

Lemma 2 enables us to state the first of our two key results.

Theorem 2. If the GSM program Γ is amenable, then the AC-MAS PΓ is uniform.

Proof. Let assume that t ∈ τ(s, α(~u)) for some ground action α(~u) ∈ Act(U), and
s ⊕ t ' s′ ⊕ t′ for some witness ι. We prove that t′ ∈ τ(s′, α(ι′(~u)), where ι′ is a
bijection extending ι. By the definition of τ in PΓ , t ∈ τ(s, α(~u)) if (Σs, e, Σt), where
e is a ground event with payload ~u, and αi = αe for exactly one of the components in
α. By Lemma 2 we have that (Σs′ , ι′(e), Σt′), and again by definition of τ we obtain
that t′ ∈ τ(s′, α(ι′(~u))). As a result, PΓ is uniform.

By combining Theorems 1 and 2 we obtain a decidable model checking procedure
for amenable GSM programs. Specifically, a GSM program Γ is b-bounded if the car-
dinality of all snapshots is bounded, i.e., there is a b ∈ N s.t. |Σ| ≤ b for all snapshots
Σ ∈ Γ . Hence, we have the following result:

Corollary 1. Assume a b-bounded and amenable GSM program Γ on an infinite do-
main U , an FO-CTLK formula ϕ, and a finite set U ′ ⊇ C s.t. |U ′| ≥ 2b + |C| +
max{var(ϕ), NAg}. Then, the abstraction P ′ of PΓ is uniform and bisimilar to PΓ . In
particular, PΓ |= ϕ iff P ′ |= ϕ.

Thus, to verify a GSM program we can model check the finite abstraction of the
corresponding AC-MAS. Notice that by the remarks at the end of Section 4.1 the latter
procedure can be computed effectively.

To conclude, in [4] it was proved that the model checking problem for finite AC-
MAS is PSPACE-complete in the size of the state space S and the specification ϕ. So,
we obtain the following:

Proposition 2. Model checking bounded and amenable GSM programs is in PSPACE
in the number of states in the finite abstraction and the length of the specification.

Notice that amenability is a sufficient condition for decidability, but we have no hint
it is also necessary. So, the property of having a finite abstraction could be enjoyed by
a larger class of GSM programs. This point demands further investigations.

5.2 The RPO Scenario as an AC-MAS

We now show how the GSM programRPO for the Requisition and Procurement Orders
scenario in Section 3 translates into the corresponding AC-MAS PRPO. Firstly, we
associate the RPO program with the database schema DRPO containing a predicate
symbol PRO for the Requisition Order artifact type, as well as a predicate symbol PPO
for the Procurement Order artifact type. In particular, the predicate symbol PRO has
data and status attributes as specified in the datamodel in Fig. 1. The definition of PPO
is similar.

A number of agents appears in the RPO scenario: a Customer C, a Manufacturer
M, and one or more Suppliers S. According to Def. 20 each agent has a partial view
of the database schema DRPO = {PRO, PPO}. We can assume that the Customer
can only access the Requisition Order (i.e., DC = {PRO}), and the Supplier only the
Procurement Order (i.e., DS = {PPO}), while the Manufacturer can access both (i.e.,
DM = {PRO, PPO} = DRPO). Finally, the AC-MAS PRPO = 〈S, U, s0, τ〉 defined
according to Def. 21, is designed to mimic the behaviour of the RPO program. In
particular, S is the set of reachable states; U is the interpretation domain containing
relevant items and data; s0 is an initial state, for instance, the one where all relations are
empty; τ is the transition function as in Def. 21. We define a temporal transition s→ s′

in PRPO iff there is some ground event e s.t. 〈Σs, e, Σs′〉 holds in RPO.
By means of the AC-MAS PRPO we can model check the RPO program against

first-order temporal epistemic specifications. For instance, the following FO-CTLK for-
mula specifies that the manufacturer M knows that each Procurement Order has to match
a corresponding Requisition Order:

φ = AG ∀ro id, ~x (PO(id, ro id, ~x)→ KM ∃~y RO(ro id, ~y))

We remark without a formal proof that theRPO program can be defined so that any
clause ϕ(x) in any sentry χ(x) belongs to the FO-languageLDRPO . Actually, first-order
languages on databases have proved significantly expressive in a number of context [4,
14]. Hence, the RPO program is amenable, and by Theorem 2 the AC-MAS PRPO is
uniform. Finally, if we also assume that the RPO program is bounded, then according
to Def. 18 we can introduce the finite abstraction P ′ of PRPO. This can be effectively
constructed as the subsystem P ′ of PRPO defined on a finite subset of the interpretation
domain satisfying the cardinality condition, that is, P ′ is defined as PRPO but for the
domain of interpretation U ′, which can be taken as the finite U ′ ⊇ C s.t. |U | = 2b +
|C| + max{var(φ), NAg}. By Corollary 1 we can check whether the RPO program
satisfies φ by model checking the finite abstraction P ′.

This leaves open the problem of checking that theRPO program is actually bounded,
a problem of general relevance to verification (think, e.g., of checking whether a pro-
gram may run out of memory), yet orthogonal to ours. A partial answer to this is pro-
vided by [14], which isolates a sufficient condition that guarantees boundedness of pro-
cesses operating on artifacts.

6 Conclusions

This paper stems from an observation regarding the current lack of support for veri-
fication in GSM environments. While abstraction methodologies for various artifact-
inspired systems have been put forward [14, 4, 8], they all lack support for program ver-
ification and operate on logical models, thereby making automatic model checking im-
practicable. Our objective in this paper was to surpass this severe limitation and position
the GSM approach firmly in an agent-based semantics, so that information-theoretic
properties such as knowledge of the participants could be verified. We achieved this
by extending minimally the semantics of AC-MAS [4] to account for parametric ac-
tions, while at the same time maintaining the key results concerning finite abstractions.

We then proceeded to map constructs of GSM into the corresponding constructs of the
revised AC-MAS, and identified what we called “amenable” GSM programs that we
showed to admit finite abstractions. We remarked that amenability is not a significant
limitation in applications and showed the key passages of the approach presented on
a fraction of a notable use-case from [10]. The work in this paper brings us consider-
ably closer to an implementation for automatic model checking of GSM programs [13],
which is what we intend to pursue next.

Acknowledgements. This research was supported by the EC through the STREP
Project “ACSI” (grant no. 257593), and by the UK EPSRC Leadership Fellowship
“Trusted Autonomous Systems” (grant no. EP/I00520X/1).

References
1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. F. Belardinelli, A. Lomuscio, and F. Patrizi. A Computationally-Grounded Semantics for

Artifact-Centric Systems and Abstraction Results. In Proc. of IJCAI, 2011.
3. F. Belardinelli, A. Lomuscio, and F. Patrizi. Verification of Deployed Artifact Systems via

Data Abstraction. In Proc. of ICSOC, 2011.
4. F. Belardinelli, A. Lomuscio, and F. Patrizi. An Abstraction Technique for the Verification

of Artifact-Centric Systems. In Proc. of KR, 2012.
5. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. View-based query answering in

description logics: Semantics and complexity. J. Comput. Syst. Sci., 78(1):26–46, 2012.
6. D. Cohn and R. Hull. Business Artifacts: A Data-Centric Approach to Modeling Business

Operations and Processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.
7. E. Damaggio, R. Hull, and R. Vaculı́n. On the Equivalence of Incremental and Fixpoint

Semantics for Business Artifacts with Guard-Stage-Milestone Lifecycles. In Proc. of BPM,
2011.

8. A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic Verification of Data-Centric Busi-
ness Processes. In Proc. of ICDT, 2009.

9. Alin Deutsch, Liying Sui, and Victor Vianu. Specification and Verification of Data-Driven
Web Applications. J. Comput. Syst. Sci., 73(3):442–474, 2007.

10. R. Hull et al. Business Artifacts with Guard-Stage-Milestone Lifecycles: Managing Artifact
Interactions with Conditions and Events. In Proc. of DEBS, 2011.

11. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge. The MIT
Press, 1995.

12. P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In
Proc. of CAV, 2004.

13. P. Gonzalez, A. Griesmayer, and A. Lomuscio. Verifying gsm-based business artifacts. In
Proceedings of the 19th International Conference on Web Services (ICWS12), Honolulu,
USA. IEEE Press, 2012.

14. B. Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, and P. Felli. Foundations
of Relational Artifacts Verification. In Proc. of BPM, 2011.

15. M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter, B. Wozna,
and A. Zbrzezny. Verics 2007 - a model checker for knowledge and real-time. Fundamenta
Informaticae, 85(1-4):313–328, 2008.

16. A. Lomuscio, W. Penczek, and H. Qu. Partial Order Reductions for Model Checking
Temporal-epistemic Logics over Interleaved Multi-agent Systems. Fundamenta Informat-
icae, 101(1-2):71–90, 2010.

17. A. Lomuscio, H. Qu, and F. Raimondi. Mcmas: A model checker for the verification of
multi-agent systems. In Proc. of CAV, 2009.

