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Abstract

In this paper we present a tableau-based method to de-
cide the satisfiability of formulas in ATEL, an extension of
the alternating-time temporal logic ATL including epistemic
modalities for individual knowledge. Specifically, we anal-
yse satisfiability of ATEL formulas under a number of con-
ditions. We evaluate the assumptions of synchronicity and of
a unique initial state, which have been proposed in the con-
text of Interpreted Systems. Also, we consider satisfiability at
an initial state as opposed to any state in the system. We in-
troduce a tableau-based decision procedure for each of these
combinations. Moreover, we adopt an agent-based approach
to satisfiability, namely, the decision procedure returns a set
of agents inducing a concurrent game structure that satisfies
the relevant specification.

1 Introduction
Formal languages for knowledge reasoning and represen-
tation find increasingly application to the analysis of con-
current and reactive systems (van Harmelen, Lifschitz, and
Porter 2007). In particular, multi-modal epistemic logics
(Fagin et al. 1995; Meyer and Hoek 1995) have proved to
be an invaluable tool for the specification and verification
of systems of autonomous agents, especially in combina-
tion with temporal operators (Gammie and van der Meyden
2004; Lomuscio, Qu, and Raimondi 2009; Kacprzak et al.
2008). Among these multi-agent logics, the alternating-time
temporal epistemic logic ATEL has been proposed as a for-
mal language to represent and reason about individual and
group strategies, as well as the knowledge thereof (van der
Hoek and Wooldridge 2003; Jamroga and van der Hoek
2004). The theoretical properties of ATEL have been thor-
oughly investigated, also w.r.t. the assumptions of imperfect
information and commitment in strategies, thus producing
a wealth of results (Agotnes, Goranko, and Jamroga 2007;
Bulling, Dix, and Jamroga 2010).

This paper aims to make a novel contribution to the formal
analysis of logics of knowledge and strategies by introduc-
ing a tableau-based decision procedure for ATEL formulas.
Tableaux are a well-established technique to decide satisfia-
bility, actively researched both in the realm of logic and in
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theoretical computer science (D’Agostino et al. 1999). Re-
cently, a stream of papers has appeared on tableau meth-
ods for various flavours of temporal logics as well as multi-
agent epistemic logics (Goranko and Shkatov 2009a; 2009b;
2009c; Ajspur, Goranko, and Shkatov 2013). While we ex-
plicitly acknowledge the influence of these works and make
use of part of their formal machinery, we substantially ex-
tend the object of investigation. Specifically, our work dif-
fers from the contributions above in three ways. Firstly, we
adopt an agent-based perspective and consider agents as the
basic components of our epistemic concurrent game mod-
els. This means that the decision procedure returns not just a
model satisfying the formula if successful, instead a system
of agents is provided. Secondly, we follow the paradigm of
Interpreted Systems (Fagin et al. 1995) and consider forms
of interaction between the temporal and epistemic dimen-
sions. In particular, we introduce epistemic concurrent game
models which are synchronous or have a unique initial state.
Thirdly, we analyse two different notions of satisfiability,
namely satisfiability in some initial state, as opposed to sat-
isfiability in any state. We maintain that the former notion is
typical in the modelling and verification of concurrent sys-
tems (Baier and Katoen 2008), while the latter has tradition-
ally been studied in mathematical logic (Blackburn, de Ri-
jke, and Venema 2001). We will see that all these choices do
have an impact on tableaux construction.

The motivation for the present work comes also from the
fact that, besides the theoretical interest of algorithmic deci-
sion techniques, tableaux for ATEL can in principle be used
to synthesize agent systems capable of enforcing behaviours
specified as ATEL formulas. Thus, the investigations carried
out hereafter can be seen as a preliminary contribution to
bridge the gap between knowledge representation and model
synthesis.

Related Work. This contribution builds on a series of
papers on tableaux for multi-agent modal logics. Specif-
ically, (Goranko and Shkatov 2009a) puts forward incre-
mental tableaux for (non-epistemic) ATL; while in (Ajspur,
Goranko, and Shkatov 2013) an epistemic logic with group
knowledge is considered. In (Goranko and Shkatov 2009b;
2009c) the linear- and branching-time temporal epistemic
logics LTLK and CTLK are given tableau-based decision
procedures. However, we extend the object of investigation
as detailed above. In (Walther 2005) tableaux for ATEL are



presented, but their construction is top-down, while we fol-
low the references above and provide incremental tableaux.
This point is crucial because, even though in the worst case
the computational complexity remains the same, the in-
cremental procedure needs not to build all formula types.
Hence, for the purpose of implementation its performance
is, on average, better. On a related subject, we remark that
in (Goranko and Jamroga 2004) a translation from ATEL to
ATL is provided, but at the cost of an exponential blow-up.

Scheme of the paper. In Section 2 we present the epis-
temic concurrent game models and the logic ATEL; while
Section 3 introduces the Hintikka structures for ATEL. In
Section 4 we define the tableaux for satisfiability in any state
of the model; while Section 5 is dedicated to satisfiability
at initial states. We conclude in Section 6 and point to
future work. For reasons of space we provide sketches of
proof only in selected cases. An extended version with
some more details is available for the reader’s perusal at
www.ibisc.univ-evry.fr/˜belardinelli/kr2014.pdf.

2 Epistemic Concurrent Game Models
In this section we present the formal machinery that will be
used in the rest of the paper. We first introduce the epis-
temic concurrent game models, inspired to (van der Hoek
and Wooldridge 2003; Jamroga and van der Hoek 2004), by
adopting an agent-based perspective. Then, we consider the
alternating-time epistemic logic ATEL. We start with the no-
tion of agent.

Definition 1 (Agent) An agent is a tuple i =
〈Li, Acti, P ri〉 where

• Li is a set of local states li, l′i, . . .;
• Acti is the finite set of actions σi, σ′i, . . .;

• Pri : Li 7→ 2Acti is the protocol function.

Intuitively, at each moment the agent i is situated in some
local state li ∈ Li representing all the information she has.
In this respect we follow the typical approach to Multi-agent
Systems (Fagin et al. 1995; Wooldridge 2000). Also, we as-
sume that agents are autonomous and proactive, and perform
the actions in Acti according to the protocol function Pri.

As we are interested in agent interactions, we introduce
their composition. Given a set Ag = {i0, . . . , in} of agents,
we define the set L of global states s, s′, . . . (resp. the set
Act of joint actions σ, σ′, . . .) as the cartesian product L0 ×
. . .× Ln (resp. Act0 × . . .×Actn). In the rest of the paper
we fix a setAP of atomic propositions and represent the j-th
element of a tuple t = 〈t1, . . . , tn〉 as tj or t(j).

Definition 2 (ECGM) Given a set Ag = {i0, . . . , in} of
agents i = 〈Li, Acti, P ri〉, an epistemic concurrent game
model is a tuple P = 〈Ag, I, τ, π〉 where

• I ⊆ L is the set of initial global states;
• τ : L× Act 7→ L is the global transition function, where
τ(s, σ) is defined iff σi ∈ Pri(li) for every i ∈ Ag;

• π : AP → 2L is an interpretation of atomic propositions.

Intuitively, an ECGM evolves from an initial state in I
as specified by the global transition function τ , which re-
turns a successor state for each enabled joint action σ. In
line with the tradition of Interpreted Systems (Fagin et al.
1995), the agent i0 will be reserved to model the environ-
ment the agents act in. That is, i0 will encode all the relevant
information about the system that does not appear in the pri-
vate local state of any agent. In this capacity we denote i0 as
Env. Further, we observe that standard notions of concur-
rent game models can be defined in the present framework.
Specifically, given a global state s = 〈l0, . . . , ln〉 and an
agent i, we introduce the functions di(s) = |Pri(li)| for
the number of enabled actions, Di(s) = Pri(li) for the set
of enabled actions, and D(s) = {σ ∈ Act | for every i ∈
Ag, σi ∈ Pri(li)} = D0(s)×. . .×Dn(s) for the set of joint
enabled actions (Alur, Henzinger, and Kupferman 2002;
Goranko and Shkatov 2009a).

We now fix some more notation. The transition relation
→ on global states is defined so that s → s′ if there exists
σ ∈ Act and s σ−→ s′, i.e., τ(s, σ) = s′. We will also con-
sider the transitive closure →∗. A run λ from a state s, or
s-run, is an infinite sequence s0, s1, . . . s.t. si → si+1 and
s0 = s. For n,m ∈ N, with n ≤ m, we define λ(n) = sn

and λ[n,m] = sn, sn+1, . . . , sm. A state s′ is reachable
from s iff s→∗ s′. Now,R is the set of all s0-runs, for some
initial state s0 ∈ I , and S = {λ(n) | λ ∈ R, n ∈ N} is the
set of states reachable from any initial state. Further, let ] be
a placeholder for arbitrary actions. Given a groupA ⊆ Ag of
agents, an A-action σA is an |Ag|-tuple s.t. (i) σA(i) ∈ Acti
for i ∈ A, and (ii) σA(j) = ] for j /∈ A. We denote by ActA
the set of all such A-actions and DA(s) = {σA ∈ ActA |
for every i ∈ A, σi ∈ Pri(li)}. A joint action σ extends an
A-action σA, or σA v σ, iff σA(i) = σ(i) for all i ∈ A.
The outcome of an A-action σA at a state s, denoted by
out(s, σA), is the set of all states s′ for which there exists
a joint action σ ∈ Act s.t. σA v σ and τ(s, σ) = s′. As
for the epistemic component of ECGM, two global states
s = 〈l0, . . . , ln〉 and s′ = 〈l′0, . . . , l′n〉 are indistinguishable
for agent i, written s ∼i s′, iff li = l′i (Fagin et al. 1995).

In this paper we consider two conditions on ECGM.
Definition 3 An ECGM P
• is synchronous iff for every λ, λ′ ∈ R, i ∈ Ag, if λ(n) ∼i
λ′(n′) then n = n′;

• has a unique initial state iff |I| = 1.
Synchronicity and uniqueness of initial state are typically

considered in the context of Interpreted Systems, where their
impact on axiomatisations and the satisfiability problem has
been thoroughly assessed (Halpern and Vardi 1986; 1989;
Halpern, van der Meyden, and Vardi 2004). The meaning
of a unique initial state is intuitively clear; while in syn-
chronous ECGM the agents are assumed to have access to
a global clock. Hereafter, we denote the class of all ECGM
satisfying either uniqueness of initial state or synchronic-
ity with the superscripts uis and sync. Hence, for instance,
ECGMuis,sync is the class of all synchronous ECGM with
a unique initial state.

We now present the alternating-time epistemic logic
ATEL as a specification language for ECGM.



Definition 4 (ATEL) The ATEL formulas ϕ are defined in
BNF as follows:
ϕ ::= p | ¬ϕ | ϕ→ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ | Kiϕ

where A ⊆ Ag, i 6= Env, and Env /∈ A.

The language ATEL is an extension of the alternating-
time logic ATL enriched with an epistemic operator Ki for
each agent different from the environment (van der Hoek
and Wooldridge 2003). Also, the environment Env does
not appear in coalition modalities. This is once more in line
with the semantics of Interpreted Systems, where the envi-
ronment is seen as adversarial w.r.t. the other agents (Fagin
et al. 1995). The ATEL formulas (i) 〈〈A〉〉Xϕ, (ii) 〈〈A〉〉Gϕ
and (iii) 〈〈A〉〉ϕUϕ′ are read as “the agents in A have a
strategy to...” (i) “...enforce ϕ at the next state”, (ii) “...al-
ways enforce ϕ”, and (iii) “...enforce ϕ until ϕ′”. The epis-
temic formula Kiϕ intuitively means that “agent i knows
ϕ”. For ease of presentation we do not consider operators
for group knowledge, even if we envisage such an exten-
sion. In what follows we define (〈〈A〉〉X)kφ by induction
on k as (i) (〈〈A〉〉X)0φ = φ, and (ii) (〈〈A〉〉X)k+1φ =
(〈〈A〉X)k〈〈A〉〉Xφ. Also, the positive (resp. negative) X-
formulas have the form 〈〈A〉〉Xφ (resp. ¬〈〈A〉〉Xφ).

To intepret ATEL formulas on ECGM we need to intro-
duce the notion of a strategy for a setA of agents. Let γ be an
ordinal with 1 ≤ γ ≤ ω, a γ-recall A-strategy is a mapping
FA[γ] :

⋃
1≤n<1+γ S

n 7→
⋃
s∈S DA(s) s.t. FA[γ](κ) ∈

DA(lst(κ)) for every κ ∈
⋃

1≤n<1+γ S
n, where lst(κ) is

the last element of κ and 1 + γ = γ for γ = ω. Intu-
itively, a strategy returns an enabledA-action for every finite
sequence of states. We remark that, according to standard
terminology in concurrent game models (Bulling, Dix, and
Jamroga 2010), the agents in ECGM have perfect informa-
tion, that is, their strategies are determined by all informa-
tion available at each global state. Further, the outcome of
strategy FA[γ] at state s, or out(s, FA[γ]), is the set of all s-
runs λ s.t. λ(i+ 1) ∈ out(λ(i), FA[γ](λ[j, i])) for all i ≥ 0
and j = max(i − γ + 1, 0). Depending on γ, we can de-
fine positional strategies, perfect-recall strategies, etc. Since
these distinctions are not relevant for the present discussion,
as they all generate the same class of models, hereafter we
assume that γ is fixed and omit it.
Definition 5 (Semantics of ATEL) We define whether an
ECGM P satisfies a formula ϕ at state s, or (P, s) |= ϕ,
as follows:
(P, s) |= p iff s ∈ π(p)
(P, s) |= ¬ϕ iff (P, s) 6|= ϕ
(P, s) |= ϕ→ ϕ′ iff (P, s) 6|= ϕ or (P, s) |= ϕ′

(P, s) |= 〈〈A〉〉Xϕ iff there is an A-strategy FA s.t. for all
λ ∈ out(s, FA), (P, λ(1)) |= ϕ

(P, s) |= 〈〈A〉〉Gϕ iff there is an A-strategy FA s.t. for all
λ ∈ out(s, FA), i ≥ 0, (P, λ(i)) |= ϕ

(P, s) |= 〈〈A〉〉ϕUϕ′ iff there is an A-strategy FA s.t. for all
λ ∈ out(s, FA) there is k ≥ 0
s.t. (P, λ(k)) |= ϕ′, and for all j,
0 ≤ j < k implies (P, λ(j)) |= ϕ

(P, s′) |= Kiϕ iff for all s′ ∈ S, s ∼i s′ implies (P, s′) |= ϕ

As to the notion of satisfaction, multiple choices are pos-
sible. In mathematical logic satisfaction typically takes into

account all the states in a system (Blackburn, de Rijke, and
Venema 2001); while in the modelling of concurrent systems
satisfaction w.r.t. initial states only is also considered (Baier
and Katoen 2008). This remark motivates the following def-
inition.

Definition 6 (Satisfaction) An ATEL-formula θ is S-
satisfied (resp. I-satisfied) in a ECGM P iff there exists
s ∈ S (resp. s ∈ I) s.t. (P, s) |= θ.

While for general ECGM the two notions are equiva-
lent, under the assumptions of a unique initial state or syn-
chronicity this is not longer the case. For instance, the
ATEL-formula 〈〈∅〉〉Gφ ∧ 〈〈A〉〉F¬Kiφ is not I-satisfiable
in ECGMuis, but it is S-satisfiable in the same class. Sim-
ilarly, the ATEL-formula (〈〈∅〉〉X)kφ ∧ (〈〈A〉〉X)k¬Kiφ is
not I-satisfiable in ECGMuis,sync, but it is S-satisfiable.
Indeed, for ECGM with a unique initial state, the opera-
tor 〈〈∅〉〉G acts as a universal modality, traversing the whole
state space. We maintain that both notions of satisfaction are
of interest and will analyse both. In the following lemma
we report the equivalences between classes of formulas,
where, for instance, ATELuisI is the set of ATEL-formulas
I-satisfiable in the class ECGMuis.

Lemma 1 Only the classes of ATEL formulas in each box
are equal.

ATELS = ATELuisS = ATELsyncS = ATELsync,uisS
= ATELI = ATELsyncI

ATELuisI
ATELsync,uisI

Sketch of Proof. The inequalities ATELuisI 6=
ATELuisS and ATELuis,syncI 6= ATELuis,syncS follow by
the formulas considered above. To prove that ATELI =
ATELS it suffices to consider sub-models generated from
a specific state; while ATELS = ATELsyncS follows from
the fact that we can always distinguish runs by adding new
propositions to our language, and then add or remove initial
segments of runs. Finally, ATELS = ATELuis,syncS as we
can always add dummy initial states.

By Lemma 1 we have to consider three distinct cases:
ATELS , ATELuisI , and ATELsync,uisI , which will be the
main focus of the paper. Hereafter we simply refer to satis-
faction to indicate any of the two notions above. Moreover,
satisfiability can be also considered w.r.t. different sets of
agents. Let Agθ be the set of agents mentioned in an ATEL-
formula θ, whileAg+

θ = Agθ∪{Env} (remember thatEnv
does appear in θ.)

Definition 7 An ATEL-formula θ is

1. Ag-satisfiable, for some Ag ⊇ Ag+
θ , iff θ is satisfiable in

an ECGM P = 〈Ag, I, τ, π〉;
2. generally satisfiable iff θ is satisfiable in an ECGM P =
〈Ag, I, τ, π〉 for some Ag ⊇ Ag+

θ .

By “absorbing” the agents in Ag \ Agθ in the environ-
ment and by adding dummy agents, we can now prove the
following result that extends Corollary 2.25 in (Goranko and
Shkatov 2009a) to ATEL.



Theorem 2 Every ATEL-formula θ is generally satisfiable
iff it is Ag+

θ -satisfiable.

Sketch of Proof. We show that if Ag ⊇ Ag+
θ , then θ is

Ag-satisfiable iff it is Ag+
θ -satisfiable. The result therefore

easily follows.
⇒ Suppose that θ is Ag-satisfiable in an ECGM P =

〈Ag, I, τ, π〉. Define the new environment Env′ as follows:
• LEnv′ =

Q
b∈Ag\Agθ

Lb;

• ActEnv′ =
Q
b∈Ag\Agθ

Actb;

• for lEnv′ = 〈lEnv, lb1 , . . . , lbm〉, PrEnv′(lEnv′) =
PrEnv(lEnv)× Prb1(lb1)×, . . . ,×Prbm(lbm).

Further, for lEnv′ = 〈lEnv, lb1 , . . . , lbm〉 and σEnv′ =
〈σEnv, σb1 , . . . , σbm〉, define
• I ′ = {〈lEnv′ , l1, . . . , l|Agθ|〉 |
〈lEnv, l1, . . . , l|Agθ|, lb1 , . . . , lbm〉 ∈ I};

• τ ′(s, σ) = τ(〈lEnv, l1, . . . , l|Agθ|, lb1 , . . . , lbm〉,
〈σEnv, σ1, . . . , σ|Agθ|, σb1 , . . . , σbm〉);

• π′(〈lEnv′ , l1, . . . , l|Agθ|〉) =
π(〈lEnv, l1, . . . , l|Agθ|, lb1 , . . . , lbm〉).

It is now possible to prove that θ is Ag+
θ -satisfiable in

P ′ = 〈Ag+
θ , I

′, τ ′, π′〉. Notice that the construction above is
admissible as ATEL formulas do not mention the environ-
ment.
⇐ Suppose that θ is Ag+

θ -satisfiable in an ECGM P =
〈Ag+

θ , I, τ, π〉. For every b ∈ Ag \ Ag+
θ , let Lb = Actb =

{1}, and Prb(1) = {1}.
Now define

• I ′ = {〈lEnv, l1, . . . , l|Ag+
θ
|,
~1〉 | 〈lEnv, l1, . . . , l|Ag+

θ
|〉 ∈ I};

• τ ′(〈lEnv, l1, . . . , l|Ag+
θ
|,
~1〉, 〈σEnv, σ1 . . . , σ|Ag+

θ
|,
~1〉) =

τ(〈lEnv, l1, . . . , l|Ag+
θ
|〉, 〈σEnv, σ1, . . . , σ|Ag+

θ
|〉);

• π′(〈lEnv, l1, . . . , l|Ag+
θ
|,
~1〉) = π(〈lEnv, l1, . . . , l|Ag+

θ
|〉).

We can show that θ is Ag-satisfiable in P ′ =
〈Ag, I ′, τ ′, π′〉.

As a result, it is sufficient to consider Ag+
θ -satisfiability

when checking for models of ATEL formulas.

3 Hintikka Structures for ECGM
Tableau-based methods do not provide directly the formula
in question with a relevant model (ECGM in the present
case), but they first go through the construction of Hintikka
structures. The main difference between ECGM and Hin-
tikka structures is that, while the former define truth con-
ditions for every ATEL formula on the set AP of atomic
propositions, the latter is only concerned with formulas
‘related’ to the satisfaction of the formula to be checked.
To specify this relation between ATEL formulas, we intro-
duce the distinction between α- and β-formulas of ATEL in
Fig. 1. Intuitively, the states in a Hintikka structures are sets
of formulas that contain α1 and α2 (resp. β1 or β2) when-
ever they contain α (resp. β), according to the semantics of
the main logical symbol. This idea is made precise by the
following definition.

α α1 α2

¬¬φ φ φ
¬(φ→ ψ) φ ¬ψ
〈〈A〉〉Gφ φ 〈〈A〉〉X〈〈A〉〉Gφ
Kiφ φ Kiφ

β β1 β2

φ→ ψ ¬φ ψ
〈〈A〉〉(φUψ) ψ φ ∧ 〈〈A〉〉X〈〈A〉〉(φUψ)
¬〈〈A〉〉(φUψ) ¬φ ∧ ¬ψ ¬ψ ∧ ¬〈〈A〉〉X〈〈A〉〉(φUψ)
¬〈〈A〉〉Gφ ¬φ ¬〈〈A〉〉X〈〈A〉〉Gφ

Figure 1: α- and β-formulas in ATEL.

Definition 8 A set ∆ of ATEL formulas is

• consistent if it does not contain both ψ and ¬ψ.
• downward saturated if

1. α ∈ ∆ implies α1 ∈ ∆ and α2 ∈ ∆;
2. β ∈ ∆ implies β1 ∈ ∆ or β2 ∈ ∆.

The states of a Hintikka structure will be consistent and
downward saturated sets of ATEL formulas. To introduce
the epistemic concurrent game Hintikka structures, we need
to present the notions of co-action and co-strategy from
(Goranko and van Drimmelen 2006). First, a co-A-move at
state s is a function σcA : DA(s)→ D(s) s.t. σA v σcA(σA);
Dc
A(s) denotes the set of all co-A-moves at s. Further,

out(s, σcA) = {τ(s, σcA(σA)) | σA ∈ DA(s)} is the out-
come of σcA at s. Then, a γ-recall co-A-strategy is a mapping
F cA[γ] :

⋃
1≤n<1+γ S

n 7→
⋃
s∈S D

c
A(s) s.t. F cA[γ](κ) ∈

Dc
A(lst(κ)) for every κ ∈

⋃
1≤n<1+γ S

n. Finally, the out-
come of F cA[γ] at s is the set out(s, F cA[γ]) of all s-runs λ
s.t. λ(i + 1) ∈ out(λ(i), F cA[γ](λ[j, i])) for all i ≥ 0 and
j = max(i − γ + 1, 0). Co-strategies are used to define
the labelling function of Hintikka structures in the cases of
ATEL-formulas ¬〈〈A〉〉Xϕ and ¬〈〈A〉〉Gϕ. In what follows
we assume γ fixed and omit it.

Definition 9 (ECGHS) Let A be a finite set of agent in-
dexes i0, . . . , in. An epistemic concurrent game Hintikka
structure, or ECGHS, is a tuple H = 〈S, I, {Acti}i∈A,
{∼i}i∈A\{Env}, τ,H〉 where

• S is a set of states;
• I ⊆ S is a set of initial states;
• for each i ∈ A, Acti is a finite set of actions;
• τ : S ×Act→ S is the transitions function;
• for each i ∈ A \ {Env}, ∼i is a symmetric, reflexive and

transitive relation on S;
• H is a labelling function from S to sets of ATEL formulas

s.t.
H1 if ¬φ ∈ H(s) then φ /∈ H(s);
H2 every H(s) is downward saturated;
H3 if 〈〈A〉〉Xϕ ∈ H(s) then there is an A-strategy FA s.t. for

all λ ∈ out(s, FA), ϕ ∈ H(λ(1));
H4 if ¬〈〈A〉〉Xϕ ∈ H(s) then there is a co-A-strategy F cA

s.t. for all λ ∈ out(s, F cA), ¬ϕ ∈ H(λ(1));



H5 if ¬〈〈A〉〉Gϕ ∈ H(s) there is a co-A-strategy F cA s.t. for
all λ ∈ out(s, F cA) there is i ≥ 0 s.t. ¬ϕ ∈ H(λ(i));

H6 if 〈〈A〉〉ϕUϕ′ ∈ H(s) there is an A-strategy FA s.t. for all
λ ∈ out(s, FA) there is k ≥ 0 s.t. ϕ′ ∈ H(λ(k)), and for
all j, 0 ≤ j < k implies ϕ ∈ H(λ(j));

H7 if s ∼i s′ then Kiϕ ∈ H(s) iff Kiϕ ∈ H(s′);
H8 if ¬Kiϕ ∈ H(s) then there is s′ ∈ S s.t. s ∼i s′ and
¬ϕ ∈ H(s′).

Notice that conditions H3-8 mimic the satisfaction clauses
for ATEL formulas in Def. 5. Also, ECGHS are syn-
tactic structures, where each state is labelled by a finite
set of ATEL formulas. In addition, the main difference
w.r.t. ECGM consists in that global states are primitive. This
implies that the indistinguishability relations ∼i are also
primitive. Further, as for ECGM, we can define a notion of
run, as well as the setR of all runs. Hence, we can introduce
the following classes of ECGHS.

Definition 10 An ECGHSH
• is synchronous iff for every λ, λ′ ∈ R, i ∈ A, if λ(n) ∼i
λ′(n′) then n = n′;

• has a unique initial state iff |I| = 1.

Further, similarly to the case for ECGM, we introduce two
notions of satisfaction.

Definition 11 (Satisfaction) An ECGHS H S-satisfies
(resp. I-satisfies) an ATEL-formula θ iff θ ∈ H(s) for some
s ∈ S (resp. s ∈ I).

The tableau procedure that we present in the following
sections ultimately generates a Hintikka structure. From this
ECGHS we are always able to extract an ECGM, as stated
in the following result.

Theorem 3 Given a finite set A of agent indexes and an
ECGHSH onA that S-satisfies (resp. I-satisfies) an ATEL-
formula θ, we can derive a finite set A of agents and an
ECGMP onA that also S-satisfies (resp. I-satisfies) θ. Fur-
ther, this can be done so as to preserve synchronicity and
uniqueness of initial state.

Sketch of Proof. Let H = 〈S, I, {Acti}i∈A, {∼i
}i∈A\{Env}, τ,H〉 be an ECGHS satisfying θ and APθ the
set of atomic propositions appearing in θ. First, we define an
agent for each i ∈ A starting from the environment Env,
defined as 〈LEnv, ActEnv, P rEnv〉 where (i) LEnv = S;
(ii) ActEnv = Act; and (iii) σ ∈ PrEnv(s) iff τ(s, σ) is
defined (notice that the set ActEnv of the environment’s ac-
tions has been redefined.) Further, for each i ∈ A \ {Env}
we define an agent i = 〈Li, Acti, P ri〉where (i) Li = S/∼i ,
i.e., the set of equivalence classes [s]i, for s ∈ S, modulo
the equivalence relation ∼i; (ii) σi ∈ Pri([s]i) iff there ex-
ists s′ ∈ [s]i and σ′ ∈ Act s.t. σ′(i) = σi and τ(s′, σ′) is
defined. Now, given A = {Env, i1, . . . , in}, we define the
ECGM P = {A, I ′, τ ′, π} s.t.
• I ′ = {〈s0, [s0]1, . . . , [s0]n〉 | s0 ∈ I};
• τ ′(〈s, [s]1, . . . , [s]n〉, 〈σ, σ1, . . . , σn〉) =
〈τ(s, σ), [τ(s, σ)]1, . . . , [τ(s, σ)]n〉

• for p ∈ APθ , π(p) = {〈s, [s]1, . . . , [s]n〉 ∈ S | p ∈ H(s)}.

Notice that the transition function τ ′ is well-defined. In
particular, for every s ∈ S, σ ∈ Act′, τ ′(s, σ) is defined
iff σi ∈ Pr(li) for every i ∈ A. Finally, if H is either syn-
chronous or has a unique initial state, then also P does. The
result now follows from the next lemma.

Lemma 4 For every ATEL-formula χ, χ ∈ H(s) implies
(P, s) |= χ and ¬χ ∈ H(s) implies (P, s) |= ¬χ.

As a consequence of Theorem 3, satisfiability w.r.t. Hin-
tikka structures suffices to obtain satisfiability w.r.t. ECGM.
Also, we underline that Theorem 3 is constructive as it pro-
vides a set A of agents generating the ECGM P . In this re-
spect our approach is agent-based. In the following sections
we present the tableau-based procedures for deciding satis-
fiability of ATEL formulas.

4 Tableaux for S-Satisfiability
In this section we introduce a tableau-based decision pro-
cedure for S-satisfiability of ATEL formulas. Specifically,
we build on the methods developed for (non-epistemic) ATL
and multi-agent epistemic CMAEL(CD) in (Goranko and
Shkatov 2009a; Ajspur, Goranko, and Shkatov 2013). As
stated in Lemma 1, for S-satisfiability the assumptions of
a unique initial state or synchronicity do not affect satisfia-
bility of ATEL formulas. Moreover, general S-satisfiability
cover also the cases of ATELI and ATELsyncI . Nonethe-
less, we deem the tableaux for S-satisfiability interesting in
themselves, as well as useful for a comparison with the case
of I-satisfiability. Indeed in this section we introduce no-
tions and present results that will be used also in Section 5.

Similarly to (Goranko and Shkatov 2009a; Ajspur,
Goranko, and Shkatov 2013), the tableau procedure for
ATEL consists of two phases: a construction phase, where
a pre-tableau is populated with states and prestates (i.e.,
sets of formulas), and an elimination phase, where the pre-
tableau is pruned into a proper tableau by removing pre-
states together with “unsatisfiable” states. The aim of the
whole construction is to obtain a tableau from which it is
possible to extract a Hintikka structure iff the relevant for-
mula is satisfiable. We start with the construction phase.

4.1 Construction Phase
The construction of the pre-tableau pre-T θ for an ATEL-
formula θ proceeds in stages. At each stage rules are ap-
plied to create either states from pre-states or pre-states from
states. The process starts with the pre-state Γ = {θ} con-
taining the ATEL formula to be checked. Then at each stage
we apply one of the rules SRS , KS and NextS that adapt
the corresponding rules in (Goranko and Shkatov 2009a;
2009c). In what follows we say that a set ∆ of formulas
is a minimal downward saturated extension of a set Γ if (i)
∆ is downward saturated, (ii) Γ ⊆ ∆, and (iii) there is no
downward saturated ∆′ s.t. Γ ⊆ ∆′ ⊂ ∆. The first rule we
present allows us to build states from pre-states.

Definition 12 (Saturation Rule SRS) Given a pre-state Γ
s.t. SRS has not been applied to Γ, for every consistent and
minimal downward saturated extensions ∆ of Γ,



• if the pre-tableau contains a state ∆′ that coincides with
∆, set Γ⇒ ∆′;

• else,
– add ∆ as a new state to the pre-tableau;
– if ∆ contains no positive nor negative X-formula, then

add 〈〈Agθ〉〉X> to ∆;
– set Γ⇒ ∆.
The (finite) set of states {∆ | Γ ⇒ ∆} is denoted by

states(Γ). To introduce the next rule we need some more no-
tation. Hereafter, ∆|Ki denotes the set {Kiψ | Kiψ ∈ ∆}.
Also, we do not distinguish between a finite set of formu-
las and their conjunction, the contex will disambiguate. The
next rule is disegned to ensure the satisfaction of epistemic
possibilities of the form ¬Kiφ.
Definition 13 (Rule KS) Given a state ∆ s.t. KS has not
been applied to ∆, for every ¬Kiφ ∈ ∆ and consistent Γ =
{¬φ} ∪∆|Ki ,
• if the pre-tableau contains a pre-state Γ′ = Γ, set

∆
¬Kiφ−−−→ Γ′;

• else, add Γ as a new pre-state and set ∆
¬Kiφ−−−→ Γ.

Finally, we consider the rule NextS , which builds the next
level of pre-states.
Definition 14 (Rule NextS) Given a state ∆ s.t. NextS has
not been applied to ∆,

1. order linearly all positive X-formulas of ∆ followed by
all negative ones:

L = 〈〈A0〉〉Xφ0, . . . , 〈〈Am−1〉〉Xφm−1,

¬〈〈B0〉〉Xψ0, . . . ,¬〈〈Bl−1〉〉Xψl−1

(because of SRS ,L is always non-empty.) Let r∆ = m+l
and D(∆) = {0, . . . , r∆ − 1}|Ag

+
θ |. Further, for every

σ ∈ D(∆), we set N(σ) = {i | σi ≥ m} and neg(σ) =∑
i∈N(σ)(σi −m) mod l.

2. For each σ ∈ D(∆) consider every consistent

Γσ = {¬ψq | ¬〈〈Bq〉〉Xψq ∈ ∆, neg(σ) = q,Ag+
θ \Bq ⊆ N(σ)}

∪{φp | 〈〈Ap〉〉Xφp ∈ ∆ and σi = p for all i ∈ Ap} (1)

where Γσ = {>} if the set on the RHS of (1) is empty.
• If the pre-tableau contains a pre-state Γ′ = Γσ , set

∆ σ−→ Γ′;
• else, add Γσ as a new pre-state and set ∆ σ−→ Γσ .
We remark that by definition of SRS , KS and NextS , no

state nor pre-state in pre-T θ is inconsistent, i.e., it does not
contain both φ and ¬φ. Also, we denote the (finite) set of
pre-states {Γ | ∆ σ−→ Γ for some σ} as pre-states(∆). We
now briefly describe the construction of the pre-tableau for
an ATEL-formula θ. We begin at stage k = 0 by creating
a pre-state Γ = {θ} for the input formula θ. Then, at each
stage k > 0, we alternatingly apply the rule SRS to obtain
the states in states(Γ), followed by NextS and KS to cre-
ate the next level of pre-states and the epistemically related
pre-states. The construction phase terminates, after a finite
number of stages, when KS and NextS do not produce any
new pre-state, nor SRS new states. We conclude this section
with an example.

Example 1 Fig. 2 shows a fragment of the pre-tableau for
the ATEL-formula θ1 = 〈〈1〉〉F¬K2p∧K1〈〈2〉〉Gp obtained
by applying rules SRS and NextS only. We present this re-
stricted structure as it will be used later on. Also, the en-
vironment’s actions are omitted. Indeed, since no negative
X-formula appears in the pre-tableau, it suffices to con-
sider each action σ1, σ2 in Fig. 2 as a shorthand for the set
{σEnv, σ1, σ2 | 0 ≤ σEnv < r∆}. �

4.2 Elimination phase
After completion of the pre-tableau pre-T θ we step into the
elimination phase, where we prune pre-T θ first by remov-
ing all pre-states, and then by deleting “unsatisfiable” states.
We have already noticed that by construction no state in
the pre-tableau is inconsistent. Moreover, if a state either (i)
has no successor for an enabled joint action, or (ii) it does
not fulfil an epistemic possibility, or (iii) it does not fulfil a
temporal eventuality, then it is removed. We make this intu-
ition precise in the following elimination rules, adapted from
(Goranko and Shkatov 2009a).
Definition 15 (Rule PR) For every state ∆ and pre-state Γ
in pre-T θ, and ∆′ ∈ states(Γ),

• if ∆ C−→ Γ then ∆ C−→ ∆′, whereC can be either an action
σ or an epistemic possibility ¬Kiφ;

• remove Γ from pre-T θ.

We now describe the process of state elimination also in
stages. We start with the tableau T θ0 , obtained by applying
PR to pre-T θ. At each stage n we apply one of the rules
E1-3 below to obtain the tableau T θn+1.

E1 If for some σ ∈ D(∆) there is no ∆′ ∈ T θn s.t. ∆ σ−→ ∆′,
then T θn+1 = T θn \ {∆}.

E2S If for some ¬Kiφ ∈ ∆ there is no ∆′ ∈ T θn s.t. ∆
¬Kiφ−−−→

∆′, then T θn+1 = T θn \ {∆}.
Rule E1 removes states with no successor for an enabled

action; while E2S deletes states with unrealized epistemic
possibilities. Rule E3 to be introduced deals with the real-
isation of temporal eventualities, namely the satisfaction of
formulas of the form 〈〈A〉〉φUψ and ¬〈〈A〉〉Gφ. To present
E3 we consider the following notation. Let ∆ be a state in
T θ0 and 〈〈A〉〉Xφ (resp. ¬〈〈B〉〉Xψ) the p-th (resp. q-th) for-
mula in the linear ordering L of X-formulas of ∆ in the
application of NextS . Then,

D(∆, 〈〈A〉〉Xφ) = {σ ∈ D(∆) | σi = p for every i ∈ A}

D(∆,¬〈〈B〉〉Xψ) = {σ ∈ D(∆) | neg(σ) = q andAg+θ \ B ⊆ N(σ)}

We can now define when a temporal eventuality is real-
ized.
Definition 16 (Realization of temporal eventualities) A
temporal eventuality β = 〈〈A〉〉φUψ (resp. ¬〈〈A〉〉Gφ) in
∆ ∈ T θn is realized at ∆ iff

1. β1 ∈ ∆, or
2. β2 ∈ ∆ and for every σ ∈ D(∆, 〈〈A〉〉X〈〈A〉〉φUψ)

(resp. D(∆,¬〈〈A〉〉X〈〈A〉〉Gφ)) there exists ∆′ ∈ T θn s.t.
(i) ∆ σ−→ ∆′; and (ii) β is realized at ∆′ ∈ T θn .



θ1 = 〈〈1〉〉F¬K2p ∧K1〈〈2〉〉Gp(Γ1)

θ1, 〈〈1〉〉F¬K2p, K1〈〈2〉〉Gp,
〈〈2〉〉Gp, p, 〈〈2〉〉X〈〈2〉〉Gp, ¬K2p

(∆1.1)
θ1, 〈〈1〉〉F¬K2p, K1〈〈2〉〉Gp,
〈〈2〉〉Gp, p, 〈〈2〉〉X〈〈2〉〉Gp,
〈〈1〉〉X〈〈1〉〉F¬K2p

(∆1.2)

(Γ1.1.1) 〈〈2〉〉Gp (Γ1.2.1) 〈〈2〉〉Gp,
〈〈1〉〉F¬K2p

(Γ1.2.2) > (Γ1.2.3)
〈〈1〉〉F¬K2p

(∆1.1.1.1) 〈〈2〉〉Gp, p,
〈〈2〉〉X〈〈2〉〉Gp

(∆1.2.1.1)
〈〈1〉〉F¬K2p, ¬K2p,
〈〈2〉〉Gp, p,
〈〈2〉〉X〈〈2〉〉Gp

(∆1.2.2.1) >,
〈〈1, 2〉〉X>

(∆1.2.1.2)
〈〈1〉〉F¬K2p,

〈〈1〉〉X〈〈1〉〉F¬K2p,
〈〈2〉〉Gp, p,
〈〈2〉〉X〈〈2〉〉Gp

(∆1.2.3.1)
〈〈1〉〉F¬K2p, ¬K2p,
〈〈1, 2〉〉X>

(∆1.2.3.2)
〈〈1〉〉F¬K2p,

〈〈1〉〉X〈〈1〉〉F¬K2p

0, 0
0, 0

0, 11, 1 1, 0

0, 0

0, 0

0, 0

0, 0

0, 0
1, 00, 1

1, 1

0, 0

Figure 2: fragment of the pre-tableau for θ1 = 〈〈1〉〉F¬K2p ∧K1〈〈2〉〉Gp obtained by applying SRS and NextS only.

We can now state the final elimination rule.
E3 If ∆ ∈ T θn contains an unrealized temporal eventuality,

then T θn+1 = T θn \ {∆}.
The elimination phase terminates when none of the rules

E1-3 is any longer applicable (obviously, this happens after
a finite number of stages.) The tableau thus obtained is de-
noted as T θ. In particular, we say that Tθ is open if θ ∈ ∆
for some ∆ ∈ Tθ; otherwise, it is closed. In the next sections
we show the soundness and completeness of the tableau pro-
cedure, that is, the tableau T θ is open iff θ is S-satisfiable.

4.3 Soundness
In this section we outline the soundness proof for the tableau
procedure presented above, which amounts to the following
result:

Theorem 5 (Soundness) If θ is S-satisfiable, then T θ is
open.

The proof of Theorem 5 consists of two parts. First, we
use the following lemma to show that if θ is S-satisfiable,
then at least one of the states in states({θ}) is S-satisfiable.

Lemma 6 Let Γ be an S-satisfiable pre-state in pre-T θ
Then, at least one ∆ ∈ states(Γ) is S-satisfiable.

Then, we show that no satisfiable state is removed during
the elimination phase. The soundness result then follows, as
θ belongs to ∆ ∈ T θ, for some ∆ ∈ states({θ}). To show
that no S-satisfiable state is removed, we prove by induction
on the number n of stages that, for every ∆ ∈ T θ0 , if ∆ is S-
satisfiable, then ∆ is not removed at stage n. The base case
for n = 0 is trivial as no elimination rule has been applied.
As regards the inductive step, we consider each elimination
rule separately. As regards E1, it can be shown that if ∆ is
S-satisfiable, then all the pre-states obtain by an application
of NextS are also S-satisfiable (adapted from Lemma 5.2 in
(Goranko and Shkatov 2009a)). Further, by Lemma 6, T θ0
contains for every σ ∈ D(∆) at least one S-satisfiable ∆′

s.t. ∆ σ−→ ∆′. By the induction hypothesis, all such ∆′ be-
long to T θn . Thus, ∆ cannot be eliminated from T θn by an
application of E1. The line of reasoning for E2S is similar
to E1, but we make use of the following lemma.

Lemma 7 If ∆ is S-satisfiable and ¬Kiφ ∈ ∆, then the set
Γ = {¬φ} ∪∆|Ki is also S-satisfiable.

Sketch of Proof. To derive a contradiction, suppose that
(P, s) |= ∆ for some ECGM P and s ∈ P , and for ev-
ery s′ ∈ P , s ∼i s′ implies (P, s′) 6|= Γ. This means
that (P, s′) |= ∆|Ki → φ. However, s ∼i s′ implies
(P, s′) |= ∆|Ki . But then (P, s′) |= φ and we obtain that
(P, s) |= Kiφ against hypothesis.

Again by Lemma 6, for ¬Kiφ ∈ ∆, T θ0 contains at

least one S-satisfiable ∆′ ⊇ Γ s.t. ∆
¬Kiφ−−−→ ∆′. Thus,

by the induction hypothesis ∆ cannot be eliminated from
T θn due to E2S . As regards E3, we need to show that S-
satisfiable states do not contain unrealized temporal eventu-
alities. To this end, we introduce realization trees. In what
follows σAp [〈〈Ap〉〉Xφp] (resp. σBq [¬〈〈Bq〉〉Xψq]) denotes
the Ap-move σAp ∈ DAp(∆) s.t. σAp(i) = p for ev-
ery i ∈ A (resp. the co-Bq-move σBq ∈ DBq (∆) s.t.
neg(σcBq (σBq )) = q and Ag+

θ \Bq ⊆ N(σcBq (σBq ))).

Definition 17 (Realization Tree) A realization tree for
a temporal eventuality β = 〈〈A〉〉φUψ ∈ ∆
(resp. ¬〈〈A〉〉Gφ ∈ ∆) at state ∆ ∈ T θn is a finite T θn -
labelled treeR = (R,→) such that

1. the root r ∈ R is labelled with ∆;
2. if an interior node ofR is labelled with ∆′, then β2 ∈ ∆′;
3. for every interior node w ∈ R labelled with ∆′,

the children of w are labelled bijectively with the
states from an outcome set of σA[〈〈A〉〉X〈〈A〉〉φUψ]
(resp. σA[¬〈〈A〉〉X〈〈A〉〉Gφ]) in DA(∆′);

4. if a leaf is labelled with ∆′, then {β1, β} ⊆ ∆′.
We can now state the following lemma, analogous to

Lemmas 5.13 and 5.14 in (Goranko and Shkatov 2009a).

Lemma 8 Let ξ ∈ ∆ be a temporal eventuality and ∆ ∈ T θ0
be S-satisfiable. Then,

• there exists a realization tree R = (R,→) for ξ at ∆. In
particular, every ∆′ labelling a node ofR is S-satisfiable;
• ξ is realized in T θn at every ∆′ labelling a node of R, in

particular at ∆.



We conclude that if ∆ is S-satisfiable, then is does not
contain unrealized temporal eventualities, and therefore it
will not be eliminated by E3. As a result, if a state ∆ ⊇ {θ}
is S-satisfiable, then it is not removed during the elimination
phase. Hence, some ∆ ⊇ {θ} belongs to T θ, i.e., T θ is
open.

4.4 Completeness
The completeness proof consists in showing that if the
tableau T θ is open, then the ATEL-formula θ is S-
satisfiable.

Theorem 9 (Completeness) If T θ is open, then θ is S-
satisfiable.

The proof amounts to building an ECGHS Hθ starting
from the open tableau T θ. By Theorem 3 the desired result
immediately follows. Specifically, when building the Hin-
tikka structure for θ we take care of satisfying conditions
H5, H6 and H8 for temporal eventualities and epistemic pos-
sibilities. We start with some definitions from (Goranko and
Shkatov 2009a; 2009c).

Definition 18 A T θ-treeW = (W,→)

• is locally consistent iff for every interior node w ∈ W
with l(w) = ∆ and every successor ∆′ of ∆ there is ex-
actly one w′ ∈W s.t. l(w → w′) = {σ | ∆ σ−→ ∆′};

• is simple if it has no interior node different from the root;
• realizes a temporal eventuality ξ if there exists a subtree
Rξ of W s.t. Rξ is a realization tree for ξ.

We can now state the following result.

Lemma 10 Let ∆ ∈ T θ and ξ be a temporal eventuality in
T θ. Then, there exists a temporal component for ξ and ∆, or
F (ξ,∆), defined as follows:

• if ξ ∈ ∆ then F (ξ,∆) is a finite locally consistent T θ-tree
rooted at ∆ that realizes ξ;

• if ξ /∈ ∆ then F (ξ,∆) is a locally consistent simple T θ-
tree rooted at ∆.

We now outline the construction of the ECGHS Hθ sat-
isfying an ATEL-formula θ. The construction proceeds in
stages. First, we list all states in T θ as ∆0, . . . ,∆n−1 and
all temporal eventualities as ξ0, . . . , ξm−1. Further, we as-
sume that the temporal components are arranged in anm×n
matrix, whose rows (resp. columns) are marked with the
corresponding temporal eventualities (resp. states). Hence,
Fp,q = F (ξp,∆q). Now, if θ is the temporal eventuality ξp,
for p < m, we set S0

0 = Fp,q for some q s.t. θ ∈ ∆q . Other-
wise, we set S0

0 = F0,q , where q is as above. For the induc-
tion step, suppose that we have defined Si

k. Then, we con-
struct Si+1

k by realizing all temporal eventualities ξ ∈ Si
k.

That is, we keep track of the last realized eventuality, say ξi,
and replace every deadlocked state w such that l(w) = ∆j

with the temporal component F(i+1) mod m,j . We repeat the
procedure until all temporal eventualities have been realized.
Further, given Si

k we construct Si
k+1 by adding for every

∆ ∈ Si
k and every epistemic possibility ¬Kiφ ∈ ∆ a state

∆′ ∈ T θ s.t. ¬φ ∈ ∆′. Notice that such ∆′ always exists

(Γ′1) ∆1.1, 〈〈1, 2〉〉F¬p

(∆′1.1) ∆1.1, 〈〈1, 2〉〉F¬p,
〈〈1, 2〉〉X〈〈1, 2〉〉F¬p

(Γ′1.1.2)
Γ1.2.2

(Γ′1.1.1)
Γ1.1.1

(Γ′1.1.3)
〈〈1, 2〉〉F¬p

(∆′1.1.3.1)
〈〈1, 2〉〉F¬p,
¬p, 〈〈1, 2〉〉X>

(∆′1.1.3.2) 〈〈1, 2〉〉F¬p,
〈〈1, 2〉〉X〈〈1, 2〉〉F¬p

(∆′1.1.2.1)
∆1.2.2.1

(∆′1.1.1.1)
∆1.1.1.1

0, 0
0, 1 1, 0 1, 1

0, 0 0, 0 0, 0

0, 0

Figure 3: fragment of the pre-tableau for Γ′1 =
{θ1, 〈〈1, 2〉〉F (¬p ∧ ¬K2p)}.

as ∆ ∈ T θ. We proceed in this way to realize all epistemic
possibilities contained in Si

k. To guarantee that the ECGHS
we are building remains finite, whenever the component we
are about to add, say Fp,q , is already contained in Si

k, in-
stead of replacing the state w (s.t. l(w) = ∆q) with Fp,q , we
connect every “predecessor” v of w to the root of Fp,q . The
procedure is repeated until no more components are added,
thus obtaining the structure S.

Now, to define Hθ we set (i) S as the set of states S; (ii)
in I as the set of states with no incoming temporal edge,
together with the root of S0

0; (iii) s ∼i s′ iff H(s)|Ki =
H(s′)|Ki ; and (iv) H(w) = l(w). Moreover, each Acti and
τ are directly derived from the actions and transitions in T θ.
As regards the conditions on the labelling function H , H1
and H2 are satisfied by construction; H3-6 hold by Def. 18;
H7 by definition of∼i; and H8 by construction ofHθ. Thus,
we can state the following result, from which Theorem 9
immediately follows.

Lemma 11 If T θ is open, then there exists an ECGHS Hθ
that S-satisfies θ.

Complexity. We conclude this section with a discussion of
the complexity of the decisione procedure outlined above. It
can be shown that the construction and elimination phases
can be performed in time exponential in the size of the
formula. Hence, the procedure here provided meets the
lower-bound of the satisfiability problem for ATEL (Walther
2005). In this respect, it is optimal. Further, as discussed in
(Goranko and Shkatov 2009a), since the tableau construc-
tion is incremental, in many cases it allows to decide satis-
faction in less time than top-down tableaux, which need to
build all formula types.

5 Tableaux for I-Satisfiability
In this section we introduce the tableau-based decision pro-
cedure for I-satisfiability. Specifically, in Lemma 1 we re-
marked that for general and synchronous ECGM the notions
of I- and S-satisfiability coincide. On the other hand, for
ECGM with a unique initial state we need to consider a dif-
ferent construction for I-satisfiability.



5.1 Construction Phase
We start with the rules to build the pre-tableau pre-T θ, but
first we need to introduce some new terminology. In what
follows we index each state and pre-state with a finite set
{~k} of time-stamps (we assume the set is enumerated). Intu-
itively, these represent the times at which a state (resp. pre-
state) occurs in a fragment of a run. Operations on a time-
stamp {~k} (such as addition) are defined on each member
of {~k}. Further, in the construction phase we define a se-
quence Γ{0}0 , . . . ,Γ{0}n of “initial” pre-states, starting from
Γ{0}0 = {θ}. Also, we introduce a mark mk that intuitively
keeps track of the initial state a state (resp. pre-state) stems
from. We set mk(Γ{0}0 ) = undef at the beginning. Finally,
let 7→ be the transitive closure of⇒ ∪ →. We now provide
the saturation rule SRuis,syncI for I-satisfiability w.r.t. syn-
chronous ECGM with a unique initial state.

Definition 19 (Saturation Rule SRuis,syncI ) Given a pre-
state Γ{~k} s.t. SRuis,syncI has not been applied to Γ{~k}, con-
sider every consistent and minimal downward saturated ex-
tensions ∆{~k} of Γ{~k},

• if the pre-tableau contains a state ∆′{~m} = ∆{~k} and
mk(∆′{m}) = mk(Γ{~k}), then
– rename ∆′{~m} and all pre-states and states

Θ{~m+i}
i s.t. ∆′{~m} 7→ Θ{~m+i}

i as ∆′{~m}∪{~k}

and Θ{~m+i}∪{~k+i}
i . Then, set Γ{~k} ⇒ ∆′{~m}∪{~k}.

• else,

– add ∆{~k} as a new state to the pre-tableau;

– if ∆{~k} contains no positive nor negative X-formulas,
then add 〈〈Agθ〉〉X> to ∆{~k};

– set Γ{~k} ⇒ ∆{~k} and mk(∆{~k}) = mk(Γ{~k}) unless
{~k} = {0} and mk(Γ{0}) = undef . In this case, set
mk(∆{0}) = ∆{0}.

Hence, SRuis,syncI modifies SRS by keeping track of
time-stamps as well as of mark mk: the former are needed
for synchronicity, while the latter registers the initial state.
In particular, for all ∆,∆′ ∈ states(Γ), mk(∆) = mk(∆′),
and for every state ∆′, ∆{0} 7→ ∆′ iff mk(∆′) = ∆[0].
The rule SRuisI for I-satisfiability w.r.t. ECGMuis can be
obtained from SRuis,syncI by omitting time-stamps. Further,
we need to modify the rule NextS as follows.

Definition 20 (Rule Nextuis,syncI ) Given a state ∆{~k}

s.t. Nextuis,syncI has not been applied to ∆{~k},

1. (as in rule NextS)

2. For each σ ∈ D(∆{~k}) consider every consistent

Γ{
~k+1}
σ = {φp | 〈〈Ap〉〉Xφp ∈ ∆{

~k}, σi = p for all i ∈ Ap}∪

{¬ψq | ¬〈〈Bq〉〉Xψq ∈ ∆{
~k}, neg(σ) = q,Ag+

θ \Bq ⊆ N(σ)} (2)

where Γ{
~k+1}
σ = {>} if the set on the RHS of (2) is empty.

• If the pre-tableau contains a pre-state Γ
′{~m} = Γ{

~k+1}
σ

s.t. mk(Γ
′{~m}) = mk(Γ{

~k+1}
σ ), then

– rename Γ′{~m} and all pre-states and states Θ{~m+i}
i

s.t. Γ′{~m} 7→ Θ{~m+i}
i as Γ′{~m}∪{~k+1} and

Θ{~m+i}∪{~k+i+1}
i . Then, set ∆{~k} σ−→ Γ′{~m}∪{~k+1};

• else,

– add Γ{
~k+1}
σ as a new pre-state to the pre-tableau;

– set ∆{~k} σ−→ Γ{
~k+1}
σ and mk(Γ{

~k+1}
σ ) = mk(∆{~k}).

Also in this case, the rule NextuisI is obtained by omit-
ting indexes from states and pre-states in Nextuis,syncI . Now
we consider the epistemic operator. Similarly to the above,
we have to introduce a distinct case for each of ECGMuis

and ECGMuis,sync. Moreover, for each case we have to
introduce two rules that apply at different stages of the con-
struction phase.

Definition 21 (Rule Kuis
1 ) Given a state ∆ s.t. Kuis1 has not

been applied to ∆, for every ¬Kiφ ∈ ∆,

• if 〈〈Agθ〉〉F (¬φ ∧ ∆|Ki) /∈ mk(∆), then add Γi+1 =
mk(∆)∪{〈〈Agθ〉〉F (¬φ∧∆|Ki)} if it is consistent, where
i is the greatest index s.t. Γi appears in the pre-tableau;

• set mk(Γi+1) = undef .

Intuitively, when ∆ contains an epistemic possibility
¬Kiφ and the root of ∆ does not anticipate to fulfil this
possibility (i.e., 〈〈Agθ〉〉F (¬φ ∧ ∆|Ki) /∈ mk(∆)), then by
Kuis

1 we attempt to construct a branch of the pre-tableau
that satisfies ¬Kiφ by adding a pre-state Γi+1 as above.
To define the corresponding rule for ECGMuis,sync we
introduce the notion of a loop on a state ∆, that is, a se-
quence ∆0,Γ1,∆1 . . . ,Γn,∆n s.t. (i) ∆ = ∆0 = ∆n;
(ii) Γi+1 ∈ pre-states(∆i); (iii) ∆i ∈ states(Γi); and (iv)
∆i 6= ∆ for 0 < i < n. Let n be the length of the loop.
We denote the set of lengths of all loops for a state ∆ as
loop(∆). Also, for ¬Kiφ ∈ ∆{~k}, we use ζ as a shorthand
for ¬φ ∧∆{~k}|Ki .

Definition 22 (Rule Kuis,sync
1 ) Given a state ∆{~k}

s.t. Kuis,sync1 has not been applied to ∆[~k], for every
¬Kiφ ∈ ∆{~k}, Y ⊆ {~k}, and W ⊆ loop(∆{~k}),

• if η =
∧
y∈Y (〈〈Agθ〉〉X)y(ζ ∧ 〈〈∅〉〉G(ζ →∧

w∈W (〈〈Agθ〉〉X)wζ)) /∈ ∆{~k}, then add

Γ{0}i+1 = mk(∆{~k}) ∪ {η} if it is consistent, where i

is the smallest index s.t. Γ{0}i appears in the pre-tableau;

• set mk(Γ{0}i+1) = undef .

The rationale for Kuis,sync
1 comes from the fact that sat-

isfiability w.r.t. ECGMsync,uis needs stronger conditions.
Indeed, we have to ensure that for every ¬Kiφ in ∆{~k} there
exists a ∆′{~k} s.t. ¬φ ∈ ∆{~k}. In particular, ∆{~k} and ∆′{~k}

have to share the same time-stamp {~k}.
The construction phase for satisfiability w.r.t. ECGMuis

(resp. ECGMuis,sync) goes then as follows. As customary,



we start with the initial pre-state Γ{0}0 = {θ}, which contains
only the input formula. Then, we alternatingly apply SRI
and NextI (we omit superscripts to refer to both cases) until
these rules are no longer applicable. This procedure builds
a purely temporal pre-tableau, i.e., a pre-tableau whose→-
edges are marked by joint actions only. At this point, we
apply Kuis

1 (resp. Kuis,sync
1 ). If a new initial pre-states Γ{0}i

is created, then we repeat the procedure above. We proceed
in this way until none of the rules is any longer applicable.
Finally, we apply the rules Kuis

2 (resp. Kuis,sync
2 ).

Definition 23 (Rule Kuis,sync
2 ) Given a state ∆{~k}

s.t. Kuis,sync2 has not been applied to ∆[~k], for every
¬Kiφ ∈ ∆{~k} and state ∆′[~k],

• if mk(∆′{~k}) = mk(∆{~k}) and {¬φ} ∪ ∆{~k}|Ki ⊆
∆′{~k}, then set ∆{~k}

¬Kiφ−−−→ ∆′{~k}.

The rule Kuis
2 is obtained from Kuis,sync

2 by omitting
time-stamps, so we can relate states with different time-
stamps. Notice that neither Kuis

2 nor Kuis,sync
2 creates new

pre-states. Instead, they link a state containing an epistemic
possiblity with a state that fulfils that possibility. Also in the
present case we can prove that the construction phase termi-
nates after a finite number of steps. We conclude this section
with an example.

Example 2 In Fig. 2 we reported a fragment of the
pre-tableau for the ATEL-formula θ1 = 〈〈1〉〉F¬K2p ∧
K1〈〈2〉〉Gp. We now observe that it also corresponds to the
fragment of the pre-tableau obtainable by applying rules
SRuisI and NextuisI only, modulo the mark mk. Since state
∆1.1 in Fig. 2 contains an epistemic possibility, we ap-
ply rule Kuis

1 and create a new initial pre-state Γ′1 =
{θ1, 〈〈1, 2〉〉F (¬p∧¬K2p)}. The fragment of the pre-tableau
for Γ′1 is shown in Fig. 3. �

5.2 Elimination Phase
For I-satisfiability the elimination phase makes use of most
of the rules for S-satisfiability, with some exceptions. First,
by PR we remove all pre-states and re-direct incoming and
outcoming →-edges. Further, we proceed in stages and at
each stage we apply one of the elimination rules E1, E3,
and the following new rule:

E2uis,syncI If for some ¬Kiφ ∈ ∆~k there is no ∆′~k ∈
T θn s.t. mk(∆′~k) = mk(∆~k), mk(∆′~k) ⇒∗ ∆′~k, and

∆~k ¬Kiφ−−−→ ∆′~k, then T θn+1 = T θn \ {∆
~k}.

This means that epistemic possibilities have to be satisfied
by states that have the same time-stamp and are reachable
from an initial state. The corresponding rule E2uisI can be
obtained by omitting time-stamps. Finally, for synchronous
ECGM only, we have also to consider the following rule to
manipulate time-stamps:

EtsI If T θn+1 = T θn \ {∆
~k} and in T θn it was the case

that ∆~k ⇒∗ ∆′~m, then in T θn+1 rename ∆′~m as ∆′~m\~k

(remove ∆′~m if ~m \ ~k = ∅.)

The elimination phase terminates when it is no longer pos-
sible to apply any of the elimination rules above. As in the
case of S-satisfiability, the structure obtained at the end of
the elimination phase is the tableau T θ, which is said to be
open if θ ∈ ∆, for some ∆ ∈ T θ s.t. ∆ ∈ states(Γi), for
some initial Γi. Hereafter we outline the soundess and com-
pleteness proof of the tableau procedure for I-satisfiability.

5.3 Soundness
The soundness proof for the tableau-based decision proce-
dure amounts to the following result, analogous to Theo-
rem 5.

Theorem 12 If θ is I-satisfiable, then T θ is open.

Sketch of Proof. The structure of the proof is similar to
Theorem 5, i.e., we show that the elimination rules do not
remove satisfiable state. However, we need to consider dif-
ferent elimination rules. Hereafter we consider the case of I-
satisfiability w.r.t.ECGMuis. The case forECGMuis,sync

is proved similarly. First, if we assume that θ is I-satisfiable,
then by adapting Lemma 6 we can check that at least one
of ∆ ∈ states({θ}) is I-satisfiable. Further, if ∆ is I-
satisfiable, then in particular it is S-satisfiable and by the
discussion in Section 4.3 it cannot be eliminated by an ap-
plication of rules E1 or E3. As regards E2uisI , suppose
that ∆′ ∈ T θn is S-satisfiable and reachable from ∆, also
¬Kiφ ∈ ∆′, and there exists a sequence Θ0 → . . . → Θn

of states s.t. Θ0 = ∆, Θn = ∆′, and each Θi is S-satisfiable
(the existence of such a sequence follows from Lemma 5.2
in (Goranko and Shkatov 2009a)). In particular, we can de-
duce that there exists an ECGM P with a unique initial state,
and s0 ∈ P s.t. (P, s0) |= Θ0 = ∆, si → si+1 and
(P, si) |= Θi. Since ¬Kiφ ∈ ∆′ = Θn, there exists s′ ∈ P
s.t. s′ ∼i s and (P, s′) |= ¬φ ∧∆|Ki . By the uniqueness of
the initial state, we have that s′ is reachable from s0. Hence
(P, s0) |= 〈〈Agθ〉〉F (¬φ∧∆|Ki). As a result we obtain that
Γi+1 = ∆∪{〈〈Agθ〉〉F (¬φ∧∆|Ki)} is also I-satisfiable, and
by Lemma 6 some ∆i+1 saturating Γi+1 is also I-satisfiable.
Now, we remark that if Θ is satisfiable and ∆ →∗ Θ then
∆i+1 →∗ Θ. In particular, ∆′ is reachable from ∆i+1.
Moreover, since 〈〈Agθ〉〉F (¬φ ∧∆|Ki)} ∈ ∆i+1 and ∆i+1

is I-satisfiable, the eventuality 〈〈Agθ〉〉F (¬φ ∧ ∆|Ki) is re-
alized in some ∆′′ reachable from ∆i+1. As a consequence,

when we apply rule Kuis
2 we obtain that ∆′

¬Kiφ−−−→ ∆′′ and
∆′ cannot be eliminated by an application of E2uisI . As a
final result, we have that the I-satisfiable set ∆ containing θ
is never removed from T θ, thus it remains open.

The proof in the case of E2uis,syncI follows a similar line
of reasoning. The intuition for rule EtsI is that satisfiable
states always belong to some run in an ECGM.

5.4 Completeness
To prove the completeness of the tableaux for I-
satisfiability, we have to prove the following result, corre-
sponding to Theorem 9.

Theorem 13 (Completeness) If T θ is open, then θ is I-
satisfiable.



Sketch of Proof. Also in this case, the proof amounts
to build an ECGHS Hθ starting from the open tableau T θ.
Moreover, Hθ has to have an unique initial state, or being
synchronous. We illustrate briefly the case of ECGMuis.
The key remark is that we can restrict the construction in
Section 4.4 to states having the same mark mk. Specifically,
define MK(∆) = {∆′ ∈ T θ | mk(∆′) = mk(∆)}. Then,
we can prove an analogous result to Lemma 14.

Lemma 14 Let ∆ ∈ T θ and ξ a temporal eventuality in
MK(∆). Then, there exists a temporal component for ξ and
∆, or F (ξ,∆), defined as follows:

• if ξ ∈ ∆ then F (ξ,∆) is a finite locally consistent
MK(∆)-tree rooted at ∆ that realizes ξ;

• if ξ /∈ ∆ then F (ξ,∆) is a locally consistent simple
MK(∆)-tree rooted at ∆.

Now, if T θ is open, then there exists an initial ∆ ∈ T θ
s.t. θ ∈ ∆. Similarly to Section 4.4, we list all states in
MK(∆) as ∆0, . . . ,∆n−1, as well as all temporal eventual-
ities ξ0, . . . , ξm−1 therein. Also in this case, we assume that
the temporal components are arranged in an m × n matrix.
Further, we set S0

0 = F (θ,∆). The induction step from Si
k

to Si+1
k is defined as in Section 4.4. On the other hand, for

the step to Si
k+1 we consider for every ∆′ ∈ Si

k and ev-
ery epistemic possibilities ¬Kiφ ∈ ∆′ a temporal compo-
nent F (〈〈Agθ〉〉F (¬φ ∧∆|Ki),mk(∆′)) and substitute it to
mk(∆′). We observe that at least one such temporal compo-
nent exists by rule Kuis

2 . In this way we realize all epistemic
possibilities in Si

k. Finally, we ensure that the ECGHS will
be finite by reusing the components already in Si

k. The pro-
cedure is repeated until no more components are added.

Now, the ECGHSHθ can be defined as in Section 4.4 and
we can similarly prove that it satisfies the conditions H1-8.
Moreover, Hθ either satisfies synchronicity or has a unique
initial state by construction. Thus, we can state the following
result, from which Theorem 13 immediately follows.

Lemma 15 If T θ is open, then there exists an ECGHS Hθ
that I-satisfies θ.

Complexity. We briefly discuss the complexity of the pro-
cedure above and notice that it is non-elementary, as in the
worst case we have to reinitiate the tableau construction for
each epistemic possibility to be fulfilled. We are not aware
of any contribution to the complexity of I-satisfiability for
ATEL formulas in either ECGMsync or ECGMuis,sync.
So, we here provide an upper bound for this problem.

6 Conclusions
In this paper we presented a tableau-based method for de-
ciding the satisfiability of ATEL formulas in a number of
settings. We considered satisfiability in some initial state as
opposed to any state of the model. We argued that the for-
mer problem is of interest for verification purposes, while
the latter notion is typical of logical investigations. Further,
we considered the assumptions of synchronicity and of a

unique initial state. These are standard conditions in the lit-
erature on Interpreted Systems and their impact on the satis-
fiability problem has been assessed in relation with various
temporal epistemic logics, based on both linear and branch-
ing time (Halpern and Vardi 1986; 1989). This paper aimed
at extending this type of investigations to alternating time
epistemic logic.

There is a number of possible extensions for the present
results. In one direction, other assumptions from Interpreted
Systems, such as perfect knowldge and no learning, can be
imposed on ECGM and corresponding decision procedures
developed. It is well-known that the decision problem un-
der these conditions becomes particularly hard (Halpern and
Vardi 1986; 1989). So, incremental tableau techniques can
contribute to alleviate the decision task for such cases, at
least on average, since we do not have to build all formula
types as in top-down tableaux. On another direction, notions
such as imperfect information and commitment in strategies
have been considered in relation to ATL. It would be of inter-
est to check their impact also w.r.t. satisfiability of ATEL for-
mulas. In yet another direction, modalities for group knowl-
edge can be added to ATEL. This extension has not been
considered here, so as not to make the formal language too
cumbersome. We leave all these issues for future research.
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