A Logic for Global and Local Announcements

F. Belardinelli

Laboratoire IBISC, UEVE & IRIT Toulouse

joint work with H. van Ditmarsch and W. van der Hoek @TARK'17

Toulouse - 13 July 2017

Outline

- Background: logics for (public, semi-private, private) announcements [vDHvdHK15]
 - In PAL announcements are
 - public: all agents listen to (and are aware of!) the announcement
 - global: how the new information is processed depends on the model (i.e., public announcements are model transformers)
- Goal: to generalise PAL by weaking publicity and globality
 - ▶ **privacy**: announcements to any subset $A \subseteq Ag$ of agents
 - locality: announcements are pointed model transformers
- 1 Dynamic Epistemic Logic: action models allow private announcements, but
 - updated indistinguishability relations are not necessarily equivalences
 - updated models might be strictly larger . . .
 - . . . several problems are undecidable
- 4 GLAL: an extension of PAL supporting both private and local announcements
 - updated indistinguishability relations are equivalences
 - updated models are normally "smaller" . . .
 - ... the model checking and satisfaction problems are decidable

The Logic of Global and Local Announcements Syntax

Let Ag be a set of agents and AP a set of propositional atoms.

Definition (GLAL)

Formulas ϕ in $\mathcal{L}_{\textit{glal}}$ are defined by the following BNF:

$$\psi \quad ::= \quad p \mid \neg \psi \mid \psi \wedge \psi \mid K_a \psi \mid C_A \psi \mid [\psi]_A^+ \psi \mid [\psi]_A^- \psi$$

- $[\psi]_{\Delta}^+ \phi ::=$ after **globally** announcing ψ to the agents in A, ϕ is true
- $[\psi]_A^-\phi:=$ after **locally** announcing ψ to the agents in A, ϕ is true

$$\mathcal{L}_{pl} \subseteq \mathcal{L}_{el} \subseteq \mathcal{L}_{pal^+} \subseteq \mathcal{L}_{glal}$$

Formulas in GLAL are interpreted on (multi-modal) Kripke models.

Definition (Frame)

A frame is a tuple $\mathcal{F} = \langle W, \{R_a\}_{a \in A_g} \rangle$ where

- W is a set of possible worlds
 - for every agent $a \in Ag$, $R_a \subseteq 2^{W \times W}$ is an equivalence relation on W.

A **model** is a pair $\mathcal{M} = \langle \mathcal{F}, V \rangle$ where $V : AP \to 2^W$ is an assignment to atoms.

- $R_A^C = (\bigcup_{a \in A} R_a)^*$ is the reflexive and transitive closure of $\bigcup_{a \in A} R_a$
- $R(w) = \{w' \in W \mid R(w, w')\}$ is the R-equivalence class of $w \in W$

Satisfaction & Refinements

The satisfaction set $[[\varphi]]_{\mathcal{M}} \subseteq W$ is defined as

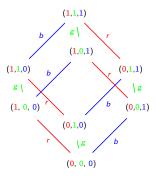
- $W^- = W^+ = W$ and $V^- = V^+ = V$
- for every agent $b \notin A$, $R_b^- = R_b^+ = R_b$; while for $a \in A$,

$$\begin{split} R_a^-(v) &= \begin{cases} R_a(v) \cap [\![\psi]\!]_{\mathcal{M}} & \text{if } v \in R_a(w) \cap [\![\psi]\!]_{\mathcal{M}} \\ R_a(v) \cap [\![\neg\psi]\!]_{\mathcal{M}} & \text{if } v \in R_a(w) \cap [\![\neg\psi]\!]_{\mathcal{M}} \\ R_a(v) & \text{otherwise} \end{cases} \\ R_a^+(v) &= \begin{cases} R_a(v) \cap [\![\psi]\!]_{\mathcal{M}} & \text{if } v \in R_A^{\mathcal{C}}(w) \cap [\![\psi]\!]_{\mathcal{M}} \\ R_a(v) \cap [\![\neg\psi]\!]_{\mathcal{M}} & \text{if } v \in R_A^{\mathcal{C}}(w) \cap [\![\neg\psi]\!]_{\mathcal{M}} \\ R_a(v) & \text{otherwise} \end{cases} \end{split}$$

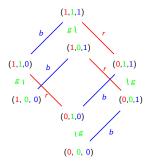
Remark

- for every agent $a \in Ag$, R_a^- and R_a^+ are equivalence relations
- $[\psi]_A^+$ and $[\psi]_A^-$ are interpreted as local (pointed model) transformers
- the difference between global and local announcements collapse whenever A is a singleton

The model $\mathcal M$ for 3 children (red, blue, and green), where no child knows whether she is muddy, can be represented as follows:

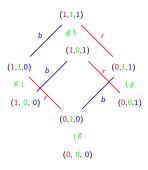


- Suppose that only red is muddy, i.e., the actual world is (1,0,0)
- then, the father **locally** announces to red and blue that at least one child is muddy: $\alpha := m_r \vee m_b \vee m_g$
- the updated model $\mathcal{M}^-_{(100,\alpha,rb)}$ is as follows:



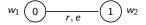
- only the indistinguishability relation for red is updated
- now red and blue both know that at least one child is muddy: $(\mathcal{M}, 100) \models [\alpha]_{rb}^- E_{rb} \alpha$
- the father's announcement does not make α common knowledge: $(\mathcal{M}, 100) \neq [\alpha]_{rb}^- C_{rb} \alpha$
- In general, for every world $w \neq 000$, $(\mathcal{M}, w) \not\models [\alpha]_{rb}^- C_{rb} \alpha$

- Suppose that the father globally announces to red and blue that at least one child is muddy
- the updated model $\mathcal{M}^+_{(100,\alpha,rb)}$ is as follows:

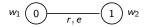


- now the indistinguishability relations for both red and blue are updated and they acquire common knowledge that at least one child is muddy: $(\mathcal{M}, 100) \vDash [\alpha]_{rb}^+ C_{rb} \alpha$
- but the father's announcement is not enough to make α common knowledge amongst all children: $(\mathcal{M}, 100) \not\models [\alpha]_{rb}^+ C_{rgb} \alpha$

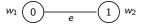
Consider communication between sender s and receiver r over a reliable channel that is listened to by eavesdropper e:



Consider communication between sender s and receiver r over a reliable channel that is listened to by eavesdropper e:



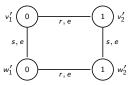
After s has communicated to r the value of the bit, we obtain the updated model $\mathcal{N}_{(w_1,bit=0,r)}$:



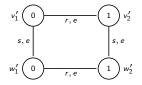
Hence, receiver r learns the value of the bit: $(\mathcal{N}, w_1) \models [bit = 0]_r K_r(bit = 0)$

On the other hand, eavesdropper e learns that r knows it: $(\mathcal{N}, w_1) \models [bit = 0]_r K_e K w_r (bit = 0)$

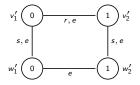
Compare model $\mathcal N$ above with the following **bisimilar** model $\mathcal N'$,



Compare model \mathcal{N} above with the following **bisimilar** model \mathcal{N}' ,



However, after communicating to r the value of the bit, the updated model $\mathcal{N}'_{(w'_1,bit=0,r)}$ is not bisimilar to $\mathcal{N}_{(w_1,bit=0,r)}$:



In particular, in w_1' eavesdropper e does not learn that r knows the value of the bit: $(\mathcal{N}', w_1') \not\models [bit = 0]_r K_e K w_r (bit = 0)$.

⇒ GLAL is not preserved under standard modal bisimulations.

Comparison with PAL

GLAL is at least as expressive as PAL:

Proposition

For all formulas ϕ, ψ in PAL, $(\mathcal{M}, w) \vDash [\phi] \psi$ iff $(\mathcal{M}, w) \vDash [\phi]_{Ag}^+ \psi$.

By this result we can define a truth-preserving embedding au from PAL to GLAL.

Proposition

For all formulas ϕ in PAL, $(\mathcal{M}, w) \models \phi$ iff $(\mathcal{M}, w) \models \tau(\phi)$.

Actually, by the example above,

Theorem

GLAL is strictly more expressive than PAL, and therefore than epistemic logic.

Comparison with Attentive Announcements

- Attention-based Announcements [BDH+16]: agents process the new information only if they are paying attention.
- whether they pay attention is handled by a designated set of atoms.
- close relationship with GLAL: in (\mathcal{N}', w_1') although r processes the new information, agent s is uncertain about this fact.
- consider adding an 'attention atom' h_r for receiver r such that h_r is true in w_1' and w_2' but false in v_1' and v_2' .
- then, announcing bit = 0 to r in (\mathcal{N}', w_1') corresponds to the attention-based announcement wherein sender s is uncertain as to whether r is paying attention.

Differences:

- [BDH+16] models truly private announcements [GG97] (equivalence relations are not preserved), whereas our proposal considers semi-private announcements that do preserve equivalence relations.
- · Our announcements are not necessarily public.

Comparison with Semi-Private Announcements

- Semi-Private Announcements [GG97, vD00, vdHP06, BvDM08]: after announcing semi-privately ϕ to coalition A, all agents in A know ϕ , and the agents in $Ag \times A$ know that all agents in A know whether ϕ .
- In GLAL agents in $Ag \setminus A$ do not necessarily know that all agents in A know whether ϕ .
- Semi-private announcements can be modeled by refinement $\mathcal{M}^{sp}_{(w,\psi,A)}$ according to which $W^{sp} = W$, $V^{sp} = V$, and for $a \in A$,

$$R_{a}^{sp}(v) = \begin{cases} R_{a}(v) \cap \llbracket \psi \rrbracket \rrbracket_{\mathcal{M}} & \text{if } v \in R_{Ag}^{C}(w) \cap \llbracket \psi \rrbracket \rrbracket_{\mathcal{M}} \\ R_{a}(v) \cap \llbracket \neg \psi \rrbracket \rrbracket_{\mathcal{M}} & \text{if } v \in R_{Ag}^{C}(w) \cap \llbracket \neg \psi \rrbracket \rrbracket_{\mathcal{M}} \\ R_{a}(v) & \text{otherwise} \end{cases}$$

• The two frameworks are not directly comparable.

Validities

No complete axiomatisation, but some interesting validities.

• Truthfully announcing a propositional formula $\phi \in \mathcal{L}_{pl}$ entails the knowledge thereof:

$$\models [\phi]_A^- E_A \phi$$
$$\models [\phi]_A^+ C_A \phi$$

Differently from PAL, announcements in GLAL cannot be rewritten as simpler formulas.
 Nonetheless, the following are validities in GLAL:

$$\begin{array}{cccc} [\phi]_A^- p & \leftrightarrow & \phi \to p \\ [\phi]_A^- \neg \psi & \leftrightarrow & \phi \to \neg [\phi]_A^- \psi \\ [\phi]_A^- (\psi \land \psi') & \leftrightarrow & [\phi]_A^- \psi \land [\phi]_A^- \psi' \end{array}$$

 Further, epistemic operators and nested announcements commute with announcement operators if they refer to the same coalition (but not in general):

$$\begin{array}{cccc} [\phi]_A^- E_A \psi & \leftrightarrow & \phi \to E_A [\phi]_A^- \psi \\ [\phi]_A^- [\phi']_A^- \psi & \leftrightarrow & \left[\phi \wedge [\phi]_A^- \phi'\right]_A^- \psi \\ [\phi]_A^+ [\phi']_A^+ \psi & \leftrightarrow & \left[\phi \wedge [\phi]_A^+ \phi'\right]_A^+ \psi \end{array}$$

• Operators $[\phi]_A^+$ and $[\phi]_A^-$ are "normal" modalities. None of schemes T, S4 and B hold.

A New Notion of Bisimulation

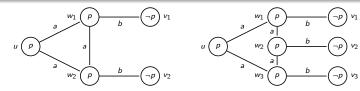
We remarked that GLAL is not preserved under modal bisimulation.

• define $R_A(w, v)$ as: $R_a(w, v)$ iff $a \in A$.

Definition (±-Simulation)

Given models \mathcal{M} and \mathcal{M}' , a \pm -simulation is a relation $S \subseteq W \times W'$ such that S(w, w') implies Atoms $w \in V(p)$ iff $w' \in V'(p)$, for every $p \in AP$

Forth for every $A \subseteq Ag$ and $v \in W$, if $R_A(w, v)$ then for some $v' \in W'$, $R'_A(w', v')$ and S(v, v')Reach for every $v, v' \in W$, $a \in Ag$, if S(v, v') then $R_a(w, v)$ iff $R'_a(w', v')$



Theorem

If states s and s' are bisimilar, then for every formula ψ in GLAL, $(\mathcal{M},s) \models \psi$ iff $(\mathcal{M}',s') \models \psi$.

Model Checking and Satisfiability

Definition (Model Checking and Satisfiability)

- Model Checking Problem: given a finite pointed model (\mathcal{M}, w) , and formula ϕ in GLAL, determine whether $(\mathcal{M}, w) \models \phi$.
- Satisfiability Problem: given a formula ϕ in GLAL, determine whether $(\mathcal{M}, w) \vDash \phi$ for some pointed model (\mathcal{M}, w) .

Theorem

The model checking problem for GLAL is PTIME-complete.

Model refinements can be computed in polynomial time.

Theorem

The satisfiability problem for GLAL is decidable.

Decision procedure inspired by tableaux for epistemic logic.

Conclusions

Contributions:

- GLAL: a logic for global and local announcements
- strictly more expressive than PAL
- alternative to action models to represent private announcements
- · however, not preserved under standard modal bisimulation
- but we have a novel, truth-preserving notion of bisimulation
- the model checking problem is no harder than for epistemic logic
- the satisfiability problem is decidable.

Future Work:

- axiomatisation
- closer comparison with DEL
- more elaborate form of communication (asynchronous, FIFO, LIFO, etc.)
- real-life scenarios and applications

Advertising Space: EUMAS 2017

15th European Conference on Multi-agent Systems (EUMAS 2017):

- to be held in Evry (UEVE), December 14-15
- co-located with Agreement Technologies (AT)
- Winter School on AT, December 12-13
- papers published in other conferences are also accepted!
- https://eumas2017.ibisc.univ-evry.fr/

References

T. Bolander, H. Ditmarsch, A. Herzig, E. Lorini, P. Pardo, and F. Schwarzentruber.

Announcements to attentive agents.

J. of Logic, Lang. and Inf., 25(1):1-35, 2016.

A. Baltag, H. van Ditmarsch, and L.S. Moss.

Epistemic logic and information update.

In Handbook on the Philosophy of Information, pages 361-456. Elsevier, 2008.

J.D. Gerbrandy and W. Groeneveld.

Reasoning about information change.

Journal of Logic, Language, and Information, 6:147-169, 1997.

H. van Ditmarsch.

Knowledge games.

PhD thesis, University of Groningen, 2000.

ILLC Dissertation Series DS-2000-06.

W. van der Hoek and M. Pauly.

Modal logic for games and information.

In The Handbook of Modal Logic, pages 1180-1152. Elsevier, 2006.

H. van Ditmarsch, J. Halpern, W. van der Hoek, and B. Kooi, editors.

Handbook of epistemic logic. College Publications, 2015.