
Journal of Artificial Intelligence Research 51 (2014) Submitted 04/14; published 10/04

Verification of Agent-Based Artifact Systems

Francesco Belardinelli BELARDINELLI@IBISC.FR

Laboratoire Ibisc, Université d’Evry, France
Alessio Lomuscio A.LOMUSCIO@IMPERIAL.AC.UK

Department of Computing, Imperial College London, UK
Fabio Patrizi FABIO.PATRIZI@DIS.UNIROMA1.IT

Dipartimento di Ingegneria Informatica,
Automatica e Gestionale “A. Ruberti”
Università di Roma “La Sapienza”, Italy

Abstract
Artifact systems are a novel paradigm for specifying and implementing business processes de-

scribed in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, ac-
counting respectively for the relational structure of the artifacts’ states and their possible evolutions
over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation
of artifact systems in the context of multi-agent systems operating on them. Differently from the
usual process-based models of services, we give a semantics that explicitly accounts for the data
structures on which artifact systems are defined.

We study the model checking problem for artifact-centric multi-agent systems against speci-
fications expressed in a quantified version of temporal-epistemic logic expressing the knowledge
of the agents in the exchange. We begin by noting that the problem is undecidable in general.
We identify a noteworthy class of systems that admit bisimilar, finite abstractions. It follows that
we can verify these systems by investigating their finite abstractions; we also show that the cor-
responding model checking problem is EXPSPACE-complete. We then introduce artifact-centric
programs, compact and declarative representations of the programs governing both the artifact sys-
tem and the agents. We show that, while these in principle generate infinite-state systems, under
natural conditions their verification problem can be solved on finite abstractions that can be effec-
tively computed from the programs. We exemplify the theoretical results here pursued through a
mainstream procurement scenario from the artifact systems literature.

1. Introduction

Much of the work in the area of reasoning about knowledge involves the development of formal
techniques for the representation of epistemic properties of rational actors, or agents, in a multi-
agent system (MAS). The approaches based on modal logic are often rooted on interpreted sys-
tems (Parikh & Ramanujam, 1985), a computationally grounded semantics (Wooldridge, 2000)
used for the interpretation of several temporal-epistemic logics. This line of research was thor-
oughly explored in the 1990s leading to a significant body of work (Fagin, Halpern, Moses, &
Vardi, 1995; Meyer & van der Hoek, 1995). A recent topic of interest has been the development
of automatic techniques, including model checking (Clarke, Grumberg, & Peled, 1999), for the
verification of temporal-epistemic specifications for the autonomous agents in a MAS (Gammie &
van der Meyden, 2004; Lomuscio, Qu, & Raimondi, 2009; Kacprzak et al., 2008). This has led
to developments in a number of areas traditionally outside artificial intelligence, knowledge repre-
sentation and MAS, including security (Dechesne & Wang, 2010; Ciobaca, Delaune, & Kremer,

c©2014 AI Access Foundation. All rights reserved.

BELARDINELLI, LOMUSCIO & PATRIZI

2012), web-services (Lomuscio, Penczek, Solanki, & Szreter, 2011) and cache-coherence protocols
in hardware design (Baukus & van der Meyden, 2004). The ambition of the present paper is to offer
a similar change of perspective in the area of artifact systems (Cohn & Hull, 2009), a growing topic
in Service-Oriented Computing (SOC).

Artifacts are structures that “combine data and process in an holistic manner as the basic building
block[s]” (Cohn & Hull, 2009) of systems’ descriptions. Artifact systems are services constituted by
complex workflow schemes based on artifacts which the agents interact with. The data component
is given by the relational databases underpinning the artifacts in a system, whereas the workflows
are described by “lifecycles” associated with each artifact schema. While in the standard service
paradigm services are made public by exposing their process interfaces, in artifact systems both the
data structures and the lifecycles are advertised. Services are composed in a “hub” where opera-
tions on the artifacts are executed. Implementations of artifact systems, such as the IBM engine
BARCELONA (Heath et al., 2013), provide a hub where service choreography and service orches-
tration (Alonso, Casati, Kuno, & Machiraju, 2004) are carried out.

Artifact systems are beginning to drive new application areas, such as case management sys-
tems (Marin, Hull, & Vaculı́n, 2013). However, we identify two shortcomings in the present state-
of-the-art. Firstly, the artifact systems literature (Bhattacharya, Gerede, Hull, Liu, & Su, 2007;
Deutsch, Hull, Patrizi, & Vianu, 2009; Hull, 2008; Nooijen, Fahland, & Dongen, 2013) focuses
exclusively on the artifacts themselves. While there is obviously a need to model and implement the
artifact infrastructure, in order to be able to reason comprehensively about artifact systems, there
is also a need to account for the agents implementing the services in the system, as it is normally
done in the area of reasoning about services (Baresi, Bianculli, Ghezzi, Guinea, & Spoletini, 2007).
Secondly, there is a pressing demand to provide the hub with automatic choreography and orches-
tration capabilities. It is well-known that choreography techniques can be leveraged on automatic
model checking techniques; orchestration can be recast as a synthesis problem, which, in turn, can
also benefit from model checking technology. However, while model checking and its applications
are relatively well-understood in plain process-based modelling, the presence of data makes these
problems much harder and virtually unexplored. Additionally, infinite domains in the underlying
databases lead to infinite state-spaces and undecidability of the model checking problem.

The aim of this paper is to make a concerted contribution to both problems above. Firstly,
we provide a computationally grounded semantics to systems comprising the artifact infrastructure
and the agents operating on it. We use this semantics to interpret a temporal-epistemic language
with first-order quantifiers to reason about the evolution of the hub as well as the knowledge of the
agents in the presence of evolving, structured data. We observe that the model checking problem for
these structures is undecidable in general and analyse a notable decidable fragment. For these we
derive finite abstractions to infinite-state artifact systems, thereby presenting a technique for their
effective verification. We evaluate this methodology by studying its computational complexity and
by demonstrating its use on a well-known scenario from the artifact systems literature.

1.1 Artifact-Centric Systems

Service-oriented computing is concerned with the study and development of distributed applica-
tions that can be automatically discovered and composed by means of remote interfaces. A point of
distinction over more traditional distributed systems is the interoperability and connectedness of ser-
vices and the shared format for both data and remote procedure calls. Two technology-independent

334

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

concepts permeate the service-oriented literature: orchestration and choreography (Alonso et al.,
2004; Singh & Huhns, 2005). Orchestration involves the ordering of actions of possibly different
services, facilitated by a controller or orchestrator, to achieve a certain overall goal. Choreogra-
phy concerns the distributed coordination of different actions through publicly observable events to
achieve a certain goal. A MAS perspective (Wooldridge, 2001) is known to be particularly helpful
in service-oriented computing in that it allows us to ascribe information states and private or com-
mon goals to the various services. Under this view the agents of the system implement the services
and interact with one another in a shared infrastructure or environment.

A key theoretical problem in SOC is to devise effective mechanisms to verify that service com-
position is correct against some specification. Techniques based on model checking (Clarke et al.,
1999) and synthesis (Berardi, Cheikh, Giacomo, & Patrizi, 2008) have been put forward to solve
the composition and orchestration problem for services described and advertised at interface level
through finite state machines (Calvanese, De Giacomo, Lenzerini, Mecella, & Patrizi, 2008). More
recently, attention has turned to services described by languages such as WS-BPEL (Alves et al.,
2007), which provide potentially unbounded variables in the description of the service process.
Again, model checking approaches have successfully been used to verify complex service compo-
sitions (Bertoli, Pistore, & Traverso, 2010; Lomuscio, Qu, & Solanki, 2012).

While WS-BPEL provides a model for services with variables, the data referenced by them is
non-permanent. The area of data-centric workflows (Hull et al., 2009; Nigam & Caswell, 2003)
evolved as an attempt to provide support for permanent data, typically present in the form of un-
derlying databases. Although usually abstracted away, permanent data is of central importance to
services, which typically query data sources and are driven by the answers they obtain; see, e.g.,
(Berardi, Calvanese, De Giacomo, Hull, & Mecella, 2005). Therefore, a faithful model of a ser-
vice behaviour cannot, in general, disregard this component. In response to this, proposals have
been made in the workflows and service communities in terms of declarative specifications of data-
centric services that are advertised for automatic discovery and composition. The artifact-centric
approach (Cohn & Hull, 2009) is now one of the leading emerging paradigms in the area. Artifact-
centric systems can be presented along four dimensions (Hull, 2008; Hull et al., 2011).

Artifacts are the holders of all structured information available in the system. In a business-
oriented scenario this may include purchase orders, invoices, payment records, etc. Artifacts may
be created, amended, and destroyed at run time; however, abstract artifact schemas are provided
at design time to define the structure of all artifacts to be manipulated in the system. Intuitively,
external events cause changes in the system, including in the value of artifact attributes.

The evolution of artifacts is governed by lifecycles. These capture the changes that an artifact
may go through from creation to deletion. Intuitively, a purchase order may be created, amended
and operated on before it is fulfilled and its existence in the system terminated: a lifecycle associated
with a purchase order artifact formalises these transitions.

Services are seen as the actors operating on the artifact system. They represent both human and
software actors, possibly distributed, that generate events on the artifact system. Some services may
“own” artifacts, and some artifacts may be shared by several services. However, not all artifacts, or
parts of artifacts, are visible to all services. Views and windows respectively determine which parts
of artifacts and which artifact instances are visible to which service. An artifact hub is a system that
maintains the artifact system and processes the events generated by the services.

Services generate events on the artifact system according to associations. Typically these are
declarative descriptions providing the precondition and post-conditions for the generation of events.

335

BELARDINELLI, LOMUSCIO & PATRIZI

These generate changes in the artifact system according to the artifact lifecycles. Events are pro-
cessed by a well-defined semantics (Damaggio, Hull, & Vaculı́n, 2011; Hull et al., 2011) that gov-
erns the sequence of changes an artifact system may undertake upon consumption of an event. Such
a semantics, based on the use of Prerequisite-Antecedent-Consequent (PAC) rules, ensures acyclic-
ity and full determinism in the updates on the artifact system. GSM is a declarative language that
can be used to describe artifact systems. BARCELONA is an engine that executes GSM-based artifact
systems (Heath et al., 2013).

The above is a partial and incomplete description of the artifact paradigm. We refer to the
literature for more details (Cohn & Hull, 2009; Hull, 2008; Hull et al., 2011).

As it will be clear in the next section, in line with the agent-based approach to services, we will
use agent-based concepts to model services. The artifact system will be represented as an environ-
ment, constituted by evolving databases, upon which the agents operate; lifecycles and associations
will be modelled by local and global transition functions. The model is intended to incorporate all
artifact-related concepts including views and windows.

In view of the above in this paper we address the following questions. How can we give a
transition-based semantics for artifacts and agents operating on them? What language should we
use to specify properties of the agents and the artifacts themselves? Can we verify whether or not
an artifact system satisfies certain properties? As this will be shown to be undecidable, can we
find suitable fragments on which this question can always be answered? If so, what is the resulting
complexity? Can we provide declarative specifications for the agent programs so that these can be
verified by model checking? Lastly, can this technique be used on mainstream scenarios from the
SOC literature?

1.2 Related Work

As stated above, virtually all current literature on artifact-centric systems focuses on properties and
implementations of the artifact systems as such. Little or no attention is given to the actors of the
system, whether they are human or artificial agents. A few formal techniques have, however, been
put forward to verify the core, non-agent aspects of the system; in the following we briefly compare
these to this contribution.

To our knowledge the verification of artifact-centric business processes was first discussed by
Bhattacharya et al. (2007), where reachability and deadlocks are phrased in the context of artifact-
centric systems and complexity results for the verification problem are given. Even disregarding the
agent-related aspects here investigated, the present contribution differs markedly from their work
by employing a more expressive specification language and by putting forward effective abstraction
procedures for verification.

Gerede and Su (2007) study a verification technique for artifact-centric systems against a variant
of computation-tree logic. The decidability of the verification problem is proven for the language
considered under the assumption that the interpretation domain is bounded. Decidability is also
shown for the unbounded case by making restrictions on the values that quantified variables can
range over. In the work here presented we also work on unbounded domains, but do not require
the restrictions present therein: we only insist on the fact that the number of distinct values in the
system does not exceed a given threshold at any point in any run. Most importantly, the interplay
between quantification and modalities here considered allows us to bind and use variables in differ-

336

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

ent states. This is a major difference as this feature is very expressive and known to lead potentially
to undecidability.

In a related line of research the verification problem for artifact systems against two variants
of first-order linear-time temporal logic is considered (Deutsch et al., 2009; Damaggio, Deutsch, &
Vianu, 2012). Decidability of the verification problem is retained by imposing syntactic restrictions
on both the system description and the specification to check. This effectively limits the way in
which new values introduced at every computational step can be used by the system. Properties
based on arithmetic operators are also considered (Damaggio et al., 2012). While there are elements
of similarity between these approaches and the one we put forward here, including the fact that the
concrete interpretation domain is replaced by an abstract one, there are also significant differences.
Firstly, our setting is branching-time and not linear-time thereby resulting in different expressive
power. Secondly and most importantly, differently from similar contributions (Deutsch et al., 2009;
Damaggio et al., 2012), we impose no constraints on nested quantifiers or on their interaction with
temporal modalities. In contrast, Damaggio et al. admit only a guarded form of quantification on
state formulas, and universal quantification at the outermost syntactic level of the formula, over
the free variables of state formulas. These two restrictions represent a major, crucial difference
with respect to the present work, in that the former syntactical restrictions prevent representing
the interaction between data at different states, which is instead expressible in the present work.
Our branching time setting also requires a different abstraction technique. Indeed, the approach
above (Deutsch et al., 2009; Damaggio et al., 2012) is based on the construction of a counterexample
to the formula to be checked, a fact that is technically made possible by two key factors: (i) the
exclusive use of universal quantification over paths, guaranteed by the use of linear-time logics;
(ii) the syntactic restriction on quantifiers over values, which permits only universal quantifiers to
include temporal modalities within their scope. None of such features is required in our work.
Namely, we allow both existential and universal quantification over paths to be present (although in
a CTL fashion), and we do not put any restriction on the use of first-order quantifiers. Additionally,
the abstraction results we present here are given in general terms on the semantics of declarative
programs and do not depend on a particular presentation of the system.

Finally, following an approach similar to ours, Bagheri Hariri et al. (2013) give conditions for
the decidability of the model checking problem for data-centric dynamic systems, i.e., dynamic
systems with relational states. In this case the specification language used is a first-order version of
the µ-calculus. While our temporal fragment is subsumed by the µ-calculus, the two specification
languages have different expressive power, since we use indexed epistemic modalities as well as a
common knowledge operator. To retain decidability, like we do here, the authors assume a constraint
on the size of the states. However, differently from this contribution, Bagheri Hariri et al. also
assume limited forms of quantification whereby only individuals persisting in the system evolution
can be quantified over. We do not make this restriction here.

Irrespective of what above, the most important feature that characterises our work is that the
set-up is entirely based on epistemic logic and multi-agent systems. We use agents to represent
the autonomous services operating in the system and agent-based concepts play a key role in the
modelling, the specifications, and the verification techniques put forward. Differently from all
approaches presented above we are not only concerned with whether the artifact system meets
a particular specification. Instead, we also wish to consider what knowledge the agents in the
system acquire by interacting among themselves and with the artifact system during a system run.
Additionally, the abstraction methodology put forward is modular with respect to the agents in

337

BELARDINELLI, LOMUSCIO & PATRIZI

the system, that is, first we define abstract agents and then compose them together to obtain the
abstract system. These features enable us to give constructive procedures for the generation of
finite abstractions for artifact-centric programs associated with infinite models. We are not aware
of any work in the literature tackling any of these aspects.

This paper combines and expands our preliminary results on artifact-centric systems (Belar-
dinelli, Lomuscio, & Patrizi, 2011a, 2011b, 2012a, 2012b). In particular, the technical set up of
artifacts and agents is different from that of our preliminary studies and makes it more natural to
express artifact-centric concepts such as views. Differently from our previous attempts, we here
incorporate an operator for common knowledge and provide constructive methods to define ab-
stractions. We also consider the complexity of the verification problem, previously unexplored, and
evaluate the technique in detail on a case study.

1.3 Scheme of the Paper

The rest of the paper is organised as follows. In Section 2 we introduce artifact-centric multi-
agent systems (AC-MAS), the semantics we will be using throughout the paper to describe agents
operating on an artifact system. In the same section we put forward FO-CTLK, a first-order logic
with knowledge and time to reason about the evolution of the knowledge of the agents and the
artifact system. This enables us to propose a satisfaction relation based on the notion of bounded
quantification, define the model checking problem, and highlight some properties of isomorphic
states. An immediate result we will explore concerns the undecidability of the model checking
problem for AC-MAS in their general setting.

Section 3 is devoted to identifying a subclass of AC-MAS that admits a decidable model check-
ing problem against full FO-CTLK specifications. The key finding here is that bounded and uniform
AC-MAS, a class identified by studying a strong bisimulation relation, admit finite, truth-preserving
abstractions for any FO-CTLK specification. In Section 3.4 we explore the verification problem fur-
ther and also investigate its complexity thereby showing it to be EXPSPACE-complete.

We turn our attention to artifact programs in Section 4 by defining the concept of artifact-centric
programs. We define them through natural, first-order preconditions and post-conditions in line with
the artifact-centric approach. We give a semantics to them in terms of AC-MAS and show that their
generated models are precisely those uniform AC-MAS studied earlier in the paper. It follows that,
under some boundedness conditions which can be naturally expressed, the model checking problem
for artifact-centric programs is decidable and can be executed on finite models.

Section 4.2 reports a scenario from the artifact systems literature. This is used to exemplify the
technique by providing finite abstractions that can be effectively verified. We conclude in Section 5
where we consider the limitations of the approach and point to further work.

2. Artifact-Centric Multi-agent Systems

In this section we formalise artifact-centric systems and state their verification problem. As data
and databases are equally important constituents of artifact systems, our formalisation of artifacts
relies on them as underpinning concepts. However, as discussed in the previous section, we here
give prominence to agent-based concepts. As such, we define our systems as comprising both the
artifacts and the agents interacting with it.

338

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

A standard paradigm for logic-based reasoning about agents is interpreted systems (Parikh &
Ramanujam, 1985; Fagin et al., 1995). In this setting agents are endowed with private local states
and evolve by performing actions according to an individual protocol. As data play a key part, as
well as to allow us to specify properties of the artifact system, we will define the agents’ local states
as evolving database instances. We call this formalisation artifact-centric multi-agent systems (AC-
MAS). AC-MAS enable us to represent naturally and concisely concepts much used in the artifact
paradigm such as the one of view discussed earlier.

Our specification language will include temporal-epistemic logic but also quantification over a
domain so as to represent the data. This is an usual verification setting, so we will formally define
the model checking problem for this set up.

2.1 Databases and First-Order Logic

As discussed above, we use databases as the basic building blocks for defining the states of the
agents and the artifact system. We here fix the notation and terminology used. We refer to the
literature for more details on databases (Abiteboul, Hull, & Vianu, 1995).

Definition 2.1 (Database Schemas) A (relational) database schemaD is a set {P1/q1, . . . , Pn/qn}
of relation symbols Pi, each associated with its arity qi ∈ N.

Instances of database schemas are defined over interpretation domains, i.e., sets of individuals.

Definition 2.2 (Database Instances) Given a countable interpretation domain U and a database
schema D, a D-instance over U is a mapping D associating each relation symbol Pi ∈ D with a
finite qi-ary relation over U , i.e., D(Pi) ⊆ U qi .

The set of all D-instances over a countable interpretation domain U is denoted by D(U). We
simply refer to “instances” whenever the database schema D is clear by the context. The active
domain of an instance D, denoted as adom(D), is the set of all individuals in U occurring in some
tuple of some predicate interpretation D(Pi). Observe that, since D contains a finite number of
relation symbols and each D(Pi) is finite, so is adom(D). Also, in the rest of the paper we assume
that the interpretation domains are always countable without explictly mentioning this fact.

To fix the notation, we recall the syntax of first-order formulas with equality and no function
symbols. Let Var be a countable set of individual variables and Con be a finite set of individual
constants. A term is any element t ∈ Var ∪ Con.

Definition 2.3 (FO-formulas over D) Given a database schema D, the formulas ϕ of the first-
order language LD are defined by the following BNF grammar:

ϕ ::= t = t′ | Pi(t1, . . . , tqi) | ¬ϕ | ϕ→ ϕ | ∀xϕ

where Pi ∈ D, t1, . . . , tqi is a qi-tuple of terms and t, t′ are terms.

We assume “=” to be a special binary predicate with fixed obvious interpretation. To summarise,
LD is a first-order language with equality over the relational vocabularyD with no function symbols
and with finitely many constant symbols from Con. Observe that considering a finite set of constants
is not a limitation. Indeed, since we will be working with finite sets of formulas, Con can always be
defined so as to be able to express any formula of interest.

339

BELARDINELLI, LOMUSCIO & PATRIZI

In the following we use the standard abbreviations ∃, ∧, ∨, and 6=. Also, free and bound
variables are defined as standard. For a formula ϕ we denote the set of its variables as var(ϕ), the
set of its free variables as free(ϕ), and the set of its constants as con(ϕ). We write ϕ(~x) to list
explicitly in arbitrary order all the free variables x1, . . . , x` of ϕ. By slight abuse of notation, we
treat ~x as a set, thus we write ~x = free(ϕ). A sentence is a formula with no free variables.

Given an interpretation domain U such that Con ⊆ U , an assignment is a function σ : Var 7→ U .
For an assignment σ, we denote by σ

(
x
u

)
the assignment such that: (i) σ

(
x
u

)
(x) = u; and (ii)

σ
(
x
u

)
(x′) = σ(x′), for every x′ ∈ Var different from x. For convenience, we extend assignments to

constants so that σ(t) = t, if t ∈ Con; that is, we assume a Herbrand interpretation of constants.
We can now define the semantics of LD.

Definition 2.4 (Satisfaction of FO-formulas) Given a D-instance D, an assignment σ, and an
FO-formula ϕ ∈ LD, we inductively define whether D satisfies ϕ under σ, written (D,σ) |= ϕ, as
follows:

(D,σ) |= Pi(t1, . . . , tqi) iff 〈σ(t1), . . . , σ(tqi)〉 ∈ D(Pi)
(D,σ) |= t = t′ iff σ(t) = σ(t′)
(D,σ) |= ¬ϕ iff it is not the case that (D,σ) |= ϕ
(D,σ) |= ϕ→ ψ iff (D,σ) |= ¬ϕ or (D,σ) |= ψ
(D,σ) |= ∀xϕ iff for all u ∈ adom(D), we have that (D,σ

(
x
u

)
) |= ϕ

A formula ϕ is true in D, written D |= ϕ, iff (D,σ) |= ϕ, for all assignments σ.

Observe that we adopt an active-domain semantics, that is, quantified variables range only over the
active domain of D. We claim that this form of quantification is sufficient to express specifications
of interest (see Section 4.2) while retaining decidability. Also notice that constants are interpreted
rigidly; so, two constants are equal if and only if they are syntactically the same. In the rest of the
paper, we assume that every interpretation domain includes Con. Also, as a usual shortcut, we write
(D,σ) 6|= ϕ to express that it is not the case that (D,σ) |= ϕ.

Finally, we introduce the ⊕ operator on D-instances that will be used later in the paper. Let the
primed version of a database schema D be the schema D′ = {P ′1/q1, . . . , P

′
n/qn} obtained from D

by syntactically replacing each predicate symbol Pi with its primed version P ′i of the same arity.

Definition 2.5 (⊕ Operator) Given twoD-instances D and D′, we define D⊕D′ as the (D∪D′)-
instance such that D ⊕D′(Pi) = D(Pi) and D ⊕D′(P ′i) = D′(Pi).

Intuitively, the ⊕ operator defines a disjunctive join of the two instances, where relation symbols in
D are interpreted according to D, while their primed versions are interpreted according to D′.

2.2 Artifact-Centric Multi-agent Systems

In the following we introduce the semantic structures that we will use throughout the paper. We
define an artifact-centric multi-agent system as a system comprising an environment representing
all artifacts and a finite set of agents interacting with such environment. As agents have views of the
artifact state, i.e., projections of the status of particular artifacts, we assume that the building blocks
of their private local states are also modelled as database instances. In line with the interpreted
systems semantics (Fagin et al., 1995) not everything in the agents’ states needs to be present in the
environment; a portion of it may be entirely private and not replicated in other agents’ states. So,
we start by introducing the notion of agent.

340

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

Definition 2.6 (Agent) Given an interpretation domain U , an agent is a tuple A = 〈D, Act, Pr〉,
where:

• D is the local database schema;

• Act is the finite set of action types α(~p), where ~p is the tuple of abstract parameters;

• Pr : D(U) 7→ 2Act(U) is the local protocol function, where Act(U) is the set of ground
actions of the form α(~u) where α(~p) ∈ Act and ~u ∈ U |~p| is a tuple of ground parameters.

Intuitively, at a given time each agent A is in some local state l ∈ D(U) that represents all the
information agent A has at its disposal. In this sense we follow the standard approach to multi-
agent systems (Fagin et al., 1995), but require that this information is structured as a database.
Again, following standard literature we assume that the agents are autonomous and proactive and
perform the actions in Act according to the protocol function Pr, which returns the set of grounded
actions enabled in any local state. In the definition above we use the term “abstract parameters” to
denote variables, i.e., the language in which particular action parameters are given; we use the term
“ground parameters” to refer to their concrete values.

We assume that the agents interact among themselves and with an environment comprising
all artifacts in the system. As artifacts are entities involving both data and processes, we can see
them as collections of database instances paired with actions and governed by special protocols.
Without loss of generality we can assume the environment state to be a single database instance
including all artifacts in the system. From a purely formal point of view this allows us to represent
the environment as a special agent. Of course, in any specific instantiation the environment and the
agents will be different entities, exactly in line with the standard propositional version of interpreted
systems.

We can therefore define the synchronous composition of agents with the environment.

Definition 2.7 (Artifact-Centric Multi-agent Systems) Given an interpretation domain U and a
set Ag = {A0, . . . , An} of agents Ai = 〈Di, Acti, P ri〉 defined on U , an artifact-centric multi-
agent system (or AC-MAS) is a tuple P = 〈Ag, s0, τ〉 where:

• s0 ∈
∏
Ai∈Ag Di(U) is the initial global state;

• τ :
∏
Ai∈Ag Di(U) × Act(U) 7→ 2

∏
Ai∈Ag Di(U) is the global transition function, where

Act(U) = Act0(U)×· · ·×Actn(U) is the set of global (ground) actions, and τ(〈l0, . . . , ln〉,
〈α0(~u0), . . . , αn(~un)〉) is defined whenever αi(~ui) ∈ Pri(li) for every i ≤ n.

As we will see in later sections, AC-MAS are the natural extension of interpreted systems to
the first order to account for environments constituted of artifact-centric systems. They can be seen
as a specialisation of quantified interpreted systems (Belardinelli & Lomuscio, 2012), a general
extension of interpreted systems to the first-order case.

In the formalisation above the agent A0 is typically referred to as the environment E. The envi-
ronment normally includes all artifacts in the system (notably by assuming that D0 ⊇

⋃
0<i≤nDn),

as well as additional information to facilitate communication between the agents and the hub, e.g.,
messages in transit etc. In what follows we considerD0 =

⋃
0<i≤nDn for simplicity; this modelling

choice does not impact the results presented later on. At any given time an AC-MAS is described
by a tuple of database instances, representing all the agents in the system as well as the artifact

341

BELARDINELLI, LOMUSCIO & PATRIZI

system. A single interpretation domain for all database schemas is given. Note that this does not
break the generality of the representation as we can always extend the domain of all agents and the
environment before composing them into a single AC-MAS. The global transition function defines
the evolution of the system through synchronous composition of actions for the environment and all
agents in the system.

Much of the interaction we are interested in modelling involves message exchanges with pay-
load, hence the action parameters, between agents and the environment, i.e., agents operating on the
artifacts. However, note that the formalisation above does not preclude us from modelling agent-to-
agent interactions, as the global transition function does not rule out successors in which only some
agents change their local state following some actions. Also observe that essential concepts such as
views are easily expressed in AC-MAS by insisting that the local state of an agent includes part of
the environment’s, i.e., the artifacts the agent has access to. Not all AC-MAS need to have views
defined, so it is also possible for the views to be empty.

Other artifact-based concepts such as lifecycles are naturally expressed in AC-MAS. As artifacts
are modelled as part of the environment, a lifecycle is naturally encoded in AC-MAS simply as
the sequence of changes induced by the transition function τ on the fragment of the environment
representing the lifecycle in question. We will show an example of this in Section 2.4.

Some technical remarks now follow. To simplify the notation, we denote a global ground action
as ~α(~u), where ~α = 〈α0(p0), . . . , αn(pn)〉 and ~u = 〈~u0, . . . , ~un〉, with each ~ui of appropriate size.
We define the transition relation → on

∏
Ai∈Ag Di(U) ×

∏
Ai∈Ag Di(U) such that s → s′ if and

only if there exists ~α(~u) ∈ Act(U) such that s′ ∈ τ(s, ~α(~u)). If s → s′, we say that s′ is a
successor of s. A run r from s ∈ S is an infinite sequence s0 → s1 → · · · , with s0 = s. For
n ∈ N, we take r(n)

.
= sn. A state s′ is reachable from s if there exists a run r from the global

state r(0) = s such that r(i) = s′, for some i ≥ 0. We assume that the relation → is serial, i.e.,
for every global state s there exists s′ such that s → s′. This can be easily obtained by assuming
that each agent has a skip action enabled at each local state and that performing skip induces no
changes in any of the local states. We introduce S as the set of states reachable from the initial
state s0 according to the transition relation→. Notice that assuming a unique initial state does not
hinder the generality of the approach, as for any finite set I of states we can encode in τ transitions
from s0 to the states in I . As in plain interpreted systems (Fagin et al., 1995), we say that two global
states s = 〈l0, . . . , ln〉 and s′ = 〈l′0, . . . , l′n〉 are epistemically indistinguishable for agentAi, written
s ∼i s′, if li = l′i. Differently from interpreted systems the local equality is evaluated on database
instances. For convenience we will use also the concept of temporal-epistemic (t.e., for short) run.
Formally a t.e. run r from a state s ∈ S is an infinite sequence s0 ; s1 ; . . . such that s0 = s
and si → si+1 or si ∼k si+1, for some k ∈ Ag. A state s′ is said to be temporally-epistemically
reachable (t.e. reachable, for short) from s if there exists a t.e. run r from the global state r(0) = s
such that for some i ≥ 0 we have that r(i) = s′. Obviously, temporal-epistemic runs include purely
temporal runs as a special case. Also, notice that we admit U to be infinite, thereby allowing the
possibility of the set of states S to be infinite. Indeed, unless we specify otherwise, we will assume
to be working with infinite-state AC-MAS.

Finally, for technical reasons it is useful to refer to the global database schemaD = D0∪· · ·∪Dn
of an AC-MAS. Every global state s = 〈l0, . . . , ln〉 is associated with the (global) D-instance
Ds ∈ D(U) such that Ds(Pi) =

⋃
j∈Ag lj(Pi), for Pi ∈ D. We omit the subscript s whenever

s is clear from the context and we write adom(s) for adom(Ds). The justification for this choice
comes from the fact that we think of each agent as having a partial, although truthful, view of the

342

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

global state. If the same relation appears in several agent database schemas, possibly with different
interpretations, it means that each agent is aware of only a subset of the total extension of the
relation. We maintain that this modeling choice is justified by the application to artifact systems,
as it will become apparent in Section 2.4. Notice that for every s ∈ S , the Ds associated with s is
unique, while the converse is not true in general. Finally, we lift the disjoint union operator ⊕ to
global states so that s⊕s′ .= 〈l0⊕ l′0, . . . , ln⊕ l′n〉. It can be seen thatDs⊕Ds′ andDs⊕s′ represent
in fact the same D ∪D′-instance.

2.3 Model Checking

We now define the problem of verifying an artifact-centric multi-agent system against a specification
of interest. By following the artifact-centric model, we wish to give data the same prominence as
processes. To deal with data and the underlying database instances, our specification language needs
to include first-order logic. Further, we require temporal logic to describe the system execution.
Lastly, we use epistemic logic to express the information the agents have at their disposal. Hence,
we define a first-order temporal-epistemic specification language to be interpreted on AC-MAS. The
specification language will be used in Section 4 to formalise properties of artifact-centric programs.

Definition 2.8 (The Logic FO-CTLK) The first-order CTLK (or FO-CTLK) formulas ϕ over a
database schema D are inductively defined by the following BNF:

ϕ ::= φ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ | Cϕ

where φ ∈ LD and 0 < i ≤ n.

The notions of free and bound variables for FO-CTLK extend straightforwardly from LD, as well
as functions var, free, and con. As usual, the temporal formulas AXϕ and AϕUϕ′ (resp. EϕUϕ′)
are read as “for all runs, at the next step ϕ” and “for all runs (resp. some run), ϕ until ϕ′”. The
epistemic formulas Kiϕ and Cϕ intuitively mean that “agent Ai knows ϕ” and “it is common
knowledge among all agents that ϕ” respectively. We use the abbreviations EXϕ, AFϕ, AGϕ,
EFϕ, and EGϕ as standard. Observe that free variables can occur within the scope of modal
operators, thus admitting the unconstrained alternation of quantifiers and modal operators, thereby
allowing us to refer to elements in different modal contexts.

The semantics of FO-CTLK formulas is defined as follows.

Definition 2.9 (Satisfaction for FO-CTLK) Consider an AC-MAS P , an FO-CTLK formula ϕ, a
state s ∈ P , and an assignment σ. We inductively define whether P satisfies ϕ in s under σ, written
(P, s, σ) |= ϕ, as follows:

(P, s, σ) |= ϕ iff (Ds, σ) |= ϕ, if ϕ is an FO-formula
(P, s, σ) |= ¬ϕ iff it is not the case that (P, s, σ) |= ϕ
(P, s, σ) |= ϕ→ ϕ′ iff (P, s, σ) |= ¬ϕ or (P, s, σ) |= ϕ′

(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s), (P, s, σ
(
x
u

)
) |= ϕ

(P, s, σ) |= AXϕ iff for all runs r, if r(0) = s, then (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all runs r, if r(0) = s, then there is k ≥ 0 s.t. (P, r(k), σ) |= ϕ′,

and for all j, 0 ≤ j < k implies (P, r(j), σ) |= ϕ
(P, s, σ) |= EϕUϕ′ iff for some run r, r(0) = s and there is k ≥ 0 s.t. (P, r(k), σ) |= ϕ′,

343

BELARDINELLI, LOMUSCIO & PATRIZI

and for all j, 0 ≤ j < k implies (P, r(j), σ) |= ϕ
(P, s, σ) |= Kiϕ iff for all s′ ∈ S, s ∼i s′ implies (P, s′, σ) |= ϕ
(P, s, σ) |= Cϕ iff for all s′ ∈ S, s ∼ s′ implies (P, s′, σ) |= ϕ

where ∼ is the transitive closure of
⋃

1≤i≤n ∼i.

A formula ϕ is said to be true at a state s, written (P, s) |= ϕ, if (P, s, σ) |= ϕ for all assignments
σ. Moreover, ϕ is said to be true in P , written P |= ϕ, if (P, s0) |= ϕ.

A key concern in this paper is to explore the model checking of AC-MAS against first-order
temporal-epistemic specifications (Grohe, 2001).

Definition 2.10 (Model Checking Problem) Given an AC-MAS P and a FO-CTLK formula ϕ the
model checking problem consists in finding an assignment σ such that (P, s0, σ) |= ϕ.

It is easy to see that whenever U is finite the model checking problem is decidable as P is a finite-
state system. In general, however, this is not the case. To see this, notice that, by assuming com-
putability, both the agents’ protocol functions Pri and the AC-MAS transition function τ , can be
finitely represented (e.g., as Turing machines). Since all other components of agents and AC-MAS
definitions are finite, it follows that all AC-MAS, in particular infinite-state ones, admit a finite
representation. Assuming fixed the representation formalism, we have the following result.

Theorem 2.11 The model checking problem for AC-MAS w.r.t. FO-CTLK is undecidable.

Proof (sketch). This can be proved by showing that every Turing machine T whose tape contains
an initial input I can be simulated by an artifact system PT,I . The problem of checking whether T
terminates on that particular input can be reduced to checking whether PT,I |= ϕ, where ϕ encodes
the termination condition. The detailed construction is similar to that of the work of Deutsch, Sui,
and Vianu (2007, Thm. 4.10).

Given the general setting in which the model checking problem is defined above, the negative re-
sult is not surprising. In the following we identify semantic restrictions for which the problem is
decidable.

2.4 The Order-to-Cash Scenario

We analyse a business process inspired by a concrete IBM customer use case (Hull et al., 2011). The
order-to-cash scenario describes the interactions of a number of agents in an e-commerce situation
relating to the purchase and delivery of a product. The agents in the artifact-centric system consist
of a manufacturer, some customers, and some suppliers. The process begins when a customer
prepares and submits a purchase order (PO), i.e., a list of products the customer requires, to the
manufacturer. Upon receiving a PO , the manufacturer prepares a material order (MO), i.e., a
list of components needed to assemble the requested products. The manufacturer then selects a
supplier and forwards him the relevant material order. Upon receiving an MO a supplier can either
accept or reject it. In the former case he then proceeds to deliver the requested components to the
manufacturer. In the latter case he notifies the manufacturer of his rejection. If an MO is rejected,
the manufacturer deletes it and then prepares and submits a new MO . When the manufacturer
receives the delivered components, he assembles the product and, provided the order has been paid

344

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

PO

id prod code offer status

MO

id prod code price status

Products

prod code budget

Materials

mat code cost

Figure 1: The Data Model for the Order-to-Cash Scenario.

prepared pending paid shipped
createPO submitPO pay shipPO deletePO

(a) Purchase Order lifecyle

preparation submitted

accepted shipped

rejected

createMO doneMO

acceptMO

rejectMO

shipMO

deleteMO

deleteMO

(b) Material Order lifecyle

Figure 2: Lifecycles of the artifacts involved in the order-to-cash scenario.

for, delivers it to the customer. Any manufacturer order which is directly or indirectly related to a
PO can be deleted only after the PO is deleted.

We can encode the order-to-cash business process as an artifact-centric multi-agent system,
where the artifact data models are represented as database schemas and their evolution is charac-
terised by an appropriate set of operations. It is natural to identify two artifact types, representing
the PO and the MO . We reserve a distinguished relation for each artifact type. In addition, we
introduce static relations to store product and material information. As a result, the data model of
the order-to-cash scenario with associated attributes can be given as in Figure 1.

The intended meaning of relations is self-explanatory. Note the presence of the attribute status
in the relations corresponding to artifact classes. An intuitive representation of the artifact lifecycles,
i.e., the evolution of some key records in the artifacts’ states, capturing only the dependence of
actions from the artifact statuses, is shown in Figure 2. For example, a purchase order, with initial
status prepared, is created by the agent customer through the action createPO . Once the order
is submitted to the agent manufacturer, the PO status changes to pending. The other transitions
labelled by pay , shipPO and deletePO , act similarly, according to their semantics, on the status
of the purchase order. Note that this is an incomplete representation of the business process, as the
interaction between actions and the artifact data content is not represented.

345

BELARDINELLI, LOMUSCIO & PATRIZI

We now formally encode the scenario as an AC-MAS. For the sake of presentation in what
follows we assume to be dealing with three agents only: one customer c, one manufacturer m and
one supplier s. The database schema Di for each agent i ∈ {c,m, s} can be given as:

• Customer c:
Dc = {Products(prod code, budget),PO(id , prod code, offer , status)};

• Manufacturer m:
Dm = {PO(id , prod code, offer , status), MO(id , prod code, price, status)};

• Supplier s:
Ds = {Materials(mat code, cost),MO(id , prod code, price, status)}.

We consider the infinite set Uotc of alphanumeric strings as the interpretation domain, and in-
troduce a parametric action for each transition in the lifecycles in Figure 2. Also, we assume that
in the initial state the only non-empty relations are Products and Materials , which contain back-
ground information, such as a catalogue of available products. We can now define the agents in the
order-to-cash scenario as follows.

Definition 2.12 the agents Ac, Am and As are given as

• Ac = 〈Dc, Actc, P rc〉, where (i) Dc is as above; (ii) Actc = {createPO(id , pcode),
submitPO(id), pay(id), deletePO(id)}; and (iii) Prc respects the intended meaning of the
customer’s actions. For instance, createPO(id , pcode) ∈ Prc(lc) iff the interpretation
lc(Products) of the relation Products in the local state lc contains a tuple 〈pcode, b〉 for
some budget b.

• Am = 〈Dm, Actm, P rm〉, where (i) Dm is as above; (ii) Actm = {createMO(id , price),
doneMO(id), shipPO(id), deleteMO(id)}; and (iii) Prm respects the intended meaning
of the manufacturer’s actions. For instance, createMO(po id , price) ∈ Prm(lm) iff the
interpretation lm(MO) of the relation MO in the local state lm does not contain a tuple
〈po id, pc, pr, preparation〉 for the same PO id po id.

• As = 〈Ds, Acts, P rs〉, where (i) Ds is as above; (ii) Acts =
{acceptMO(id), rejectMO(id), shipMO(id)}; and (iii) Prc respects the intended
meaning of the suppliers’ actions. For instance, acceptMO(mo id) ∈ Prs(ls) iff ls(MO)
does not contain a tuple with id mo id and status accepted.

Further, we can now define the AC-MAS induced by the set of agents Agotc = {Ac, Am, As}
according to Definition 2.7.

Definition 2.13 Given the set of agents Agotc = {Ac, Am, As}, the AC-MAS Potc =
〈Agotc, s0

otc, τotc〉 is such that

• s0
otc = 〈lc, lm, ls〉 is the initial global state, where the only non-empty relations are Products

and Materials in lc and ls respectively;

• τotc is the global transition function defined so as to respect the intended meaning of
the evolution of the order-to-cash scenario. For instance, consider the global action

346

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

α(~u) = 〈createPO(pc), doneMO(m), acceptMO(m ′)〉 enabled by the respective proto-
cols in a global state s. By the definition of the actions createPO(pc), doneMO(m), and
acceptMO(m ′) we have that li(s) ∈ Pri for i ∈ {c,m, s} implies that the Products rela-
tion contains information about the product pc. Also, the interpretation of the relation MO
contains the tuples 〈m, p, pr, preparation〉 and 〈m′, p′, pr′, submitted〉 for some products p
and p′. Hence, s′ ∈ τotc(s, α(~u)) iff the interpretation of the relation PO in s′ extends
Ds(PO) with the tuple 〈id, pc, b, prepared〉, where id is a fresh id. The tuples for the ma-
terial orders m and m′ are updated in Ds′(MO) by becoming 〈m, p, pr, submitted〉 and
〈m′, p′, pr′, accepted〉, respectively. No other element is changed in the transition.

Clearly, the function τotc given above can easily be completed to encode the artifacts’ lifecycles
as given in Figure 2. In section 4.2 we will give a succinct encoding of Potc in terms of an artifact-
centric program.

We can now investigate properties of the present business process by using specifications in
FO-CTLK. For instance, the following formula intuitively specifies that the manufacturer m knows
that each material order MO has to match a corresponding purchase order PO :

ϕmatch = AG ∀id, pc (∃pr, s MO(id, pc, pr, s)→ Km∃o, s′PO(id, pc, o, s′))

The next specification states that given a material order MO , the customer will eventually know
that the corresponding PO will be shipped.

ϕfulfil = AG ∀id, pc (∃pr, s MO(id, pc, pr, s)→ EF Kc ∃o PO(id, pc, o, shipped))

Further, we may be interested in checking whether or not budget and costs are always kept secret
from the supplier s and the customer c respectively, and whether the customer (resp., the supplier)
knows this fact:

ϕbudget = Kc ∀pc AG ¬∃b Ks Products(pc, b)

ϕcost = Ks ∀mc AG ¬∃c Kc Materials(mc, c)

Other interesting specifications describing properties of the artifact system and the agents oper-
ating in it can be similarly formalised in FO-CTLK, thereby providing the engineer with a valuable
tool to assess the implementation.

Observe that the AC-MAS for the order-to-cash scenario has an infinite number of states thereby
making it difficult to investigate by means of traditional model checking techniques. We will return
to this scenario in Subsection 4.2 where we will investigate how it may still be verified. Before
doing so we develop a methodology for associating finite abstractions to infinite AC-MAS.

3. Abstraction for Artifact-Centric Multi-agent Systems

In the previous section we have observed that model checking AC-MAS against FO-CTLK is unde-
cidable in general. It is clearly of interest to isolate decidable settings. In what follows we identify
semantic constraints resulting in a decidable model checking problem. The investigation is carried
out on a rather natural subclass of AC-MAS that we call bounded, as defined below. Our goal for
proceeding in this manner is to identify finite abstractions of infinite-state AC-MAS so that verifi-
cation of programs that admit bounded AC-MAS as models can be conducted on them, rather than
on the original infinite-state AC-MAS. We will see this in detail in Section 4.

347

BELARDINELLI, LOMUSCIO & PATRIZI

The key concept that enables us to achieve the above is uniformity. Uniform AC-MAS are
systems for which the behaviour does not depend on the actual data present in the states. This
means that the system contains all possible transitions that are enabled according to parametric
action rules, thereby resulting in a “full” transition relation. This notion is related to genericity
in databases (Abiteboul et al., 1995). Here we use the term “uniformity” as we refer to transition
systems and not databases.

To achieve finite abstractions we proceed as follows. We first propose an adaptation of the notion
of isomorphism to our setting; then we introduce bisimulations; finally in Subsection 3.2 we show
how this notion can be exploited to guarantee that uniform AC-MAS satisfy the same FO-CTLK
formulas. We then use this result to show that bounded, uniform systems admit finite abstractions
(Subsection 3.3). The complexity of the model checking problem is analysed in Subsection 3.4.

In the rest of the section we let P = 〈Ag, s0, τ〉 and P ′ = 〈Ag′, s′0, τ ′〉 be two AC-MAS and
assume, unless stated differently, that s = 〈l0, . . . , ln〉 ∈ S, and s′ = 〈l′0, . . . , l′n〉 ∈ S ′.

3.1 Isomorphisms

We now investigate the concept of isomorphism on AC-MAS. This will be needed in later sections
to define finite abstractions of infinite-state AC-MAS.

Definition 3.1 (Isomorphism) Two local states l, l′ ∈ D(U) are isomorphic, written l ' l′, iff
there exists a bijection ι : adom(l) ∪ Con 7→ adom(l′) ∪ Con such that:

(i) ι is the identity on Con;

(ii) for every Pi ∈ D, ~u ∈ U qi , we have that ~u ∈ l(Pi) iff ι(~u) ∈ l′(Pi).

When this is the case, we say that ι is a witness for l ' l′.
Two global states s ∈ S and s′ ∈ S ′ are isomorphic, written s ' s′, iff there exists a bijection

ι : adom(s) ∪ Con 7→ adom(s′) ∪ Con such that for every j ∈ Ag, ι is a witness for lj ' l′j .

Notice that isomorphisms preserve the interpretation of constants in Con as well as of predicates
in the local states up to renaming of the corresponding terms. Any function ι as above is called
a witness for s ' s′. Obviously, the relation ' is an equivalence relation. Given a function f :
U 7→ U ′ defined on adom(s), f(s) denotes the instance in D(U ′) obtained from s by renaming
each u ∈ adom(s) as f(u). If f is also injective (thus invertible) and the identity on Con, then
f(s) ' s.

Example As an example of isomorphic states, consider an agent with local database schema D =
{P1/2, P2/1}, let U = {a, b, c, . . .} be an interpretation domain, and fix the set Con = {b} of
constants. Let l be the local state such that l(P1) = {〈a, b〉, 〈b, d〉} and l(P2) = {a} (see Figure 3).
Then, the local state l′ such that l′(P1) = {〈c, b〉, 〈b, e〉} and l′(P2) = {c} is isomorphic to l. This
can be easily seen by considering the isomorphism ι, where: ι(a) = c, ι(b) = b, and ι(d) = e.
However, the state l′′ where l′′(P1) = {〈f, d〉, 〈d, e〉} and l′′(P2) = {f} is not isomorphic to l.
Indeed, although a bijection exists that maps l into l′′, it is easy to see that none can be such that
ι′(b) = b.

Note that, while isomorphic states have the same relational structure, two isomorphic states do
not necessarily satisfy the same FO-formulas as satisfaction depends also on the values assigned to
free variables. To account for this, we introduce the following notion.

348

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

l(P1)

a b

b d

l(P2)

a

l′(P1)

c b

b e

l′(P2)

c

l′′(P1)

f d

d e

l′′(P2)

f

Figure 3: Examples of isomorphic and non-isomorphic local states.

Definition 3.2 (Equivalent assignments) Given two states s ∈ S and s′ ∈ S ′, and a set of vari-
ables V ⊆ V ar, two assignments σ : V ar 7→ U and σ′ : V ar 7→ U ′ are equivalent for V w.r.t. s
and s′ iff there exists a bijection γ : adom(s) ∪ Con ∪ σ(V) 7→ adom(s′) ∪ Con ∪ σ′(V) such that:

(i) γ|adom(s)∪Con is a witness for s ' s′;

(ii) σ′|V = γ ◦ σ|V .

Intuitively, equivalent assignments preserve both the (in)equalities of the variables in V and the
constants in s, s′ up to renaming. Note that, by definition, the above implies that s, s′ are isomorphic.
We say that two assignments are equivalent for an FO-CTLK formula ϕ, omitting the states s and
s′ when clear from the context, if these are equivalent for free(ϕ).

We can now show the following standard result in first-order (non-modal) logic, i.e., isomorphic
states satisfy exactly the same FO-formulas (Abiteboul et al., 1995).

Proposition 3.3 Given two isomorphic states s ∈ S and s′ ∈ S ′, an FO-formula ϕ, and two
assignments σ and σ′ equivalent for ϕ, we have that

(Ds, σ) |= ϕ iff (Ds′ , σ
′) |= ϕ

Moreover, if ψ is an FO-sentence,

Ds |= ψ iff Ds′ |= ψ

Thus, isomorphic states cannot be distinguished by FO-sentences. This enables us to use this
notion, when defining simulations.

3.2 Bisimulations

Plain bisimulations are known to be satisfaction preserving in a modal propositional setting (Black-
burn, de Rijke, & Venema, 2001). In the following we explore the conditions under which this
applies to AC-MAS as well. We introduce a notion of bisimulation, based on isomorphisms, and
later explore its properties in the context of uniform AC-MAS.

Definition 3.4 (Simulation) A relation R on S × S ′ is a simulation if 〈s, s′〉 ∈ R implies:

1. s ' s′;

2. for every t ∈ S, if s→ t then there exists t′ ∈ S ′ s.t. s′ → t′, s⊕ t ' s′⊕ t′, and 〈t, t′〉 ∈ R;

3. for every t ∈ S, for every 0 < i ≤ n, if s ∼i t then there exists t′ ∈ S ′ s.t. t ∼i t′,
s⊕ t ' s′ ⊕ t′, and 〈t, t′〉 ∈ R.

349

BELARDINELLI, LOMUSCIO & PATRIZI

1 2 3 4 5

P

1 2

P ′

Figure 4: Bisimilar AC-MAS not satisfying the same FO-CTLK formulas.

Definition 3.4 has many similarities with the standard notion of simulation in the propositional
setting. In particular, the co-inductive structure of the definition requires similar states to satisfy
some local property and to preserve this along corresponding transitions. However, differently from
the propositional case, we here insist that s ⊕ t ' s′ ⊕ t′; this ensures that similar transitions in
AC-MAS preserve isomorphic disjoint unions.

A state s′ ∈ S ′ is said to simulate s ∈ S, written s � s′, iff there exists a simulation R
s.t. 〈s, s′〉 ∈ R. When no ambiguity arises, we simply say that s and s′ are similar. Note that
similar states are isomorphic, as condition (2) above ensures that s ' s′. The similarity relation can
be shown to be the largest simulation, reflexive and transitive on S ∪ S ′. Further, we say that P ′
simulates P , written P � P ′, if s0 � s′0.

Simulations can naturally be extended to bisimulations, as follows.

Definition 3.5 (Bisimulation) A relation B on S × S ′ is a bisimulation iff both B and B−1 =
{〈s′, s〉 | 〈s, s′〉 ∈ B} are simulations.

Two states s ∈ S and s′ ∈ S ′ are said to be bisimilar, written s ≈ s′, iff there exists a bisimulation
B such that 〈s, s′〉 ∈ B. It can be shown that ≈ is the largest bisimulation, and an equivalence
relation, on S ∪ S ′. We say that P and P ′ are bisimilar, written P ≈ P ′ iff so are s0 and s′0.

It is instructive to note that bisimilar systems do not preserve FO-CTLK formulas. This is
markedly different from the modal propositional case.

Example Consider Figure 4, where Con = ∅ and P and P ′ are given as follows. For a number n
of agents equal to 1, we defineD = D′ = {P/1} and U = N; s0(P) = s′0(P) = {1}; τ = {〈s, s′〉 |
s(P) = {i}, s′(P) = {i + 1}}; τ ′ = {〈s, s′〉 | s(P) = {i}, s′(P) = {(i mod 2) + 1}}. Notice
that S ⊆ D(N) and S ′ ⊆ D(N). Clearly we have that P ≈ P ′. Now, consider the constant-free
FO-CTLK formula ϕ = AG(∀x(P (x)→ AXAG¬P (x))). It can be easily seen that P |= ϕ while
P ′ 6|= ϕ.

The above shows that, differently from the propositional case, bisimilarity is not a sufficient
condition to guarantee the preservation of FO-CTLK formulas. Intuitively, this is a consequence
of the fact that bisimilar AC-MAS do not preserve value associations along runs. For instance, the
value 1 in P ′ is associated infinitely many times with the odd values occurring in P . By quantifying
across states we are able to express this fact and can therefore distinguish the two structures. This is
a difficulty as, intuitively, we would like to use bisimulations to demonstrate the existence of finite
abstractions. However, as we show later, this happens on the class of uniform AC-MAS, defined
below.

350

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

Definition 3.6 (Uniformity) An AC-MAS P is said to be uniform iff for every s, t, s′ ∈ S , t′ ∈
D(U),

1. if t ∈ τ(s, ~α(~u)) and s ⊕ t ' s′ ⊕ t′ for some witness ι, then for every constant-preserving
bijection ι′ that extends ι to ~u, we have that t′ ∈ τ(s′, ~α(ι′(~u)));

2. if s ∼i t and s⊕ t ' s′ ⊕ t′, then s′ ∼i t′.

This definition captures the idea that actions take into account and operate only on the relational
structure of states and action parameters, irrespective of the actual data they contain (apart from a
finite set of constants). Intuitively, uniformity expresses that if t can be reached by executing α(~u)
in s, and we replace the same element v with v′ in s, ~u and t, obtaining s′, ~u′ and t′, then t′ can
be reached by executing α(~u′) in s′. In terms of the underlying Kripke structures, i.e., the frames
induced on S by relations→ and∼i forAi ∈ Ag, this means that the systems are “full up to⊕”, that
is, in all uniform AC-MAS the states t′ identified above are indeed part of the system and reachable
from s′. A similar condition is required on the epistemic relation. A property of uniform systems is
that the latter requirement is implied by the former, as shown by the following result.

Proposition 3.7 If an AC-MAS P satisfies req. 1 in Def. 3.6 and adom(s0) ⊆ Con, then req. 2 is
also satisfied.

Proof. If s⊕ t ' s′ ⊕ t′, then there is a witness ι : adom(s) ∪ adom(t) ∪ Con 7→ adom(s′) ∪
adom(t′)∪Con that is the identity on Con (hence on adom(s0)). Assume s ∼i t, thus li(s) = li(t),
and li(s′) = ι(li(s)) = ι(li(t)) = li(t

′). Notice that this does not guarantee that s′ ∼i t′, as we
need to prove that t′ ∈ S . This can be done by showing that t′ is reachable from s0. Since t is
reachable from s0, there exists a run s0 → s1 → . . . → sk s.t. sk = t. Extend now ι to a total and
injective function ι′ : adom(s0) ∪ · · · ∪ adom(sk) ∪ Con 7→ U . This can always be done because
|U | ≥ |adom(s0) ∪ · · · ∪ adom(sk) ∪ Con|. Now consider the sequence ι′(s0), ι′(s1), . . . , ι′(sk).
Since adom(s0) ⊆ Con then ι(s0) = s0 and, because ι′ extends ι, we have that ι′(s0) = ι(s0) = s0.
Further, ι′(sk) = ι(t) = t′. By repeated applications of req. 1 we can show that ι′(sm+1) ∈
τ(ι′(sm), ~α(ι′(~u))) whenever sm+1 ∈ τ(sm, ~α(~u)), for m < k. Hence, the sequence is actually a
run from s0 to t′. Thus, t′ ∈ S, and s′ ∼i t′.

Thus, as long as adom(s0) ⊆ Con, to check whether an AC-MAS is uniform, it is sufficient to
take into account only the transition function.

A further distinctive feature of uniform systems is that all isomorphic states are bisimilar.

Proposition 3.8 If an AC-MAS P is uniform, then for every s, s′ ∈ S, s ' s′ implies s ≈ s′.

Proof. We prove that B = {〈s, s′〉 ∈ S × S | s ' s′} is a bisimulation. Observe that since '
is an equivalence relation, so is B. Thus B is symmetric and B = B−1. Therefore, proving that B
is a simulation proves also that B−1 is a simulation; hence, that B is a bisimulation. To this end, let
〈s, s′〉 ∈ B, and assume s → t for some t ∈ S . Then, t ∈ τ(s, α(~u)) for some α(~u) ∈ Act(U).
Consider a witness ι for s ' s′. By cardinality considerations ι can be extended to a total and
injective function ι′ : adom(s) ∪ adom(t) ∪ {~u} ∪ Con 7→ U . Consider ι′(t) = t′; it follows that ι′

is a witness for s⊕ t ' s′ ⊕ t′. Since P is uniform, t′ ∈ τ(s′, α(ι′(~u))), that is, s′ → t′. Moreover,
ι′ is a witness for t ' t′, thus 〈t, t′〉 ∈ B. Next assume that 〈s, s′〉 ∈ B and s ∼i t, for some t ∈ S .

351

BELARDINELLI, LOMUSCIO & PATRIZI

By reasoning as above we can find a witness ι for s ' s′, and an extension ι′ of ι s.t. t′ = ι′(t) and
ι′ is a witness for s⊕ t ' s′ ⊕ t′. Since P is uniform, s′ ∼i t′ and 〈t, t′〉 ∈ B.

This result intuitively means that submodels generated by isomorphic states are bisimilar.
Next we prove some partial results, which will be useful in proving our main preservation theo-

rem. The first two guarantee that under appropriate cardinality constraints the bisimulation preserves
the equivalence of assignments w.r.t. a given FO-CTLK formula.

Lemma 3.9 Consider two bisimilar and uniform AC-MAS P and P ′, two bisimilar states s ∈ S
and s′ ∈ S ′, and an FO-CTLK formula ϕ. For every assignments σ and σ′ equivalent for ϕ w.r.t. s
and s′, we have that:

1. for every t ∈ S s.t. s → t, if |U ′| ≥ |adom(s) ∪ adom(t) ∪ Con ∪ σ(free(ϕ))|, then there
exists t′ ∈ S ′ s.t. s′ → t′, t ≈ t′, and σ and σ′ are equivalent for ϕ w.r.t. t and t′.

2. for every t ∈ S s.t. s ∼i t, if |U ′| ≥ |adom(s) ∪ adom(t) ∪ Con ∪ σ(free(ϕ))|, then there
exists t′ ∈ S ′ s.t. s′ ∼i t′, t ≈ t′, and σ and σ′ are equivalent for ϕ w.r.t. t and t′.

Proof. To prove (1), let γ be a bijection witnessing that σ and σ′ are equivalent for ϕ w.r.t. s and s′.
Suppose that s → t. Since s ≈ s′, by definition of bisimulation there exists t′′ ∈ S ′ s.t. s′ → t′′,
s⊕ t ' s′ ⊕ t′′, and t ≈ t′′. Now define Domj

.
= adom(s) ∪ adom(t) ∪ Con, and partition it into:

• Domγ
.
= adom(s) ∪ Con ∪ (adom(t) ∩ σ(free(ϕ));

• Domι′
.
= adom(t) \Domγ .

Let ι′ : Domι′ 7→ U ′ \ Im(γ) be an invertible total function. Observe that |Im(γ)| =
|adom(s′) ∪ Con ∪ σ′(free(ϕ))| = |adom(s) ∪ Con ∪ σ(free(ϕ))|, thus from the fact that |U ′| ≥
|adom(s) ∪ adom(t) ∪ Con ∪ σ(free(ϕ))| we have |U ′ \ Im(γ)| ≥ |Dom(ι′)|, which guarantees
the existence of ι′.

Next, define j : Domj 7→ U ′ as follows:

j(u) =

{
γ(u), if u ∈ Domγ

ι′(u), if u ∈ Domι′

Obviously, j is invertible. Thus, j is a witness for s ⊕ t ' s′ ⊕ t′, where t′ = j(t). Since
s ⊕ t ' s′ ⊕ t′′ and ' is an equivalence relation, we obtain that s′ ⊕ t′ ' s′ ⊕ t′′. Thus, s′ → t′,
as P ′ is uniform. Moreover, σ and σ′ are equivalent for ϕ w.r.t. t and t′, by construction of t′. To
check that t ≈ t′, observe that, since t′ ' t′′ and P ′ is uniform, by Prop. 3.8 it follows that t′ ≈ t′′.
Thus, since t ≈ t′′ and ≈ is transitive, we obtain that t ≈ t′. The proof for (2) has an analogous
structure and therefore is omitted.

It can be proven that this result is tight, i.e., that if the cardinality requirement is violated, there
exist cases where assignment equivalence is not preserved along temporal or epistemic transitions.

Lemma 3.9 easily generalises to t.e. runs.

Lemma 3.10 Consider two bisimilar and uniform AC-MAS P and P ′, two bisimilar states s ∈ S
and s′ ∈ S ′, an FO-CTLK formula ϕ, and two assignments σ and σ′ equivalent for ϕ w.r.t. s and
s′. For every t.e. run r of P , if r(0) = s and for all i ≥ 0, |U ′| ≥ |adom(r(i)) ∪ adom(r(i+ 1)) ∪
Con ∪ σ(free(ϕ))|, then there exists a t.e. run r′ of P ′ s.t. for all i ≥ 0:

352

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

(i) r′(0) = s′;

(ii) r(i) ≈ r′(i);

(iii) σ and σ′ are equivalent for ϕ w.r.t. r(i) and r′(i).

(iv) for every i ≥ 0, if r(i) → r(i+ 1) then r′(i) → r′(i+ 1), and if r(i) ∼j r(i+ 1), for some
j, then r′(i) ∼j r′(i+ 1).

Proof. Let r be a t.e. run satisfying the lemma’s hypothesis. We inductively build r′ and show
that the conditions above are satisfied. For i = 0, let r′(0) = s′. By hypothesis, r is s.t. |U ′| ≥
|adom(r(0)) ∪ adom(r(1)) ∪ Con ∪ σ(free(ϕ))|. Thus, since r(0) ; r(1), by Lemma 3.9 there
exists t′ ∈ S ′ s.t. r′(0) ; t′, r(1) ≈ t′, and σ and σ′ are equivalent for ϕ w.r.t. r(1) and t′. Let
r′(1) = t′. Lemma 3.9 guarantees that the transitions r′(0) ; t′ and r(0) ; r(1) can be chosen so
that they are either both temporal or both epistemic with the same index.

The case for i > 0 is similar. Assume that r(i) ≈ r′(i) and σ and σ′ are equivalent for ϕ
w.r.t. r(i) and r′(i). Since r(i) ; r(i + 1) and |U ′| ≥ |adom(r(i)) ∪ adom(r(i + 1)) ∪ Con ∪
σ(free(ϕ))|, by Lemma 3.9 there exists t′ ∈ S ′ s.t. r′(i) ; t′, σ and σ′ are equivalent for ϕ
w.r.t. r(i+ 1) and t′, and r(i+ 1) ≈ t′. Let r′(i+ 1) = t′. It is clear that r′ is a t.e. run in P ′, and
that, by Lemma 3.9, the transitions of r′ can be chosen so as to fulfil requirement (iv).

We can now prove that FO-CTLK formulas cannot distinguish bisimilar and uniform AC-MAS.
This is in marked contrast with the earlier example in this section which related to bisimilar but
non-uniform AC-MAS.

Theorem 3.11 Consider two bisimilar and uniform AC-MAS P and P ′, two bisimilar states s ∈ S
and s′ ∈ S ′, an FO-CTLK formula ϕ, and two assignments σ and σ′ equivalent for ϕ w.r.t. s and s′.

If

1. for every t.e. run r s.t. r(0) = s, for all k ≥ 0 we have |U ′| ≥ |adom(r(k)) ∪ adom(r(k +
1)) ∪ Con ∪ σ(free(ϕ))|+ |var(ϕ) \ free(ϕ)|; and

2. for every t.e. run r′ s.t. r′(0) = s′, for all k ≥ 0 we have |U | ≥ |adom(r′(k)) ∪ adom(r′(k +
1)) ∪ Con ∪ σ′(free(ϕ))|+ |var(ϕ) \ free(ϕ)|;

then

(P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

Proof. The proof is by induction on the structure of ϕ. We prove that if (P, s, σ) |= ϕ then
(P ′, s′, σ′) |= ϕ. The other direction can be proved analogously. The base case for atomic formulas
follows from Prop. 3.3. The inductive cases for propositional connectives are straightforward.

For ϕ ≡ ∀xψ, assume that x ∈ free(ψ) (otherwise consider ψ, and the corresponding case),
and no variable is quantified more than once (otherwise rename variables). Let γ be a bijec-
tion witnessing that σ and σ′ are equivalent for ϕ w.r.t. s and s′. For u ∈ adom(s), consider
the assignment σ

(
x
u

)
. By definition, γ(u) ∈ adom(s′), and σ′

(
x

γ(u)

)
is well-defined. Note that

free(ψ) = free(ϕ) ∪ {x}; so σ
(
x
u

)
and σ′

(
x

γ(u)

)
are equivalent for ψ w.r.t. s and s′. Moreover,

|σ
(
x
u

)
(free(ψ))| ≤ |σ(free(ϕ))| + 1, as u may not occur in σ(free(ϕ)). The same considera-

tions apply to σ′. Further, |var(ψ) \ free(ψ)| = |var(ϕ) \ free(ϕ)| − 1, as var(ψ) = var(ϕ),

353

BELARDINELLI, LOMUSCIO & PATRIZI

free(ψ) = free(ϕ) ∪ {x}, and x /∈ free(ϕ). Thus, both hypotheses (1) and (2) remain satisfied
if we replace ϕ with ψ, σ with σ

(
x
u

)
, and σ′ with σ′

(
x

γ(u)

)
. Therefore, by the induction hypothesis,

if (P, s, σ
(
x
u

)
) |= ψ then (P ′, s′, σ′

(
x

γ(u)

)
) |= ψ. Since u ∈ adom(s) is generic and γ is a bijection,

the result follows.
For ϕ ≡ AXψ, assume by contradiction that (P, s, σ) |= ϕ but (P ′, s′, σ′) 6|= ϕ. Then, there

exists a run r′ s.t. r′(0) = s′ and (P ′, r′(1), σ′) 6|= ψ. Since |var(ϕ) \ free(ϕ)| ≥ 0, by Lemma 3.10,
there exists a run r s.t. r(0) = s, and for all i ≥ 0, r(i) ≈ r′(i) and σ and σ′ are equivalent for ψ
w.r.t. r(i) and r′(i). Since r is a run s.t. r(0) = s, it satisfies hypothesis (1). Moreover, the same
hypothesis is necessarily satisfied by all the t.e. runs r′′ s.t. for some i ≥ 0, r′′(0) = r(i) (otherwise,
the t.e. run r(0) ; · · ·; r(i) ; r′′(1) ; r′′(2) ; · · · would not satisfy the hypothesis for r); the
same considerations apply w.r.t hypothesis (2) and for all the t.e. runs r′′′ s.t. r′′′(0) = r′(i), for some
i ≥ 0. In particular, these hold for i = 1. Thus, we can inductively apply the lemma, by replacing s
with r(1), s′ with r′(1), and ϕ with ψ (observe that var(ϕ) = var(ψ) and free(ϕ) = free(ψ)). But
then we obtain (P, r(1), σ) 6|= ψ, thus (P, r(0), σ) 6|= AXψ. This is a contradiction.

For ϕ ≡ EψUφ, assume that the only variables common to ψ and φ occur free in both formulas
(otherwise rename the quantified variables). Let r be a run s.t. r(0) = s, and there exists k ≥ 0
s.t. (P, r(k), σ) |= φ, and (P, r(j), σ) |= ψ for 0 ≤ j < k. By Lemma 3.10 there exists a run
r′ s.t. r′(0) = s′ and for all i ≥ 0, r′(i) ≈ r(i) and σ and σ′ are equivalent for ϕ w.r.t. r′(i)
and r(i). From each bijection γi witnessing that σ and σ′ are equivalent for ϕ w.r.t. r′(i) and
r(i), define the bijections γi,ψ = γi|adom(r(i))∪Con∪σ(free(ψ)) and γi,φ = γi|adom(r(i))∪Con∪σ(free(φ)).
Since free(ψ) ⊆ free(ϕ), free(φ) ⊆ free(ϕ), it can be seen that γi,ψ and γi,φ witness that σ and
σ′ are equivalent for respectively ψ and φ w.r.t. r′(i) and r(i). By the same argument used for
the AX case above, hypothesis (1) holds for all the t.e. runs r′′ s.t. r′′(0) = r(i), for some
i ≥ 0, and hypothesis (2) holds for all the t.e. runs r′′′ s.t. r′′′(0) = r′(i). Now observe that
|σ(free(φ))|, |σ(free(ψ))| ≤ |σ(free(ϕ))|. Moreover, by the assumption on the common variables
of ψ and φ, (var(ϕ) \ free(ϕ)) = (var(ψ) \ free(ψ))] (var(φ) \ free(φ)), thus |var(ϕ) \ free(ϕ)| =
|(var(ψ) \ free(ψ)| + |(var(φ) \ free(φ)|, hence |(var(ψ) \ free(ψ)|, |(var(φ) \ free(φ)| ≤
|var(ϕ) \ free(ϕ)|. Therefore hypotheses (1) and (2) hold also with ϕ uniformly replaced by ei-
ther ψ or φ. Then, the induction hypothesis applies for each i, by replacing s with r(i), s′ with
r′(i), and ϕ with either ψ or φ. Thus, for each i, (P, r(i), σ) |= ψ iff (P ′, r′(i), σ′) |= ψ, and
(P, r(i), σ) |= φ iff (P ′, r′(i), σ′) |= φ. Therefore, r′ is a run s.t. r′(0) = s′, (P ′, r′(k), σ′) |= φ,
and for every j, 0 ≤ j < k implies (P ′, r′(j), σ′) |= ψ, i.e., (P ′, s′, σ′) |= EψUφ.

For ϕ ≡ AψUφ, assume by contradiction that (P, s, σ) |= ϕ but (P ′, s′, σ′) 6|= ϕ. Then, there
exists a run r′ s.t. r′(0) = s′ and for every k ≥ 0, either (P ′, r′(k), σ′) 6|= φ or there exists j
s.t. 0 ≤ j < k and (P ′, r′(j), σ′) 6|= ψ. By Lemma 3.10 there exists a run r s.t. r(0) = s, and
for all i ≥ 0, r(i) ≈ r′(i) and σ and σ′ are equivalent for ϕ w.r.t. r(i) and r′(i). Similarly to
the case of EψUφ, it can be shown that σ and σ′ are equivalent for ψ and φ w.r.t. r(i) and r′(i),
for all i ≥ 0. Further, assuming w.l.o.g. that all variables common to ψ and φ occur free in both
formulas, it can be shown, as in the case of EψUφ, that the induction hypothesis holds on every
pair of runs obtained as suffixes of r and r′, starting from their i-th state, for every i ≥ 0. Thus,
(P, r(i), σ) |= ψ iff (P ′, r′(i), σ′) |= ψ, and (P, r(i), σ) |= φ iff (P ′, r′(i), σ′) |= φ. But then r
is s.t. r(0) = s and for every k ≥ 0, either (P, r(k), σ) 6|= φ or there exists j s.t. 0 ≤ j < k and
(P, r(j), σ) 6|= ψ, that is, (P, s, σ) 6|= AψUφ. This is a contradiction.

For ϕ ≡ Kiψ, assume by contradiction that (P, s, σ) |= ϕ but (P ′, s′, σ′) 6|= ϕ. Then, there
exists s′′ s.t. s′ ∼i s′′ and (P ′, s′′, σ′) 6|= ψ. By Lemma 3.10 there exists s′′′ s.t. s′′′ ≈ s′′, s ∼i s′′′,

354

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

and σ and σ′ are equivalent for ψ w.r.t. s′′ and s′′′. Thus, by an argument analogous to that used
for the case of AX , we can apply the induction hypothesis, obtaining (P, s′′′, σ) 6|= ψ. But then
(P, s, σ) 6|= Kiψ, which is a contradiction.

Finally, for ϕ ≡ Cψ, assume by contradiction that (P, s, σ) |= ϕ but (P ′, s′, σ′) 6|= ϕ. Then,
there exists an s′′ s.t. s′ ∼ s′′ and (P ′, s′′, σ′) 6|= ψ. Again by Lemma 3.10 there exists s′′′ s.t. s′′′ ≈
s′′, s ∼ s′′′, and σ and σ′ are equivalent for ψ w.r.t. s′′ and s′′′. Thus, by an argument analogous to
that used for the case of Ki, we can apply the induction hypothesis, obtaining (P, s′′′, σ) 6|= ψ. But
then (P, s, σ) 6|= Cψ, which is a contradiction.

We can now easily extend the above result to the model checking problem for AC-MAS.

Theorem 3.12 Consider two bisimilar and uniform AC-MAS P and P ′, and an FO-CTLK formula
ϕ.

If

1. for all t.e. runs r s.t. r(0) = s0, and for all k ≥ 0, |U ′| ≥ |adom(r(k)) ∪ adom(r(k + 1)) ∪
Con|+ |var(ϕ)|, and

2. for all t.e. runs r′ s.t. r′(0) = s′0, and for all k ≥ 0, |U | ≥ |adom(r′(k))∪ adom(r′(k+ 1))∪
Con|+ |var(ϕ)|

then

P |= ϕ iff P ′ |= ϕ.

Proof. Equivalently, we prove that if (P, s0, σ) 6|= ϕ for some σ, then there exists a σ′

s.t. (P ′, s′0, σ′) 6|= ϕ, and viceversa. To this end, observe that hypotheses (1) and (2) imply, respec-
tively, hypotheses (1) and (2) of Theorem 3.11. Further, notice that, by cardinality considerations,
given the assignment σ : V ar 7→ U , there exists an assignment σ′ : V ar 7→ U ′ s.t. σ and σ′ are
equivalent for ϕ w.r.t. s0 and s′0. Thus, by applying Theorem 3.11 we have that if there exists an
assignment σ s.t. (P, s0, σ) 6|= ϕ, then there exists an assignment σ′ s.t. (P ′, s′0, σ′) 6|= ϕ. The
converse can be proved analogously, as the hypotheses are symmetric.

This result shows that uniform AC-MAS can in principle be verified by model checking a bisim-
ilar one. Note that this applies to an infinite AC-MAS P , as well. In this case the results above
enable us to show that the verification question can be posed on the corresponding, possibly finite
P ′ as long as U ′, as defined above, is sufficiently large for P ′ to bisimulate P . A noteworthy class
of infinite systems for which these results prove particularly powerful is that of bounded AC-MAS,
which, as discussed in the next subsection, always admit a finite abstraction.

3.3 Finite Abstractions

We now define a notion of finite abstraction for AC-MAS, and prove that, under uniformity, ab-
stractions are bisimilar to the corresponding concrete model. We are particularly interested in finite
abstractions; so we operate on a special class of infinite models that we call bounded.

Definition 3.13 (Bounded AC-MAS) An AC-MAS P is b-bounded, for b ∈ N, if for all s ∈ S,
|adom(s)| ≤ b.

355

BELARDINELLI, LOMUSCIO & PATRIZI

An AC-MAS is b-bounded if none of its reachable states contain more than b distinct elements.
Observe that bounded AC-MAS may be defined on infinite domains. Furthermore, note that a b-
bounded AC-MAS may contain infinitely many states, all bounded by b. So b-bounded systems
are infinite-state in general. Notice also that the value b constrains only the number of distinct
individuals in a state, not the size of the state itself, intended as the amount of memory required
to accommodate the individuals. Indeed, the infinitely many elements in a domain U need an
unbounded number of bits to be represented (e.g., as finite strings), so, even though each state is
guaranteed to contain at most b distinct elements, nothing can be said about how large the actual
space required by such elements is. Conversely, memory-bounded AC-MAS are finite-state (hence
b-bounded, for some b).

Since b-bounded AC-MAS are in general memory-unbounded, they cannot be verified by triv-
ially generating and checking all their possibly infinite executions. However, we will show later
that any b-bounded and uniform infinite-state AC-MAS admits a finite-state abstraction which can
be used to verify it.

We introduce abstractions in a modular manner by first introducing a set of abstract agents from
a concrete AC-MAS.

Definition 3.14 (Abstract agent) Let A = 〈D, Act, Pr〉 be an agent defined on the interpretation
domain U . Given an interpretation domain U ′, the abstract agent of A on U ′ is the agent A′ =
〈D′, Act′, P r′〉 such that:

1. D′ = D;

2. Act′ = Act;

3. α(~u′) ∈ Pr′(l′), with l′ ∈ D′(U ′), iff there exist l ∈ D(U) and α(~u) ∈ Pr(l) s.t. l′ ' l, for
some witness ι, and ~u′ = ι′(~u), for some bijection ι′ extending ι to ~u.

Given a set Ag of agents defined on U , Ag′ denotes the set of corresponding abstractions on U ′ of
the agents in Ag.

We remark that the abstract agent A′ is an agent in line with Definition 2.6. Notice that the pro-
tocol ofA′ is defined on the basis of its corresponding concrete agentA and requires the existence of
a bijection between the elements in the corresponding local states and the action parameters. Thus,
in order for a ground action of A to have a counterpart in A′, the last requirement of Definition 3.14
constrains U ′ to contain a sufficient number of distinct values. As it will become apparent later, the
size of U ′ determines how closely an abstract system can simulate its concrete counterpart. Notice
also that, in general, an agent may not be an abstraction of itself on U , as for instance data may
impact the agent’s protocol.

Next, we combine the notion of uniformity with that of boundedness. Our aim is to identify
conditions under which the verification of an infinite AC-MAS can be reduced to the verification of
a finite one. The main result here is given by Corollary 3.19 which guarantees that, in the context
of bounded AC-MAS, uniformity is a sufficient condition for bisimilar finite abstractions to be
satisfaction-preserving.

In the following we assume that any AC-MAS P is such that adom(s0) ⊆ Con. If this is not the
case, Con can be extended so as to include all the (finitely many) elements in adom(s0). We start
by formalising the notion of abstraction.

356

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

Definition 3.15 (Abstract AC-MAS) Let P = 〈Ag, s0, τ〉 be an AC-MAS and Ag′ the set of ab-
stract agents obtained as in Definition 3.14 for some interpretation domain U ′. The AC-MAS
P ′ = 〈Ag′, s′0, τ ′〉 is said to be an abstraction of P iff:

• s′0 = s0;

• t′ ∈ τ ′(s′, ~α(~u′)) iff there exist s, t ∈ S and ~α(~u) ∈ Act(U) such that s ⊕ t ' s′ ⊕ t′, for
some witness ι, t ∈ τ(s, ~α(~u)), and ~u′ = ι′(~u) for some bijection ι′ extending ι to ~u.

It can be checked that P ′, as defined above, is indeed an AC-MAS as it satisfies the relevant
conditions on protocols and transitions in Definition 2.7. Indeed, if t′ ∈ τ ′(s′, ~α(~u′)), then there
exist s, t ∈ S, and ~α(~u) such that t ∈ τ(s, ~α(~u)), s⊕ t ' s′ ⊕ t′ for some witness ι, and ~u = ι′(~u′)
for some bijection ι′ extending ι. This means that αi(~ui) ∈ Pri(li) for i ≤ n. By definition of Pr′i
we have that αi(~u′i) ∈ Pr′i(l′i) for i ≤ n.

The definition requires abstractions to have initial states isomorphic to their concrete counter-
parts; specifically they have to be equal as adom(s0) ⊆ Con. Moreover, the second constraint entails
that a transition in the concrete model exists if and only if the same transition, up to renaming of the
involved values, exists in the abstraction. So, for example, a copy action in the concrete model has a
corresponding copy action in the abstract model. Crucially, this condition requires that the domain
U ′ contains enough elements to bisimulate the concrete states and action effects. This will be made
precise in Lemma 3.17.

Obviously, if U ′ has finitely many elements, then S ′ has finitely many states. Observe also that
by varying U ′ we obtain different abstractions. Finally, notice that an AC-MAS is not necessarily
an abstraction of itself. This issue is addressed in Lemma 3.16.

Next, we investigate the relationship between an AC-MAS and its abstractions. A first useful
result states that every finite abstraction is uniform, independently of the properties of the AC-MAS
they abstract.

Lemma 3.16 Every abstraction P ′ of an AC-MAS P is uniform. Moreover, if P is uniform and
U ′ = U , then P ′ = P .

Proof. Consider s, t, s′ ∈ S ′, t′ ∈ D(U ′), and ~α(~u) ∈ Act′(U ′) s.t. t ∈ τ ′(s, ~α(~u)) and
s⊕ t ' s′ ⊕ t′, for some witness ζ. We need to show that P ′ admits a transition from s′ to t′. Since
P ′ is an abstraction of P , given the definition of τ ′, there exist s′′, t′′ ∈ S and ~α(~u′′) ∈ Act(U)
s.t. t′′ ∈ τ(s′′, ~α(~u′′)), s′′ ⊕ t′′ ' s ⊕ t, for some witness ι, and ~u = ι′(~u′′), for some constant-
preserving bijection ι′ extending ι to ~u′′. Consider ~u′ ∈ U ′|~u| such that ~u′ = ζ ′(~u), for some
constant-preserving bijection ζ ′ extending ζ to ~u. Obviously, the composition ζ ′ ◦ ι′ is a constant-
preserving bijection such that ~u′ = ζ ′(ι′(~u′′)). Moreover, it can be restricted to a witness for
s′′⊕ t′′ ' s′⊕ t′. But then, since P ′ is an abstraction of P , this implies that t′ ∈ τ ′(s′, ~α(~u′)). Thus,
P ′ is uniform.

Moreover, to prove that P is an abstraction of itself every time P is uniform and U ′ = U ,
we notice that if the transition t ∈ τ(s, ~α(~u)) is in P , then it is also in P ′ by the definition of
abstraction. Also, if the transition t′ ∈ τ ′(s′, ~α(~u′)) appears in P ′, then there exist s, t ∈ S and
~α(~u) ∈ Act(~U) s.t. s ⊕ t ' s′ ⊕ t′ for some witness ι, t ∈ τ(s, ~α(~u)), and ~u′ = ι′(~u) for some
constant-preserving bijection ι′ extending ι to ~u. Finally, since P is uniform it is the case that the
transition t′ ∈ τ ′(s′, α(~u′)) is in P as well.

357

BELARDINELLI, LOMUSCIO & PATRIZI

This lemma provides sufficient conditions under which an AC-MAS is an abstraction of itself,
namely being uniform and having the same interpretation domain.

The second result below guarantees that every uniform, b-bounded AC-MAS is bisimilar to
any of its abstractions, provided these are built over a sufficiently large interpretation domain. In
the following, we take NAg = NAg′ =

∑
Ai∈Ag maxα(~x)∈Acti{|~x|}, i.e., NAg is the sum of the

maximum number of parameters contained in the action types of each agent in Ag.

Lemma 3.17 Consider a uniform, b-bounded AC-MAS P over an infinite interpretation domain U ,
and an interpretation domain U ′ such that Con ⊆ U ′. If |U ′| ≥ 2b + |Con| + NAg, then any
abstraction P ′ of P over U ′ is bisimilar to P .

Proof. Let B = {〈s, s′〉 ∈ S × S ′ | s ' s′}. We prove that B is a bisimulation such that
〈s0, s

′
0〉 ∈ B. We start by proving that B is a simulation relation. To this end, observe that since

s0 = s′0, then s0 ' s′0, and 〈s0, s
′
0〉 ∈ B. Next, consider 〈s, s′〉 ∈ B, thus s ' s′. Assume that

s→ t, for some t ∈ S . Then, there must exist ~α(~u) ∈ Act(U) such that t ∈ τ(s, ~α(~u)). Moreover,
since |U ′| ≥ 2b+ |Con|+NAg,

∑
Ai∈Ag |~ui| ≤ NAg, and |adom(s) ∪ adom(t)| ≤ 2b, the witness

ι for s ' s′ can be extended to
⋃
Ai∈Ag ~ui as a bijection ι′. Now let t′ = ι′(t). By the way ι′ has

been defined, it can be seen that s ⊕ t ' s′ ⊕ t′. Further, since P ′ is an abstraction of P , we have
that t′ ∈ τ ′(s′, ~α(~u′)) for ~u′ = ι′(~u), that is, s′ → t′ in P ′. Therefore, there exists t′ ∈ S ′ such
that s′ → t′, s ⊕ t ' s′ ⊕ t′, and 〈t, t′〉 ∈ B. As regards the epistemic relation, assume s ∼i t
for some i ∈ {1, . . . , n} and t ∈ S. By definition of ∼i, li(s) = li(t). Since |U ′| ≥ 2b + |Con|,
any witness ι for s ' s′ can be extended to a witness ι′ for s ⊕ t ' s′ ⊕ t′, where t′ = ι′(t).
Obviously, li(s′) = li(t

′). Thus, to prove that s′ ∼i t′, we are left to show that t′ ∈ S ′, i.e., that t′ is
reachable in P ′ from s′0 = s0. To this end, observe that since t ∈ S , there exists a purely temporal
run r such that r(0) = s0 and r(k) = t, for some k ≥ 0. Thus, there exist ~α1(~u1) . . . , ~αk(~uk) such
that r(j + 1) ∈ τ(r(j), ~αj+1(~uj+1)), for 0 ≤ j < k. Since |U ′| ≥ 2b + |Con|, we can define, for
0 ≤ j < k, a function ιj that is a witness for r(j)⊕r(j+1) ' ιj(r(j))⊕ιj(r(j+1)). In particular,
this can be done starting from j = k − 1, defining ιk−1 so that ιk−1(r(k)) = ιk−1(t) = t′, and
proceeding backward to j = 0, so that, for 0 ≤ j < k, we have ιj(r(j + 1)) = ιj+1(r(j + 1)).
Observe that since adom(s0) ⊆ Con, necessarily i0(r(0)) = i0(s0) = s0 = s′0. Moreover, as
|U ′| ≥ 2b + |Con| + NAg, each ιj can be extended to a bijection ι′j , to the elements occurring in
~uj+1. Thus, given that P ′ is an abstraction of P , for 0 ≤ j < k, we have that ι′j(r(j + 1)) ∈
τ(ι′j(r(j)), ~α(ι′j(~u

j+1))). Hence, the sequence ι′0(r(0)) → · · · → ι′k−1(r(k)) is a run of P ′, and,
since t′ = ι′k−1(r(k)), t′ is reachable in P ′. Therefore s′ ∼i t′. Further, since t ' t′, by definition
of B, it is the case that 〈t, t′〉 ∈ B, hence B is a simulation.

To prove that B−1 is a simulation, given 〈s, s′〉 ∈ B (thus s ' s′), assume that s′ → t′, for
some t′ ∈ S ′. Obviously, there exists ~α(~u′) ∈ Act(U ′) such that t′ ∈ τ ′(s′, ~α(~u′)). Because P ′ is
an abstraction of P , there exist s′′, t′′ ∈ S and ~α(~u′′) ∈ Act(U) such that s′′⊕ t′′ ' s′⊕ t′, for some
witness ι, and t′′ ∈ τ(s′′, α(~u′′)), with ~u′′ = ι′(~u′), for some bijection ι′ extending ι to ~u′. Observe
that s′ ' s′′, thus, by transitivity of ' we have s ' s′′. The fact that there exists t ∈ S such that
s → t easily follows from the uniformity of P . Thus, since t′ ' t, we have 〈t, t′〉 ∈ B. For the
epistemic relation, assume s′ ∼i t′ for some t′ ∈ S ′ and 0 < i ≤ n. Let ι be a witness for s′ ' s,
and let ι′ be an extension of ι that is a witness for s′ ⊕ t′ ' s⊕ t. For t = ι′(t′), it can be seen that
li(s) = li(t). Observe that t′ ∈ S ′. Using an argument analogous to the one above, but exploiting
the fact that P is uniform, that P ′ is certainly b-bounded, and that |U | > 2b+ |Con|+NAg as U is
infinite, we can show that t ∈ S by constructing a run r of P such that r(k) = t, for some k ≥ 0.

358

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

Then s ∼i t. Further, since t′ ' t, we have 〈t, t′〉 ∈ B. Therefore, B−1 is a simulation. So, P and
P ′ are bisimilar.

This result allows us to prove our main abstraction theorem.

Theorem 3.18 Consider a b-bounded and uniform AC-MAS P over an infinite interpretation do-
main U , an FO-CTLK formula ϕ, and an interpretation domain U ′ such that Con ⊆ U ′. If
|U ′| ≥ 2b + |Con| + max{|vars(ϕ)|, NAg}, then for any abstraction P ′ of P over U ′, we have
that:

P |= ϕ iff P ′ |= ϕ.

Proof. By Lemma 3.16, P ′ is uniform. Thus, by the hypothesis on the cardinalities of U and U ′,
Lemma 3.17 applies, so P and P ′ are bisimilar. Obviously, also P ′ is b-bounded. Thus, since P
and P ′ are b-bounded, and by the cardinality hypothesis on U and U ′, Theorem 3.12 applies. In
particular, notice that for every temporal-epistemic run r s.t. r(0) = s0, and for all k ≥ 0, we have
that |U ′| ≥ |adom(r(k))∪adom(r(k+1))∪Con|+|var(ϕ)|, as |adom(r(k))| ≤ b by b-boundedness.
Therefore, P |= ϕ iff P ′ |= ϕ.

It follows that by using a sufficiently large number of abstract values in U ′, we can reduce the
verification of an infinite, bounded, and uniform AC-MAS to the verification of a finite one.

Corollary 3.19 Given a b-bounded and uniform AC-MAS P over an infinite interpretation domain
U , and an FO-CTLK formula ϕ, there exists an AC-MAS P ′ over a finite interpretation domain U ′

such that P |= ϕ iff P ′ |= ϕ.

It should also be noted that U ′ can simply be taken to be any finite subset of U (including Con)
satisfying the cardinality requirement above. By doing so, the finite abstraction P ′ can be defined
simply as the restriction of P to U ′. Thus, every infinite, b-bounded and uniform AC-MAS is
bisimilar to a finite subsystem, which then satisfies the same formulas.

Note that we are not concerned with the actual construction of the finite abstraction. This is be-
cause we intend to construct it directly from an artifact-centric program, as we will do in Section 4.
Before that, we explore the complexity of the model checking problem.

3.4 The Complexity of Model Checking Finite AC-MAS against FO-CTLK Specifications

We now analyse the complexity of the model checking problem for finite AC-MAS with respect to
FO-CTLK specifications. The input of the problem consists of an AC-MAS P on a finite domain U
and an FO-CTLK formula ϕ; the output is an assignment σ such that (P, s0, σ) |= ϕ, whenever the
property is satisfied. Hereafter we follow standard literature for basic notions and definitions (Grohe,
2001).

To encode an AC-MAS P we use a tuple EP = 〈U,D, s0,Φτ 〉, where U is the (finite) interpre-
tation domain, D is the global database schema, s0 is the initial state, and Φτ = {φ~α1

, . . . , φ~αm} is
a set of FO-formulas, each capturing the transitions associated with a ground joint action ~αi. Since
U is finite, so is the set of ground actions, thus Φτ . Each ϕ~αi

is a FO-formula over the alphabet
DAg ∪ D′Ag, where DAg = {P ji /qi | Pi/qi ∈ D, j ≤ n} is the set containing one distinct relation
symbol P ji , for each agent j ≤ n and the relation symbol Pi ∈ D. We take Φτ such that s′ ∈ τ(s, ~α)

359

BELARDINELLI, LOMUSCIO & PATRIZI

iff DAg ⊕D′Ag |= φ~α, for s, s′ ∈ D(U), such that for every Pi ∈ D and j ≤ n, lj(Pi) = DAg(P
j
i)

and l′j(Pi) = D′Ag(P
j
i).

As an example, for D = {P} (thus DAg = {P j | j ≤ n}) and an action type α with no
parameters, consider the formula φ~α =

∧n
j=0 ∀xP j

′
(x) ↔ ¬P j(x), which intuitively captures all

transitions in which in the successor state predicate P contains all and only those elements of U that
in the current state are not in P .

It can be proved that every transition relation τ can be represented as discussed above, and that,
given EP , the size ||P|| .= |S|+ |τ | of the encoded AC-MAS P is such that ||P|| ≤ |Act| · |U |pmax ·
23`qmax , where: pmax is the largest number of parameters in some action type of Act, ` is the
number of relation symbols in D, and qmax is the largest arity of such symbols. This corresponds to
a doubly exponential bound for ||P|| w.r.t. ||EP ||

.
= |U |+ ||D||+ |Φτ |, where ||D|| =

∑
Pk∈D qk,

for qk the arity of Pk. Specifically, we have ||P|| ≤ 23·2||EP||4
.

We carry out the complexity analysis on the basis of the input above; clearly the same results
apply for equally compact inputs such as the AC programs to be presented in Section 4.

We consider the combined complexity of the input, that is, ||EP || + ||ϕ||. We say that
the combined complexity of model checking finite AC-MAS against FO-CTLK specifications is
EXPSPACE-complete if the problem is in EXPSPACE, i.e., there is a polynomial p(x) and an
algorithm solving the problem in space bounded by 2p(||EP ||+||ϕ||), and the problem is EXPSPACE-
hard, i.e., every EXPSPACE problem can be reduced to model checking finite AC-MAS against
FO-CTLK specifications.

Theorem 3.20 The model checking problem for finite AC-MAS succinctly presented as above
against FO-CTLK specifications is EXPSPACE-complete.

Proof. To show that the problem is in EXPSPACE, recall that ||P|| is at most doubly exponential
w.r.t. the size of the input, thus so is |S|. We describe an algorithm that works in NEXPSPACE; this
combines the algorithm for model checking the first-order fragment of FO-CTLK and that for the
temporal-epistemic fragment. Since NEXPSPACE = EXPSPACE, the result follows. Given an AC-
MAS P and an FO-CTLK formula ϕ, we guess an assignment σ and check whether (P, s0, σ) |= ϕ.
This can be done by induction according to the structure of ϕ. If ϕ is atomic, this check can be done
in polynomial time w.r.t. the size of the state it is evaluated on, that is, exponential time w.r.t. ||EP ||.
If ϕ is of the form ∀xψ, then we can apply the algorithm for model checking first-order (non-modal)
logic, which works in PSPACE. Finally, if the outmost operator in ϕ is either a temporal or epistemic
modality, then we can extend the automata-based algorithm to model check propositional CTL
(Kupferman, Vardi, & Wolper, 2000; Lomuscio & Raimondi, 2006), which works in logarithmic
space in |S|. However, we remarked above that |S| is generally doubly exponential in ||EP ||. Thus,
this step can be performed in space singly exponential in ||EP ||. All these steps can be performed
in time polynomial in the size of ϕ. As a result, the total combined complexity of model checking
finite AC-MAS is in NEXPSPACE = EXPSPACE.

To prove that the problem is EXPSPACE-hard we show a reduction from any problem in
EXPSPACE. We assume standard definitions of Turing machines and reductions (Papadimitriou,
1994). If A is a problem in EXPSPACE, then there exists a deterministic Turing machine
TA = 〈Q,Σ, q0,F , δ〉, where Q is the finite set of states, Σ the machine alphabet, q0 ∈ Q the
initial state, F the set of accepting states, and δ the transition function, that solves A using at most
space 2p(|in|) on a given input in, for some polynomial function p. As standard, we assume δ to be a

360

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

relation on (Q×Σ×Q×Σ×D), withD = {L,R}, and 〈q, c, q′, c′, d〉 ∈ δ representing a transition
from state q to state q′, with characters c and c′ read and written respectively , and head direction d
((L)eft and (R)ight). Without loss of generality, we assume that TA uses only the righthand half of
the tape.

From TA and in, we build an encoding EP = 〈D, U, s0,Φτ 〉 of an AC-MAS P induced by a
single (environment) agent AE = 〈DE , ActE , P rE〉 defined on U = Σ ∪ Q ∪ {0, 1}, where: (i)
DE = {P/p(|in|) + 1, Q/1, H/p(|in|), F/1}; (ii) ActE is the singleton {αE}, with αE parameter-
free; (iii) αE ∈ PrE(lE) for every lE ∈ D(U). Intuitively, the states of P correspond to con-
figurations of TA, while τ mimics δ. To define EP , we let D = DE . The intended meaning
of the predicates in D is as follows: the first p(|in|) elements of a P -tuple encode (in binaries)
the position of a non-blank cell, and the (p(|in|) + 1)-th element contains the symbol appearing
in that cell; Q contains the current state q of TA; H contains the position of the cell the head is
currently on; F contains the final states of TA, i.e., F = F . The initial state s0 represents the
initial configuration of TA, that is, for in = in0 · · · in`: s(Q) = {q0}; s(H) = {〈0, . . . , 0〉}; and
s(P) = {〈BIN(i), ini〉 | i ∈ {0, . . . , `}}, where BIN(i) stands for the binary encoding in p(|in|)
bits of the integer i. Observe that p(|in|) bits are enough to index the (at most) 2p(|in|) cells used by
TA.

As to the transition relation, we define Φτ = {φαE}, where (we avoid sub- and superscripts in
predicate symbols, i.e., D = DAg as no ambiguity can arise with only one agent):

φαE
=

∨
〈q,c,q′,c′,d〉∈δ

(∀xF (x)↔ F ′(x)) ∧ (1)

Q(q) ∧ (∀xQ(x)→ x = q) ∧Q′(q′) ∧ (∀xQ′(x)→ x = q′) ∧ (2)
∃~p(H(~p) ∧ (∀xH(x)→ x = ~p) ∧ (P (~p, c) ∨ (c = 2 ∧ ¬∃xP (~p, x)))) ∧ (3)

∃~p′(d = R→ SUCC(~p, ~p′)) ∧ (d = L→ SUCC(~p′, ~p)) ∧H ′(~p′) ∧ (∀xH ′(x)→ x = ~p′) ∧ (4)
(P ′(~p, c′)↔ (c′ 6= 2)) ∧ (∀xP ′(~p, x)→ x = c′) ∧ (5)
(∀~x, y(P (~x, y) ∧ (~x 6= ~p)→ P ′(~x, y)) ∧ (∀~x, yP ′(~x, y)→ (P (~x, y) ∨ (~x = ~p ∧ y = c′)))) (6)

The symbol 2 represents the content of blank cells, while SUCC(~x, ~x′) =
∧p(|in|)
i=1 (x′i = 0∨x′i =

1)∧ (x′i = 1↔ ((x′i = 0∧
∧i−1
j=1 xj = 1)∨ (x′i = 1∧¬

∧i−1
j=1 xj = 1))) is a formula capturing that

~x′ is the successor of ~x, for ~x and ~x′ interpreted as p(|in|)-bit binary encodings of integers (observe
that {0, 1} ∈ U). Such a formula can obviously be written in polynomial time w.r.t. p(|in|), as well
as EP , and in particular s0 and φαE . Formula φαE is obtained as a disjunction of subformulas, each
referring to a transition of δ. For each subformula, i.e., transition 〈q, c, q′, c′, d〉: line 1 expresses
that F , which encodes the final states of the machine, does not change along the transition (this
formula could be moved out of the big disjunction); line 2 encodes that the machine will be in
exactly one state, q′, after the transition takes place; line 3 expresses that the symbol read by the
head is c (possibly blank); line 4 captures that the head moves in direction d; line 5 states that the
head writes symbol c on the cell, before moving; finally, line 6 states that the content of the tape
does not change, except for the cell that the head is on.

The obtained transition function is such that τ(s, αE) = s′ iff, for δ(q, c) = (q′, c′, d) in TA, we
have that: s′(P) is obtained from s(P) by overwriting with c′ (if not blank) the symbol in position
(p(|in|) + 1) of the tuple in s(P) beginning with the p(|in|)-tuple s(H) (that is, c by definition of
φαE); by updating s(H) according to d, that is by increasing or decreasing the value it contains; and

361

BELARDINELLI, LOMUSCIO & PATRIZI

by setting s′(Q) = {q′}. The predicate F does not change. Observe that cells not occurring in P
are interpreted as if containing 2 and when 2 is to be written on a cell, the cell is simply removed
from P .

It can be checked that, starting with s = s0, by iteratively generating the successor state s′

according to Φτ , i.e., s′ s.t. s ⊕ s′ |= φαE , one obtains a (single) P-run that is a representation of
the computation of TA on in, where each pair of consecutive P-states corresponds to a computation
step. In particular, at each state, Q contains the current state of TA. It should be clear that ϕ =
EF (∃xQ(x)∧F (x)) holds in P iff TA accepts in. Thus, by model checking ϕ on P , we can check
whether TA accepts in. This completes the proof of EXPSPACE-hardness.

Note that the result above is given in terms of the “data structures” in the model, i.e., U and D,
and not the state space S itself. This accounts for the high complexity of model checking AC-MAS,
as the state space is doubly exponential in the size of the data. By analysing the refined bound on the
size of ||P|| (||P|| ≤ |Act|·|U |pmax ·23`qmax), it can be seen that the double exponential is essentially
due to the number of parameters in action types, the number of relation symbols occurring in D,
and their respective arities. Thus, for fixed database schema and set of action types, the resulting
space complexity is reduced to singly exponential.

While EXPSPACE-hardness indicates intractability, we note that this is to be expected given that
we are dealing with quantified structures which are in principle prone to high complexity. Recall
also from Section 3.3 that the size of the interpretation domain U ′ of the abstraction P ′ is linear
in the bound b, the number of constants in Con, the size of φ, and NAg. Hence, model checking
bounded and uniform AC-MAS is EXPSPACE-complete with respect to these elements, whose size
will generally be small. Thus, we believe that in several cases of practical interest model checking
AC-MAS may be entirely feasible.

4. Artifact-Centric Programs

We have so far developed a formalism that can be used to specify and reason about temporal-
epistemic properties of models representing artifact-centric systems. We have identified a notable
class of models that admit finite abstractions. As we remarked in the Introduction, however, artifact
systems are typically implemented through declarative languages such as GSM (Hull et al., 2011).
It is therefore of interest to investigate the verification problem, not just on a Kripke semantics
such as AC-MAS, but on actual programs. As discussed, while GSM is a mainstream declarative
language for artifact-centric environments, alternative declarative approaches exist. In what follows
for the sake of generality we ground our discussion on a very wide class of declarative languages
and define the notion of artifact-centric program. Intuitively, an artifact-centric program (or AC
program) is a declarative description of a whole multi-agent system, i.e., a set of services, that
interact with the artifact system (see the discussion in the Introduction). Since artifact systems are
also typically implemented declaratively (Heath et al., 2013), AC programs will be used to encode
both the artifact system itself and the agents in the system. This also enables us to import into
the formalism the previously discussed features of views and windows typical in GSM and other
languages.

The rest of this section is organised as follows. We begin in Subsection 4.1 by defining AC
programs and giving their semantics in terms of AC-MAS. We then show that any AC-MAS that
results from an AC program is uniform. As long as the generated AC-MAS is bounded, by using the
results of Section 3.3, we deduce that any AC program admits an AC-MAS as its finite model. In this

362

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

context it is important to give constructive procedures for the generation of the finite abstraction; we
provide such a procedure here. This enables us to state that, under the assumptions we identify, AC
programs admit decidable verification by means of model checking their finite model. In Section 4.2
we ground and exemplify the constructions above on the Order-to-Cash Scenario introduced in
Subsection 2.4.

4.1 Verifying Artifact-Centric Programs

We start by defining the abstract syntax of AC programs.

Definition 4.1 (AC Programs) An artifact-centric program (or AC program) is a tuple ACP =
〈D, U,Σ,Ψ〉, where:

• D is the program’s database schema;

• U is the program’s interpretation domain;

• Σ = {Σ0, . . . ,Σn} is the set of agent programs Σi = 〈Di, li0, Acti〉, where:

– Di ⊆ D is agent i’s database schema;

– li0 ∈ Di(U) is agent i’s initial state (as a database instance);

– Acti is a set of local actions α(~x), where α is the action name and ~x are the action
parameter names; without loss of generality, we assume that no two action types use the
same parameter names;

– each local action α(~x) is associated with a precondition πα(~x)(~y), i.e., an FO-formula
over Di, where ~y ⊆ ~x are free variables.

• Ψ = {ψ~α(~x)(~z) | ~α(~x) = 〈α1(~x1), . . . , αn(~xn)〉 ∈ Act1×· · ·×Actn, ~x = 〈~x1, . . . , ~xn〉, ~z ⊆
~x} represents the AC program’s transitions expressed as a set of postconditions, i.e., FO-
formulas over action parameters as free variables. The formulas in Ψ are defined over the
alphabet DAg ∪ D′Ag, where DAg = {P ji /qi | Pi/qi ∈ D, j ≤ n} is the set containing one

distinct relation symbol P ji , for each agent j ≤ n and relation symbol Pi ∈ D.

AC programs are defined modularly by giving all the agents’ programs, including their action
preconditions and postconditions. Notice that preconditions use relation symbols from the local
database only, while the program’s transitions Ψ refer to the local relations for all agents in an un-
constrained way. More precisely, postconditions are global, i.e., they are associated with global
actions, rather than local ones. Indeed, a formula ψ~α(~x)(~z) describes the effects of the execution of
the global action ~α(~z) (under a particular assignment to the parameters) where each agent i executes
αi(~zi). As reported below, this accounts for the intuition that in choosing the next action, an agent
can only rely on information locally stored, while its actions, as a result of mutual interactions, may
change the local state of any agent, i.e., they affect the global state of the system. Obviously, this
does not prevent the possibility of specifying actions that affect local states only. This is in line with
the AC-MAS semantics and the literature on interpreted systems.

Given a tuple ~x of variables and a tuplue ~u of elements from U such that |~x| = |~u|, by σ(~x) = ~u
we denote an assignment that binds the i-th component of ~u to the i-th component of ~x. For a joint
action ~α(~x) given as above, we let con(~α) =

⋃
i≤n con(πi) ∪ con(ψ), var(~α) =

⋃
i≤n var(πi) ∪

363

BELARDINELLI, LOMUSCIO & PATRIZI

var(ψ), and free(~α) = ~x. An execution of ~α(~x) with ground parameters ~u ∈ U |~x| is the ground
action ~α(~u), where ~v (resp. ~w) is obtained by replacing each yi (resp. zi) with the value occurring
in ~u at the same position as yi (resp. zi) in ~x. Such replacements make both each πi(~v) and ψ(~w)
ground, that is, first-order sentences. Finally, we define the set ConACP of all constants mentioned
in the AC program ACP , i.e., ConACP =

⋃n
i=1 adom(li0) ∪

⋃
~α∈Act con(~α).

The semantics of an AC program is given in terms of the AC-MAS induced by the agents that
the program implicitly defines. Formally, this is captured by the following definition.

Definition 4.2 (Induced Agents) Given an AC program ACP = 〈D, U,Σ,Ψ〉, an agent A =
〈Di, Acti, P ri〉 is induced by ACP on the interpretation domain U iff for the agent program
Σi = 〈Di, li0, Acti〉 ∈ Σ we have that:

• for every li ∈ Di(U) and ground action α(~u) such that α(~x) ∈ Acti, it is the case that
α(~u) ∈ Pri(li) iff (li, σ) |= πα(~x)(~y), for σ(~x) = ~u (recall that ~y ⊆ ~x).

Note that induced agents are agents as formalised in Definition 2.6. Agents defined as above are
composed to give the AC-MAS associated with an AC program.

Definition 4.3 (Induced AC-MAS) Given an AC program ACP = 〈D, U,Σ,Φ〉 and the set Ag =
{A0, . . . , An} of all agents induced by ACP , the AC-MAS induced by ACP is the tuple PACP =
〈Ag, s0, τ〉, where:

• s0 = 〈l00, . . . , ln0〉 is the initial global state;

• τ is the global transition function defined by the following condition: s′ ∈ τ(s, ~α(~u)), where
s = 〈l0, . . . , ln〉, s′ = 〈l′0, . . . , l′n〉, ~α(~u) = 〈α1(~u0), . . . , αn(~un)〉, ~u = 〈~u0, . . . , ~un〉, iff for
every i ∈ {0, . . . , n},

– (li, σi) |= παi(~xi)(~yi) for σi(~xi) = ~ui;

– adom(s′) ⊆ adom(s) ∪ ~u ∪ con(ψ~α(~x));

– (DAg ⊕D′Ag, σ) |= ψ~α(~x)(~z), for an assignment σ such that σ(~x) = ~u, and DAg, D′Ag
are the DAg-instances such that, for every Pi ∈ D and j ≤ n, DAg(P

j
i) = lj(Pi) and

D′Ag(P
j
i) = l′j(Pi).

Given an AC program ACP , its induced AC-MAS represents the program’s execution tree and
encodes all the data in the system. Intuitively, this is obtained by iteratively executing at each state,
starting from the initial one, all possible ground actions. Observe that all actions performed are
enabled by the respective protocols and that transitions can introduce only a bounded number of
new elements in the active domain, i.e., those bound to the action parameters. It follows from the
above that AC programs are parametric with respect to the interpretation domain, i.e., by replacing
the interpretation domain we obtain a different AC-MAS.

We assume that every program induces an AC-MAS whose transition relation is serial, i.e.,
states always have successors. This is a basic requirement that can be easily fulfilled, for instance,
by assuming that each agent has a skip action with a trivially true precondition and that when all
agents execute skip, the global state of the system remains unchanged. In the next Subsection we
present an example of one such program.

A significant feature of AC programs is that they induce uniform AC-MAS.

364

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

Lemma 4.4 Every AC-MAS P induced by an AC program ACP is uniform.

Proof. Since by definition adom(s0) ⊆ ConACP , by Prop. 3.7 it is sufficient to consider only
the temporal transition relation →. Consider s, s′, s′′ ∈ S and s′′′ ∈ L0 × · · · × Ln such that
s⊕ s′ ' s′′⊕ s′′′ for some witness ι. In particular, for every Aj ∈ Ag, l′′j ' lj and l′′′j ' l′j , namely,
l′′j = ι(lj) and l′′′j = ι(l′j). Also, assume that there exists ~α(~u) = 〈α1(~u1), . . . , αn(~un)〉 ∈ Act(U)
such that s′ ∈ τ(s, ~α(~u)). First of all, αj(~uj) ∈ Prj(lj) implies that (lj , σj) |= παj(~xj)(~yj) for
σj(~xj) = ~uj . Since l′′j ' lj , by Prop. 3.3 we have that (l′′j , σ

′
j) |= παj(~xj)(~yj) where σ′j(~xi) = ι′(~ui)

for any ι′ extending ι to ~ui. Thus, αj(ι′(~uj)) ∈ Prj(l
′′
j) for every j ∈ Ag. Further, assume

that (DAg ⊕ D′Ag, σ) |= ψ~α(~x)(~z), where DAg, D′Ag are the DAg-instances obtained as above and
σ(~x) = ~u. Consider the DAg-instances D′′Ag, D′′′Ag such that D′′Ag(P

j
i) = l′′j (Pi) = ι(lj(Pi)), and

D′′′Ag(P
j
i) = l′′′j (Pi) = ι(l′j(Pi)). Since s⊕s′ ' s′′⊕s′′′, we obtain that DAg⊕D′Ag ' D′′Ag⊕D′′′Ag

for the same witness ι. In particular, (D′′Ag ⊕D′′′Ag, σ′) |= ψ~α(~x)(~z), where σ′(~x) = ι′(~u) for any ι′

extending ι to ~u. Finally, it can be easily checked that adom(s′′′) ⊆ adom(s′′)∪ ι′(~u)∪ con(ψ~α(~x)).
As a result, s′′′ ∈ τ(s′′, ~α(ι′(~u))), i.e., P is uniform.

We can now define what it means for an AC program to satisfy a specification, by referring to
its induced AC-MAS.

Definition 4.5 Given an AC program ACP , a FO-CTLK formula ϕ, and an assignment σ, we say
that ACP satisfies ϕ under σ, written (ACP, σ) |= ϕ, iff (PACP , s0, σ) |= ϕ.

Thus, the model checking problem for an AC program against a specification φ is defined in terms
of the model checking problem for the corresponding AC-MAS PACP against φ.

The following result allows us to reduce the verification of any AC program with an infinite
interpretation domain U1, that induces a b-bounded AC-MAS, to the verification of an AC program
over a finite U2. To show how this is constructed, we let NACP =

∑
i∈{1,...,n}maxα(~x)∈Ωi

{|~x|} be
the maximum number of different parameters that can occur in a joint action of ACP .

Lemma 4.6 Consider an AC program ACP1 = 〈D, U1,Σ〉 operating on an infinite interpretation
domain U1 and assume that its induced AC-MAS PACP1 = 〈Ag1, s10, τ1〉 is b-bounded. Consider
a finite interpretation domain U2 such that ConACP1 ⊆ U2 and |U2| ≥ 2b + |ConACP1 | + NACP1

and the AC program ACP2 = 〈D, U2,Σ〉. Then, the AC-MAS PACP2 = 〈Ag2, s20, τ2〉 induced by
ACP2 is a finite abstraction of PACP1 .

Proof. Let Ag1 and Ag2 be the set of agents induced respectively by ACP1 and ACP2, according
to Def. 4.2. Firstly, we prove that the set Ag1 and Ag2 of agents satisfy Def. 3.14, for Ag = Ag1

and Ag′ = Ag2. To this end, observe that because ACP1 and ACP2 differ only in U , by Def. 4.2,
D = D′, and Act′ = Act. Thus, only requirement 3 of Def. 3.14 needs to be checked. For this, fix
i ∈ {1, . . . , n} and assume that α(~u) ∈ Pri(li). By Def. 4.2, we have that (li, σ) |= παi(~xi)(~yi)
for σ(~xi) = ~ui. By the assumption on |U2|, since con(α) ⊆ ConACP1 ⊆ U2, |~u| ≤ NACP1 , and
|adom(li)| ≤ b, we can define an injective function ι : adom(li) ∪ ~u ∪ ConACP1 7→ U2 that is
the identity on ConACP1 . Thus, for l′i = ι(li), we can easily extract from ι a witness for li ' l′i.
Moreover, it can be seen that σ(y) = ~v and σ′(y) = ~v′ = ι(~v) are equivalent for π. Then,
by applying Prop. 3.3 to li and l′i, we conclude that (l′i, σ

′) |= παi(~xi)(~yi). Hence, by Def. 4.2,
α(~u′) ∈ Pr′i(l

′
i) for ~u′ = ι(~u). So, we have shown the right-to-left part of requirement 3. The

left-to-right part can be shown similarly and more simply since U1 is infinite.

365

BELARDINELLI, LOMUSCIO & PATRIZI

Thus, we have proven that Ag = Ag1 and Ag′ = Ag2 are obtained as in Def. 3.14. Hence, the
assumption on Ag and Ag′ in Def. 3.15 is fulfilled. We show next that also the remaining require-
ments of Def. 3.15 are satisfied. Obviously, since Σ is the same for ACP1 and ACP2, by Def. 4.3,
s10 = s20, so the initial states of PACP1 and PACP2 are the same. It remains to show that the
requirements on τ1 and τ2 are satisfied. We prove the right-to-left part. To this end, take two states
s1 = 〈l10, . . . , l1n〉, s′1 = 〈l′10, . . . , l

′
1n〉 in S1 and a joint action ~α(~u) = 〈α0(~u0), . . . , αn(~un)〉 ∈

Act(U1) such that s′1 ∈ τ1(s1, ~α(~u)). Consider s1 ⊕ s′1. By the assumptions on U2, there exists an
injective function ι : adom(s1)∪adom(s′1)∪~u∪ConACP1 7→ U2 that is the identity on ConACP1 (re-
call that |adom(s1)|, |adom(s′1)| ≤ b). Then, for s2 = 〈ι(l10), . . . , ι(l1n)〉, s′2 = 〈ι(l′10), . . . , ι(l′1n)〉
in S2, we can extract from ι a witness for s1⊕ s′1 ' s2⊕ s′2. Moreover, it can be seen that for every
παi(~xi) and ψ~α(~x), the assignments σ(~x) = ~u and σ′(~x) = ~u′ = ι(~u) are equivalent with respect to
s1⊕s′1 and s2⊕s′2. Now, consider Def. 4.3 and recall that both PACP1 and PACP2 are AC-MAS in-
duced by ACP1 and ACP2, respectively. By applying Prop. 3.3, we have that, for i ∈ {0, . . . , n},
(i) (ι(l1i), σ

′) |= παi(~xi)(~yi) iff (l1i, σ) |= παi(~xi)(~yi); (ii) (DAg2 ⊕ D′Ag2 , σ
′) |= ψ~α(~x)(~zi) iff

(DAg1 ⊕D′Ag1 , σ) |= ψ~α(~x)(~zi), where each DAgi is obtained from si as detailed in Def. 4.3; (iii)
adom(s′1) ⊆ adom(s1)∪ ~u∪ con(ψ~α(~x)) iff adom(s′2) ⊆ adom(s2)∪ ι(~u)∪ con(ψ~α(~x)) by the defi-
nition of ι. But then, it is the case that s′2 ∈ τ2(s2, ~α(ι(~u))). So we have proved the right-to-left part
of the second requirement of Def. 3.15. The other direction follows similarly. Therefore, PACP2 is
an abstraction of PACP1 .

Intuitively, Lemma 4.6 shows that the following diagram commutes, where [U1/U2] stands for
the replacement of U1 by U2 in the definition of ACP1. Observe that since U2 is finite, one can
actually apply Def. 4.3 to obtain PACP2 ; in particular the transition function τ2 can be computed.
Instead, PACP1 , and in particular τ1, cannot be directly computed fromACP1 by applying Def. 4.3,
as U1 is infinite.

ACP1
Def. 4.3 //

[U1/U2]

��

PACP1

Def. 3.15
��

ACP2 Def. 4.3
// PACP2

The following result, a direct consequence of Lemma 3.17 and Lemma 4.6, is the key conclusion
of this section.

Theorem 4.7 Consider an FO-CTLK formula ϕ, an AC programACP1 operating on an infinite in-
terpretation domain U1 and assume its induced AC-MAS PACP1 is b-bounded. Consider a finite in-
terpretation domain U2 such that CACP1 ⊆ U2 and |U2| ≥ 2b+ |CACP1 |+max{NACP1 , |var(ϕ)|},
and the AC program ACP2 = 〈D, U2,Σ〉. Then we have that:

ACP1 |= ϕ iff ACP2 |= ϕ.

Proof. By Lemma 4.6 PACP2 is a finite abstraction of PACP1 . Moreover, |U2| ≥ 2b +
|ConACP1 | + max{NACP1 , |var(ϕ)|} implies |U2| ≥ 2b + |ConACP1 | + |var(ϕ)|. Hence, we can
apply Lemma 3.17 and the result follows.

The results shows that if the generated AC-MAS model is bounded, then any AC program can
be verified by model checking its finite abstraction, i.e., a bisimilar AC-MAS defined on a finite

366

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

interpretation domain. Note that the procedure is constructive: given an AC program ACP1 =
〈D, U1,Σ〉 on an infinite domain U1 and an FO-CTLK formula ϕ, to check whether ACP1 satisfies
the specification ϕ, we first consider its finite abstraction ACP2 = 〈D, U2,Σ〉 defined on a finite
domain U2 satisfying the cardinality requirement of Theorem 4.7. Since U2 is finite, the induced
AC-MAS PACP2 is also finite; hence we can apply standard model checking techniques to verify
whether PACP2 satisfies ϕ. Finally, by definition of satisfaction for AC programs and Theorem 4.7,
we can transfer the result obtained to decide the model checking problem for the original infinite
AC program ACP1 against the specification ϕ.

Also observe that in the finite abstraction considered above the abstract interpretation domain
U2 depends on the number of distinct variables that the specification ϕ contains. Thus, in principle,
to check the same AS program against a different specification ϕ′, one should construct a new
abstractionPACP ′

2
using a different interpretation domainU ′2, and then checkϕ′ against it. However,

it can be seen that if the number of distinct variables of ϕ′ does not exceed that of ϕ, the abstraction
PACP2 , used to check ϕ, can be re-used for ϕ′. Formally, let FO-CTLKk be the set of all FO-CTLK
formulas containing at most k distinct variables. We have the following corollary to Theorem 4.7.

Corollary 4.8 If |U2| ≥ 2b + |ConACP1 | + max{NACP1 , k}, then, for every FO-CTLKk formula
ϕ, ACP1 |= ϕ iff ACP2 |= ϕ.

This result holds in particular for k = NACP ; thus for FO-CTLKNACP
formulas, we have an

abstraction procedure that is specification-independent.
Theorem 4.7 requires the induced AC-MAS to be bounded, which may seem a difficult condition

to check a priori. Note however that AC programs are declarative. It is therefore straightforward
to give postconditions that enforce that no transition will generate states violating the boundedness
requirement. The scenario in the next Subsection will exemplify this.

4.2 Verifying the Order-to-Cash Scenario

In Section 2.4 we introduced the order-to-cash scenario (Hull et al., 2011), a business process mod-
elled as an artifact-centric system. Now we show how it can be formalised within the framework
of AC programs. For the sake of simplicity we assumed only three agents in our scenario: one
customer c, one manufacturer m and one supplier s. Further, the database schemaDi for each agent
i ∈ {c,m, s} was given as:

• Customer c: Dc = {Products(pcode, budget),PO(id , pcode, offer , status)};

• Manufacturer m: Dm = {PO(id , pcode, offer , status),MO(id , pcode, price, status)};

• Supplier s: Ds = {Materials(mcode, cost),MO(id , pcode, price, status)}.

Also, we assumed that in the initial state the only non-empty relations are Products and
Materials . Hence, the artifact-centric programACPotc corresponding to the order-to-cash scenario
can be given formally as follows:

Definition 4.9 (ACPotc) The artifact-centric program ACPotc is a tuple 〈Dotc, Uotc,Σotc,Ψotc〉,
where:

• the program’s database schema Dotc and interpretation domain Uotc are defined as in
Sec. 2.4, i.e., Dotc = Dc ∪ Dm ∪ Ds = {PO/4,MO/4,Products/2,Materials/2} and
Uotc is the set of all alphanumeric strings.

367

BELARDINELLI, LOMUSCIO & PATRIZI

πcreatePO(id,pcode) = ∃b.Products(b, pcode)∧ requires id to be a fresh identifier for
¬∃p, o, s.PO(id, p, o, s) POs, and the newly created PO to refer

to an existing product
πdoneMO(id) = ∃pc, p.MO(id, pc, p, preparation) requires id to refer to an existing MO

currently in preparation
πacceptMO(id) = ∃pc, p.MO(id, pc, p, submitted) which requires id to refer to an existing

MO that has been submitted

Table 1: Preconditions for the actions createPO(id , pcode), doneMO(id), and acceptMO(id)

• Σ = {Σc,Σm,Σs} is the set of agent specifications for the customer c, the manufacturer m
and the supplier s. Specifically, for each i ∈ {c,m, s}, Σi = 〈Di, li0, Acti,Πi〉 is such that:

– Di ⊆ D is agent i’s database schema as detailed above, i.e., Dc =
{Products/2,PO/4}, Dm = {PO/4,MO/4}, and Ds = {MO/4,Materials/2}.

– lc0, lm0, and ls0 are database instances in Dc(Uotc), Dm(Uotc), and Ds(Uotc) respec-
tively s.t. lc0(Products) and ls0(Materials) are non-empty, i.e., they contain some back-
ground information, while lc0(PO), lm0(PO), lm0(MO) and ls0(MO) are all empty.

– The sets of actions are given as

∗ Actc = {createPO(id , pcode), submitPO(id), pay(id), deletePO(id), skip}.
∗ Actm = {createMO(id , price), doneMO(id), shipPO(id), deleteMO(id), skip};
∗ Acts = {acceptMO(id), rejectMO(id), shipMO(id), skip}.

Each action α(~x) is associated with a precondition πα(~x). The preconditions for the
actions createPO(id , pcode), doneMO(id), acceptMO(id) are reported in Table 1.
The remaining preconditions are omitted for brevity.

• Ψ = {ψ~α(~x) | α(~x)) ∈ Actc ×Actm ×Acts}, where

DAg = {Productsc, POc, POm,MOm,Materialss,MOs}.

Table 2 illustrates only the postcondition of the joint action

~α(id, pc,m1,m2) = 〈createPO(id, pc), doneMO(m1), acceptMO(m2)〉.

The others are omitted.

In the postcondition in Table 2 variables (from V) and constants (from U) are distinguished by fonts
v and c, respectively. The first two lines impose that the interpretation of the relations Products and
Materials , occurring only in the local database of agents c (customer) and s (supplier), respectively,
remain unchanged. The third line states that the relation PO of agents c and m (manufacturer)
contains a new procurement order, with identifier id and product code pc, both taken from the
parameters of action createPO . Observe that, although executed by the customer, this action affects
also the local state of the manufacturer. The next 3 lines express that the local PO relation of c and
m, in addition to the newly added item, contains also all, and only, the items present before the
action execution. The next conjunct (3 lines) states that new identifiers must be unique within each
local PO relation. Notice that while this cannot be guaranteed by agent cwhen executing createPO

368

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

(
∀~x.Productsc(~x)↔ Productsc′(~x)

)
∧(

∀~y.Materialss(~y)↔ Materialss′(~y)
)
∧(

∃b.Productsc(pc, b) ∧ POc′(id, pc, b, prepared) ∧ POm′(id, pc, b, prepared)
)
∧(

∀i, pc, b, s.i 6= id→
(

(POc′(i, pc, b, s)↔ POc(i, pc, b, s))∧
(POm′(i, pc, b, s)↔ POc(i, pc, b, s))

))
∧(

∀i, pc, b, s, pc′, b′, s′.
(

(POc′(i, pc, b, s) ∧ POc′(i, pc′, b′, s′)→ (pc = pc′ ∧ b = b′ ∧ s = s′))∧
(POm′(i, pc, b, s) ∧ POm′(i, pc′, b′, s′)→ (pc = pc′ ∧ b = b′ ∧ s = s′))

))
∧(

m1 = m2 →
(
∀m3, pc, p, s.

(MOm(m3, pc, p, s)↔ MOm′(m3, pc, p, s))∧
(MOs(m3, pc, p, s)↔ MOs′(m3, pc, p, s))

))
∧(

m1 6= m2 →
(
∀pc, p, s.MOm(m1, pc, p, s)→ (

¬MOm′(m1, pc, p, s) ∧MOm′(m1, pc, p, submitted)∧
¬MOs′(m1, pc, p, s) ∧MOs′(m1, pc, p, submitted))

)
∧(

∀pc, p, s.MOs(m2, pc, p, s)→ (
¬MOs′(m2, pc, p, s) ∧MOs′(m2, pc, p, accepted)∧
¬MOm′(m2, pc, p, s) ∧MOm′(m2, pc, p, accepted))

))
∧(

∀m3, pc, p, s.m1 6= m2 ∧m1 6= m3 →
(

(MOm′(m3, pc, p, s)↔ MOm(m3, pc, p, s))∧
(MOs′(m3, pc, p, s)↔ MOm(m3, pc, p, s))

))
Table 2: The postcondition ψ~α(id,pc,m1,m2) for the joint action ~α(id, pc,m1,m2) =

〈createPO(id, pc), doneMO(m1), acceptMO(m2)〉

369

BELARDINELLI, LOMUSCIO & PATRIZI

(as it cannot access relation PO of m), this value might actually be returned automatically by the
system, and then used as input by the agent. The successive 3 lines state that ifm1 andm2 coincide,
i.e., two distinct operations are to be executed on the same material order m1, then the action has
no effect on any local MO relation. On the contrary, as the successive 6 lines state, if m1 6= m2

then in the local MO relations of both agent s and m the material order with id m1 changes its state
to submitted and the one with id m2 to accepted. Finally, the last 3 lines state that all material
orders not involved in the executed (joint) action are propagated unchanged to their respective local
relations.

Notice that although actions are typically conceived to manipulate artifacts of a specific class,
their preconditions and postconditions may depend on artifact instances of different classes. For
example, note that the action createMO manipulates MO artifacts, but its precondition depends
on PO artifacts. Also, we stress that action executability depends not only on the status attribute
of an artifact, but on the actual data content of the whole database, i.e., of all the other artifacts.
Similarly, action executions affect not only status attributes. Most importantly, by using first-order
formulas such as φb = ∀x1, . . . , xb+1

∨
i 6=j(xi = xj) in the postcondition ψ, we can guarantee that

the AC program in question is bounded and is therefore amenable to the abstraction methodology
of Section 4.

We now define the agents induced by the AC program ACPotc given above according to Defi-
nition 4.2.

Definition 4.10 Given the AC program ACPotc = 〈Dotc, Uotc,Σotc〉, the agents Ac, Am and As
induced by ACPotc are defined as follows:

• Ac = 〈Dc, Actc, P rc〉, where (i) Dc is as above; (ii) Actc = Ωc = {createPO , submitPO ,
pay , deletePO}; and (iii) α(~u) ∈ Prc(lc) iff (lc, σ) |= πα(~x)(~y) for σ(~x) = ~u.

• Am = 〈Dm, Actm, P rm〉, where (i) Dm is as above; (ii) Actm = Ωm =
{createMO , doneMO , shipPO , deleteMO}; and (iii) α(~u) ∈ Prm(lm) iff (lm, σ) |=
πα(~x)(~y) for σ(~x) = ~u.

• As = 〈Ds, Acts, P rs〉, where (i) Ds is as above; (ii) Acts = Ωs = {acceptMO , rejectMO ,
shipMO}; and (iii) α(~u) ∈ Prs(ls) iff (ls, σ) |= πα(~x)(~y) for σ(~x) = ~u.

Note that the agents Ac, Am and As strictly correspond to the agents defined in Def. 2.12.
In particular, by the definition of Am above we can see that createMO(id , price) ∈ Prm(lm)
if and only if the interpretation lm(PO) of the relation PO in the local state lm contains a tu-
ple 〈id, pc, o, prepared〉 for some product pc and offer o; while doneMO(mo id) ∈ Prm(lm) iff
lm(MO) contains a tuple with id mo id and status preparation. As a result, the formal precondi-
tions for createMO and doneMO satisfy the intended meaning of these actions.

We can now define the AC-MAS generated by the set of agents Ag = {Ac, Am, As} according
to Definition 4.3.

Definition 4.11 Given the AC program ACPotc and the set Ag = {Ac, Am, As} of agents induced
by ACPotc, the AC-MAS induced by ACPotc is the tuple Potc = 〈Ag, s0

otc, τotc〉, where:

• s0
otc = 〈lc0, lm0, ls0〉 is the initial global state, where the only non-empty relations are

Products and Materials;

370

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

• τotc is the global transition function defined according to Def. 4.3.

The AC-MAS generated by the AC program ACPotc corresponds closely to the AC-MAS ap-
pearing in Def. 2.13. As an example we give a snippet of the transition function τotc by consid-
ering the global action α(~u) = 〈createPO(id, pcode), doneMO(m1), acceptMO(m2)〉 enabled
by the respective protocols in a global state s. By the definition of actions createPO(id, pcode),
doneMO(m1), and acceptMO(m2) we have that li(s) ∈ Pri for i ∈ {c,m, s} implies that the
Products relation contains information about the product pcode. Also, the interpretation of the re-
lation MO contains the tuples 〈m1, p, pr, preparation〉 and 〈m2, p

′, pr′, submitted〉 for some prod-

ucts p and p′. By the definition of τotc it follows that for every s′ ∈ Sotc, s
α(~u)−−−→ s′ implies that

(DAg ⊕D′Ag, σ) |= ψα(~u)(id, pcode,m1,m2), where DAg and D′Ag are obtained from s and s′ by
renaming the relation symbols, α(~u) = 〈createPO(id, pcode), doneMO(m1), acceptMO(m2)〉,
and σ is an interpretation of the formal parameters id, pcode, m1 and m2 in Uotc. In particu-
lar, the interpretation of the relation PO in D′Ag extends both DAg(PO

c) and DAg(PO
m) with

the tuple 〈id, pc, b, prepared〉, where id is a fresh identifier. The tuples for the material orders
m1 and m2 are updated in D′Ag(MOm) (resp. D′Ag(MOs)) and become 〈m1, p, pr, submitted〉
(resp. 〈m2, p

′, pr′, accepted〉). In light of the specification of ψα(~u) for action α(~u), no other ele-
ment is updated in the transition. Finally, notice that these extensions are indeed the interpretations
of PO and MO in s′. Thus, the semantics satisfies the intended meaning of the actions. It can also
be checked that, in line with the discussion in Section 2.4, a full version of the function τotc given
above can easily encode the artifacts’ lifecycles as given in Figure 2.

We now proceed to exploit the methodology of Section 4 to verify the AC program ACPotp.
We use the formula ϕmatch from Section 2.4 as an example specification; analogous results can be
obtained for the other formulas. Observe that according to Definition 4.3 the AC-MAS induced by
ACPotp has infinitely many states. We assume two interpretations for the relations Products and
Materials , which determine an initial stateD0. Consider the maximum numbermax of parameters
and the constants CΩ in the operations in Ωc, Ωm and Ωs. In the case under analysis we have
that max = 2. We earlier remarked that formulas such as φb in the postcondition of actions force
the AC-MAS Potc corresponding to ACPotc to be bounded. Here we have that Potc is b-bounded.
According to Corollary 3.19, we can therefore consider any finite domain U ′ such that

U ′ ⊇ D0 ∪ CΩ ∪ con(ϕmatch)

⊇ D0(Products) ∪D0(Materials) ∪ CΩ

and such that

|U ′| ≥ 2b+ |D0|+ |CΩ|+ |con(ϕmatch)|+max

= 2b+ |D0|+ |CΩ|+ 2

For instance, we can consider any subset U ′ of Uotc satisfying the conditions above. Given that U ′

satisfies the hypothesis of Theorem 4.7, it follows that the AC program ACPotc over Uotc satisfies
ϕmatch if and only if ACPotc over U ′ does. But the AC-MAS induced by the latter is a finite-state
system, which can be constructively built by running the AC program ACPotc on the elements in
U ′. Thus, ACPotc |= ϕmatch is a decidable instance of model checking that can be therefore solved
by means of standard techniques.

371

BELARDINELLI, LOMUSCIO & PATRIZI

A manual check on the finite model indeed reveals that ϕmatch, ϕbudget and ϕcost are satisfied
in the finite model, whereas ϕfulfil is not. By Corollary 3.19 the AC-MAS Potc induced by ACPotp
satisfies the same specifications. Hence, in view of Definition 4.5, we conclude that the artifact-
centric program ACPotp satisfies ϕmatch, ϕbudget and ϕcost but does not satisfy ϕfulfil . This is in
line with our intuitions of the scenario.

5. Conclusions and Future Work

In this paper we put forward a methodology for verifying agent-based artifact-centric systems. We
proposed AC-MAS, a novel semantics incorporating first-order features, that can be used to rea-
son about multi-agent systems in an artifact-centric setting. We observed that the model checking
problem for these structures against specifications given in a first-order temporal-epistemic logic is
undecidable and proceeded to identify a suitable fragment for which decidability can be retained.
Specifically, we showed that the class of bounded, uniform AC-MAS we identified admit finite ab-
stractions that preserve the first-order specification language we introduced. Previous results in the
literature, discussed in Subsection 1.2, limit the preservation to fragments of the quantified language
and do not allow the interplay between first-order quantifiers and modalities.

We explored the complexity of the model checking problem in this context and showed this to
be EXPSPACE-complete. While this is obviously a hard problem, we need to consider that these
are first-order structures which normally lead to problems with high complexity. We note that the
abstract interpretation domain is actually linear in the size of the bound considered.

Mindful of the practical needs for verification in artifact-centric systems, we then explored how
finite abstractions can actually be built. To this end, rather than investigating one specific data-
centric language, we defined a general class of declarative artifact-centric programs. We showed
that these systems admit uniform AC-MAS as their semantics. Under the assumption of bounded
systems we showed that model checking these multi-agent system programs is decidable and gave
a constructive procedure operating on bisimilar, finite models. While the results are general, they
can be instantiated for various artifact-centric languages. For instance, Belardinelli et al. (2012b)
explore finite abstractions of GSM programs by using these results.

We exemplified the methodology put forward on a use case consisting of several agents pur-
chasing and delivering products. While the system has infinitely many states we showed it admits a
finite abstraction that can be used to verify a variety of specifications on the system.

A question left open in the present paper is whether the uniform condition we provided is tight.
While we showed this to be a sufficient condition, we did not explore whether this is necessary for
finite abstractions or whether more general properties can be given. In this context it is of interest
that artifact-centric programs generate uniform structures. Also, it will be worthwhile to explore
whether a notion related to uniformity can be applied to other domains in AI, for example to retain
decidability of specific calculi. This would appear to be the case as preliminary studies in the
Situation Calculus demonstrate (De Giacomo, Lespérance, & Patrizi, 2012).

On the application side, we are also interested in exploring ways to use the results of this paper to
build a model checker for artifact-centric MAS. Previous efforts in this area (Gonzalez, Griesmayer,
& Lomuscio, 2012) are limited to finite state systems. It would therefore be of great interest to
construct finite abstractions on the fly to check practical e-commerce scenarios such as the one here
discussed.

372

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Alonso, G., Casati, F., Kuno, H. A., & Machiraju, V. (2004). Web Services - Concepts, Architectures
and Applications. Data-Centric Systems and Applications. Springer.

Alves, A., Arkin, A., Askary, S., Barreto, C., Ben, Curbera, F., Ford, M., Goland, Y., Guı́zar, A.,
Kartha, N., Liu, C. K., Khalaf, R., König, D., Marin, M., Mehta, V., Thatte, S., van der Rijn,
D., Yendluri, P., & Yiu, A. (2007). Web Services Business Process Execution Language Ver-
sion 2.0. Tech. rep., OASIS Web Services Business Process Execution Language (WSBPEL)
TC.

Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., & Montali, M. (2013). Verification
of Relational Data-centric Dynamic Systems with External Services. In Hull, R., & Fan, W.
(Eds.), Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS’13), pp. 163–174. ACM.

Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., & Spoletini, P. (2007). Validation of Web Service
Compositions. IET Software, 1(6), 219–232.

Baukus, K., & van der Meyden, R. (2004). A knowledge based analysis of cache coherence. In
Davies, J., Schulte, W., & Barnett, M. (Eds.), Proceedings of the 6th International Confer-
ence on Formal Engineering Methods (ICFEM’04), Vol. 3308 of Lecture Notes in Computer
Science, pp. 99–114. Springer.

Belardinelli, F., & Lomuscio, A. (2012). Interactions between Knowledge and Time in a First-Order
Logic for Multi-Agent Systems: Completeness Results. Journal of Artificial Intelligence Re-
search, 45, 1–45.

Belardinelli, F., Lomuscio, A., & Patrizi, F. (2011a). A Computationally-Grounded Semantics for
Artifact-Centric Systems and Abstraction Results. In Walsh, T. (Ed.), Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI’12), pp. 738–743. AAAI.

Belardinelli, F., Lomuscio, A., & Patrizi, F. (2011b). Verification of Deployed Artifact Systems via
Data Abstraction. In Kappel, G., Maamar, Z., & Nezhad, H. R. M. (Eds.), Proceedings of
the 9th International Conference on Service-Oriented Computing (ICSOC’11), Vol. 7084 of
Lecture Notes in Computer Science, pp. 142–156. Springer.

Belardinelli, F., Lomuscio, A., & Patrizi, F. (2012a). An Abstraction Technique for the Verification
of Artifact-Centric Systems. In Brewka, G., Eiter, T., & McIlraith, S. A. (Eds.), Proceedings of
the 13th International Conference on Principles of Knowledge Representation and Reasoning
(KR’12). AAAI.

Belardinelli, F., Lomuscio, A., & Patrizi, F. (2012b). Verification of gsm-based artifact-centric
systems through finite abstraction. In Liu, C., Ludwig, H., Toumani, F., & Yu, Q. (Eds.), Pro-
ceedings of the 10th International Conference on Service-Oriented Computing (ICSOC’12),
Vol. 7636 of Lecture Notes in Computer Science, pp. 17–31. Springer.

Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., & Mecella, M. (2005). Automatic Com-
position of Transition-based Semantic Web Services with Messaging. In Böhm, K., Jensen,
C. S., Haas, L. M., Kersten, M. L., Larson, P.-Å., & Ooi, B. C. (Eds.), Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB’05), pp. 613–624. ACM.

373

BELARDINELLI, LOMUSCIO & PATRIZI

Berardi, D., Cheikh, F., Giacomo, G. D., & Patrizi, F. (2008). Automatic Service Composition via
Simulation. International Journal of Foundations of Computer Science, 19(2), 429–451.

Bertoli, P., Pistore, M., & Traverso, P. (2010). Automated Composition of Web Services via Plan-
ning in Asynchronous Domains. Artificial Intelligence, 174(3-4), 316–361.

Bhattacharya, K., Gerede, C. E., Hull, R., Liu, R., & Su, J. (2007). Towards Formal Analysis
of Artifact-Centric Business Process Models. In Alonso, G., Dadam, P., & Rosemann, M.
(Eds.), Proceedings of the 5th International Conference on Business Process Management
(BPM’07), Vol. 4714 of Lecture Notes in Computer Science, pp. 288–304. Springer.

Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic, Vol. 53 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press.

Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., & Patrizi, F. (2008). Automatic Service
Composition and Synthesis: the Roman Model. IEEE Data Engineering Bulletin, 31(3), 18–
22.

Ciobaca, S., Delaune, S., & Kremer, S. (2012). Computing Knowledge in Security Protocols Under
Convergent Equational Theories. Journal of Automated Reasoning, 48(2), 219–262.

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model Checking. The MIT Press.

Cohn, D., & Hull, R. (2009). Business Artifacts: A Data-Centric Approach to Modeling Business
Operations and Processes. IEEE Data Engineering Bulletin, 32(3), 3–9.

Damaggio, E., Deutsch, A., & Vianu, V. (2012). Artifact Systems with Data Dependencies and
Arithmetic. ACM Transactions on Database Systems, 37(3), 22:1–22:36.

Damaggio, E., Hull, R., & Vaculı́n, R. (2011). On the Equivalence of Incremental and Fixpoint
Semantics for Business Artifacts with Guard-Stage-Milestone Lifecycles. In Rinderle-Ma, S.,
Toumani, F., & Wolf, K. (Eds.), Proceedings of the 9th International Conference on Business
Process Management (BPM’11), Vol. 6896 of Lecture Notes in Computer Science, pp. 396–
412. Springer.

De Giacomo, G., Lespérance, Y., & Patrizi, F. (2012). Bounded Situation Calculus Action Theories
and Decidable Verification. In Brewka, G., Eiter, T., & McIlraith, S. A. (Eds.), Proceedings of
the 13th International Conference on Principles of Knowledge Representation and Reasoning
(KR’12). AAAI.

Dechesne, F., & Wang, Y. (2010). To Know or not to Know: Epistemic Approaches to Security
Protocol Verification. Synthese, 177(Supplement-1), 51–76.

Deutsch, A., Hull, R., Patrizi, F., & Vianu, V. (2009). Automatic Verification of Data-centric Busi-
ness Processes. In Fagin, R. (Ed.), Proceedings of the 12th International Conference on
Database Theory (ICDT’09), Vol. 361 of ACM International Conference Proceeding Series,
pp. 252–267. ACM.

Deutsch, A., Sui, L., & Vianu, V. (2007). Specification and Verification of Data-Driven Web Appli-
cations. Journal of Computer and System Sciences, 73(3), 442–474.

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning About Knowledge. The MIT
Press.

374

VERIFICATION OF AGENT-BASED ARTIFACT SYSTEMS

Gammie, P., & van der Meyden, R. (2004). MCK: Model Checking the Logic of Knowledge. In
Alur, R., & Peled, D. (Eds.), Proceedings of 16th International Conference on Computer
Aided Verification (CAV’04), Vol. 3114 of Lecture Notes in Computer Science, pp. 479–483.
Springer.

Gerede, C. E., & Su, J. (2007). Specification and Verification of Artifact Behaviors in Business
Process Models. In Krämer, B. J., Lin, K.-J., & Narasimhan, P. (Eds.), Proceedings of the 5th
International Conference on Service-Oriented Computing (ICSOC’07), Vol. 4749 of Lecture
Notes in Computer Science, pp. 181–192. Springer.

Gonzalez, P., Griesmayer, A., & Lomuscio, A. (2012). Verifying GSM-Based Business Artifacts.
In Goble, C. A., Chen, P. P., & Zhang, J. (Eds.), Proceedings of the 19th IEEE International
Conference on Web Services (ICWS’12), pp. 25–32. IEEE.

Grohe, M. (2001). Generalized Model-Checking Problems for First-Order Logic. In Ferreira, A.,
& Reichel, H. (Eds.), Proceedings of the 18th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’01), Vol. 2010 of Lecture Notes in Computer Science, pp. 12–26.
Springer.

Heath, F. T., Boaz, D., Gupta, M., Vaculı́n, R., Sun, Y., Hull, R., & Limonad, L. (2013). Barcelona:
A Design and Runtime Environment for Declarative Artifact-Centric BPM. In Basu, S., Pau-
tasso, C., Zhang, L., & Fu, X. (Eds.), Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC’13), Vol. 8274 of Lecture Notes in Computer Science,
pp. 705–709. Springer.

Hull, R. (2008). Artifact-Centric Business Process Models: Brief Survey of Research Results and
Challenges. In Meersman, R., & Tari, Z. (Eds.), Proceedings (part II) of Confederated In-
ternational Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008 (On the Move to
Meaningful Internet Systems: OTM’08), Vol. 5332 of Lecture Notes in Computer Science,
pp. 1152–1163. Springer.

Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath, III, F. T., Hobson, S., Line-
han, M., Maradugu, S., Nigam, A., Sukaviriya, P. N., & Vaculin, R. (2011). Business Artifacts
with Guard-Stage-Milestone Lifecycles: Managing Artifact Interactions with Conditions and
Events. In Eyers, D. M., Etzion, O., Gal, A., Zdonik, S. B., & Vincent, P. (Eds.), Proceedings
of the 5th ACM International Conference on Distributed Event-Based Systems (DEBS’11),
pp. 51–62. ACM.

Hull, R., Narendra, N. C., & Nigam, A. (2009). Facilitating Workflow Interoperation Using Artifact-
Centric Hubs. In Baresi, L., Chi, C.-H., & Suzuki, J. (Eds.), Proceedings of the 7th Interna-
tional Conference on Service-Oriented Computing (ICSOC-ServiceWave ’09), Vol. 5900 of
Lecture Notes in Computer Science, pp. 1–18. Springer.

Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter, M., Wozna, B.,
& Zbrzezny, A. (2008). VerICS 2007 - a Model Checker for Knowledge and Real-Time.
Fundamenta Informaticae, 85(1-4), 313–328.

Kupferman, O., Vardi, M. Y., & Wolper, P. (2000). An Automata-Theoretic Approach to Branching-
Time Model Checking. Journal of the ACM, 47(2), 312–360.

Lomuscio, A., Penczek, W., Solanki, M., & Szreter, M. (2011). Runtime Monitoring of Contract
Regulated Web Services. Fundamenta Informaticae, 111(3), 339–355.

375

BELARDINELLI, LOMUSCIO & PATRIZI

Lomuscio, A., Qu, H., & Raimondi, F. (2009). MCMAS: A Model Checker for the Verification of
Multi-Agent Systems. In Bouajjani, A., & Maler, O. (Eds.), Proceedings of the 21st Interna-
tional Conference on Computer Aided Verification (CAV’09), Vol. 5643 of Lecture Notes in
Computer Science, pp. 682–688. Springer.

Lomuscio, A., Qu, H., & Solanki, M. (2012). Towards Verifying Contract Regulated Service Com-
position. Autonomous Agents and Multi-Agent Systems, 24(3), 345–373.

Lomuscio, A., & Raimondi, F. (2006). The Complexity of Model Checking Concurrent Programs
Against CTLK Specifications. In Baldoni, M., & Endriss, U. (Eds.), Proceedings of the 4th
International Workshop on Declarative Agent Languages and Technologies (DALT’06), Se-
lected, Revised and Invited Papers, Vol. 4327 of Lecture Notes in Computer Science, pp.
29–42. Springer.

Marin, M., Hull, R., & Vaculı́n, R. (2013). Data Centric BPM and the Emerging Case Management
Standard: A Short Survey. In La Rosa, M., & Soffer, P. (Eds.), Proceedings of Business
Process Management Workshops - BPM 2012 International Workshops. Revised Papers, Vol.
132 of Lecture Notes in Business Information Processing, pp. 24–30. Springer.

Meyer, J.-J. C., & van der Hoek, W. (1995). Epistemic Logic for AI and Computer Science, Vol. 41
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.

Nigam, A., & Caswell, N. S. (2003). Business Artifacts: An Approach to Operational Specification.
IBM Systems Journal, 42(3), 428–445.

Nooijen, E., Fahland, D., & Dongen, B. V. (2013). Automatic Discovery of Data-Centric and
Artifact-Centric Processes. In La Rosa, M., & Soffer, P. (Eds.), Proceedings of Business
Process Management Workshops - BPM 2012 International Workshops. Revised Papers, Vol.
132 of Lecture Notes in Business Information Processing, pp. 316–327. Springer.

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.

Parikh, R., & Ramanujam, R. (1985). Distributed Processes and the Logic of Knowledge. In Parikh,
R. (Ed.), Logic of Programs, Vol. 193 of Lecture Notes in Computer Science, pp. 256–268.
Springer.

Singh, M. P., & Huhns, M. N. (2005). Service-Oriented Computing: Semantics, Processes, Agents.
John Wiley & Sons.

Wooldridge, M. (2000). Computationally Grounded Theories of Agency. In Proceedings of the 4th
International Conference on Multi-Agent Systems (ICMAS’00), pp. 13–22. IEEE.

Wooldridge, M. (2001). Introduction to Multiagent Systems. John Wiley & Sons.

376

