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Abstract

We study a class of synchronous, perfect-recall
multi-agent systems with imperfect information
and broadcasting, i.e., fully observable actions. We
define an epistemic extension of strategy logic with
incomplete information and the assumption of uni-
form and coherent strategies. In this setting, we
prove that the model checking problem, and thus
rational synthesis, is non-elementary decidable. We
exemplify the applicability of the framework on a
rational secret-sharing scenario.

1 Introduction
Epistemic logic has a long tradition in knowledge represen-
tation and reasoning, multi-agent systems (MAS), and more
broadly in artificial intelligence [Meyer and van der Hoek,
1995]. A significant line of research over the past twenty
years has concerned its combination with various temporal
logics such as LTL, CTL, and the like [Clarke et al., 2002].
The resulting syntax can express a wide range of proper-
ties of multi-agent systems, including the knowledge agents
have about the world, about each other’s knowledge, how
this evolves over time and whether sophisticated epistemic
states such as common knowledge are acquired in a system’s
run [Halpern and Vardi, 1989].

Temporal-epistemic properties of multi-agent systems
have been studied under a variety of assumptions, includ-
ing synchronicity, asynchronicity, perfect recall, bounded re-
call, no learning, and observational semantics [Fagin et al.,
1995]. These aspects are now known to impact the resulting
axiomatisations [Halpern et al., 2003; Belardinelli and Lo-
muscio, 2009] as well as the complexity of the verification
problem [van der Meyden and Shilov, 1999]. For these rea-
sons, a key aspect in this line of work has been the identifica-
tion of expressive fragments with relatively low complexity.

Recently there has been considerable interest in the exten-
sion of the formalisms above to languages sufficiently expres-
sive to capture strategic abilities of agents. Towards this aim,
alternating-time temporal logic (ATL) [Alur et al., 2002] and
strategy logic (SL) [Mogavero et al., 2014] have been put for-
ward and combined with epistemic modalities and uniform
strategies [van der Hoek and Wooldridge, 2003; Belardinelli,

2014; Huang and van der Meyden, 2014; Čermák et al., 2014;
?].

Reasoning about strategic abilities of MAS under imper-
fect information is known to be difficult. For example, model
checking MAS against ATL specifications under incomplete
information goes from PTIME-complete to ∆p

2-complete un-
der memoryless strategies (i.e., imperfect recall) [Jamroga
and Dix, 2006] and is undecidable under memoryfull strate-
gies (i.e., perfect recall) [Dima and Tiplea, 2011]. For this
reason it is of interest to identify expressive classes of MAS
for which the model checking problem is decidable. The aim
of this paper is to make a contribution in this direction.

Specifically, we introduce ESL, an epistemic extension of
SL based on synchronous perfect-recall strategies (Section 2).
The language introduced can express rational synthesis [Fis-
man et al., 2010; Wooldridge et al., 2016; Kupferman et al.,
2016], but its model-checking problem is undecidable. How-
ever, we identify a significant class BA-iCGS of systems:
those having broadcast (i.e., fully observable) actions (Sec-
tion 2.2) and prove that model checking BA-iCGS against
ESL is non-elementary decidable (Section 4). This is a tight
result as a matching lower-bound already holds in the perfect-
information case. We illustrate our formalism on a rational
secret-sharing scenario with broadcast actions (Section 3).

Related Work. As mentioned above, several approaches
have been put forward to reason about strategies and knowl-
edge in the context of MAS.

SL and knowledge have been combined before in the con-
text of MAS. In [Cermák, 2014; Čermák et al., 2014], an epis-
temic variant of SL [Mogavero et al., 2014] was introduced.
However, this was limited to epistemic sentences, whereas
we consider the full combined language, and the approach
assumed observational semantics, whereas we here consider
synchronous perfect recall. Although not studied in these pa-
pers these formalisms have an undecidable model checking
problem if evaluated under synchronous perfect recall. Also,
[?] defines a variant of SL with uniform strategies. They
achieve decidability by a variation of the tradition of assum-
ing a hierarchy on the observations. In this paper we do not
make any hierarchical assumptions.

A key aspect of the work here presented is that it relies on
broadcasting to achieve decidability in the context of a very
expressive specification language. The notion of broadcast
has already been studied in the context of knowledge [Fa-



gin et al., 1995; ?]. A further important result in this area
is that for broadcast systems the synthesis problem of spec-
ifications in LTL and knowledge is decidable [van der Mey-
den and Wilke, 2005]. However, ESL is strictly more ex-
pressive and synthesis, which in our case can be expressed
via model checking, can also be shown to be decidable. An
approach to reasoning about strategies and knowledge under
broadcast was also recently presented in [Belardinelli et al.,
2017]. However, their logic is considerably less expressive
than ours, as it is based on ATL and not SL. In particular, it
cannot express Nash equilibria and rational synthesis, which
are essential features of this contribution.

Rational synthesis has been studied before in the context of
perfect information. In [Kupferman et al., 2016] the strong-
rational synthesis problem with LTL objectives (and aggrega-
tion of finitely many objectives), is shown to be 2EXPTIME-
complete.In [Gutierrez et al., 2017], Equilibrium Logic is in-
troduced to reason about Nash equilibria in games with LTL
and CTL objectives. However, both cases assume perfect in-
formation of the agents. Synthesis under imperfect informa-
tion has been first tackled in [Gutierrez et al., 2016] albeit for
a restricted class of CGS, viz. reactive modules. In this paper
we explore synthesis in CGS under imperfect information.

2 Strategy Logic with Imperfect Information
In this section we present strategy logic (SL) (see [Mogavero
et al., 2014] for a definition of SL) in an imperfect infor-
mation setting. In particular, we introduce the class of im-
perfect information concurrent game structures (iCGS) with
broadcast actions only (BA-iCGS). We start with some pre-
liminaries. For an infinite or non-empty finite sequence u ∈
Xω∪X+ of elements inX , we write ui for the (i+1)-th ele-
ment of u, i.e., u = u0u1 . . .. For i ≥ 0, u≤i is the prefix of u
of length i+ 1, i.e., u≤i = u0u1 . . . ui. The empty sequence
is denoted as ε. The length of a finite sequence u ∈ X∗ is
denoted as |u|. For a vector v ∈

∏
iXi we denote the i-th

co-ordinate of v by v(i). In particular, for F ∈
∏
i(Xi)

Y we
may write F (i) ∈ XY

i and F (i)(y) ∈ Xi.

2.1 iCGS
Hereafter we consider concurrent game structures enriched
with indistinguishability relations. These are the standard set-
ting for agent-based logics under imperfect information [Jam-
roga and van der Hoek, 2004; Bulling and Jamroga, 2014].
Definition 1 (iCGS). An imperfect information concurrent
game structure (iCGS) is a tuple S = 〈Ag, AP , {Acta}a∈Ag,
S, S0, tr, {∼a}a∈Ag, λ〉, where:

1. Ag is the finite non-empty set of agent names.
2. AP is the finite non-empty set of atomic propositions.
3. Acta is the finite non-empty set of actions for a ∈ Ag;

for A ⊆ Ag, let ActA = ∪a∈AActa, and let Act = ActAg.
4. S is the finite non-empty set of states and S0 ⊆ S is the

non-empty set of initial states.
5. tr : S × ACT → S is the transition function, where

ACT =
∏
a∈Ag Acta is the set of all joint actions.

6. ∼a⊆ S2 is the indistinguishability relation for agent a,
which is an equivalence relation.

7. λ : AP → 2S is the labelling function that assigns to
each atom p the set of states λ(p) in which p holds.

A concurrent game structure (CGS) is an iCGS for which
∼a= {(s, s) : s ∈ S} for all a ∈ Ag. This corresponds to the
perfect-information setting [Alur et al., 2002].

We now define what it means for an agent to have syn-
chronous perfect-recall in an iCGS S. A history in S is
a non-empty finite sequence h0h1 . . . in S+ such that for
all i ≥ 0, there exists a joint action Ji ∈ ACT such that
hi+1 ∈ tr(hi, Ji). The set of all histories in S is denoted
as hist(S), and the set of histories h′ that extend history h is
denoted as hist(S, h), that is, h′≤|h| = h.

Hereafter we use the following notation: if ∼ is a binary
relation on S, we define the extension of ∼ to histories as the
binary relation ≡ on hist(S) such that h ≡ h′ iff |h| = |h′|
(i.e., synchronicity) and hj ∼ h′j for all 0 ≤ j ≤ |h| (i.e.,
perfect recall). We consider three instantiations for individ-
ual, common and distributed knowledge respectively. If ∼a
is the indistinguishability relation for agent a, then two his-
tories h, h′ are indistinguishable to agent a, if h ≡a h′. For
A ⊆ Ag, let ∼C

A= (∪a∈A ∼a)∗, where ∗ denotes the reflex-
ive and transitive closure (w.r.t. relation composition), and
its extension to histories is denoted ≡C

A. For A ⊆ Ag, let
∼D
A= ∩a∈A ∼a, and its extension to histories is denoted ≡D

A.
A deterministic memoryfull strategy, or simply strategy, is

a function σ : hist(S) → Act (recall that Act = ∪a∈AgActa).
The set of all strategies is denoted Σ(S). Further, a strategy
σa is coherent for a if for every h ∈ hist(S), σa(h) ∈ Acta;
while σa is uniform for a if for all h, h′ ∈ hist(S), h ≡a
h′ implies σa(h) = σa(h′). Then, a joint full strategy is
a function σAg : Ag → Σ(S) that associates to each agent
a ∈ Ag a strategy that is both coherent and uniform for a. We
write σAg(a) = σa. For every s0 ∈ S0, a joint full strategy
σAg defines a unique infinite sequence π(σAg) = s0s1 . . . of
states, i.e., for all i ≥ 0, si+1 = tr(si, σAg(s0s1 . . . si)). A
history h is consistent with σAg if h is a prefix of π(σAg).
Given h ∈ hist(S), define the set out(h, σAg) of outcomes of
σAg from h as the set of histories h′ ∈ hist(S, h) that extend
h and are consistent with σAg. Notice that for every i ≥ 0,
there is unique h′ ∈ out(h, σAg) of length |h|+ i. Thus, write
π(h, σAg) ∈ Sω for the infinite sequence all of whose prefixes
are in out(h, σAg).

2.2 BA-iCGS— iCGS with Broadcast Actions only
In this paper we focus on a particular class of iCGS, those
having broadcast actions only. This section is reported from
[Belardinelli et al., 2017] (where these were called iCGS with
public actions only).
Definition 2 (BA-iCGS). An iCGS S only has broadcast ac-
tions if for every agent a ∈ Ag, states s, s′ ∈ S, and
joint actions J, J ′ ∈ ACT, if J 6= J ′ and s ∼a s′ then
tr(s, J) 6∼a tr(s′, J ′). In this case we call S a broadcast
iCGS. We write BA-iCGS for the set of broadcast iCGS.

Broadcast iCGS arise naturally in several MAS scenarios,
including epistemic puzzles (e.g., the muddy children puzzle)
and games (e.g., battleship). In Section 3 we discuss an ap-
plication to rational synthesis.

We define the following natural encoding of histories.



Definition 3. Let S be an iCGS. Define the encoding function
µ : S0×ACT∗ → hist(S) that maps (s0, u) to the history h of
length |u|+1 and such that h0 = s0 and hj = tr(hj−1, uj−1)
for 1 ≤ j ≤ |u|.

In case S is a BA-iCGS, then µ is a bijection, i.e., for every
h ∈ hist(S) there exists a unique (sh, uh) ∈ S0×ACT∗ such
that µ(sh, uh) = h. Moreover, the moment different joint
actions are taken, two histories become distinguishable:
Lemma 1. Let S be a BA-iCGS. For all a ∈ Ag, u, u′ ∈
ACT∗ and s, s′ ∈ S0, if µ(s, u) ≡a µ(s′, u′) then u = u′.

Proof. Indeed, if µ(s, u) ≡a µ(s′, u′) then |u| = |u′| and, for
all 0 ≤ j ≤ |u|, µ(s, u)j ∼a µ(s′, u′)j . By the definition of
having only broadcast actions, uj = u′j for all j < |u|.

The next characterisation of uniformity in BA-iCGS fol-
lows from Lemma 1 and is central to our decidability result:
Proposition 1. Let S be a BA-iCGS, and let σ be a coherent
strategy for agent a. Then σ is uniform for agent a if and
only if for all v ∈ ACT∗, s, s′ ∈ S0 we have that µ(s, v) ≡a
µ(s′, v) implies σ(µ(s, v)) = σ(µ(s′, v)).

2.3 The Logic ESL
We now introduce ESL, an epistemic extension of SL. We
interpret it on iCGS with history-based semantics.
Syntax. Fix a finite set of atomic propositions (atoms) AP ,
a finite set of agents Ag, and an infinite set Var of strategy
variables x0, x1, . . .. The formulas overAP , Ag, and Var are
built according to the following grammar: ϕ ::= p | ¬ϕ |
ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | (x, a)ϕ | Kaϕ | CAϕ | DAϕ,
where p ∈ AP , x ∈ Var, a ∈ Ag, and A ⊆ Ag. The
set of ESL formulas is the one generated by the grammar.
The temporal operators are X (read “next”) and U (read “un-
til”). The strategy quantifier is 〈〈x〉〉 (“for some strategy x,
. . . ”) and the binding operator (x, a) (“by using strategy x,
agent a can enforce . . . ”); whilst the epistemic operators are
Ka (“agent a knows that”), CA (“it is common-knowledge
amongst A that”), and DA (“the agents in A distributively
know that”). We use the usual shorthands, e.g., true for
p ∨ ¬p, [[x]]ϕ for ¬〈〈x〉〉¬ϕ, and EAϕ for ∧a∈AKaϕ. The
sets free(ϕ) and bnd(ϕ) of free and bound variables appear-
ing in a formula ϕ are defined as standard [Mogavero et al.,
2014]. Intuitively, x ∈ free(ϕ) if x does not occur in ϕ
within the scope of any strategy quantifier of the form 〈〈x〉〉;
while a ∈ free(ϕ) if some temporal operator is not in the
scope of a binding (x, a) for agent a. Hereafter we assume
that sets free(ϕ) and bnd(ϕ) are disjoint. Moreover, as in
[Cermák, 2014] we assume that every variable is quantified
at most once in a given formula. All these properties can
be ensured w.l.o.g. by renaming bound variables. A sen-
tence is a formula ϕ with free(ϕ) = ∅. Finally, we define
shr(x, ϕ) = {a ∈ Ag | (x, a)ψ is a subformula of ϕ} as the
set of agents using strategy x in evaluating ϕ.
Semantics. Fix an iCGS S. An assignment is a function χ :
Var ∪ Ag → Σ(S) such that for every agent a ∈ Ag, the
strategy χ(a) is coherent and uniform for a. For x ∈ Var∪Ag
and σ ∈ Σ(S), the variant χxσ is the assignment that maps x
to σ and coincides with χ on all other variables and agents.
Moreover, if x = a ∈ Ag then we require σ to be coherent

and uniform for a. An assignment χ is ϕ-compatible if, for
every x ∈ Var, the strategy χ(x) is coherent and uniform for
every agent in shr(x, ϕ).

We define (S, h, χ) |= ϕ where h ∈ hist(S), ϕ is a for-
mula, χ is a ϕ-compatible assignment, and π := π(h, χ|Ag)
is the unique infinite sequence that extends h by following the
restriction of χ to Ag:
(S, h, χ) |= p iff last(h) ∈ λ(p), for p ∈ AP
(S, h, χ) |= ¬ϕ1 iff it is not the case that (S, h, χ) |= ϕ1

(S, h, χ) |= ϕ1 ∧ ϕ2 iff (S, h, χ) |= ϕi for i ∈ {1, 2}
(S, h, χ) |= 〈〈x〉〉ϕ1 iff there exists a strategy σ that is uniform

and coherent for every agent in shr(x, ϕ1)
such that (S, h, χxσ) |= ϕ1

(S, h, χ) |= (x, a)ϕ1 iff (S, h, χaχ(x)) |= ϕ1

(S, h, χ) |= Kaϕ1 iff for every history h′ ∈ hist(S),
h′ ≡a h implies (S, h′, χ) |= ϕ1

(S, h, χ) |= CAϕ1 iff for every history h′ ∈ hist(S),
h′ ≡C

A h implies (S, h′, χ) |= ϕ1

(S, h, χ) |= DAϕ1 iff for every history h′ ∈ hist(S),
h′ ≡D

A h implies (S, h′, χ) |= ϕ1

(S, h, χ) |= Xϕ1 iff (S, π≤|h|+1, χ) |= ϕ1

(S, h, χ) |= ϕ1 Uϕ2 iff there exists i ≥ |h| s.t. (S, π≤i, χ) |= ϕ2,
for all j with |h| ≤ j < i, (S, π≤j , χ) |= ϕ1,

The following says that the satisfaction is well-defined:

Lemma 2. In the expressions (S, h, χ′) |= ϕ′ on the right-
hand sides, χ′ is always a ϕ′-compatible assignment.

For a history formula ϕ, we write S |= ϕ to mean that
(S, s, χ) |= ϕ for every s ∈ S0 and assignment χ (observe
that states are histories of length 1). One can prove (as usual)
that the satisfaction of ESL-formulas depends only on their
free variables and agents, that is, if assignments χ and χ′ co-
incide on free(ϕ), then (S, h, χ) |= ϕ iff (S, h, χ′) |= ϕ.
Thus, e.g., if ϕ is a sentence, then S, s |= ϕ iff (S, s, χ) |= ϕ
for some assignment χ.

Clearly ESL extends SL. Indeed, one restricts the syntax of
ESL to the epistemic-free fragment, and the models to CGS
(i.e., ∼a:= {(s, s) : s ∈ S} for every a ∈ Ag):

Proposition 2. For every SL sentence ϕ there is an ESL sen-
tence ϕ̂ s.t. for all CGS S, we have that S |= ϕ iff S |= ϕ̂.

The proof simply requires to show that the state-based se-
mantics of SL in [Mogavero et al., 2014] can be captured by
our history-based semantics.

The next proposition says that ATL∗K embeds in ESL
(see [Jamroga and van der Hoek, 2004] for the definitions of
ATL∗K). Although the embedding is as expected, the proof
that it is correct is subtle.

Proposition 3. For every ATL∗K formula ϕ there is an ESL
sentence ϕ̂ s.t. for all iCGS S, we have that S |= ϕ iff S |= ϕ̂.

Proof. The main difficulty is to translate the ATL∗ operator
〈〈A〉〉 in ESL, which we illustrate. Consider Ag = {a1, a2,
a3, a4}, A = {1, 2}, and the ATL∗K formula ϕ = 〈〈A〉〉ψ.
The formula says that for every set of uniform strategies, one
for each agent in A, every path consistent with these strate-
gies satisfies ψ. Consider the ESL formula ϕ̂ = 〈〈x1〉〉〈〈x2〉〉
[[x3]][[x4]](x1, a1)(x2, a2)(x3, a3)(x4, a4)ψ̂. Clearly, ϕ log-
ically implies ϕ̂ since the paths consistent with x1, x2 include
those generated by uniform strategies x1, x2, x3, x4. On the



other hand, let π be any path consistent with strategies σ1, σ2

(for agents a1, a2). It is sufficient to show that there exist uni-
form strategies, σ3 for agent a3 and σ4 for agent a4, such that
π(s, σAg) = π. Indeed, for every n ≥ 0, let J ∈ ACT be
a joint action such that i) σi(π≤n) = J(i) for i = 1, 2, and
ii) tr(πn, J) = πn+1. Define σi(π≤n) = J(i) for i = 3, 4.
Since the uniformity condition only restricts pairs of histo-
ries of the same length, we can extend σ3 and σ4 to uniform
strategies. Note that π(s, σAg) = π, as required.

We now introduce the main decision problem of this work.

Definition 4 (Model Checking). Let C be a class of iCGS
and F a sublanguage of ESL. Model checking C against F
specifications is the following decision problem: given S ∈ C
and ϕ ∈ F as input, decide whether S |= ϕ.

Model checking iCGS against ATL is undecidable [Dima
and Tiplea, 2011]. Thus, applying Proposition 3, we get:

Proposition 4. Model checking iCGS against ESL is unde-
cidable.

Indeed, it is undecidable even if C consists of all iCGS with
|Ag| = 3 and F contains just the ATL formula 〈〈{1, 2}〉〉G p,
see [Dima and Tiplea, 2011]. The source of the undecid-
ability is the interplay between two assumptions: a) ∼1 and
∼2 are incomparable under the refinement-order on equiv-
alence relations, and b) agent 3 can privately communicate
with agents 1 and 2. In the sequel we prove that model check-
ing is decidable assuming all agents only have broadcast ac-
tions. Thus, we keep property a) while dropping property b).

3 Rational Synthesis under Imperfect
Information

In this section we show how to express central game-theoretic
properties in ESL, e.g., the existence of Nash equilibria in
multi-player games of imperfect information with epistemic
objectives. Moreover, we illustrate that ESL can be used to
reason about rational secret-sharing, i.e., rational agents that
communicate by broadcast actions in order to learn a secret
whose “shares” have been distributed amongst them.

3.1 Expressing Rational Synthesis in ESL

Several questions in computer science can be cast as the prob-
lem of deciding if there exists a joint winning strategy for a
coalition of agents against a coalition of adversarial agents
(and computing one if it exists). In the verification literature
this problem is called synthesis.

However, as argued in [Wooldridge et al., 2016; Kupfer-
man et al., 2016; Abraham et al., 2011], the partition of
agents into “good” and “bad” is often insufficient, and it is
more appropriate to view agents as rational. That is, agents
have preferences over outcomes and act in a way that in-
creases their own utility. Then, instead of reasoning about
winning strategies, one should reason about rational strategy
profiles, i.e., that satisfy some notion of equilibrium. Ap-
plication domains include rational distributed computing and
rational cryptography [Abraham et al., 2011], and negotiating
systems with self-interested agents [?]. Technically, suppose
we are given an iCGS S representing the multi-agent system,

and LTLK-formulas γa representing the objective of agent
a ∈ Ag. Here, LTLK is the logic consisting of the set of path-
formulas of ATL∗K. We can then talk about Nash equilibria σ
in games of the formG = 〈S, {γa}a∈Ag〉1. Rational synthesis
considers the following decision problem (sometimes called
E-NASH) :

Definition 5 (Rational Synthesis for LTLK objectives, cf.
[Kupferman et al., 2016]). Given an iCGS S, LTLK-formulas
γa for every a ∈ Ag, and an LTLK-formula ϕ, decide
whether there exists a Nash equilibrium σ in the game G =
〈S, {γa}a∈Ag〉 such that the path induced by σ satisfies ϕ.

Intuitively, ϕ represents some global property that the de-
signer wants to ensure given that agents are self-interested.
In case ϕ = true, this simply asks if there exists a Nash-
equilibrium. Moreover, if there is such a Nash equilibrium,
the synthesis problem concerns deriving one such strategy
profile σ. The dual problem, called Strong Rational Synthesis
(sometimes called A-NASH), concerns deciding whether all
Nash equilibria induce a path that satisfies ϕ [Kupferman et
al., 2016].

We now show that rational synthesis for LTLK objec-
tives reduces to model checking against ESL. Suppose
Ag = {a1, a2, . . . , an}, and let x be an n-tuple of vari-
ables. Let β be the expression (x1, a1)(x2, a2) . . . (xn, an)
that binds agent ai to strategy xi. The follow-
ing formula RatSynϕ(x) in ESL expresses that x is a
Nash equilibrium whose induced execution satisfies ϕ:
(x1, a1) . . . (xn, an)

[
ϕ ∧

∧
a∈Ag (〈〈y〉〉(y, a)γa → γa)

]
.

In words, if agent ai uses xi then the resulting execution
satisfies ϕ, and no agent has an incentive to unilaterally devi-
ate from the strategy profile x. Then:

Lemma 3. Rational synthesis for LTLK objectives is
reducible to model checking against the ESL-formula
〈〈x1〉〉 . . . 〈〈xn〉〉RatSynϕ(x).

A universally quantified formula is used for Strong Ra-
tional Synthesis. It is important to observe that ESL can
express other equilibrium concepts such as subgame-perfect
equilibria, concepts that capture deviations by groups of play-
ers such as k-resilience and t-immunity, and the combina-
tion (k, t)-robustness that captures fault-tolerance [Abraham
et al., 2011]. Also, ESL is able to express the existence of
Nash equilibria w.r.t. epistemic objectives, which, to the best
of our knowledge, has not yet been considered in the litera-
ture. We illustrate this last point in the next section.

3.2 Rational Secret-Sharing with Broadcast
We illustrate the model-checking problem for BA-iCGS
against ESL with a simple scenario inspired by [Abraham
et al., 2006] that uses broadcast. In the classic m-out-of-
n secret-sharing problem, for Ag = {1, 2, . . . , n}, initially
each agent i ∈ Ag privately holds a “share” fi of a secret f0,
and any m “good” agents can collaborate to learn the secret

1The framework can also support every agent having finitely-
many Boolean objectives aggregated by means of a reward function
such as max, cf. [Kupferman et al., 2016].



in spite of the remaining n−m “bad” agents2. In the rational
version of this scenario, the objective of each agent is to learn
the secret, i.e., she prefers to learn the secret rather than not
to learn it. Richer, non-binary, preferences can also be han-
dled, including the fact that an agent may prefer that the least
number of other agents learn the secret. For simplicity we do
not consider such extensions here.

We can model this scenario as an iCGS as follows. The se-
cret is the value of a variable s initially hidden from all agents
(formally, a variable v with finite domain D is modelled as
|D|-many atomic propositions); agent i’s share is modelled
as a private variable fi; each agent has a private variable si
that represents what she thinks the secret is; at every step, ev-
ery agent broadcasts a message (from some fixed finite set of
M messages). Finally, the objective γi of each agent i can
be formalised as the LTLK-formula FGKi(si = s): from
some point on, agent i knows the secret. Thus, the ESL-
formula 〈〈x1〉〉 . . . 〈〈xn〉〉RatSynϕ(x) expresses that there is a
Nash equilibrium satisfying ϕ in the rational secret-sharing
scenario. For instance, one can use ϕ to express that agents
make “true” statements, e.g., that if agent i broadcasts “my
share is x”, then indeed fi = x. Observe that by using ESL
specifications we can naturally express secrecy and strategic
concepts.

4 Model Checking BA-iCGS against ESL
In this section we prove the main technical result of this paper.

Theorem 6. Model checking BA-iCGS against ESL specifi-
cations is decidable and non-elementary complete.

For the non-elementary lower-bound we use the obser-
vation that model-checking SL on CGS (i.e., with perfect-
information) is non-elementary [Mogavero et al., 2014], to-
gether with the fact that by encoding the last joint action into
the states, one can translate a CGS S into a BA-iCGS S′ such
that for all sentences ϕ in ESL, we have that S |= ϕ iff S′ |= ϕ
(the same procedure is used in [Belardinelli et al., 2017]).

For the non-elementary upper-bound, we reduce the
model-checking problem of BA-iCGS against ESL speci-
fications to model checking regular-trees against Monadic
Second-Order Logic (MSO). The naı̈ve approach is to code
every tuple (S, h, χ) by a tuple of functions (Ŝ, ĥ, χ̂) each of
whose domain is the set ACT∗ of finite sequences of joint ac-
tions, and whose ranges are finite (to be specified later). This
encoding allows us to build, for every ESL-sentence ϕ, an
MSO-formula Φ, such that (S, h, χ) |= ϕ iff T |= Φ(Ŝ, ĥ, χ̂),
where T is the infinite ACT-ary tree generated by Ŝ, ĥ, and χ̂.
The latter problem is decidable if Ŝ, ĥ, and χ̂ are regular func-
tions (a function f : D∗ → L is regular if, for each l ∈ L,
the set f−1(l) ⊆ D∗ is accepted by a finite automaton). Since
ϕ is a sentence we can choose χ arbitrarily, in particular so
that it is regular (on the other hand, both Ŝ and ĥ are always
regular).

2In Shamir’s scheme this is implemented by an initially unknown
polynomial f of degree m − 1 in some finite field F with |F | > n
and f(0) 6= 0; the secret is f(0), each share is f(i), and thus any m
shares uniquely determine the secret (by interpolation).

Monadic Second-Order Logic. Below we summarise MSO,
which extends first-order logic with variables for sets, and
recall the fundamental theorem, i.e., that MSO is decid-
able on regular-trees [Rabin, 1969]. The syntax of MSO
includes Boolean operators ¬ and ∧; individual variables
u, v, w, . . .; set variables U, V,W, . . .; quantifiers over these
variables ∃u,∃U, . . .; binary relation symbols ∈, =, and �;
and unary function symbols sucd for every d in a finite set
∆ of directions. We denote formulas of MSO by Φ,Ψ, . . ..
The semantics of MSO is defined over the structure T∆ =
〈∆∗, {sucd}d∈∆〉, called the unlabelled ∆-ary tree. The in-
terpretation of individual variables are elements in ∆∗, of set
variables are subsets of ∆∗; Boolean operators and quanti-
fiers are interpreted as usual; atoms u ∈ U and u = v as
usual; while u � v is the prefix relation, and sucd(u) = ud
for d ∈ ∆, u ∈ ∆∗. We will often think of u ∈ ∆∗ as the
singleton set U = {u} ⊆ ∆∗. Formulas Φ(U) with free
variables U are interpreted in expanded structures (T∆, A),
called labelled ∆-ary trees, where each Ai ⊆ ∆∗. Instead
of writing (T∆, A) |= Φ(U), we may write T∆ |= Φ(A), or
simply A |= Φ. A labelled-tree (T∆, A) is regular if each
Ai ⊆ ∆∗ is accepted by a finite automaton.
Theorem 7. [Rabin, 1969] There is a non-elementary time
algorithm that, given an MSO-formula Φ(U) and a regular
labelled-tree (T∆, A), decides whether T∆ |= Φ(A). Also, if
T∆ |= ∃U Φ(U) then there is a regular labelled-tree (T∆, A)
such that T∆ |= Φ(A), and the finite automata for all Ai ⊆
∆∗ are computable.

We use standard shorthands, e.g., ε for the root; X = Y
for ∀v(v ∈ X ↔ v ∈ Y ), etc. Say that A′ is definable
from A if for each i there is an MSO-formula ϕi(x) such that
A |= ∀x(ϕi(x) ↔ x ∈ A′i). For an MSO-formula Φ(U), we
define Φ[A′ ← A] for the MSO-formula formed from Φ in
which every variable Ui is replaced by the definition ϕi ofA′i.
Then A′ |= Φ iff A |= Φ[A′ ← A]. We now introduce some
abbreviations, i.e., variables for functions with finite ranges:
Definition 8 (Unary Function Variables). Let Θ be a finite
set of sorts. Associate with each type θ ∈ Θ a finite set of
labels Lθ. For every sort θ, we introduce unary function vari-
ables α, β, . . . of that sort, and quantification, i.e, ∃α,∃β, . . ..
Define the interpretation of variable α of sort θ by a func-
tion of the form α : ∆∗ → Lθ. We write α |= Φ to denote
(T∆, α) |= Φ. If α′ is definable from α, we write Φ[α′ ← α]
for the substitution as above.

We remark that this extension does not add expressive
power. Indeed, we can replace the function variable α of sort
θ by a |Lθ|-tuple of set variables X , and replace every term
α(v) = d by the expression v ∈ Xd.
Directions and sorts. Fix a BA-iCGS S, the direction set
∆ = ACT, and the set Θ to consists of four sorts:
- D with labels LD = S0 → S (for representing iCGS);
- H with LH = S0 ∪ {⊥} (for histories);
- R with LR = S0 → Act (for strategies);
- K with LK = S0 → ((Var ∪ Ag)→ Act) (for assignments).
Encoding (S, h, χ) by functions. Recall the bijection µ :
hist(S) → S0 × ACT∗ in Def. 3 and that we write h =



µ(sh, uh) (Section 2.2). The structure S is encoded by a func-
tion Ŝ of sort D; a history h by a function ĥ of sort H; an
assignment χ by a function χ̂ of sort K; and a strategy σ by
a function σ̂ of sort R, as follows3:

- Ŝ(v)(t) = tr(t, v) for all v ∈ ACT∗, t ∈ S0.
- ĥ(uh) = sh, and ĥ(v) = ⊥ for all v ∈ ACT∗ with v 6= uh.
- σ̂(v)(t) = σ(µ(t, v)) for all v ∈ ACT∗, t ∈ S0.
- χ̂(v)(t)(x) = χ(x)(µ(t, v)) for all v ∈ ACT∗, t ∈ S0,
x ∈ Var ∪ Ag.

Expressing ESL in MSO. We now show how to express in
MSO that a function variable α of a given sort is a valid en-
coding. First, we can express that a function variable α of
sort H is of the form ĥ for some history h, i.e., ∃x(α(x) ∈
S0 ∧ ∀y(y 6= x → (α(y) = ⊥))). Second, we can express
that a function variable α of sort D is of the form Ŝ, i.e.,∧
t∈S(α(ε)(t) = t ∧ α(sucd(v))(t) = tr(α(v)(t), d)). Third,

for every ESL formula ϕ, we can express that a function vari-
able of sortK is of the form χ̂ for some ϕ-compatible assign-
ment χ. To do this, it is sufficient to express, for a ∈ Ag,
that a function variable α of sort R is of the form σ̂ for
some strategy σ that is coherent and uniform for agent a.
Coherency is easy: Ca(α) := ∀v

∧
s∈S0

α(v)(s) ∈ Acta.
For uniformity, we use the characterisation in Proposition 1:
Ua(α) :=

∧
s,s′∈S0

∀v
(
Eas,s′(v)→ (α(v)(s) = α(v)(s′))

)
where Eas,s′(v) is ∀w(w � v → (Ŝ(w)(s) ∼a Ŝ(w)(s′))).

The remainder of the proof is by structural induction.
Inductive hypothesis. For every ESL-sentence ϕ and BA-
iCGS S one can construct an MSO-formula Φ such that
(S, h, χ) |= ϕ if and only if (Ŝ, ĥ, χ̂) |= Φ (for all h, χ).

Atomic predicate ϕ = p. Define Φ by∨
s0∈S0,s∈λ−1(p) ∃v(ĥ(v) = s0 ∧ Ŝ(v)(s0) = s).
Boolean operators. For ϕ = ¬ϕ1 define Φ = ¬Φ1; and

for ϕ = ϕ1 ∧ ϕ2 define Φ = Φ1 ∧ Φ2.
Strategic operator ϕ = 〈〈x〉〉ϕ1. Define Φ by

∃α
∧
a∈shr(x,ϕ)(Ca(α) ∧ Ua(α) ∧ Φ′1), where Φ′1 is Φ1 in

which χ̂(v)(s)(x) is replaced by α(v)(s).
Binding operator ϕ = (x, a)ϕ1. Define Φ by Φ1[χ̂′ ← χ̂]

where, writing χ′ for χaχ(x), the encoding χ̂′ is definable from

χ̂ as follows: χ̂′(v)(t)(y) equals χ̂(v)(t)(y) if y 6= a, and
equals χ̂(v)(t)(x) if y = a.

Epistemic operator ϕ = Kaϕ1. The formula Φ is∧
s,t∈S0

∀u
(

(ĥ(u) = s ∧ Eas,t(u))→ Φ1[ĥ′ ← ĥ]
)

, where

h′ = µ(t, u) (note that ĥ′ is definable from u and t). The
other epistemic operators are treated similarly.

Next operator ϕ = Xϕ1. It is sufficient to note that, writ-
ing h′ = π(h, χ|Ag)≤|h|+1, the encoding ĥ′ is definable from
χ̂ and ĥ as follows: ĥ′(v) = t if ĥ(u) = t and v = sucJ(u)

and J(a) = χ̂(u)(t)(a), else ĥ(v) = ⊥.
Until operator ϕ = ϕ1 Uϕ2. Note that a) for every s ∈ S0

there is an MSO-formula Ps(U, u) that says that U is an infi-
nite branch, u ∈ U , and that after u the branch U continues

3Hereafter tr : S0 × ACT∗ → S is defined by tr(s, ε) = s and
tr(s, vx) = tr(tr(s, v), x) for v ∈ ACT∗, x ∈ ACT.

by following the joint full strategy induced by χ̂ from ini-
tial state s; and b) µ(s, u) ∈ out(S, h) can be expressed in
terms of ĥ by ∃x(u � x ∧ ĥ(x) = s). Thus, the trans-
lation of Fϕ2 ≡ trueUϕ2 (the full operator U is similar)
is
∨
s∈S0

∃U∃u(Ps(U, u) ∧ ĥ(u) = s ∧ ∃ĥ′∃v ∈ U(u �
v ∧ ĥ′(v) = s∧Φ2[ĥ′ ← ĥ])). This completes the induction.

The size of Φ is polynomial in the size of the input (i.e.,
ϕ,S). Applying Theorem 7 we get the stated non-elementary
upper-bound. This completes the proof of Theorem 6.
Application to Rational Synthesis. By the discussion in
Section 3.1, we immediately get the first part of the following:

Corollary 1. Rational synthesis for LTLK objectives on BA-
iCGS is decidable. Moreover, if a given instance returns
“yes”, then a finite-state Nash equilibrium can be computed.

For the second part, apply the translation presented above
to the ESL-formula RatSyntrue(x) and a BA-iCGS S (say
with |Ag| = n) to get an MSO-formula Φ(U) such that
for all strategy profiles σ, we have that S |= RatSyntrue(x)
iff (σ̂1, . . . , σ̂n) |= Φ. Now, by Theorem 7 applied to Φ,
one can compute regular languages Ai ⊆ ACT∗ such that
A |= Φ. Since these languages code strategies, we have com-
puted finite-state strategies σi such that S |= RatSyntrue(σ).

5 Conclusions
One of the key problems in reasoning about strategic abilities
in MAS under incomplete information and perfect recall is
that the model checking and synthesis problems are undecid-
able even for relatively weak logics such as ATL. Yet, MAS
applications require specifications that are more expressive
than ATL, e.g., capable of expressing solution concepts such
as Nash equilibria. Identifying classes of systems for which
these two desiderata can be combined remains a challenge. In
this paper we have made a contribution towards this aim.

Specifically, we defined ESL, a combination of Strategy
Logic and Epistemic Logic. We observed that model check-
ing and synthesis are undecidable under synchronous perfect-
recall semantics. However, we showed that a noteworthy sub-
class of systems, those that admit only broadcast actions, ad-
mit decidable model checking and synthesis, and identified
tight bounds for the model-checking problem.

We have illustrated the expressivity of the formalism by
phrasing rational synthesis under incomplete information, a
previously unexplored set-up, as an instance of model check-
ing for ESL. This has the noteworthy consequence that ratio-
nal synthesis is decidable in the framework. It follows that we
can decide expressive strategic properties of rational secret-
sharing scenarios like the one presented in Section 3.2 under
the assumption of non-randomised strategies. We leave the
exploration of other scenarios for future work.
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