
Alternating-time Temporal Logic on Finite Traces

Francesco Belardinelli1, Alessio Lomuscio2, Aniello Murano3 and Sasha Rubin3

1 Laboratoire IBISC, UEVE, France
2 Department of Computing, Imperial College London, UK

3 DIETI, Università degli Studi di Napoli, Italy
francesco.belardinelli@univ-evry.fr, a.lomuscio@imperial.ac.uk, murano@na.infn.it, rubin@unina.it

Abstract
We develop a logic-based technique to analyse fi-
nite interactions in multi-agent systems. We in-
troduce a semantics for Alternating-time Temporal
Logic (for both perfect and imperfect recall) and its
branching-time fragments in which paths are finite
instead of infinite. We study validities of these log-
ics and present optimal algorithms for their model-
checking problems in the perfect recall case.

1 Introduction
There is a long tradition in logic-based approaches to Artifi-
cial Intelligence (AI) to model the evolution of a system on
the basis of an infinite sequence of states [Alur et al., 2002;
Mogavero et al., 2014]. This approach is heavily influenced
by works in reactive systems and related temporal logic ap-
proaches, where a computing system is conceived as an en-
tity that interacts with the environment indefinitely [Harel and
Pnueli, 1985].

While this modelling choice has long proven to be valuable
in regards to AI as well, many areas of AI are typically char-
acterised by executions that terminate. For example, plays in
classic ludic games are finite, phases in negotiation and coor-
dination protocols are finite [Jennings et al., 2001], business
processes are naturally modelled using finite traces [Pesic et
al., 2010], and in automated planning successful executions
are often finite (e.g., in classical planning and in strong solu-
tions to fully observable non-deterministic planning) [Geffner
and Bonet, 2013].

In this paper we introduce ATL∗f , Alternating-time Tempo-
ral Logic for the modelling and verification of multi-agent
systems with finite computations. The syntax is the same
as ATL∗ [Alur et al., 2002], while the semantics is novel.
Precisely, a model comes equipped with a special set of fi-
nal states F and strategic quantifiers only range on paths that
end in a state of F . We automatically get finite-trace seman-
tics for the natural syntactic fragments of ATL∗f , i.e., ATLf ,
CTLf , and CTL∗f , the finite-trace variants of the branching-
time temporal logics CTL∗ and CTL, that we also study. We
use ordinary finite-automata, operating on finite words, in-
stead of infinite words or trees, to give optimal algorithms for
the model-checking problems of these logics (with perfect re-
call).

In particular, our algorithms sidestep intrinsic difficulties
of model-checking ATL∗ that are due to automata operating
over infinite words or trees, e.g., determinisation of Büchi
automata, which has been resistant to efficient implementa-
tion [Tsai et al., 2014], or emptiness of alternating parity tree
automata, which is conjectured to be in PTIME and known
to be in NP and co-NP [Emerson et al., 2001]. There are al-
gorithms that avoid determinisation or solving emptiness of
alternating tree automata, notably Safraless decision proce-
dures [Kupferman et al., 2006; Filiot et al., 2011]. These
algorithms, while undeniably elegant, are still complex and
tailored to reasoning about infinite traces. In contrast, just
like the procedures in [De Giacomo and Vardi, 2015], our
algorithms are extremely simple: they only involve automata
operating on finite words, and simple standard constructions
on these such as the classic subset construction for determini-
sation. We consider this a significant technical improvement.

Related Work. In recent years, several contributions in
AI have focused on variants of LTL to reason about finite-
computation systems. Along this line, well studied is LTLf ,
a variant of the Linear-time Temporal Logic LTL where for-
mulas are interpreted over finite traces (see [De Giacomo
and Vardi, 2015] for a survey). This logic has proved par-
ticularly useful in planning [Bacchus and Kabanza, 2000;
Baier and McIlraith, 2006; Gerevini et al., 2009; De Gia-
como and Vardi, 2013; Camacho et al., 2017], and in business
process modelling [Pesic et al., 2010; Montali et al., 2010;
De Giacomo et al., 2014a]. Moreover, recent work [De Gia-
como et al., 2014b] has compared the finite- and infinite-trace
semantics for LTL, showing surprising differences both at the
modelling and verification levels.

There are two standard semantics for LTL, i.e., over traces
and over transition systems [Baier and Katoen, 2008]. In [De
Giacomo and Vardi, 2013] model-checking LTLf is consid-
ered for semantics over traces, i.e., models are of the form
π0π1 · · ·πn where πi is a set of atomic proposition. In
contrast, our models of ATL∗f are transition systems. This
opens up the possibility of modelling complex strategic and
branching-time properties of transition systems rather than
just properties of traces. Furthermore, thanks to the strategic
operators in ATL∗f , we reduce LTLf synthesis [De Giacomo
and Vardi, 2015] to ATL∗f model checking (see Section 4).

To the best of our knowledge finite traces have already been

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

77

considered in the context of branching-time temporal logics,
but never for logics of strategies. In [Vardi and Stockmeyer,
1985] a finite-trace semantics for CTL∗ is introduced. This
formal account, which is a special case of our semantics, is
analysed briefly in Remark 2. The expressivity of CTL∗ on
parameterised sets of traces, which includes the set of finite
traces, has been investigated in [Emerson and Halpern, 1986],
but the related model-checking problem has not been tackled
as far as we know. Our framework is also related to Game
Logic [Pauly and Parikh, 2003], which was designed to rea-
son about games, and has applications to protocol analysis,
e.g., cake cutting and secret exchange. However, Game Logic
is a generalisation of PDL from programs to games, whereas
our framework is in the tradition of branching and alternating-
time temporal logics. Moreover, its model checking problem
was studied for the two-player case only. Motivated by multi-
agent strategic reasoning over finite traces, [Gutierrez et al.,
2017] introduced and studied iterated Boolean games with
LDL goals over finite traces. Differently from us, they con-
sider the problem of the existence of Nash equilibria.

Lastly, [Kong and Lomuscio, 2018] developed a verifica-
tion approach for finite traces of multi-agent systems against
LDLfK specifications. Their approach focuses on the verifi-
cation algorithms and the resulting implementation. In con-
trast, we are here concerned with the theoretical underpinning
of an approach supporting the strategic interplay of the agents
on finite executions.

2 Concurrent Game Systems with Final States
In this section we introduce concurrent game structures
(CGS) endowed with final states. Given a set X of elements,
let u ∈ Xω ∪ X+ denote an infinite or non-empty finite se-
quence on X . Then, we write ui for its (i + 1)-th element,
i.e., u = u0u1 . . ., and |u| for its length, with |u| = ∞ for
u ∈ Xω . The first element of u is denoted by first(u), and
its last by last(u). We write u≥i for its suffix uiui+1 . . . start-
ing in ui, and u≤i for its prefix u0 . . . ui. The empty sequence
is denoted by ε. For a vector v ∈

∏
iXi we denote its i-th

element by v(i).
We now introduce our class of relevant models.

Definition 1 (CGS with final states). A concurrent game
structure (CGS) with final states is a tuple G =
〈Ag ,AP, {Acta}a∈Ag , S, s0, F, δ, λ〉 where:
• Ag is the finite non-empty set of agent names;
• AP is the finite non-empty set of atomic propositions;
• Acta is the finite non-empty set of actions for a ∈ Ag;
• S is the finite non-empty set of states; with initial state
s0 ∈ S, and the non-empty set F ⊆ S of final states;
• δ : S × Jact → S is the transition function, where
Jact =

∏
a∈Ag Acta is the set of joint actions;

• λ : S → 2AP is the labelling function that assigns a set
of atoms to each state s.

Def. 1 extends the standard definition of CGS [Alur et al.,
2002] by explicitly identifying a set F ⊆ S of final states.
Final states can be thought of as end states in games (e.g.,
all configurations in which a king is in check-mate in chess),
or goal states in plans, or remarkable states along a system’s

execution. Final states allow us to talk about plays that have
both a start and an end.

A run (resp. history) is an infinite (resp. finite) sequence
π ∈ S+∪Sω of states complying with the transition function,
i.e., for every i < |π| there exists a joint action J ∈ Jact such
that δ(πi, J) = πi+1. We denote with Run (resp. Hist) the
set of all runs (resp. histories).

A path is a history π that ends in a final state, i.e., last(π) ∈
F . In the next section, we will define strategic quantifiers to
range on paths, i.e., finite sequences ending in final states. We
denote the set of all paths by Path.

A (perfect recall or memoryful) strategy for agent a is a
function σa : Hist → Acta. A strategy σ is positional or
memoryless if for all h, h′ ∈ Hist, last(h) = last(h′) im-
plies σ(h) = σ(h′). The set of all memoryful (resp. memo-
ryless) strategies is denoted as ΣR(G) (resp. Σr(G)). For
A ⊆ Ag and y ∈ {R, r}, let σA : A→ Σy(G) denote a joint
strategy associating a (memoryful or memoryless) strategy σa
with each agent a ∈ A.

For s ∈ S, a joint strategy σA, and x ∈ {∞, f}, we write
outx(s, σA), called the infinite, resp. finite, outcomes of σA
from s, for the set of runs, resp. paths, π ∈ Run∪Path such
that π is consistent with s and σA. That is, π ∈ outx(s, σA)
iff (i) π0 = s; (ii) for every i ≥ 0, there exists a joint action
Ji ∈ Jact such that πi+1 ∈ δ(πi, Ji) and for every a ∈ A,
Ji(a) = σA(a)(π≤i).

3 ATL∗ on Finite Traces
In this section we introduce the language ATL∗ and its frag-
ment ATL [Alur et al., 2002]. Then, we interpret them on
finite as well as infinite traces.

Syntax Fix finite sets AP of atomic propositions (atoms)
and Ag of agents. The state (ϕ) and path (ψ) formulas over
AP and Ag are built using the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

where p ∈ AP and A ⊆ Ag .
The class of ATL∗ formulas is the set of state formulas

generated by the grammar. The temporal operators are X
(read “next”) and U (read “until”). The strategy quantifier
is 〈〈A〉〉 (read “the agents in A can enforce . . . ”). We intro-
duce the following abbreviations: [[A]]ψ ::= ¬〈〈A〉〉¬ψ (read
“no matter what the agents in A do . . . ”), X̃ψ ::= ¬X¬ψ
(read “weak next”), and ψRψ′ ::= ¬(¬ψU¬ψ′) (read “re-
leases”), Fψ ::= trueUψ (read “eventually”) and Gψ ::=
falseRψ (read “globally”).

Hereafter we consider also the ATL fragment of ATL∗. State
formulas are built in the same way, whereas path formulas ψ
are defined as follows:

ψ ::= Xϕ | X̃ϕ | ϕUϕ | ϕRϕ

Notice that operators X̃ and R have to be assumed as prim-
itive now. We discuss the reason why in Remark 4.

In the following we also consider the CTL and CTL∗

fragments of ATL and ATL∗ respectively. Specifically, in

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

78

CTL/CTL∗ we only allow the empty coalition ∅ in strategic
operators. Further, we use the usual abbreviations Aψ ::=
〈〈∅〉〉ψ and Eψ ::= ¬A¬ψ ≡ [[∅]]ψ.

Finally, we introduce the LTL fragment of CTL∗ as the set
of path formulas generated by the grammar: ψ ::= p | ¬ψ |
ψ ∧ ψ | Xψ | ψUψ, where p ∈ AP.

We provide all these different languages with a semantics
based on finite traces.

Semantics Fix a CGS G with final states. For x ∈ {∞, f}
and y ∈ {R, r}, we simultaneously define, by induction on
the structure of formulas, the relations (G, s) |=xy ϕ, where
s ∈ S and ϕ is a state formula, and (G, π) |=xy ψ where
π ∈ Run if x = ∞ and π ∈ Path if x = f , and ψ is a path
formula:
(G, s) |=xy p iff p ∈ λ(s)
(G, s) |=xy ¬ϕ iff (G, s) 6|=xy ϕ
(G, s) |=xy ϕ ∧ ϕ′ iff (G, s) |=xy ϕ and (G, s) |=xy ϕ

′

(G, s) |=xy 〈〈A〉〉ψ iff for some joint strategy σA ∈ Σy(G),
for all π ∈ outx(s, σA), (G, π) |=xy ψ.

(G, π) |=xy ϕ iff (G, π0) |=xy ϕ
(G, π) |=xy ¬ψ iff (G, π) 6|=xy ψ
(G, π) |=xy ψ ∧ ψ′ iff (G, π) |=xy ψ and (G, π) |=xy ψ

′

(G, π) |=xy Xψ iff π≥1 6= ε and (G, π≥1) |=xy ψ
(G, π) |=xy ψUψ′ iff for some j < |π|, (G, π≥j) |=xy ψ

′, and
for all k with 0 ≤ k < j, (G, π≥k) |=xy ψ

For a state formula ϕ, we write G |=xy ϕ to mean that
(G, s0) |=xy ϕ; whereas ϕ is a validity, or |=xy ϕ, iff G |=xy

ϕ for every CGS G with final states.
We consider the following sets of validities: For x ∈
{∞, f} and y ∈ {R, r}, let

ATL∗xy = {ϕ ∈ ATL∗ ||=xy ϕ}
ATLxy = {ϕ ∈ ATL ||=xy ϕ}.

Notice that for x = ∞ we obtain the standard semantics for
ATL∗ and ATL on infinite traces [Alur et al., 2002]; while
y ∈ {R, r} discriminates between the perfect- and imperfect-
recall variant. We will drop the subscripts when they are clear
from the context.

We now unpack the meaning of the strategic operators.
Remark 1. In standard ATL∗ (x = ∞, y = R) we have
validities 〈〈Ag〉〉ψ ↔ [[∅]]ψ and [[Ag]]ψ ↔ 〈〈∅〉〉ψ. However,
on finite traces we only have 〈〈Ag〉〉ψ → [[∅]]ψ and 〈〈∅〉〉ψ →
[[Ag]]ψ, as the converses fail. Indeed, for x = f, y = R:

1. 〈〈Ag〉〉ψ is true at state s iff there is some infinite path π
starting in s such that every prefix of π ending in a final
state in F satisfies ψ.

2. [[Ag]]ψ is true at state s iff for all infinite paths π starting
in s, there is some prefix of π ending in a final state in
F , that satisfies ψ.

3. Aψ defined as 〈〈∅〉〉ψ is true at state s iff all finite paths
starting in s and ending in F satisfy ψ.

4. Eψ defined as [[∅]]ψ is true at state s iff that there exists
a finite path starting in s, ending in F , that satisfies ψ.

Further, for x = f, y = r only the ⇒-implications of (1)
and (2) hold, as memoryless strategies may restrict the set of
paths produced (whereas (3) and (4) still hold).

We now illustrate our framework with a simple scenario.
Example 1. Consider any ludic game that has a definite end
and/or states in which something “important” happens. E.g.,
in chess, a “checkmate” is one way to signal the end of the
game, and a “check” signals that the opponent’s King is
under threat. We can model such games as CGS whose fi-
nal states correspond to the end states or the “important”
states.1 Then, e.g., if the final states in the CGS corresponds
to “check”, a formula of the form 〈〈{Black}〉〉G FQueen
says that the Black player has a strategy ensuring that when-
ever “check” occurs, the black queen is still on the board.

Discussion We now make some remarks that motivate and
discuss the syntax and semantics of ATL∗ on finite traces, i.e.,
for x = f .

We begin by discussing the relationship between our
CTL∗fR and a previous definition of CTL∗ on finite traces.

Remark 2. In [Vardi and Stockmeyer, 1985] a semantics for
CTL∗ on finite traces is put forward. Specifically, path quan-
tifiers range on all finite paths starting from a given state s,
including the trivial path π = 〈s〉. Observe that we can mimic
such an interpretation in CGS with final states by assuming
that F = S. However, such a semantic choice validates pecu-
liar CTL∗ formulas including A Fϕ↔ ϕ and E Gϕ↔ ϕ. As
a result, whenever path quantifiers range unrestrictedly over
all finite paths, modalities A F and E G collapse to truth in
the current state. We stress that nothing similar is the case in
the semantics we propose, in particular A F and E G remain
distinct.

We now discuss, at the level of validities, the difference
between perfect and imperfect recall.
Remark 3. It is well-known that, for infinite traces, recall
does not impact validities of ATL, i.e., ATL∞R = ATL∞r,
whereas it does make a difference for ATL∗, i.e., ATL∗∞r ⊂
ATL∗∞R [Alur et al., 2002]. Here we state without proof that
similar results hold also for our semantics:

ATLfr = ATLfR

ATL∗fr ⊂ ATL∗fR

Thus, ATL and ATL∗ have the same distinguishing power as
regards perfect/imperfect recall both on infinite and on finite
traces.

Now we discuss the reason we chose the syntax of ATL to
include X̃, the dual of X.
Remark 4. It is known that, differently from the case of in-
finite traces, on finite traces the next operator X is not self-
dual. In particular, according to the semantics for |=f given
in [De Giacomo and Vardi, 2015] in LTLf we have that

|=f Xψ → ¬X¬ψ but 6|=f ¬X¬ψ → Xψ

This remark justifies the introduction of weak next X̃ψ as
¬X¬ψ (thus, e.g., differently from the case of infinite traces,
〈〈A〉〉 X̃ϕ is no longer equivalent to 〈〈A〉〉Xϕ).

1Of course such games may have huge state spaces that require
additional techniques to analyse. This important dimension, how-
ever, is out of the scope of this paper.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

79

Finally, in ATLf (for each type of recall r,R) we can intro-
duce operators involving [[A]] as follows:

[[A]] Xϕ ::= ¬〈〈A〉〉 X̃¬ϕ
[[A]] X̃ϕ ::= ¬〈〈A〉〉X¬ϕ

[[A]](ϕUϕ′) ::= ¬〈〈A〉〉(¬ϕR¬ϕ′)
[[A]](ϕRϕ′) ::= ¬〈〈A〉〉(¬ϕU¬ϕ′)

Finally, we present fixed points for formulas 〈〈A〉〉ψ1 Uψ2

and 〈〈A〉〉ψ1 Rψ2 in ATL. Such validities are relevant as sym-
bolic model checking algorithms for ATL are based on similar
fixed points.
Remark 5. The following formulas are validities in ATLf (for
each type of recall r,R):
〈〈A〉〉ψ1 Uψ2 ↔ 〈〈A〉〉⊥ ∨ (ψ2 ∨ (ψ1 ∧ 〈〈A〉〉X〈〈A〉〉ψ1 Uψ2)) (1)

〈〈A〉〉ψ1 Rψ2 ↔ 〈〈A〉〉⊥ ∨ (ψ1 ∨ (ψ2 ∧ 〈〈A〉〉X〈〈A〉〉ψ1 Rψ2)) (2)

We conclude by remarking that on infinite traces 〈〈A〉〉⊥ is
equivalent to ⊥, which is not the case on finite traces. In fact,
on finite traces 〈〈A〉〉⊥ means that there exists a strategy for
coalition A with an empty set of outcomes.

Model Checking We now state the main decision problem
tackled in this work.
Definition 2 (Model Checking). Given a CGS G with final
states and a formula ϕ, model checking G against ϕ on infi-
nite (resp. finite) traces, with perfect (resp. imperfect) recall
is the following decision problem: decide whether G |=xy ϕ
for x =∞ (resp. x = f) and y = R (resp. y = r).

Table 1 recalls the complexity of the model-checking prob-
lem for the logic ATL∗∞R and some of its fragments. Citations
to the original papers are given.

Logic Complexity Reference
CTL PTIME-c [Clarke et al., 1986]
CTL∗ PSPACE-c [Emerson and Lei, 1985]
ATL PTIME-c [Alur et al., 2002]
ATL∗ 2EXPTIME-c [Alur et al., 2002]

Table 1: Complexity of model checking for x =∞, y = R.

4 Complexity of Model Checking
In this section we explore the computational complexity of
model checking ATL∗ (and its fragments) over finite traces
and under the perfect-recall assumption. See Table 2 for a
summary of the results and their corresponding references.

Logic Complexity Theorems
CTLf,R PTIME-c 2, 4
CTL∗f,R PSPACE-c 3, 5
ATLf,R PTIME-c 2, 4
ATL∗f,R 2EXPTIME-c 1, 6

Table 2: Complexity of model checking for x = f, y = R.

For the rest of this section we assume y = R and do not
write this subscript.

4.1 Upper Bounds
We solve the model-checking problem for ATL∗f by using
an automata-theoretic approach. Since our paths are finite,
we only need to use ordinary automata, i.e., determinis-
tic word automata (DFW), non-deterministic word automata
(NFW) [Hopcroft and Ullman, 1979], instead of ω-regular au-
tomata. This considerably simplifies the constructions. Over-
all, we reduce the problem (G, s) |= ϕ to model checking a
game with an LTLf objective ψ; in turn, this can be solved
by converting ψ into a DFW accepting the models of ψ (the
DFW might be doubly-exponentially larger than the formula),
then taking the product of the resulting DFW with the struc-
ture G to obtain a safety game that, in turn, can be solved
by using the standard fix-point algorithm linearly in the size
of the game. The rest of the section explores all the relevant
cases in detail.

We begin with a special case that serves as a building block,
i.e., (G, s) |=f 〈〈A〉〉ψ where ψ is an LTLf formula. The al-
gorithm is presented in Figure 1. Intuitively, this corresponds
to solving a game with the LTLf objective ψ: the coalition A
plays a game on a graph that simulates G and a DFW for ψ; it
is trying to enforce that every play from s stays “safe”, i.e., in
states such that if the corresponding state ofG is in F then the
corresponding state of the DFW is accepting (this captures the
semantics of 〈〈A〉〉 which relativises paths to be those ending
in F).

Algorithm: GameSolving(G,A,ψ)
Input: CGS G (states S), agents A ⊆ Ag , LTLf formula ψ.
Output: The set X ⊆ S such that s ∈ X iff (G, s) |=f

〈〈A〉〉ψ.
1. Convert ψ into an equivalent NFW.
2. Convert the NFW into an equivalent DFW (D, d0,∆, F

′).
3. Form the product edge-labelled graph on states S ×D.
4. Form the set Safe ⊆ S ×D as consisting of (s, d) such

that s ∈ F implies d ∈ F ′.
5. Put s ∈ X iff coalitionA can ensure the play in the prod-

uct, starting in (s,∆(d0, λ(s))), always stays in Safe .

Figure 1: Algorithm for solving games with LTLf objectives in
double-exponential time.

Proposition 1. Model-checking ATL∗f formulas of the form
〈〈A〉〉ψ where ψ is an LTLf -formula is in 2EXPTIME. In par-
ticular, it is doubly-exponential in ψ and polynomial in G.

Proof. The overall structure of the proposed algorithm is pre-
sented in Figure 2. We give some more details.

For step 1, we use the adaptation of the classic Vardi-
Wolper construction to finite words, e.g. [De Giacomo and
Vardi, 2015], to get an NFW that accepts all the traces (over
atoms AP , i.e., alphabet 2AP) that satisfy ψ. The number
of states of the NFW is at most exponential in the size of the
formula.

For step 2, we apply the standard subset construction for
determinising NFW [Rabin and Scott, 1959] to get a DFW with
state set D, initial state d0 ∈ D, transition function ∆ : D ×

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

80

Algorithm: ModelChecking(G,ϕ)
Input: CGS G, ATL∗f formula ϕ
Output: The set X ⊆ S such that s ∈ X iff (G, s) |= ϕ.

1. Introduce a new atom pϕ and, for each state s, label s by
pϕ (i.e., add pϕ to λ(s)) as follows:
(a) If ϕ = p ∈ AP then label s by pϕ iff p ∈ λ(s).
(b) If ϕ = ¬ϕ1 then label s by pϕ iff s is not in the set

output by ModelChecking(G,ϕ1).
(c) If ϕ = ϕ1 ∧ϕ2 then label s by pϕ iff s is in the sets

output by ModelChecking(G,ϕi) for i = 1, 2.
(d) If ϕ = 〈〈A〉〉ψ (so ψ is a path formula) then

i. Let Max(ψ) be the set of maximal state-
subformulas of ψ.

ii. For every ξ ∈ Max(ψ) label s by pξ if s is in
the set output by ModelChecking(G, ξ).

iii. Replace every occurrence in ψ of ξ ∈ Max(ψ)
by pξ.

iv. Label s by pϕ iff s is in the set output by
GameSolving(G,A,ψ).

2. Output the set X of s ∈ S such that s is labelled by pϕ.

Figure 2: Recursive algorithm for model-checking ATLf that calls
the GameSolving algorithm (Figure 1).

2AP → D, and final states F ′ ⊆ D. The number of states of
the DFW is at most exponential in the number of states of the
NFW.

For step 3, we form an edge-labelled graph: the vertices
are S×D, edge labels are of the form α : A→ ∪aActa (i.e.,
a tuple of actions of the agents in A), and edges (s, d)

α−→
(s′, d′) if there is some joint action J such that (i) J(a) =
α(a) for all a ∈ A, (ii) δ(s, J) = s′, and (iii) ∆(d, λ(s′)) =
d′.

For step 4 we build the set Safe of states of the product
graph that the coalition A is trying to stay in.

For step 5 we introduce some notation regarding graph-
games [Grädel et al., 2002]. A safety game is a tuple
(V,Σ, E, T) with: vertices V , actions Σ, labelled edges
E ⊆ V × Σ× V , and safety set T ⊆ V . Note that the graph
from step 3 combined with the set from step 4 forms a safety
game. Solving a safety game concerns deciding from which
vertices v there is a strategy for the agent that ensures ev-
ery path stays in T (similarly to model-checking the formula
〈〈A〉〉GSafe). This can be solved in linear time using the
greatest fix-point of the operation Y 7→ T ∩ Pre(Y) where
Pre(Y) = {v ∈ V : ∃σ.∀w.E(v, σ, w)→ w ∈ Y }.

We now provide an algorithm for model-checking ATL∗f ,
see Figure 2. It follows the standard approach for model-
checking ATL∗ [Alur et al., 2002], i.e., we inductively mark
the states of the G by those state subformula that hold. The
atomic case is immediate, and the Boolean operations are
done inductively. For the strategic operator 〈〈A〉〉ψ we may
assume, by induction, that ψ is an LTLf formula, and so we
call the GameSolving algorithm in Figure 1. This gives:

Theorem 1. Model checking ATL∗f is in 2EXPTIME.

Now, suppose the algorithm is applied to formulas of
ATLf . Then, in step 1(d) of the algorithm in Figure 2,
the path formula ψ is of the form X p′, X̃ p′, p′U p′′ or
p′R p′′ where p′, p′′ are atoms. So, the complexity of
GameSolving(G,A,ψ) is polynomial (Proposition 1).
Theorem 2. Model checking ATLf , and thus also CTLf , is in
polynomial time.

Finally, to solve model-checking of CTL∗f we make a slight
change to the above algorithm. In step 1(d) of Figure 2, in-
stead of callingGameSolving(G, ∅, ψ) (which costs double-
exponential time), we call the LTLf model-checking proce-
dure described in Figure 3. The complexity analysis is de-
scribed in the accompanying proof.

Algorithm: LTLfModelChecking(G,ψ)
Input: CGS G, LTLf formula ψ.
Output: The set X ⊆ S such that s ∈ X iff (G, s) |= 〈〈∅〉〉ψ.

1. Convert ψ into an equivalent NFW (N, I,∆, F ′).
2. Form the product graph on states S ×N .
3. Form the set Safe of states (s, t) such that s ∈ F implies
t ∈ F ′.

4. Put s ∈ X iff every path starting from states of the form
(s, n) for n ∈ I stays in Safe .

Figure 3: Algorithm for model-checking G against LTLf formulas.

Theorem 3. Model checking CTL∗f is in polynomial space.

Proof. We discuss the steps of the algorithm in Figure 3.
In step 1, the NFW can be formed by using an adaptation
of the classic Vardi-Wolper construction for finite words,
e.g., [Vardi and Wolper, 1994]. Denote its states N , initial
states I ⊆ N , transition relation ∆ ⊆ N ×2AP×N , and final
states F ′ ⊆ N . This can be built in polynomial space.

In step 2, the graph has states S ×N , and edges (s, n) →
(s′, n′) if there is some joint action J with s′ ∈ δ(s, J) and
(n, λ(s′), n′) ∈ ∆.

In step 3, form the set Safe as described. In step 4, for
s ∈ S and n ∈ I , we need to check that every path from
(s, n) stays in Safe . This check can be done in logspace in the
size of the graph. Since the graph is exponential, the whole
algorithm runs in polynomial space.

4.2 Lower Bounds
We now supply the lower-bounds for model checking ATL∗f
and its fragments. For CTLf and ATLf we reduce from model-
checking CTL, known to be PTIME-hard [Clarke et al., 1986];
for CTL∗f we reduce from model-checking finite traces against
LTLf formulas, known to be PSPACE-hard [De Giacomo and
Vardi, 2013]; and for ATL∗f we reduce from LTLf synthesis,
known to be 2EXPTIME-hard [De Giacomo and Vardi, 2015].
Theorem 4. Model checking CTLf (and thus ATLf) is
PTIME-hard.

Proof. The proof is almost identical to the one that shows
that CTL model checking is PTIME-hard by reducing from

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

81

CIRCUIT-VALUE, a problem that is PTIME-complete when
restricted to circuits that are monotone (no negation), syn-
chronized (connections between gates respect layers), and
with proper alternation, see Section 3.2.1 of [Schnoebelen,
2003]. Adapt that proof by letting the final states be the sink
nodes 0 and 1.

We now turn to the fragment CTL∗f . In [De Giacomo
and Vardi, 2013], a trace-based semantics is given for LTLf .
There, the model checking problem asks, given an LTLf for-
mula ϕ and a finite trace π, to decide whether ϕ holds on
π. We reduce this trace-based LTLf model-checking to our
structure-based CTL∗f model-checking.

Theorem 5. Model-checking CTL∗f is PSPACE-hard.

Proof. Given π = π0π1π2 · · ·πn−1, construct a CGS Gπ
with final states as follows: Ag = {1}, AP are the atoms
appearing in π, Act1 = {a} (i.e., there is only one action),
S = {i : 0 ≤ i ≤ n} (the last state is used to make the transi-
tion function total), F = {n− 1} (i.e., the second last state is
final), δ(i, a) = i+1 if i < n, δ(n, a) = n, and λ(i) = πi for
i < n, and λ(n) = ∅. Note that the complexity of this trans-
lation is linear, and for every LTLf formula and finite trace π,
we have that ϕ holds on π iff Gπ |=f Aϕ.

Finally, we turn to the logic ATL∗f . We reduce from LTLf
synthesis, known to be 2EXPTIME-complete [De Giacomo
and Vardi, 2015]. Let X,Y be disjoint finite non-empty
sets of Boolean variables. The LTLf realisability problem
(for turn-based players) asks, given an LTLf formula ϕ over
atomsX∪Y , to decide if there is a function c : (2X)+ → 2Y

such that for every finite sequence X0X1 . . . Xn with Xi ⊆
X , the sequence (X0 ∪ c(X0))(X1 ∪ c(X0X1)) . . . (Xn ∪
c(X0X1 · · ·Xn)) satisfies ϕ. In this case we say ϕ is real-
isable. We now show how to reduce the LTLf realisability
problem to ATL∗f model-checking.

Theorem 6. Model-checking ATL∗f is 2EXPTIME-hard.

Proof. The proof is similar to the proof that ATL∗ is
2EXPTIME-hard which reduces from LTL synthesis [Alur et
al., 2002]. The main difference is to deal with the fact that in
our semantics paths are finite and end in final states.

Let ϕ be an LTLf formula over atoms X ∪ Y . We define
a CGS GX,Y with final states and an LTLf formula ϕd such
that ϕ is realisable iff GX,Y |= 〈〈{2}〉〉X Xϕd.

Define GX,Y with final states F = {2} × 2X∪Y as fol-
lows: Ag = {1, 2}, AP = F , S = ({1} × 2X) ∪ F ∪ sinit,
Act1 = 2X , Act2 = 2Y , s0 = sinit; labelling λ(s) =
{s} for s ∈ F , and λ(s) = ∅ otherwise; and transitions:
δ(sinit, (X

′, ·)) = (1, X ′), δ((1, X ′), (·, Y ′)) = (2, X ′ ∪
Y ′), and δ((2, ·), (X ′, ·)) = (1, X ′) (where X ′ ⊆ X,Y ′ ⊆
Y , and · stands for any set).

In words, the CGS models two players that take turns, with
player 1 going first. On his turn player 1 chooses a subset
of X , on her turn player 2 chooses a subset of Y , and the
resulting sequence of sets of atoms (for traces ending in final
states) is in the language ∅·(∅·{{z} : z ∈ F})∗. For example,
the finite word {x} · {x, y} over alphabet 2{x,y} with X =

{x}, Y = {y} corresponds to the sequence of states ofGX,Y :
sinit, (1, {x}), (2, {x}), (1, {x}), (2, {x, y}) whose labelling
is ∅ · ∅ · {(2, {x})} · ∅ · {(2, {x, y})}.

Define the formulaϕd as follows: pd = p, (ϕ∧ϕ′)d = ϕd∧
ϕ′d, (¬ϕ)d = ¬ϕd, (Xϕ)d = X Xϕd, (ϕUϕ′)d = (F →
ϕd) U(F ∧ϕd). In words, ϕd simulates ϕ on the subsequence
of the trace consisting of odd numbered positions.

Then, an LTLf formula ϕ over X ∪ Y is realisable iff
GX,Y |= 〈〈{2}〉〉X Xϕd. Regarding complexity, the formula
ϕd is polynomial in the size of ϕ. On the other hand, just as
in [Alur et al., 2002], LTLf synthesis is already 2EXPTIME-
hard for fixedX and Y , and thusGX,Y has constant size.

5 Conclusions

Motivated by problems in AI rather than program verifica-
tion, we defined a logic with the same syntax as ATL∗ but in
which paths are finite instead of infinite. Precisely, a model
is equipped with a special set F of final states and strategic
quantifiers only account for paths that end in a state of F .

This definition is general enough to capture previous pro-
posals for CTL∗ and LTL on finite traces, as well as synthesis
of LTL on finite traces. Indeed, in Section 4 we showed how
to reduce model-checking finite traces against LTLf formulas
to model-checking CGS with final states against CTL∗f formu-
las (Theorem 5), and how to reduce LTLf synthesis to ATL∗f
(with perfect recall) model-checking (Theorem 6). It follows
that the formalism ATL∗f that we introduced is rich enough to
express two fundamental decision problems about LTLf , and
at no extra cost in terms of computational complexity.

Moreover, in previous proposals to reasoning about finite
traces in structures [Vardi and Stockmeyer, 1985], it was as-
sumed (in the language of this paper) that all states are final,
which leads to validities such as A Fϕ↔ ϕ and E Gϕ↔ ϕ
that are not intuitive or natural (see Remark 2). Our more
refined semantics removes these undesirable validities.

Finally, we emphasise that, unlike algorithms for model
checking ATL∗∞R (e.g., [Alur et al., 2002]), our algorithm for
model-checking ATL∗fR does not use complex constructions
on automata operating on infinite strings or infinite trees.
In fact, we do not translate ATL∗fR (or its fragments) into
ATL∗∞R. Instead, our algorithms only involve automata op-
erating on finite words, and simple standard constructions on
these, e.g., the classic subset construction for determinisation
and a fix-point algorithm synthesising strategies.

In future work we plan to account also for the imperfect
information agents might have about the environment as well
as the state of other agents.

Acknowledgements

The authors acknowledge support of ANR JCJC Project
SVeDaS (ANR-16-CE40-0021); the Royal Academy of Engi-
neering; the Royal Society; and INDAM GNCS 2018 Project
”Metodi Formali per la Verifica e la Sintesi di Sistemi Discreti
e Ibridi”.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

82

References
[Alur et al., 2002] R. Alur, T. Henzinger, and O. Kupferman.

Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza.
Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence, 116(1-2):123–
191, 2000.

[Baier and Katoen, 2008] C. Baier and J. P. Katoen. Princi-
ples of Model Checking. MIT Press, 2008.

[Baier and McIlraith, 2006] J. A. Baier and S. A. McIlraith.
Planning with first-order temporally extended goals using
heuristic search. In AAAI, pages 788–795, 2006.

[Camacho et al., 2017] A. Camacho, E. Triantafillou, C. J.
Muise, J. A. Baier, and S. A. McIlraith. Non-deterministic
planning with temporally extended goals: LTL over finite
and infinite traces. In AAAI, pages 3716–3724, 2017.

[Clarke et al., 1986] E. M. Clarke, E. A. Emerson, and A. P.
Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications: A practical
approach. ACM TOPLAS, 8(2):244–263, 1986.

[De Giacomo and Vardi, 2013] G. De Giacomo and M. Y.
Vardi. Linear temporal logic and linear dynamic logic on
finite traces. In IJCAI, pages 854–860, 2013.

[De Giacomo and Vardi, 2015] G. De Giacomo and M. Y.
Vardi. Synthesis for LTL and LDL on finite traces. In
IJCAI, pages 1558–1564, 2015.

[De Giacomo et al., 2014a] G. De Giacomo, R. De Masel-
lis, M. Grasso, F. M. Maggi, and M. Montali. Monitoring
business metaconstraints based on LTL and LDL for finite
traces. In BPM, LNCS 8659, pages 1–17, 2014.

[De Giacomo et al., 2014b] G. De Giacomo, R. De Masellis,
and M. Montali. Reasoning on LTL on finite traces: Insen-
sitivity to infiniteness. In AAAI, pages 1027–1033, 2014.

[Emerson and Halpern, 1986] E. A. Emerson and J. Y.
Halpern. ”sometimes” and ”not never” revisited: on
branching versus linear time temporal logic. Journal of
the ACM, 33(1):151–178, 1986.

[Emerson and Lei, 1985] E. A. Emerson and C. L. Lei.
Modalities for model checking: Branching time logic
strikes back. In POPL, pages 84–96, 1985.

[Emerson et al., 2001] E. A. Emerson, C. S. Jutla, and A. P.
Sistla. On model checking for the µ-calculus and its frag-
ments. Theor. Comp. Sci., 258(1–2):491–522, 2001.

[Filiot et al., 2011] E. Filiot, N. Jin, and J.-F. Raskin. An-
tichains and compositional algorithms for LTL synthesis.
Formal Methods in System Design, 39(3):261–296, 2011.

[Geffner and Bonet, 2013] H. Geffner and B. Bonet. A Con-
cise Introduction to Models and Methods for Automated
Planning. Morgan & Claypool Publishers, 2013.

[Gerevini et al., 2009] A. Gerevini, P. Haslum, D. Long,
A. Saetti, and Y. Dimopoulos. Deterministic planning in
the fifth international planning competition: PDDL3 and

experimental evaluation of the planners. Artificial Intelli-
gence, 173(5-6):619–668, 2009.

[Grädel et al., 2002] E. Grädel, W. Thomas, and T. Wilke,
editors. Automata, Logics, and Infinite Games: A Guide to
Current Research, volume 2500 of LNCS. Springer, 2002.

[Gutierrez et al., 2017] J. Gutierrez, G. Perelli, and
M. Wooldridge. Iterated games with LDL goals
over finite traces. In AAMAS, pages 696–704, 2017.

[Harel and Pnueli, 1985] D. Harel and A. Pnueli. On the de-
velopment of reactive systems. In Logics and models of
concurrent systems, pages 477–498. Springer, 1985.

[Hopcroft and Ullman, 1979] J. Hopcroft and J. D. Ullman.
Introduction to Automata Theory, Languages, and Compu-
tation. Adison-Wesley Publishing Company, 1979.

[Jennings et al., 2001] N. R. Jennings, P. Faratin, A. Lomus-
cio, S. Parsons, M. Wooldridge, and C. Sierra. Automated
negotiation: prospects, methods and challenges. Group
Decision and Negotiation, 10(2):199–215, 2001.

[Kong and Lomuscio, 2018] J. Kong and A. Lomuscio.
Model checking multi-agent systems against ldlk specifi-
cations on finite traces. In AAMAS, 2018. To Appear.

[Kupferman et al., 2006] O. Kupferman, N. Piterman, and
M. Y. Vardi. Safraless compositional synthesis. In CAV,
LNCS 4144, pages 31–44, 2006.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli,
and M. Y. Vardi. Reasoning about strategies: On the
model-checking problem. ACM Transactions on Compu-
tational Logic, 15(4):34:1–34:47, 2014.

[Montali et al., 2010] M. Montali, M. Pesic, W. M. P. van der
Aalst, F. Chesani, P. Mello, and S. Storari. Declarative
specification and verification of service choreographiess.
ACM Transactions on the Web (TWEB), 4(1):3, 2010.

[Pauly and Parikh, 2003] M. Pauly and R. Parikh. Game
logic - an overview. Studia Logica, 75(2):165–182, 2003.

[Pesic et al., 2010] M. Pesic, D. Bosnacki, and W. M. P. ra-
van der Aalst. Enacting declarative languages using LTL:
avoiding errors and improving performance. In SPIN,
LNCS 6349, pages 146–161, 2010.

[Rabin and Scott, 1959] M. O. Rabin and D. S. Scott. Finite
Automata and their Decision Problems. IBM Journal of
Research & Development, 3:115–125, 1959.

[Schnoebelen, 2003] Ph. Schnoebelen. The complexity of
temporal logic model checking. In AiML02, volume 4 of
Advances in Modal Logic, pages 437–459. 2003.

[Tsai et al., 2014] M.-H. Tsai, S. Fogarty, M. Y. Vardi, and
Y.-K. Tsay. State of Büchi complementation. Logical
Methods in Computer Science, 10(4), 2014.

[Vardi and Stockmeyer, 1985] M. Y. Vardi and L. Stock-
meyer. Improved upper and lower bounds for modal logics
of programs. In STOC, pages 240–251, 1985.

[Vardi and Wolper, 1994] M. Y. Vardi and P. Wolper. Rea-
soning about infinite computations. Information and Com-
putation, 115(1):1–37, 1994.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

83

