
Parameterised Verification of Data-aware Multi-agent Systems

Francesco Belardinelli
Laboratoire IBISC, UEVE

IRIT Toulouse, France
belardinelli@ibisc.fr

Panagiotis Kouvaros
Department of Computing

Imperial College London, UK
Univ. of Naples “Federico II”, Italy

p.kouvaros@imperial.ac.uk

Alessio Lomuscio
Department of Computing

Imperial College London, UK
a.lomuscio@imperial.ac.uk

Abstract
We introduce parameterised data-aware multi-
agent systems, a formalism to reason about the
temporal properties of arbitrarily large collections
of homogeneous agents, each operating on an in-
finite data domain. We show that their parame-
terised verification problem is semi-decidable for
classes of interest. This is demonstrated by sepa-
rately addressing the unboundedness of the num-
ber of agents and the data domain. In doing so we
reduce the parameterised model checking problem
for these systems to that of parameterised verifica-
tion for interleaved interpreted systems. We illus-
trate the expressivity of the formal model by mod-
elling English auctions with an unbounded number
of bidders on unbounded data.

1 Introduction
There has been recent interest in the study of data-aware
multi-agent systems (DAMAS) [Montali et al., 2014; Belar-
dinelli et al., 2014; Calvanese et al., 2016]. While standard
multi-agent systems (MAS) are modelled by studying the
properties of the underlying processes or agents, in DAMAS
the emphasis is given equally to the agents and the data driv-
ing the executions. This paradigm shift answers a growing
demand from applications to support fully the ever increas-
ing amount of data generated by and available to current net-
worked applications [Singh and Huhns, 2005]. A successful
paradigm in data-aware systems is that of artifact-centric sys-
tems, which have been used to model and execute, among
others, data-aware services [De Masellis et al., 2015], hierar-
chical systems [Deutsch et al., 2016], and case-centric appli-
cations [Montali and Calvanese, 2016].

Verifying DAMAS is challenging because of the infinite
state models generated by their infinite-domain variables.
Approaches based on abstraction have been put forward to
solve this problem [Lomuscio and Michaliszyn, 2014; Belar-
dinelli et al., 2014; Montali and Calvanese, 2016], and related
techniques have been suggested for similar systems [Bagheri
et al., 2013; Gonzalez et al., 2012]. While these investiga-
tions have resulted in sound methodologies and open-source
toolkits [Gonzalez et al., 2015], a key limitation of DAMAS
is that the number of agents in the system is fixed and given at

design-time. This is in marked contrast with the range of ap-
plications DAMAS are meant to be employed for (services,
case-management, auction-based mechanisms, etc.), which
precisely rely on the fact that data-centric structures interact
with an unbounded number of actors.

In this contribution we address this issue by introducing
parameterised data-aware MAS (or P-DAMAS) as systems
with an unbounded number of homogenous agents, each as-
sumed to be data-aware, i.e., endowed with possibly infinite
domains and interacting with an environment composed of
partially shared data. Specifically, we here tackle the question
of verifying P-DAMAS against MAS-oriented specifications.
Since the latter involve quantification over data, we combine
temporal logic together with first-order features. To deal with
the infinity arising from infinite-state variables, we use ab-
straction techniques based on simulations. To overcome the
problems arising from an unbounded number of agents, we
develop a parameterised verification technique. The key con-
tribution shows that the verification of particular classes of
P-DAMAS that we introduce is partially decidable.

The rest of the paper is organised as follows. In Section 2
we introduce the syntax and semantics of P-DAMAS. In Sec-
tion 3 we identify a class of P-DAMAS for which we give the
semi-decidability result. We illustrate the method in Section
4, where we discuss the verification of auction-based mecha-
nisms. All proofs are omitted for reasons of space.

Related Work. As mentioned above, several propos-
als have been put forward to verify DAMAS and artifact-
centric systems, including [Belardinelli et al., 2012; Lo-
muscio and Michaliszyn, 2014; Belardinelli et al., 2014;
Montali and Calvanese, 2016; Bagheri et al., 2013; Belar-
dinelli and Lomuscio, 2016]. None of these approaches deals
with an unbounded number of agents as we do here. Meth-
ods for the verification of unbounded MAS have also been
developed [Kouvaros and Lomuscio, 2013a; 2016; 2015a;
2015b]; however, these technique do not deal with infinite-
state agents. More recently a method for the verification of
parameterised MAS, each encoded via infinite-state models,
was suggested [Kouvaros and Lomuscio, 2017]. However,
the approach targets a non-quantified specification language
and does not deal with (semi-)structured data as we do here.
As a result, their method differs from the one we present and
it is applicable to an uncomparable class of systems.

2 Parametric Data-aware MAS
We introduce parametric data-aware multi-agent systems (P-
DAMAS) an extension of infinite-state reactive modules [Be-
lardinelli and Lomuscio, 2016], where the number of agents
is unbounded. P-DAMAS consist of an agent template,
from which an unbounded number of homogeneous (con-
crete) agents may be constructed, as well as an environment
in which the agents operate. The agent template and the envi-
ronment admit variables with an infinite domain of interpre-
tation, possibly totally ordered (e.g., natural numbers). The
specifications for these systems will be given in a paramet-
ric first-order extension of the branching-time temporal logic
CTL [Clarke et al., 1999].

Agent templates. In the following we assume an ordered
interpretation domain D, a set var “ tv0, v1, . . .u of vari-
ables and a set par “ tx0, x1, . . .u of parameters interpreted
onD. Variables are used to describe the data model, while pa-
rameters appear in formulas. Further, we introduce an agent
template t (or simply template) as well as the environment e.
In line with reactive systems [Alur and Henzinger, 1999], we
assume that each i P tt, eu controls a finite set cnti Ď var of
variables. Specifically, tcnte, cnttu forms a partition of var.
Hence, the set var can be assumed to be finite. The set obst of
variables that are observable by agent template t includes all
of her controlled variables as well as the variables controlled
by the environment: obst “ cntt Y cnte.

In line with the formal account of agents in the literature
on interpreted systems [Fagin et al., 1995], we suppose each
i P tt, eu has a set L of local states, a set Act of actions,
and a protocol function P . In particular, to introduce a for-
mal account of local state, we consider local interpretations
as functions θi : cnti Ñ D, i.e., (finite) assignments from
the variables in cnti to values in D. For simplicity, we of-
ten identify an interpretation θi with its range θipcntiq Ď D,
whenever domain cnti is clear by the context. Then, a local
state l P L of agent template t includes all values of its ob-
served variables in obst, i.e., l “ θtYθe. Since the domainD
is infinite in general, the set L of local states is also infinite.

To define the individual actions in Act and the protocol P ,
we introduce a first-order language built on variables, param-
eters and relation symbols “ and ď.
Definition 1 (FO-formulas). First-order formulas are defined
according to the following BNF, where z, z1 P varY par and
x P par: φ ::“ z “ z1 | z ď z1 | φ | φÑ φ | @xφ

The symbols ‰, ă, ě, J, K, connectives ^, _, quantifier
D, and free and bound variables and parameters are defined as
standard [Hamilton, 1978]. Notice that quantification applies
to parameters only, this is in accordance with the intuition
above on the use of variables and parameters.
Definition 2 (Guarded Command). A guarded command γ
over var and par is an expression

id ” gpx1, . . . , xkq; v1 :“ x1; . . . ; vk :“ xk

where (i) id is the command’s identity; (ii) guard g is an FO-
formula with free parameters among x1, . . . , xk.

The intuitive meaning of a guarded command is that if
guard g is true for some interpretation σ : par Ñ D of pa-
rameters, then the command γ is enabled for execution. By

executing γ we set each variable vi to value σpxiq P D. In
particular, the skip command can be represented as J ; ε,
where ε is the empty sequence. We say that v1, . . . , vk are the
variables controlled by γ, and denote this set by ctrpγq, while
the variables in g are the observable variables obspγq [Hoek
et al., 2006].

Following the typical setting in parameterised formalisms
for MAS [Kouvaros and Lomuscio, 2013b; 2016], we assume
that each command can either be an asynchronous command,
an agent-environment command, or a global-synchronous
command. Each type of command enables a different com-
munication pattern between the concrete agents instanti-
ated from the templates. Specifically, asynchronous com-
mands enable the asynchronous evolution of an agent; agent-
environment commands enable pairwise synchronisation be-
tween one agent and the environment; global-synchronous
commands enable full synchronisation among all the agents
and the environment.

To introduce the semantics of guarded commands formally,
we define the satisfaction |ù of FO-formulas. An FO-formula
φ is given meaning by a finite interpretation σ : frpφq Ñ
D that assigns values in D to the free parameters in φ. A
reinterpretation σxu coincides with σ, but assigns value u P D
to parameter x P frpφq. Given z P varYpar, pθ, σqpzq “ θpzq
for z P var, and pθ, σqpzq “ σpzq for z P par.

Definition 3 (Satisfaction). The satisfaction of an FO-
formula φ for a finite interpretation σ and local interpreta-
tion θ, denoted pθ, σq |ù φ, is defined as follows (clauses for
propositional connectives are immediate and thus omitted):

pθ, σq |ù z “ z1 iff pθ, σqpzq “ pθ, σqpz1q
pθ, σq |ù z ď z1 iff pθ, σqpzq ď pθ, σqpz1q
pθ, σq |ù @xφ iff for all u P θpvarq, σxu |ù φ

The interpretation of FO-formulas is completely standard,
but for quantification that takes values from the finite image
θpvarq “ tu P D | u “ θpvq for some v P varu of var. This
is consistent with the interpretation of quantification on active
domains in database theory [Abiteboul et al., 1995]. Indeed,
at this stage quantification can be considered syntactic sugar,
as θpvarq is finite.

Definition 4 (Agent template). The agent template is a tuple
t “ xL, init, Act, P, τy where
• L “ tθt Y θe | θi : ctri Ñ D for i P tt, euu, where ctrt

and ctre are the (finite) set of variables owned by t, e;
• init “ ιt Y ιe, where ιt : ctrt Ñ D and ιe : ctre Ñ D

provide the initial interpretations of ctrt and ctre;
• Act is a (infinite) set of pairs α “ pγ, σq of guarded

commands γ, together with finite interpretations σ,
s.t. for every γ, ctrpγq Ď ctrt and obspγq Ď obst;
• P : L Ñ ℘pActqztHu is such that, for every l P L,
P plq “ tα P Act | pl, σαq |ù γαu;
• τ : L ˆ Act ˆ Acte Ñ L is such that (i) τpl, α, αeq

is defined only if α P P plq; and (ii) τpl, α, αeq “ l1

iff for every variable vi P cntpγαq and wi P cntpγαe
q,

θ1pviq “ σαpxiq and θ1epwiq “ σαe
pyiq; while all other

variables do not change value.

The environment is similarly defined. Observe, however,
that its set of local states is defined only on θe and its tran-

sition function is defined only on its current state le and ac-
tion αe. The actions of the agent template are partitioned as
Act “ A Y AE Y GS , where A is a set of asynchronous
actions, AE is a set of agent-environment actions, and GS is
a set of global-synchronous actions. Concretely, the agents
synchronise on actions with the same identity. Given a set X
of actions, let idpXq “ tidγ | pγ, σq P Xu be the set of the
commands’ identities inX . Following the agent-environment
and global-synchronous synchronisation patterns we assume
that idpAE eq “ idpAE tq and idpGS tq “ idpGS eq.

Finally, a parametric data-aware multi-agent system is a
pair of an agent template and an environment.

Definition 5 (P-DAMAS). A parametric data-aware multi-
agent system (P-DAMAS) is a pair M “ xt, ey, where t is the
agent template and e is the environment.

P-DAMAS provide a description of an unbounded collec-
tion of (concrete) data-aware multi-agent systems (DAMAS).

Concrete Agents. Concrete DAMAS are obtained by set-
ting the parameters to the actual number of agents in the
system. That is, given a P-DAMAS M and n P N, the
DAMAS Mpnq of n agents per template t is the compo-
sition of n copies of t with the environment. We write
Agpnq “ ttj | 1 ď j ď nu for the set of all concrete agents
tj “ xLj , Actj , initj , Pj , τjy. The concrete agent inherits
from the template her actions, her protocol, and her transi-
tion function. However, these are defined on variables that
are indexed by the agent’s identity. Specifically, we con-
sider the set varpnq “ tv ˆ t1, . . . , nu | v P ctrtu Y ctre of
variables, where agent tj controls the variables in ctrj “
tvj P varpnq | v P ctrtu and observes the variables in obsj “
ctrj Y ctre. This is consistent with the requirement that
tctr1, . . . , ctrn, ctreu form a partition of varpnq.

Definition 6 (Concrete agent). Given the agent template t “
xL, init, Act, P, τy, the j-th concrete agent instantiated from
t is a tuple tj “ xLj , initj , Actj , Pj , τjy, where
• Lj “ tθj Y θe | θi : ctri Ñ D for i P tj, euu;
• initj “ ιj Y ιe, where ιj : ctrj Ñ D is such that
ιjpvjq “ x iff ιtpvq “ x;
• Actj “ tpγ1, σq | pγ, σq P Acttu, where γ1 is obtained

from γ by replacing every variable v P ctrpγq by vj;
• The protocol Pj and the transition function τj are de-

fined as in Def. 4.

Def. 6 above provides the concrete counterpart to the no-
tion of agent template introduced in Def. 4. Further, a global
state in DAMASMpnq is a tuple s “ xθ1, . . . , θn, θey, where
each θj : cntj Ñ D is an interpretation for the j-th in-
stantiation of template t. Equivalently, global states can be
represented as functions s : varpnq Ñ D, i.e., finite inter-
pretations of the variables in varpnq with values in D such
that for every vj P varpnq, spvq “ θjpvq. As anticipated
above, any state s is well-defined as varpnq is partitioned
among the agents in Agpnq. Further, given a global state
s, we denote as l1, . . . , ln, le the corresponding local states
for all agents in Agpnq Y teu. Observe that xθ1, . . . , θn, θey
and xl1, . . . , ln, ley are equivalent representations of global
state s, in terms of controlled, respectively observable, vari-
ables. So, we will use the two notations interchangeably. We

stress that concrete agents have only partial observability of
the global state of the system.

Let ACT “
ś

agPAgpnqYteuActag be the set of joint ac-
tions. For a P ACT , consider a.ag to represent the action of
agent ag. The concrete system evolves over time in compli-
ance with the agents’ protocols and evolution functions. This
is described by the global transition function.

Definition 7 (Global transition function). The global tran-
sition function τ : G ˆ ACT Ñ G is defined as fol-
lows: τps, αq “ s1 iff for every ag P Agpnq, l1ag “

τagplag, α.ag, α.eq, l1e “ τeple, α.eq, and one of the follow-
ing holds:
• (Asynchronous): for some ag P Agpnq, (i) α.ag is asyn-

chronous; and (ii) for every ag1 ‰ ag, α.ag1 “ skip.
• (Agent-environment): for some ag P Agpnq, (i) α.ag is

an agent-environment action; (ii) idα.e “ idα.ag; and
(iii) for every ag1 ‰ ag, ag1 ‰ e, α.ag1 “ skip.
• (Global-synchronous): for every ag, ag1 P Agpnq Y
teu, (i) α.ag is a global-synchronous action; and (ii)
idα.ag “ idα.ag1 .

Above τ defines only one action to be performed at each
time step. If this is an asynchronous action, then exactly one
concrete agent participates in the global transition; if it is an
agent-environment action, then exactly one concrete agent
and the environment participate in the transition; if it is a
global-synchronous action, then all concrete agents and the
environment participate in the transition. The agents not par-
ticipating in the transition are assumed to perform the skip
action. Moreover, by the definition of each τag , we have that
for every ag P Agpnq Y teu, a.ag P Pagpsagq.

We can now define the concrete systems generated from a
P-DAMAS M.

Definition 8 (DAMAS). The data-aware MAS (DAMAS)
Mpnq of n agents is a tuple Mpnq “ xS, init, τy, where:
init “

ś

agPAgpnqYteu initag; τ is the global transition func-
tion (Definition 7); S is the closure of init according to τ .

Clearly, a P-DAMAS generates different DAMAS depend-
ing on the number n of agents in the system. Overall, a con-
crete DAMAS Mpnq describes the evolution of a multi-agent
system from the initial state init, according to the transition
function τ . Again, since the domain D is infinite in general,
every generated DAMAS is an infinite-state system.

The Specification Language. To reason about an un-
bounded number of agents, we here define an indexed, first-
order extension of the temporal logic ECTLzX (the exis-
tential fragment of CTL without next X), where the atomic
propositions are indexed by agent parameters. These are
agent-specific parameters whose domain depends on the con-
crete system on which the specification is evaluated: if it
is evaluated on Mpnq, then the potential set of values is
t1, . . . , nu. For agent template t consider a set apar of agent
parameters. Intuitively, indexed formulas quantify univer-
sally over the concrete agents.

Definition 9 (Indexed FO-formulas and FO-ECTLzX). In-
dexed first-order formulas over agent parameters apar are
defined according to the following BNF, where z “ pv, aq

(resp. z1 “ pv1, a1q), for v, v1 P ctr, a, a1 P apar, and
x P par: φ ::“ z “ z1 | z ď z1 | φ | φÑ φ | @xφ

Formulas in first-order ECTLzX are defined as follows,
where φ is an indexed FO-formula:
ψ ::“ φ | φ | ψ ^ ψ | ψ _ ψ | @xψ | EpψUψq | EpψRψq | @

ag
aψ

Note that we use @ag to indicate that the operator quanti-
fies over agent parameters. The temporal modality EpφUψq
stands for “for some path, φ holds until ψ holds”; and
EpφRψq denotes “for some path, φ releases ψ”. We say that
an FO-ECTLzX sentence is m-indexed, for m P N, if there
are precisely m agent parameters from apar appearing in the
formula. Notice that in FO-ECTLzX we can have arbitrary
alternations of quantifiers and ECTLzX operators. A con-
sequence of this is that quantification in FO-ECTLzX is not
syntactic sugar.

We now define the satisfaction relation. In the definition we
assume that the sets of parameters appearing in the commands
and the formula are disjoint. This can be done without loss of
generality, as both sets are finite and defined at design-time.
Hereafter a path is an infinite sequence π “ s1α1s2α2s3 . . .
with τpsi, αiq “ si`1, for every i ě 1. Given a path π,
we write πpiq for the i-th state in π. The set of all paths
originating from a state s is denoted by Pathpsq.
Definition 10 (Satisfaction). The satisfaction relation |ù for
a DAMAS Mpnq, a global state s, an FO-ECTLzX formula
ψ, and an interpretation σ is defined as follows (clauses for
propositional connectives are immediate and thus omitted).

pMpnq, s, σq |ù φ iff ps, σq |ù φ, where φ is an FO-formula
pMpnq, s, σq |ù @xψ iff for all u P spvarpnqq, pM, s, σx

uq |ù ψ
pMpnq, s, σq |ù EpψUψ1

q iff for some π P Pathpsq, for some i ě 0,
pMpnq, πpiq, σq |ù ψ1 and for all j ă i,
pMpnq, πpjq, σq |ù ψ

pMpnq, s, σq |ù EpψRψ1
q iff for some π P Pathpsq, either for some i ě

0, pMpnq, πpiq, σq |ù ψ and for all j ď i
pMpnq, πpjq, σq |ù ψ1, or for all i ě 0
pMpnq, πpiq, σq |ù ψ1

pMpnq, s, σq |ù @agyψ iff ag P t1, . . . , nu implies
pMpnq, s1, σq |ù ψry ÞÑ ags, for
ag P apar

We remark that the semantics of ECTLzX operators in
Def. 10 is standard, while quantification over regular parame-
ters ranges on the active domain spvarpnqq. However, differ-
ently from Def. 3, quantification is not syntactic sugar: transi-
tions might take us to a successor state s1, in which an individ-
ual u P spvarpnqq is no longer active, i.e., u R s1pvarpnqq. As
a result, quantification in FO-ECTLzX gives us a language
that is strictly more expressive than propositional ECTLzX .

An FO-ECTLzX formula ψ is true in state s, or
pMpnq, sq |ù ψ, iff for all interpretations σ, pMpnq, s, σq |ù
ψ; ψ is true in Mpnq, or Mpnq |ù ψ, iff pMpnq, initq |ù ψ.
In light of decidability limitations (see [Bloem et al., 2015]
for a detailed discussion), hereafter we consider prenex m-
indexed FO-ECTLzX formulas in which the universal quan-
tifiers on apar appear only at the front of the formula.

We can now state the parameterised model checking prob-
lem for the present setting.
Definition 11 (PMCP for P-DAMAS). Given a P-DAMAS
M and an m-indexed FO-ECTLzX formula ψ, the param-
eterised model checking problem consists in determining
whether for all n ě m, Mpnq |ù ψ.

Parameterised model checking involves checking an un-
bounded number of systems. Since P-DAMAS extend broad-
cast protocols whose PMCP is undecidable [Esparza et al.,
1999], the PMCP the P-DAMAS is also undecidable. general
[Apt and Kozen, 1986]. Moreover, notice that each concrete
system is an infinite-state system, and again the model check-
ing problem for infinite-state systems is normally undecidable
[Deutsch et al., 2009]. However, in what follows we define
a cutoff technique to bound the number of agents to check,
thereby obtaining partial decidability.

3 Partial Decidability via Abstractions
In this section we develop a partial model checking procedure
for FO-ECTLzX . Specifically, the partial decidability of the
parameterised verification problem is given in two steps. In
the first step, the domain D of the P-DAMAS to be verified is
abstracted into a finite domainDA. It is shown that every con-
crete system generated from the abstract P-DAMAS defined
on DA is simulated by the equally populated concrete system
obtained from the original P-DAMAS built onD. As a result,
the PMCP is reduced to checking an unbounded number of
finite-state systems. In the second step, a mapping is defined
from (abstract) finite state P-DAMAS to parameterised inter-
leaved interpreted systems (PIIS) [Kouvaros and Lomuscio,
2016]. Consequently, we can apply the results in [Kouvaros
and Lomuscio, 2016] to solve the PMCP.

Finite Simulations. First of all, notice that Def. 4 of agent
template depends on the interpretation domain D as well.
That is, by varying D we can obtain P-DAMAS defined on
the same partition of variables, but with different interpreta-
tions. In particular, if DA Ď D is finite, then the correspond-
ing P-DAMAS is finite as well, and while we can still have an
unbounded number of agents in the concrete DAMAS, each
DAMAS itself is a finite-state system. Hereafter we prove
that, whenever DA Ď D, for every n P N, the concrete, pos-
sibly finite DAMAS MApnq built on DA is a submodel of
the concrete, infinite-state DAMAS Mpnq defined on D. In
particular, the former is simulated by the latter. As a con-
sequence, existential formulas in FO-ECTLzX are preserved
from MApnq to Mpnq.

Definition 12 (Abstract Template and Abstract P-DAMAS).
Let i P tt, eu be an agent template (resp. the environment)
whose controlled variables in cnti take values in domain D,
and let DA Ď D. Then the abstraction iA is obtained by
restricting the range of variables in cnti to DA.

Further, given P-DAMAS MA “ xt, ey, the abstract P-
DAMAS M “ xtA, eAy is the collection of abstractions tA
and eA built on DA.

Given n P N, the DAMASMApnq for n agents per abstract
template tA is defined as the composition of n copies of tA
with the abstract environment eA, in analogy with Def. 6 and
7. In particular, observe that if s is a state in DAMASMApnq,
then s also belongs to the concrete Mpnq. Hence, MApnq is
a submodel of Mpnq. In particular, Mpnq simulates MApnq.
To prove this fact we state some partial results.

Lemma 1. For every states s, s1 in MApnq and joint action
α P ACT , if s α

ÝÑ s1 in MApnq, then s α
ÝÑ s1 in Mpnq.

By Lemma 1 all transitions in MApnq are simulated in
Mpnq. This result can be extended to whole paths.

Lemma 2. Every path π from s in MApnq is also a path
(from s) in Mpnq.

By Lemma 2 we can prove the main preservation result of
this section.

Theorem 3. LetMpnq be a DAMAS with abstractionMApnq
defined on DA Ď D. For every states s in MApnq and for-
mula φ in FO-ECTLzX , if MApnq |ù φ, then Mpnq |ù φ.

In particular, by Theorem 3 existential formulas are pre-
served by taking DAMAS defined on a finite domain DA Ď

D. However, in principle we have an infinite number of such
finite DAMAS Mpnq, one for every choice of agent parame-
ter n. We tackle this issue in the following section.

PIIS simulations. We reduce the PMCP for finite-state
P-DAMAS to the PMCP for PIIS. That is, we show that for
every abstract P-DAMAS MA we can associate a PIIS MPA

whose concrete systems satisfy the same FO-ECTLzX for-
mulas as the equally populated concrete systems from MA.
Recall that PIIS are defined as finite-state P-DAMAS, but
with the following differences: (i) the variables controlled by
the environment are private to the environment, i.e., obst “
cntt; (ii) the agent template’s transition function does not de-
pend on the action of the environment, i.e., τ : LˆActÑ L.
Accounting for these differences we now define MPA. We
begin with the definition of the notions of guarded command
products and AE -synchronisation commands. Intuitively, the
commands enable the PIIS agents to simulate the updates of
the observable components of the DAMAS agents’ states.

Definition 13 (Guarded command products). The product
of two guarded commands id ” gpx1, . . . , xkq ; v1 :“
x1; . . . ; vk :“ xk and id ” g1px11, . . . , x

1
k1q ; v11 :“

x11; . . . ; v
1
k1 :“ x1k1 is defined as the guarded command id ”

gpx1, . . . , xkq ^ g1px11, . . . , x
1
k1q ; v1 :“ x1; . . . ; vk :“

xk; v
1
1 :“ x11; . . . ; v

1
k1 :“ x1k1 .

The product of an agent’s command and the environment’s
command enables a PIIS agent to explicitly update the en-
vironment’s variables encoded in the agent’s state. Given
actions a “ pγ, σq, a1 “ pγ1, σ1q, we write a ˆ a1 “
pγ ˆ γ1, σ Y σ1q for their product.

Definition 14 (AE synchronisation commands). Let γ be an
agent-environment command id ” gpx1, . . . , xkq ; v1 :“
x1; . . . ; vk :“ xk. The AE initiator command of γ, γr?s,
is the agent-environment command idr?s ” gpx1, . . . , xkq ^
ae sync “ K ; ae sync “ J. The AE broadcast com-
mand γr!s of γ is the global-synchronous command idr!s ”
gpx1, . . . , xkq ^ ae sync “ J ; v1 :“ x1 ; . . . ; vk :“
xk ; ae sync “ K.

AE -synchronisation commands enable the PIIS agents to
simulate the agent-environment transitions of the DAMAS
agents. In particular the AE initiator command γr?s is per-
formed by the agent participating in the agent-environment
transition. The command “marks” said agent and signals the
execution of the global-synchronous command γr!s by setting
the (fresh) boolean variable ae sync to J. With the global

synchronisation the agent updates both controlled and ob-
servable variables, whereas all other agents update only the
observable variables (see item (ii) of Lemma 4).

We now define the PIIS MPA associated with MA.
Definition 15 (Associated PIIS). The PIIS MPA “
@

tPA, ePA
D

associated with P-DAMAS MA “
@

tA, eA
D

over
domain DAYtae syncu is obtained from tA, eA by defining
the following sets of actions for tPA and ePA:

ActtPA : A is the set of asynchronous actions; tar?s |
a P AEtu is the set of agent-environment actions; and
AE e Y tar!s ˆ aer!s | a P AE t , ae P AE e , ida “
idae

u Y ta ˆ ae | a P GS t , ae P GS e , ida “ idae
u is

the set of global-synchronous actions.
ActePA : tar?s | a P AE eu is the set of agent-
environment actions and GS e Y tar!s | a P GS eu is the
set of global-synchronous actions.

Above we assume that ae sync is initially set to K. Also,
every action of tPA that is not a broadcast action is guarded
by the additional requirement that ae sync is set to K. The
following definition relates the states of each concrete system
MApnq to the states of the concrete system MPApnq.
Definition 16 (Related states). A global state s of MApnq
and a global state q of MPApnq are related, or s « q, iff
(i) for all v P avarpnq, spvq “ qpvq; and (ii) for all ag P
t1, . . . , n, eu, sppae syncq, agq “ qppae syncq, agq “ K.

Following the above definition we show that related states
satisfy the same FO-ECTLzX formulas. Since the initial
states of corresponding concrete systems are related, the sys-
tems satisfy the same FO-ECTLzX formulas. To show this
we first state some intermediate results.
Lemma 4. Let s be a state of MApnq and q a state of
MPApnq. If s « q, then the following hold:

(i) If s α s1, then q α q1 and s1 « q1.
(ii) If s α s1 is an agent-environment transition fired by

agent i, then q α1

q1 α2

q2 and s1 « q2, where α1 is
defined by α1.j “ skip for j ‰ i ‰ e, α1.i “ α.ir?s,
and α1.e “ α.er?s; α2 is defined by α2.j “ α.e for all
j ‰ i ‰ e, α2.i “ α.ir!s ˆ α.er!s, α2.e “ α.er!s.

(iii) If s α s1 is a global synchronous transition, then
q α1

q1 and s1 « q1, where α1 is defined by α1.i “
α.iˆ α.e for i ‰ e, and α1.e “ α.e.

By Lemma 4 the transitions in MApnq are simulated in
MPApnq 1. Additionally, it is easy to see that transitions in
MPApnq are simulated in MApnq. We thus obtain the fol-
lowing preservation result.
Theorem 5. Let M be a P-DAMAS with abstraction MA. Let
MPApnq be the PIIS associated with MA. Then, for every
formula φ in FO-ECTLzX , MApnq |ù φ iff MPApnq |ù φ.

As a consequence, the PMCP for P-DAMAS can be solved
by solving the PMCP for PIIS. Given an m-indexed for-
mula, the latter problem can be solved by checking the con-
crete system with maxp2,mq agents [Kouvaros and Lomus-
cio, 2013b]. The result is derived under the assumption that

1Note that since our specification logic does not include the next-
time operator, a transition in MA

pnq can be simulated by more than
one transition in MPA

pnq [Kouvaros and Lomuscio, 2016].

the environment is non-blocking. That is, whenever an agent-
environment action, or a global synchronous action is enabled
for a concrete agent, then the action is also enabled for the
environment. We write NB for the class of PIIS with non-
blocking environments. We then obtain the following.
Theorem 6. Let M be a P-DAMAS with abstraction MA

such that MA P NB. Then, for every m-indexed for-
mulae φ in FO-ECTLzX , MApmq |ù φ implies @n ě

maxp2,mq,Mpnq |ù φ.
The above is the main result of the paper; it outlines a par-

tial procedure to solve the PMCP for P-DAMAS and FO-
ECTLzX . This takes as input a P-DAMAS M and an m-
indexed FO-ECTLzX formula φ and constructs the abstract
P-DAMAS MA as per Definition 12. If the PIIS associated
with MA is non-blocking 2, then the abstract DAMAS with
up to maxp2,mq agents are checked against the formula. If
these satisfy φ, then we can conclude that the PMCP is true
for M and φ; otherwise no conclusions can be drawn.

4 Auctions as AES P-DAMAS
To illustrate the formal machinery and the result in Section 2
and 3, we introduce agent templates for simple English (as-
cending bid) auctions. We refer to [Easley and Kleinberg,
2010] for a detailed presentation of this type of auctions. First
of all, we model the auctioneer and bidders taking part in the
auction as the environment and the agent template.
Definition 17 (Auctioneer). The auctioneer a “

xLa, inita, Acta, Pa, τay is such that
• La is the set of local states defined on set ctra “

tbase, t out, highu of variables, where t out is
boolean, while base and high range over the rational
numbers Q extended with the “undefined” value uu.
• inita “ ιa : ctra Ñ D, where ιapbaseq “ uu,
ιapt outq “ J, and ιaphighq “ uu.
• Acta contains guarded commands skip and

id1 ” t out “ K ; t out :“ J
id2 ” t out “ J ; base :“ x2; t out :“ K
id3 ” J ; high :“ x4

with id1 P GSa, id2 P Aa, and id3 P AEa.
• Pa and τa are given as in Def. 4.
Intuitively, the auctioneer keeps track of the base price

base as well as the highest bid high for the auctioned
item, and owns a boolean variable t out to terminate non-
deterministically the bidding round. At the start of the bid-
ding process the auctioneer initialises base to a random ratio-
nal x2 and t out to false (K). Then, she updates the highest
bid high and possibly terminate the bidding round. A new
round can then be started.

Further, the template for bidders is given as follows.
Definition 18 (Bidder). The bidder template tb “

xLb, initb, Actb, Pb, τby is such that
• ctrb “ ttvalue, bidu, with both tvalue and bid ranging

over QY tuuu.
2This test can be performed in polynomial time in the size of

the agent template and the environment [Kouvaros and Lomuscio,
2013b].

• initb “ ιb : ctrb Ñ D, where ιbpbidq “ uu and
ιbptvalueq “ uu.
• Actb contains guarded commands skip and

id1 ” J; tvalue :“ uu; bid “ uu
id1

2 ” pt out “ Kq ^ ptvalue “ uuq; tvalue :“ x6

id3 ” pt out “ Kq ^ ptvalue ‰ uuq ^ px4 ď tvalueq^
phigh ‰ uuÑ high ă x4q^

pbid ‰ uuÑ bid ă highq; bid :“ x4x

with id1 P GSb, id12 P Ab, and id3 P AEb
• Pb and τb are given as in Def. 4.
By Def. 18 every bidder template b has a true value tvalue,

up to which she is happy to bid, as well as current bid. At the
beginning she initialises tvalue, while bid is set to “unde-
fined”. Thereafter, she might choose to bid and then update
bid according to the other bidders’ offers. At the end of the
bidding round, she reinitialises her true value for a new round.

Given the auctioneer and the bidder template as defined
above, a P-DAMAS for an English auction is the pair M “

xa, tby for the auctioneer a and bidders b. Since base prices,
true values, and bids all take rationals as values, M is actually
an infinite-state system.

On the P-DAMAS M we might want to verify proper-
ties such as every agent will eventually win in some exe-
cution: φA1 fi @aga : EF pwin, aq, where winpaiq ::“
ppbid, aiq “ highq. Moreover, we can express that in at
least one execution, every agent bids up to her true value:
φA2 fi @aga : EF ppbid, aq “ pt value, aqq.

To verify φA1 and φA2 on M, we first model check abstrac-
tion MA and, if the answer is positive, by Theorems 3 and 6
the result transfers to M. Notice that this defines a partial
verification procedure. If the answer is negative, a possible
different abstraction M

1A needs to be considered.

5 Conclusions
As argued in the introduction, while data-aware systems have
rapidly become common in applications, there is still a lack
of techniques capable of providing formal guarantees for sys-
tems of agents interacting with these. The difficulty of doing
this results both from the possibly infinite amount of data and
the unbounded number of agents interacting with it.

In this contribution we addressed these problems and put
forward P-DAMAS, a formal model for such systems, then
presented a technique for their verification. The key result
here is that for the relevant class of P-DAMAS verification
is semi-decidable. It should be noted that partial decidability
is a common feature in abstraction methodologies, which can
normally decide on the truth of a specification in some cases
only. Indeed, partial decidability can be useful in several ap-
plications of importance, as we showed here in analysing the
auction scenario. In future work we plan to extend the present
results to yet more expressive languages, including epistemic
and strategy logics.

Acknowledgments
The research described in this paper was partly sup-
ported by the EPSRC project “Trusted Autonomous Sys-
tems”(EP/I00529X) and the French ANR JCJC Project
SVeDaS (ANR-16-CE40-0021).

References
[Abiteboul et al., 1995] S. Abiteboul, R. Hull, and V. Vianu.

Foundations of Databases. Addison-Wesley, 1995.
[Alur and Henzinger, 1999] R. Alur and T. Henzinger. Reac-

tive modules. Formal Methods in System Design, 15(1):7–
48, 1999.

[Apt and Kozen, 1986] K.R. Apt and D. C. Kozen. Limits for
automatic verification of finite-state concurrent systems.
Information Processing Letters, 22(6):307–309, 1986.

[Bagheri et al., 2013] B. Bagheri, D. Calvanese, M. Montali,
G. Giacomo, and A. Deutsch. Verification of relational
data-centric dynamic systems with external services. In
Proceedings of PODS13, pages 163–174. ACM, 2013.

[Belardinelli and Lomuscio, 2016] F. Belardinelli and
A. Lomuscio. Abstraction-based verification of infinite-
state reactive modules. In Proceedings of ECAI16, pages
725–733, 2016.

[Belardinelli et al., 2012] F. Belardinelli, A. Lomuscio, and
F. Patrizi. An abstraction technique for the verification of
artifact-centric systems. In Proceedings of KR12, pages
319–328, 2012.

[Belardinelli et al., 2014] F. Belardinelli, A. Lomuscio, and
F. Patrizi. Verification of agent-based artifact systems.
Journal of Artificial Intelligence Research, 51:333–376,
2014.

[Bloem et al., 2015] R. Bloem, S. Jacobs, A. Khalimov,
I. Konnov, S. Rubin, H. Veith, and J. Widder. Decidabil-
ity of Parameterized Verification. Morgan and Claypool
Publishers, 2015.

[Calvanese et al., 2016] D. Calvanese, M. Montali, F. Pa-
trizi, and M. Stawowy. Plan synthesis for knowledge and
action bases. In Proceedings of IJCAI16, pages 1022–
1029, 2016.

[Clarke et al., 1999] E. M. Clarke, O. Grumberg, and D. A.
Peled. Model Checking. The MIT Press, Cambridge, Mas-
sachusetts, 1999.

[De Masellis et al., 2015] R. De Masellis, D. Lembo,
M. Montali, and D. Solomakhin. Semantic enrichment
of gsm-based artifact-centric models. J. Data Semantics,
4(1):3–27, 2015.

[Deutsch et al., 2009] A. Deutsch, R. Hull, F. Patrizi, and
V. Vianu. Automatic verification of data-centric business
processes. In Proceedings of ICDT09, pages 252–267.
ACM, 2009.

[Deutsch et al., 2016] A. Deutsch, Y. Li, and V. Vianu. Veri-
fication of hierarchical artifact systems. In Proceedings of
PODS16, pages 179–194, 2016.

[Easley and Kleinberg, 2010] D. Easley and J. Kleinberg.
Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press,
New York, NY, USA, 2010.

[Esparza et al., 1999] J. Esparza, A. Finkel, and R. Mayr. On
the verification of broadcast protocols. In Proceedings of
LICS99, pages 352–359. IEEE, 1999.

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and
M. Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

[Gonzalez et al., 2012] P. Gonzalez, A. Griesmayer, and
A. Lomuscio. Verifying GSM-based business artifacts. In
Proceedings of ICWS12, pages 25–32. IEEE Press, 2012.

[Gonzalez et al., 2015] P. Gonzalez, A. Griesmayer, and
A. Lomuscio. Verification of GSM-based artifact-centric
systems by predicate abstraction. In Proceedings of IC-
SOC15, volume 9435 of LNCS, pages 253–268. Springer,
2015.

[Hamilton, 1978] A. G. Hamilton. Logic for Mathemati-
cians. Cambridge University Press, 1978.

[Hoek et al., 2006] W. van der Hoek, A. Lomuscio, and
M. Wooldridge. On the complexity of practical ATL model
checking. In Proceedings of AAMAS06, pages 201–208,
2006.

[Kouvaros and Lomuscio, 2013a] P. Kouvaros and A. Lo-
muscio. Automatic verification of parametrised inter-
leaved multi-agent systems. In Proceedings of AAMAS13,
pages 861–868. IFAAMAS, 2013.

[Kouvaros and Lomuscio, 2013b] P. Kouvaros and A. Lo-
muscio. A cutoff technique for the verification of pa-
rameterised interpreted systems with parameterised envi-
ronments. In Proceedings of IJCAI13, pages 2013–2019.
AAAI Press, 2013.

[Kouvaros and Lomuscio, 2015a] P. Kouvaros and A. Lo-
muscio. A counter abstraction technique for the verifica-
tion of robot swarms. In Proceedings of AAAI15, pages
2081–2088. AAAI Press, 2015.

[Kouvaros and Lomuscio, 2015b] P. Kouvaros and A. Lo-
muscio. Verifying emergent properties of swarms. In
Proceedings of IJCAI15, pages 1083–1089. AAAI Press,
2015.

[Kouvaros and Lomuscio, 2016] P. Kouvaros and A. Lomus-
cio. Parameterised verification for multi-agent systems.
Artificial Intelligence, 234:152–189, 2016.

[Kouvaros and Lomuscio, 2017] P. Kouvaros and A. Lomus-
cio. Parameterised verification of infinite state multi-
agent systems via predicate abstraction. In Proceedings
of AAAI17, pages 3013–3020. AAAI Press, 2017.

[Lomuscio and Michaliszyn, 2014] A. Lomuscio and
J. Michaliszyn. Model checking unbounded artifact-
centric systems. In Proceedings of KR14, pages 488–497.
AAAI Press, 2014.

[Montali and Calvanese, 2016] M. Montali and D. Cal-
vanese. Soundness of data-aware, case-centric processes.
STTT, 18(5):535–558, 2016.

[Montali et al., 2014] M. Montali, D. Calvanese, and G. De
Giacomo. Verification of data-aware commitment-based
multiagent system. In Proceedings of AAMAS14, pages
157–164. IFAAMAS, 2014.

[Singh and Huhns, 2005] M. Singh and M. Huhns. Service-
Oriented Computing: Semantics, Processes, Agents. Wi-
ley, 2005.

