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Course Content

Logics to reason about the behaviour of “rational” agents in multi-agent systems.

what logics?

what reasoning?

what rationality?

what multi-agent systems?
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Course Outline I

Part I Introduction to logic-based specification of MAS.
Agents and agent systems.
Why logic? Modal logic.
Examples: robots on a rescue mission, security of e-voting.
Formal verification by model checking.

Part II Reasoning about the evolution of systems.
Temporal logic: linear vs. branching time.
Linear time logic: LTL.
Branching-time logic: CTL.
Decision problems: some complexity classes.
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Course Outline II

Part IIIa Specification of individual and coalitional abilities.
Temporal logic meets game theory.
Logics for strategies: alternating-time temporal logic ATL.
Properties of ATL.
Agents, systems, games.

Part IIIb Verification of strategic abilities (I).

Algorithms and complexity of verification for standard ATL.
Some complexity proofs.

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 4



Course Outline III

Part IVa Bringing time, knowledge and games together.
Alternating time temporal epistemic logic ATLK.
Problems with ATLK.
Imperfect information ATL: Schobbens’ version and CSL.
Levels of strategic ability under uncertainty.

Part IVb Verification of strategic abilities (II).

Imperfect information.
Taming the complexity.
Between perception and recall.
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Learning Outcomes

Be able to model examples of multi-agent systems (MAS) into the
framework of concurrent game structures (CGS).

Be able to translate informal specifications of strategic abilities of agents in
MAS, expressed in the English language, into formulas of temporal logics
LTL and CTL, and alternating-time temporal logic ATL.

Recognise the differences in modeling agents having perfect/imperfect
information about the environment, as well as agents having
perfect/imperfect memory of past events.

Be able to apply the model checking algorithms underpinning the
verification of ATL properties in concurrent game structures.
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Practical Arrangements

When? Thursdays 11.00 – 13.00

Where? room 139, Huxley bld

How long? 7 weeks until week 8 [Feb 28]

Week 10 [Mar 14]: revision week

Week 11 [Mar 21]: exam

How? 1h lecture + 1h tutorial (including some correction)

Notes, tutorials, and coursework on CATE

send me an email: francesco.belardinelli@imperial.ac.uk
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Useful Reading

The course is self-contained (as possible).

Nonetheless, if you are interested in reading further:
W. Jamroga (2015); Logical Methods for Specification and Verification of Multi-Agent
Systems. Available for free at: https:
//home.ipipan.waw.pl/w.jamroga/papers/jamroga15specifmas.pdf

Y. Shoham and K. Leyton-Brown (2009); Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press. (freely
available)

K. Baier, J. P. Katoen (2008); Principles of Model Checking. MIT Press. (freely
available)

M. Huth, M. Ryan (2004); Logic in Computer Science: Modelling and Reasoning
about Systems, Cambridge University Press, 2004. (freely available)

E. M. Clarke, O. Grumberg and D. A. Peled (1999); Model Checking. MIT Press.

R. Alur, T. Henzinger, and O. Kupferman (2002); Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713.
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Background

Again, the course is self-contained.

But, it draws on notions from:

Modal Logic (H499): modal operators, relational (Kripke) structures.

System Verification (303): temporal logics.

Complexity (438): complexity classes of decision problems.
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Part 1: Reasoning about Systems

Reasoning about Systems
1.1 Multi-Agent Systems
1.2 The Role of Logics for MAS
1.3 Formal Verification
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Part 1: Reasoning about Systems

1.1 Multi-Agent Systems
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Agents and MAS

Multi-agent system (MAS): a system that involves several autonomous
entities that act in the same environment
These entities are called agents

So, what is an agent precisely?
No commonly accepted definition

For some authors, agents are:
A paradigm for computation (distributed algorithms/protocols)
A paradigm for design (agent-based models, interactions simulation)
A paradigm for programming (agent-oriented programming, software
agents: JADE, AgentSpeak, . . . )

Claim:
MAS is a (convenient) metaphor that induces a specific way of seeing the world.
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Motivating Example: Rescue Robots

Scenario: Robots on a Rescue Mission
A group of k robots operates in a building on fire to rescue people.
There are n people inside and the building consists of m locations.
The state of each robot can be characterized by its status (alive or dead), current
location, and an indication whether the robot is carrying some person (and, if so,
which person).
Similarly, a person can be characterized by its current status and location.
Each location can be burning, damaged, or still in a good shape.

Robots and people that are alive can try to move North, South, East or West.
Robots can additionally Pick up a person or Lay it on the ground.
Every agent can also decide to do nothing (action Wait).
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Agents and MAS

An agent can possibly be:

Reactive: reacts to changes in the environment;

Pro-active: takes the initiative;

Autonomous: operates without direct intervention of others, has some kind
of control over its actions and internal state;

Goal-directed: acts to achieve a goal;

Social: interacts with others (i.e., engages in cooperation, communication,
coordination, competition, etc.);

Embodied: has sensors and effectors to read from and make changes to the
environment;

Intelligent: ...whatever it means;

Rational: always does the “right” thing.
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Agents and MAS

Is there any essential (and commonly accepted) feature of an agent?

An agent acts.

Agents can be described mathematically as a function

act : set of percept sequences 7→ set of actions

In game theory such a function is called a strategy.

In planning, it is called a conditional plan.
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Another Motivating Example: Security of Voting

Voting Scenario
Citizens of Pneumonia are voting in the presidential election.

There are n voters, each of them supposed to enter a voting booth at a polling
station, select one of the candidates from the ballot, register their vote, and exit
the polling station.

There are also k coercers who can attempt to bribe or blackmail the voters into
voting for a particular candidate.
The coercers can possibly use the services of hackers, capable of intercepting
unencrypted messages.
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Why MAS are useful

By looking at [Y. Shoham, K. Leyton-Brown; 2009], MAS are being applied to:

distributed constraint satisfaction

distributed optimization

negotiation and auctions

social laws and conventions

(non)cooperative game theory

communication

social choice

mechanism design

Claim:
It is useful to reason in terms of agents and MAS.
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Part 1: Reasoning about Systems

1.2 The Role of Logics for MAS
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Why Logic?

Formal logic can be seen as:

a framework for reasoning about systems

makes one realise the implicit assumptions
. . . and then we can:

investigate them, accept or reject them, or
relax some of them and still use part of the formal and conceptual machinery.

reasonably expressive but simpler than the full language of mathematics
study of computational aspects, in particular decision problems.

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 20



Logics for Agents

Multi-agent systems provide a paradigm for modeling the world.

Logic provides a language to express properties of the models

. . . reason about them

. . . and compute answers to (some) questions automatically.

Claim:
Logic and Multi-agent Systems are a good match.
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Motivating Example: Rescue Robots

Some desirable properties we might want to check in the Rescue Robots
scenario:

Every person in the building is safe.

Every person will eventually be safe.

Every person may eventually be safe, provided that they cooperate.

The robots can rescue all the people in the building.

The robots can rescue all the people, and they know that they can.

The robots can rescue all the people, and they know how to do it.
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Computational Aspects

Verification: check specification against implementation (more later on)

Other decision problems: validity, satisfiability, realizability.

Executable specifications: specification given directly as tests that can be
executed.

Planning as model checking: verification returns an actual plan.

In the context of MAS:
Game solving, mechanism design, and reasoning about games have natural
interpretation as logical problems.

Major research area:
How difficult is/what is the complexity of solving these problems?
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Another Motivating Example: Security of Voting

Desirable properties for the Voting scenario:

Privacy: The system cannot reveal how a particular voter voted.
Thus, privacy guarantees that the link between a voter and her
vote remains secret.

Receipt-freeness: The voter does not gain any information (a receipt) which can
be used to prove to a coercer that she voted in a certain way.

Coercion-resistance: The voter cannot cooperate with a coercer to prove to him
that she voted in a certain way.
Coercion resistance requires that the coercer cannot become
convinced of how the voter has voted, even if the voter
cooperates with him.

Hereafter we introduce logics suitable to express (some of) the specifications
above.
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Part 1: Reasoning about Systems

1.3 Formal Verification
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The Verification Problem

Given system S and specification P , does S satisfy P?
safety-critical systems, security and communication protocols, etc.

Model-checking in a nutshell [Clarke, Emerson, Sifakis]
1 Model system S as some transition system MS

2 Represent specification P as a formula φP in some logic-based language

3 Check whether MS |= φP

80’s-90’s: monolithic systems, systems in isolation: LTL, CTL.

since 2000: systems with several components, multi-agent systems, game
structures: ATL, Coalition Logic, Strategy Logic.

notions of strategies, equilibria from Game Theory⇒ Rational Synthesis
the attacker has a strategy to learn the secret eventually.

⇒ Verification of strategic abilities of autonomous agents.
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Famous Software Failures

1984 LSE Taurus (Transfer and Automated Registration of Uncertificated Stock):
500m GBP lost

The Sunday Times: “the beginning of the end for the London Stock Exchange”.

1987 Therac-25 (radiotherapy): 6 reported accidents, 3 people died
“Reusing software modules does not guarantee safety in the new system".

1990 AT&T: 9h-outage of U.S. telephone network: several 100 million USD.

1992 LASCAD (London Ambulance Service Computer-Aided Dispatch): 11h wait

1993 Denver Airport Baggage Delivery System: USD 1.1m/d during 9 months

1994 Pentium FDIV Bug: 500 million USD

1996 Ariane V Crash: 500 million USD

All these failures were due to software bugs.
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The Importance of Software Correctness

Rapidly increasing integration of ICT in different applications:

embedded systems (automotive)

communication and security protocols

transportation systems (autonomous vehicles)

⇒ reliability incrasingly depends on software!

Defects can be fatal and costly:

products subject to mass-production

safety-critical systems
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What is Model Checking?

Informal Description
Model checking is an automated technique that, given a finite-state model of a
system and a formal property, systematically checks whether this property
holds for (a given state in) that model.

automated: without intervention from the engineer.

systematically: all states are checked.
⇒ models must be finite.
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Model Checking

Given system S and specification P , does S satisfies P?

System S

Modeling

Model MS

Specification P

Formalising

Formula φP

Model Checking: MS |= φP ?

TrueFalse (+counterexample)

Time Out
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ACM Turing Award 2007

(a) Edmund Clarke (CMU,
USA)

(b) Allen Emerson (U. Texas,
USA)

(c) Joseph Sifakis (IMAG
Grenoble, F)

Jury Justification:
For their roles in developing Model-Checking into a highly effective
verification technology, widely adopted in the hardware and
software industries.
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What Models?

Transition Systems:

states (labeled with basic propositions).

transitions between states.

Concurrent Game Structures:

several agents endowed with local information, actions, protocols.

action-labeled transitions.

CGS are suitable to represent MAS formally.
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What Properties?

Consider the examples given above.

Temporal Logics:

extensions of propositional logic.

temporal (modal) operators: G “globally”, F “finally”, . . .

interpreted over sequences of states (linear) . . .

. . . or over infinite trees (branching).

Logics for Strategies:

modal operator 〈〈A〉〉: “coalition A has a strategy to achieve . . . ”

interpreted over CGS.
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References: Multi-Agent Systems

Y. Shoham, K. Leyton-Brown.

Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations.
Cambridge University Press, 2009.

M. Wooldridge.

An Introduction to Multi Agent Systems.
John Wiley & Sons, 2002.

Foundation for Intelligent Physical Agents.
FIPA home page.
http://www.fipa.org/.
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References: Model Checking

K. Baier, J. P. Katoen (2008);

Principles of Model Checking.
MIT Press, 2008.

Huth, M. & Ryan, M.

Logic in Computer Science: Modeling and reasoning about systems.
Cambridge University Press.

E. M. Clarke, O. Grumberg and D. A. Peled;

Model Checking.
MIT Press, 1999.
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Part 2: Reasoning about Time and Change

Reasoning about Time and Change
2.1 Temporal Logics
2.2 Linear Temporal Logic
2.3 Computation Tree Logic

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 36



Part 2: Reasoning about Time and Change

2.1 Temporal Logics
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Motivating Example: Rescue Robots

Properties to express
Every person in the building is safe.

Every person will eventually be safe.

Every person may eventually be safe, if everything goes fine.

Whenever person i gets in trouble, she will eventually be rescued.

If person i gets outside the building, then she will never be in danger
anymore.

Person i may be rescued without any robot ever entering the building, but
guaranteed rescue requires some robots to enter.
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Motivating Example: Voting

Properties to express
The system will not reveal how a particular voter voted (privacy).

The system does not issue receipts (receipt-freeness).

The voter can vote, and can refrain from voting.

The voter can vote, and can refrain from voting. If she votes, the system will
not reveal afterwards how she voted (conditional privacy).
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Reasoning about Time

Main ideas:

Temporal (modal) logic extends propositional or predicate logic with
modalities to express the behaviour of a reactive system.

Modal operators refer to dynamics of the system, they are used to specify
how the system can/will evolve

The transition relation is seen as representing time.

It provides an intuitive but mathematically precise notation for expressing
properties about the relation between states in executions.

Beware!
There are other flavours of temporal logic: Interval Temporal Logic (ITL),
First-order Logic with orders, etc.

These are not covered in this course!
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A little bit of history

Temporal reasoning has been studied since ancient times in philosophy.
Aristotle: problem of the future contingents (“there will be a sea-battle
tomorrow”).
Ockham: branching notion of time.
A. N. Prior: philosopher, interested in free will and predestination.

Time and Modality, 1957: first modal account of temporal logic, our notation
comes from this book.

Late 70’s: Pnueli is the first to apply temporal logics to computing.
A. Pnueli: Linear Temporal Logic
M. Ben-Ari, Z. Manna and A. Pnueli: Temporal Logic of Branching Time
E. Clarke, A. Emerson: Computation Tree Logic

No explicit account of time (“I woke up at 8am”), no duration (“I’ll be away two
days”): only the relative ordering of events is relevant.

M. Vardi: “What on earth does an obscure, old intellectual discipline have to
do with the youngest intellectual discipline?”.
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Temporal Operators

Typical temporal operators:

Xϕ ϕ is true in the next moment in time
Gϕ ϕ is true in all future moments (globally true)
Fϕ ϕ is true in some future moment (finally true)
ϕUψ ϕ is true until the moment when ψ becomes true

Example formulas:

G((¬passport ∨ ¬ticket) → X¬board_flight)

send(msg, rcvr) → F receive(msg, rcvr)

Actually, X and U are enough:

1968 Kamp: X and U are sufficient to express all first-order properties over <.
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Models of Time

The transition relation represents time.
Models of time: linear vs. branching.

start

start
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Where Do Paths Come From?

Definition 2.1 (Unlabelled Transition System)
A (unlabelled) transition system is a pair

〈St,−→〉

where:

St is a non-empty set of states,

−→⊆ St× St is a transition relation.

Note: when we add a valuation V : St→ 2AP of atoms, we get a Kripke model!
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Where Do the Paths Come From?

Definition 2.2 (Paths in a transition system)
A path λ is an infinite sequence of states that can be effected by subsequent
transitions.

A path must be full, i.e., either infinite or ending in a state with no outgoing
transition.

Usually, we assume that the transition relation is serial (time flows forever).
Then, all paths are infinite.
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Example: Robots and Carriage

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Robot 1 can push the carriage so that it moves clockwise.
It can also refrain from pushing, in which case the carriage does not move.
Robot 2 has no influence on the position of the carriage.
The carriage can move clockwise, or remain in the same place.
The carriage can be in 3 different positions (states): q0, q1, q2.
We label the states by atoms pos0, pos1, pos2.
Transition system TS = 〈St,−→〉, where

St = {q0, q1, q2}
qi −→ qi, for i ∈ {0, 1, 2}, and q0 −→ q1, q1 −→ q2, q2 −→ q0
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Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

A rocket can be moved between London (atom roL) and Paris (atom roP).
The cargo can be in London (caL), Paris (caP), or inside the rocket (caR).
The rocket can fly only if its fuel tank if full (fuelOK).
When it flies, it consumes fuel, and nofuel holds after each flight.
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Reasoning about Time: Specification Templates

Temporal logic was originally developed to represent tense in natural language.

In Computer Science it has achieved a significant role in the formal specification
and verification of concurrent and distributed systems.

Much of the popularity was achieved because some useful concepts can be
formally, and concisely, specified using temporal logics, e.g.:

safety properties

liveness properties

fairness properties
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Reasoning about Time: Safety Properties

Safety/maintenance goals:

“something bad will never happen”
“something good will always hold”

Typical examples:

G¬bankrupt

G(fuelOK ∨X fuelOK)

and so on . . .

Usually: G¬ . . . / G . . .
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Reasoning about Time: Liveness Properties

Liveness/achievement:
“something good will finally happen”

Typical examples:

F rich

FG rich

requested→ Fgranted

and so on . . .

Usually: F . . . / FG . . .
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Reasoning about Time: Fairness Properties

Fairness/service:
“whenever something is attempted/requested, then it will be
successful/granted”

Typical examples:
GFconnected
¬FGdown
G(calling → Fanswering)

(GFattempt) → (GFsuccess)
and so on . . .

Usually: GF . . . / ¬FG . . .

Fairness properties:
useful when scheduling processes, responding to messages, etc.
good for specifying properties of the environment
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Reasoning about Time

Wait! What about strategic behaviours?

Temporal logics are the logical basis whereupon strategy logics are built.
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Part 2: Reasoning about Time and Change

2.2 Linear Temporal Logic
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Linear Time: LTL

LTL: Linear Temporal Logic

Time is linear: just a single path is considered!

Reasoning about a particular computation of a system

Model: a path (infinite sequence of states)

Important distinction: computational vs. behavioral structure
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Linear Temporal Logic: Syntax

Modal logic on infinite paths [Pneuli 1977]

Propositional logic
- a ∈ AP atomic propositions (atoms)
- ¬φ negation
- φ ∧ ψ conjunction

Temporal operators
- Xφ neXt φ
- φUψ φ Until ψ

LTL is a logic to express properties of linear time.
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Derived Operators

φ ∨ ψ ::= ¬(¬φ ∧ ¬ψ)

φ→ ψ ::= ¬φ ∨ ψ
φ↔ ψ ::= (φ→ ψ) ∧ (ψ → φ)

true ::= φ ∨ ¬φ
false ::= φ ∧ ¬φ = ¬true

Fφ ::= trueUφ Finally φ

Gφ = ¬F¬φ Globally φ

Priority order: unary operators bind more strongly than binary operators; ¬
et X bind equally strong; U takes precedence over ∧, ∨ and→.
Parentheses are omitted whenever appropriate: ϕ1Uϕ2 = ((ϕ1)U(ϕ2)).
Operator U is right-associative: ϕ1Uϕ2Uϕ3 = ϕ1U(ϕ2Uϕ3).
In some textbooks G and F are also written 2 and �.
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Linear Temporal Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}.
Then, what about:

1 X(x = 1)?

2

3

4

5

6

7
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Linear Temporal Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}.
Then, what about:

1 X(x = 1) 3

2 U(x = 1)?

3

4

5

6

7
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Linear Temporal Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}.
Then, what about:

1 X(x = 1) 3

2 U(x = 1) 7

3 (x < 2) ∨G(x = 1) ?

4

5

6

7
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Linear Temporal Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}.
Then, what about:

1 X(x = 1) 3

2 U(x = 1) 7

3 (x < 2) ∨G(x = 1) 3

4 (x = 1)FX(x ≥ 3)?

5

6

7
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Linear Temporal Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}.
Then, what about:

1 X(x = 1) 3

2 U(x = 1) 7

3 (x < 2) ∨G(x = 1) 3

4 (x = 1)FX(x ≥ 3) 7

5 X → (trueU(x = 1))?

6

7
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Linear Temporal Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}.
Then, what about:

1 X(x = 1) 3

2 U(x = 1) 7

3 (x < 2) ∨G(x = 1) 3

4 (x = 1)FX(x ≥ 3) 7

5 X → (trueU(x = 1)) 7

6 X(x = 1 ∧GX(x ≥ 3))?

7
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Linear Temporal Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}.
Then, what about:

1 X(x = 1) 3

2 U(x = 1) 7

3 (x < 2) ∨G(x = 1) 3

4 (x = 1)FX(x ≥ 3) 7

5 X → (trueU(x = 1)) 7

6 X(x = 1 ∧GX(x ≥ 3)) 3

7 X(trueU(x = 1))→ G(x = 1)?
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Intuitive Meaning

Discrete account of time: the present moment refers to the current state and the
next moment corresponds to the immediate successor state.

atom a:
a

. . .

Xa:
a

. . .

aUb:
a a a b

. . .

Fa:
a

. . .

Ga:
a a a a a

. . .
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Linear-time Properties: Mutual Exclusion

〈n1, n2, y = 1〉

〈w1, n2, y = 1〉 〈n1, w2, y = 1〉

〈w1, w2, y = 1〉

〈c1, w2, y = 0〉 〈w1, c2, y = 0〉

〈c1, n2, y = 0〉 〈n1, c2, y = 0〉

mutual exclusion: G¬(cr1 ∧ cr2)

(weak) starvation freedom: (GFwa1 → GFcr1) ∧ (GFwa2 → GFcr2)

(strong) starvation freedom: GFcr1 ∧GFcr2
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Linear Temporal Logic: Semantics

Definition 2.3 (Models of LTL)
A model of LTL is a sequence of time moments (states).
We call such models paths, and denote them by λ.

Evaluation V : St→ 2AP of atoms at particular time moments is also needed.

Notation:

λ[i]: ith time moment (starting from 0)

λ[i . . . j]: all time moments between i and j

λ[i . . .∞]: all timepoints from i on
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Example: Robots and Carriage

q0

q2 q1

pos0

pos1pos2

1 q0, q1, q2, q2, . . .?

2

3

4

5
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Example: Robots and Carriage

q0

q2 q1

pos0

pos1pos2

1 q0, q1, q2, q2, . . . = q0, q1, (q2)ω 3

2 q0, q1, q2, q0, q1, q2, . . .?

3

4

5
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Example: Robots and Carriage

q0

q2 q1

pos0

pos1pos2

1 q0, q1, q2, q2, . . . = q0, q1, (q2)ω 3

2 q0, q1, q2, q0, q1, q2, . . . = (q0, q1, q2)ω 3

3 q0, q2, q1, . . . ?

4

5
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Example: Robots and Carriage

q0

q2 q1

pos0

pos1pos2

1 q0, q1, q2, q2, . . . = q0, q1, (q2)ω 3

2 q0, q1, q2, q0, q1, q2, . . . = (q0, q1, q2)ω 3

3 q0, q2, q1, . . . = (q0, q2, q1) · Stω 7

4 q0, q0, . . .?

5
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Example: Robots and Carriage

q0

q2 q1

pos0

pos1pos2

1 q0, q1, q2, q2, . . . = q0, q1, (q2)ω 3

2 q0, q1, q2, q0, q1, q2, . . . = (q0, q1, q2)ω 3

3 q0, q2, q1, . . . = (q0, q2, q1) · Stω 7

4 q0, q0, . . . = (q0)ω 3

5 q1, q1, q2, q0, q1, q0, . . .?
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Example: Robots and Carriage

q0

q2 q1

pos0

pos1pos2

1 q0, q1, q2, q2, . . . = q0, q1, (q2)ω 3

2 q0, q1, q2, q0, q1, q2, . . . = (q0, q1, q2)ω 3

3 q0, q2, q1, . . . = (q0, q2, q1) · Stω 7

4 q0, q0, . . . = (q0)ω 3

5 q1, q1, q2, q0, q1, q0, . . . = q1, q1, q2, q0, q1, q0 · Stω 7
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Linear Temporal Logic: Semantics

Definition 2.4 (Semantics of LTL)

λ |= true
λ |= p iff p is true at initial moment λ[0] (i.e., p ∈ V(λ[0]))
λ |= ¬ϕ iff not λ |= ϕ
λ |= ϕ ∧ ψ iff λ |= ϕ and λ |= ψ

λ |= Xϕ iff λ[1] |= ϕ
λ |= ϕUψ iff λ[i..∞] |= ψ for some i ≥ 0, and λ[j..∞] |= ϕ for all 0 ≤ j < i
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λ |= true
λ |= p iff p is true at initial moment λ[0] (i.e., p ∈ V(λ[0]))
λ |= ¬ϕ iff not λ |= ϕ
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The Derived Semantics of G, F, GF, FG

Recall that Fϕ ≡ trueUϕ and Gϕ ≡ ¬F¬ϕ.

Semantics of derived operators

λ |= Fϕ iff λ[i..∞] |= ϕ for some i ≥ 0
λ |= Gϕ iff λ[i..∞] |= ϕ for all i ≥ 0
λ |= GFϕ iff for all i ≥ 0, for some j ≥ i, λ[j..∞] |= ϕ (infinitely often)
λ |= FGϕ iff for some i ≥ 0, for all j ≥ i, λ[j..∞] |= ϕ (persistence)

Note that:

Gϕ ≡ ¬F¬ϕ
Fϕ ≡ ¬G¬ϕ
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Semantics of LTL: Fpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�

λ |= Fpos1

λ′ = λ[1..∞] |= pos1
pos1 ∈ V(λ′[0]) = V(q1)
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Semantics of LTL: Fpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�'�'

λ |= Fpos1

λ′ = λ[1..∞] |= pos1

pos1 ∈ V(λ′[0]) = V(q1)
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Semantics of LTL: Fpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�'[0]�'[0]

λ |= Fpos1

λ′ = λ[1..∞] |= pos1
pos1 ∈ V(λ′[0]) = V(q1)
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Semantics of LTL: GFpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�

λ |= GFpos1

λ[0..∞] |= Fpos1
λ[1..∞] |= Fpos1
λ[2..∞] |= Fpos1

. . .
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Semantics of LTL: GFpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�[0.. ]��[0.. ]�

λ |= GFpos1

λ[0..∞] |= Fpos1

λ[1..∞] |= Fpos1
λ[2..∞] |= Fpos1

. . .
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Semantics of LTL: GFpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�[0.. ]��[0.. ]�

λ |= GFpos1

λ[0..∞] |= Fpos1

λ[1..∞] |= Fpos1
λ[2..∞] |= Fpos1

. . .
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Semantics of LTL: GFpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�[1.. ]��[1.. ]�

λ |= GFpos1

λ[0..∞] |= Fpos1
λ[1..∞] |= Fpos1

λ[2..∞] |= Fpos1
. . .
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Semantics of LTL: GFpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�[1.. ]��[1.. ]�

λ |= GFpos1

λ[0..∞] |= Fpos1
λ[1..∞] |= Fpos1

λ[2..∞] |= Fpos1
. . .
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Semantics of LTL: GFpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�[2.. ]��[2.. ]�

λ |= GFpos1

λ[0..∞] |= Fpos1
λ[1..∞] |= Fpos1
λ[2..∞] |= Fpos1

. . .
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Semantics of LTL: GFpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�[2.. ]��[2.. ]�

λ |= GFpos1

λ[0..∞] |= Fpos1
λ[1..∞] |= Fpos1
λ[2..∞] |= Fpos1

. . .
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Semantics of LTL: GFpos1

q0

....

pos0

q1

pos1

q2

pos2

q0

pos0

q1

pos1

q2

pos2

�[2.. ]��[2.. ]�

λ |= GFpos1

λ[0..∞] |= Fpos1
λ[1..∞] |= Fpos1
λ[2..∞] |= Fpos1

. . .
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Semantics of LTL in Transition Systems

Definition 2.5 (Semantics of LTL in Transition Systems)

(M, q) |= ϕ iff λ |= ϕ for every path λ in M starting from q.

M |= ϕ iff (M, q0) |= ϕ for every initial state q0 in M .
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Example

s1

{ab}

s2

{ab}

s3

{a}

M |= Ga?
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Example

s1

{ab}

s2

{ab}

s3

{a}

M |= Ga

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 67



Example

s1

{ab}

s2

{ab}

s3

{a}

M |= Ga

M |= X(a ∧ b)?
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Example

s1

{ab}

s2

{ab}

s3

{a}

M |= Ga

M 6|= X(a ∧ b)
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Example

s1

{ab}

s2

{ab}

s3

{a}

M |= Ga

M 6|= X(a ∧ b)
M |= G(¬b→ G(a ∧ ¬b))?
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Example

s1

{ab}

s2

{ab}

s3

{a}

M |= Ga
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Example

s1
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{a}
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Example

s1

{ab}

s2

{ab}

s3

{a}

M |= Ga

M 6|= X(a ∧ b)
M |= G(¬b→ G(a ∧ ¬b))
M |= bU(a ∧ ¬b)
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Specifying Properties in LTL: Mutual Exclusion

〈n1, n2, y = 1〉

〈w1, n2, y = 1〉 〈n1, w2, y = 1〉

〈w1, w2, y = 1〉

〈c1, w2, y = 0〉 〈w1, c2, y = 0〉

〈c1, n2, y = 0〉 〈n1, c2, y = 0〉

MSem |= G¬(cr1 ∧ cr2)?
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Properties of LTL
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Semantics of Negation

For paths we have that π |= φ iff π 6|= ¬φ

But it is not the case that M 6|= φ iff M |= ¬φ

M does not satisfy either φ or ¬φ if there are (initial) paths π1 and π2 such
that π1 |= φ and π2 |= ¬φ

q0

q2 q1

pos0

pos1pos2

(M, q0) 6|= Gpos0
(but also: (M, q0) 6|= ¬Gpos0 !)

(M, q0) 6|= Fpos1
(but also: (M, q0) 6|= ¬Fpos1 !)

(M, q0) |= (¬Gpos0)→ Fpos1
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Equivalences

Definition 2.6 (Equivalence)
Formulas φ, ψ are equivalent, or φ ≡ ψ, iff for every model M , M |= φ iff M |= ψ.

Duality
¬Gφ ≡ F¬φ
¬Fφ ≡ G¬φ
¬Xφ ≡ X¬φ

Idempotency
GGφ ≡ Gφ

FFφ ≡ Fφ

φU(φUψ) ≡ φUψ

(φUψ)Uψ ≡ φUψ

Absorption
FGFφ ≡ GFφ

GFGφ ≡ FGφ

In LTL there are only 4 non-equivalent combinations of G and F: G, F, GF, FG.
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Equivalences

Distribution

X(φUψ) ≡ (Xφ)U(Xψ)

F(φ ∨ ψ) ≡ Fφ ∨ Fψ

G(φ ∧ ψ) ≡ Gφ ∧Gψ

But,

F(φUψ) 6≡ (Fφ)U(Fψ)

G(φUψ) 6≡ (Gφ)U(Gψ)

F(φ ∧ ψ) 6≡ Fφ ∧ Fψ

G(φ ∨ ψ) 6≡ Gφ ∨Gψ

s1

{b}

s2

∅

s3

{a}

TS |= Fa ∧ Fb but TS 6|= F (a ∧ b)
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Equivalences

Expansion

φUψ ≡ ψ ∨ (φ ∧X(φUψ))

Fψ ≡ ψ ∨XFψ

Gψ ≡ ψ ∧XGψ

φUψ is the least solution of the expansion law for U:

if α is such that α ≡ ψ ∨ (φ ∧Xα), then φUψ → α

Similarly, Gψ is the greatest solution of the expansion law for G:

if α is such that α ≡ ψ ∧Xα, then α→ Gψ (e.g., α = false)
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Motivating Example: Rescue Robots

Everybody is safe:∧
i∈People safei

Everybody will eventually be safe:∧
i∈People Fsafei

different interpretation: F
(∧

i∈People safei
)

Everybody will always be safe, from some moment on:∧
i∈People FGsafei

equivalently: FG
(∧

i∈People safei
)

Everybody may eventually be safe, if everything goes fine:

Cannot be expressed in LTL!
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Motivating Example: Rescue Robots

Whenever person i gets in trouble, she will eventually be rescued:

G(¬safei → Fsafei)

If person i gets outside the building, then she will never be in danger
anymore:

(Foutsidei)→ (FGsafei) ; not quite what we want!

F(outsidei → Gsafei) ; not quite right either

we want to express that whenever a person gets outside, she will remain
safe from then on:

G(outsidei → Gsafei) !

Person i may be rescued without any robot ever entering the building, but
guaranteed rescue requires some robots to enter:

Cannot be expressed in LTL!

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 75



Motivating Example: Voting

The system will not reveal how a particular voter voted:

G¬revealedi

The system does not issue receipts:

G¬receipti

The voter can vote, and can refrain from voting:

Cannot be expressed in LTL

The voter can vote, and can refrain from voting. If she votes, the system will
not reveal afterwards how she voted:

Cannot be expressed in LTL
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What’s Missing

To sum up: LTL

Syntax

Semantics

Properties

What’s missing in LTL?

The ability to distinguish between necessary and possible courses of
action
What will happen = what must happen

Sometimes we want to express that something may happen
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Part 2: Reasoning about Time and Change

2.3 Computation Tree Logic
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Linear- and Branching-time Temporal Logics

Linear-time Temporal Logic : statements on all paths starting from a state.

s |= G(x ≤ 20) iff for all paths starting from s, always x ≤ 20

the universal quantification implicit in the LTL semantics can be made explicit:

s |= Aϕ iff π |= ϕ for all paths π starting in s

but what about “for every computation it is always possible to return to the initial
state”?

AGFstart would not do the job. Why?

Branching-time Temporal Logic: statements on all paths or some path starting from a state.

s |= AG(x ≤ 20) iff for every path starting from s, always x ≤ 20

s |= EG(x ≤ 20) iff for some path starting from s, always x ≤ 20

alternation of path quantifiers is allowed: AGEFstart
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Branching Time: CTL

CTL: Computation Tree Logic

Reasoning about all possible computations of a system

Path quantifiers: A (for all paths), E (there is a path)

Temporal operators: X (next), U (until), F (sometime), G (always)

Two types of formulas: state formulae vs. path formulae

“Vanilla” CTL: every temporal operator must be immediately preceded by
exactly one path quantifier

CTL*: no syntactic restrictions

Reasoning in “vanilla” CTL is easier to automatize
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Computational vs. Behavioral Structures

CTL: semantics based on a notion of branching time:
infinite tree of states obtained by unfolding the transition system.
an instant in time can have several following instants.

Computational Behavioral

q0 q1

roL roP

q0

q q0 0 q q0 1

q q q0 1 0 q q q0 1 1q q q0 0 0 q q q0 0 1

.... ....

roL

roL

roL

roL

roP

roProP

Incomparable Expressivity:
some properties are expressible in LTL, but not in CTL.
some properties are expressible in CTL, but not in LTL.

Different model checking algorithms with different complexities.
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Computation Tree Logic: Syntax

Temporal logic on infinite trees [Clarke & Emerson 1981]

State formulas Φ, Ψ:
- a ∈ AP atoms
- ¬Φ negation
- Φ ∧Ψ conjunction
- Eφ for some path φ is true
- Aφ for every path φ is true

Path formulas φ:
- XΦ neXt Φ
- ΦUΨ Φ Until Ψ

Formulas in CTL are all and only the state formulas.

⇒ Notice that X and U alternate with A and E:
AXAXΦ and AXEXΦ ∈ CTL
but AXXΦ and AEXΦ /∈ CTL
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Computation Tree Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}. Then, what about:

1 EX(x = 1)?

2

3

4

5

6

7
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Computation Tree Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}. Then, what about:

1 EX(x = 1) 3

2 AX(x = 1)?

3

4

5

6

7
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Computation Tree Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}. Then, what about:

1 EX(x = 1) 3

2 AX(x = 1) 3

3 (x < 2) ∨ (x = 1) ?

4

5

6

7
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Computation Tree Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}. Then, what about:

1 EX(x = 1) 3

2 AX(x = 1) 3

3 (x < 2) ∨ (x = 1) 3

4 E(x = 1 ∧ AX(x ≥ 3))?

5

6

7
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Computation Tree Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}. Then, what about:

1 EX(x = 1) 3

2 AX(x = 1) 3

3 (x < 2) ∨ (x = 1) 3

4 E(x = 1 ∧ AX(x ≥ 3)) 7

5 EX(trueU(x = 1))?

6

7
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Computation Tree Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}. Then, what about:

1 EX(x = 1) 3

2 AX(x = 1) 3

3 (x < 2) ∨ (x = 1) 3

4 E(x = 1 ∧ AX(x ≥ 3)) 7

5 EX(trueU(x = 1)) 7

6 EX(x = 1 ∧ AX(x ≥ 3))?

7
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Computation Tree Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}. Then, what about:

1 EX(x = 1) 3

2 AX(x = 1) 3

3 (x < 2) ∨ (x = 1) 3

4 E(x = 1 ∧ AX(x ≥ 3)) 7

5 EX(trueU(x = 1)) 7

6 EX(x = 1 ∧ AX(x ≥ 3)) 3

7 EXA(trueU(x = 1))?
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Computation Tree Logic: Syntax

Let AP = {x = 1, x < 2, x ≥ 3}. Then, what about:

1 EX(x = 1) 3

2 AX(x = 1) 3

3 (x < 2) ∨ (x = 1) 3

4 E(x = 1 ∧ AX(x ≥ 3)) 7

5 EX(trueU(x = 1)) 7

6 EX(x = 1 ∧ AX(x ≥ 3)) 3

7 EXA(trueU(x = 1)) 3
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Derived Operators

Eventually:

EFΦ = E(trueUΦ) potentially Φ

AFΦ = A(trueUΦ) inevitably Φ

Always:

EGΦ = ¬AF¬Φ potentially always Φ

AGΦ = ¬EF¬Φ invariantly Φ

Alternatively, the syntax of CTL can be given as follows:

Φ ::= a | ¬Φ | Φ ∧ Φ | EXΦ | AXΦ | E(ΦUΦ) | A(ΦUΦ)
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Examples: Mutual Exclusion Problem

〈n1, n2, y = 1〉

〈w1, n2, y = 1〉 〈n1, w2, y = 1〉

〈w1, w2, y = 1〉

〈c1, w2, y = 0〉 〈w1, c2, y = 0〉

〈c1, n2, y = 0〉 〈n1, c2, y = 0〉

1 mutual exclusion: AG(¬crit1 ∨ ¬crit2)

2 starvation freedom (strong): (AGAFcrit1) ∧ (AGAFcrit2)

3 “every request will eventually be granted”: AG(request→ AFgranted)

4 “in every state it is possible to return to (one of) the initial state(s)”:
AGEFstart
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Computation Tree Logic: Semantics

Let M = 〈St,−→,V〉 be a transition system, Φ,Ψ be state formulas, and γ be a
path formula.

Definition 2.7 (Semantics of CTL: state formulas)

(M, q) |= a iff a ∈ V(q)
(M, q) |= ¬Φ iff (M, q) 6|= Φ
(M, q) |= Φ ∧Ψ iff (M, q) |= Φ and (M, q) |= Ψ
(M, q) |= Eγ iff for some path λ starting from q, (M,λ) |= γ
(M, q) |= Aγ iff for all paths λ starting from q, (M,λ) |= γ

Definition 2.8 (Semantics of CTL: path formulas)

(M,λ) |= ΦUΨ iff (M,λ[i]) |= Ψ for some i ≥ 0,
and (M,λ[j]) |= Φ for all 0 ≤ j < i
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Computation Tree Logic: Semantics

Let M = 〈St,−→,V〉 be a transition system, Φ,Ψ be state formulas, and γ be a
path formula.

Definition 2.7 (Semantics of CTL: state formulas)

(M, q) |= a iff a ∈ V(q)
(M, q) |= ¬Φ iff (M, q) 6|= Φ
(M, q) |= Φ ∧Ψ iff (M, q) |= Φ and (M, q) |= Ψ
(M, q) |= Eγ iff for some path λ starting from q, (M,λ) |= γ
(M, q) |= Aγ iff for all paths λ starting from q, (M,λ) |= γ

Definition 2.8 (Semantics of CTL: path formulas)

Like in LTL!

(M,λ) |= ΦUΨ iff (M,λ[i]) |= Ψ for some i ≥ 0,
and (M,λ[j]) |= Φ for all 0 ≤ j < i
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Computation Tree Logic: Semantics

Let M = 〈St,−→,V〉 be a transition system, Φ,Ψ be state formulas, and γ be a
path formula.

Definition 2.7 (Semantics of CTL: state formulas)

(M, q) |= a iff a ∈ V(q)
(M, q) |= ¬Φ iff (M, q) 6|= Φ
(M, q) |= Φ ∧Ψ iff (M, q) |= Φ and (M, q) |= Ψ
(M, q) |= Eγ iff for some path λ starting from q, (M,λ) |= γ
(M, q) |= Aγ iff for all paths λ starting from q, (M,λ) |= γ

Definition 2.8 (Semantics of CTL: path formulas)

(M,λ) |= XΦ iff (M,λ[1]) |= Φ
(M,λ) |= ΦUΨ iff (M,λ[i]) |= Ψ for some i ≥ 0,

and (M,λ[j]) |= Φ for all 0 ≤ j < i
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Semantics of CTL: Intuition

(d) AXϕ (e) AϕUψ (f) EϕUψ
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Semantics of CTL: Derived Operators

Recall that

EFΦ = E(trueUΦ)

AFΦ = A(trueUΦ)

EGΦ = ¬AF¬Φ

AGΦ = ¬EF¬Φ

Then, by definition:
(M, q) |= EFΦ iff for some path λ from q, for some j ≥ 0, (M,λ[j]) |= Φ

(M, q) |= AFΦ iff for every path λ from q, for some j ≥ 0, (M,λ[j]) |= Φ

(M, q) |= EGΦ iff for some path λ from q, for all j ≥ 0, (M,λ[j]) |= Φ

(M, q) |= AGΦ iff for every path λ from q, for all j ≥ 0, (M,λ[j]) |= Φ
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Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK
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5 6
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3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3 |= EFcaP?
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Example: Rocket and Cargo
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Semantics of Transition Systems

For state formula Φ, the satisfaction set Sat(Φ) is defined as

Sat(Φ) = {s ∈ S | s |= Φ}

TS satisfies formula Φ iff it is satisfied in all initial states:

TS |= Φ iff for every s0 ∈ I, s0 |= Φ

or equivalently, I ⊆ Sat(Φ)

Beware: TS 6|= Φ and TS 6|= ¬Φ is consistent!
because of multiple initial states, for example, s0 |= EGΦ and s′0 6|= EGΦ

A formula Φ is valid iff it is true in every transition system.
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Rocket and Cargo: More Properties
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Rocket and Cargo: More Properties
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Rocket and Cargo: More Properties
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Rocket and Cargo: More Properties
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Example: Mutual Exclusion Problem

〈n1, n2, y = 1〉

〈w1, n2, y = 1〉 〈n1, w2, y = 1〉

〈w1, w2, y = 1〉

〈c1, w2, y = 0〉 〈w1, c2, y = 0〉

〈c1, n2, y = 0〉 〈n1, c2, y = 0〉

1 M |= AG(¬cr1 ∨ ¬cr2) ?

2

3
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Example: Mutual Exclusion Problem

〈n1, n2, y = 1〉

〈w1, n2, y = 1〉 〈n1, w2, y = 1〉

〈w1, w2, y = 1〉

〈c1, w2, y = 0〉 〈w1, c2, y = 0〉

〈c1, n2, y = 0〉 〈n1, c2, y = 0〉

1 M |= AG(¬cr1 ∨ ¬cr2) 3

2 M |= (AGAFcr1) ∧ (AGAFcr2) ?

3
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Example: Mutual Exclusion Problem

〈n1, n2, y = 1〉

〈w1, n2, y = 1〉 〈n1, w2, y = 1〉

〈w1, w2, y = 1〉

〈c1, w2, y = 0〉 〈w1, c2, y = 0〉

〈c1, n2, y = 0〉 〈n1, c2, y = 0〉

1 M |= AG(¬cr1 ∨ ¬cr2) 3

2 M 6|= (AGAFcr1) ∧ (AGAFcr2) 7

3
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Example: Mutual Exclusion Problem

〈n1, n2, y = 1〉

〈w1, n2, y = 1〉 〈n1, w2, y = 1〉

〈w1, w2, y = 1〉

〈c1, w2, y = 0〉 〈w1, c2, y = 0〉

〈c1, n2, y = 0〉 〈n1, c2, y = 0〉

1 M |= AG(¬cr1 ∨ ¬cr2) 3

2 M 6|= (AGAFcr1) ∧ (AGAFcr2) 7

3 M |= (AGAFwa1 → AGAFcr1) ∧ (AGAFwa2 → AGAFcr2) ?
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Example: Mutual Exclusion Problem
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1 M |= AG(¬cr1 ∨ ¬cr2) 3

2 M 6|= (AGAFcr1) ∧ (AGAFcr2) 7

3 M 6|= (AGAFwa1 → AGAFcr1) ∧ (AGAFwa2 → AGAFcr2) 7
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Equivalence of CTL formulas

Definition 2.9 (Equivalence)
Two formulas Φ and Ψ are equivalent, or Φ ≡ Ψ, iff Sat(Φ) = Sat(Ψ) for all TS.

Φ ≡ Ψ if and only if for all TS, TS |= Φ⇔ TS |= Ψ

Duality:

AXΦ ≡ ¬EX¬Φ

EXΦ ≡ ¬AX¬Φ

AFΦ ≡ ¬EG¬Φ

EFΦ ≡ ¬AG¬Φ

AGΦ ≡ ¬EF¬Φ

EGΦ ≡ ¬AF¬Φ
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Equivalences in CTL: Distributivity

in LTL we have:

F(φ ∨ ψ) ≡ Fφ ∨ Fψ

G(φ ∧ ψ) ≡ Gφ ∧Gψ

and in CTL:

EF(Φ ∨Ψ) ≡ EFΦ ∨ EFΨ

AG(Φ ∧Ψ) ≡ AGΦ ∧ AGΨ
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Equivalences in CTL

But,

EG(Φ ∨Ψ) 6≡ EGΦ ∨ EGΨ

AF(Φ ∧Ψ) 6≡ AFΦ ∧ AFΨ

s1

{a}

s

∅

s2

{b}

s |= AF(a ∨ b) as for every path π from s, π |= F(a ∨ b)
but s(s1)ω 6|= Fb. Thus, s 6|= AFb

a similar line of reasoning shows that s 6|= AFa.
hence, s 6|= AFa ∨ AFb.
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Fixpoint Equivalences in CTL

Theorem 2.10 (Fixpoint characterization of branching-time
operators)

The following formulas are valid in CTL:

Eϕ1Uϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ EX Eϕ1Uϕ2)

EFϕ ↔ ϕ ∨ EX EFϕ

EGϕ ↔ ϕ ∧ EX EGϕ

Aϕ1Uϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ AX Aϕ1Uϕ2).

AFϕ ↔ ϕ ∨ AX AFϕ

AGϕ ↔ ϕ ∧ AX AGϕ

Eϕ1Uϕ2 and Aϕ1Uϕ2 are the least fixed points.
EGϕ and AGϕ are the greatest fixed points.
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Fixpoint Equivalences in CTL

What is the importance of fixpoint equivalences?

They say that paths satisfying CTL specifications can be constructed
incrementally, step by step

Moreover, solutions to the verification problem can be obtained iteratively

...which will be used in most model checking algorithms
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Motivating Example: Rescue Robots

Everybody is safe:∧
i∈People safei

Everybody will eventually be safe:∧
i∈People AFsafei

Another interpretation: AF
(∧

i∈People safei
)

Everybody will always be safe, from some moment on:

Cannot be expressed in CTL! but in CTL∗:
∧
i∈People AFGsafei

Equivalently: AFG
(∧

i∈People safei
)

Everybody may eventually be safe, if everything goes fine:∧
i∈People EFsafei

Another interpretation: EF
(∧

i∈People safei
)
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Motivating Example: Rescue Robots

Whenever person i gets in trouble, she will eventually be rescued:

AG(¬safei → AFsafei)

If person i gets outside the building then she will never be in danger
anymore:

AG(outsidei → AGsafei)

Person i may be rescued without any robot ever entering the building, but
guaranteed rescue requires some robots to enter:

E(
∧
j∈Robots outsidej)Usafei ∧ ¬A(

∧
j∈Robots outsidej)Usafei
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Motivating Example: Voting

The system will not reveal how a particular voter voted:

AG¬revealedi

The system does not issue receipts:

AG¬receipti

The voter can vote, and can refrain from voting ; ambiguous...

Interpretation 1: The voter may vote, and may refrain from voting:
EFvotedi ∧ EG¬votedi

Interpretation 2: She is able to vote, and able to refrain from voting:

Cannot be expressed in CTL!

If the voter votes, the system will not reveal afterwards how she voted:∧
c∈Candidates AG

(
votedi,c → AG(¬revealedVotei,c)

)
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Equivalence of Formulas in LTL and CTL

Definition 2.11 (Equivalence)
a CTL formula Φ and an LTL formula φ are equivalent, or Φ ≡ φ, iff for every
transition system TS,

TS |= Φ iff TS |= φ

Theorem 2.12 (Clarke & Draghicescu, 1988)
Let Φ be a CTL formula and let φ be the LTL formula obtained by deleting all path
quantifiers in Φ. Then,

Φ ≡ φ or there is no LTL formula equivalent to Φ
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LTL and CTL are incomparable

Some formulas in LTL cannot be expressed in CTL:
FGa
F(a ∧Xa)

Some formulas in CTL cannot be expressed in LTL:
AFAGa
AF(a ∧ AXa)
AGEFa

⇒ cannot be expressed = there is no equivalent formula
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Comparison between LTL and CTL

F(a ∧Xa) is not equivalent to AF(a ∧ AXa)

s2

∅

s1

{a}

s0

{a}

s3

∅

s4

{a}

s0 |= F(a ∧Xa) but s0 6|= AF(a ∧ AXa)︸ ︷︷ ︸
consider path s0s1(s2)ω

⇒ There is no LTL formula equivalent to AF(a ∧ AXa)

Actually, there is no CTL formula equivalent to F(a ∧Xa).
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Comparison between LTL and CTL

AFAGa is not equivalent to FGa

s0

{a}

s1

∅

s2

{a}

s0 |= FGa but s0 6|= AFAGa︸ ︷︷ ︸
consider path (s0)ω

⇒ Again, there is no LTL formula equivalent to AFAGa

Actually, there is no CTL formula equivalent to FGa.
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Comparison between LTL and CTL

Formula AGEFa cannot be expressed in LTL

proof by contradiction: suppose that for some φ in LTL, φ ≡ AGEFa.

consider

s0

∅

s1

{a}

(g) TS

s

∅
(h) TS’

TS |= AGEFa. Hence, by assumption, TS |= φ

Paths(TS′) ⊆ Paths(TS). Thus, TS′ |= φ

but, TS′ 6|= AGEFa as sω 6|= GEFa
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Beyond LTL and CTL: CTL∗

The incomparability of LTL and CTL motivates their combination: CTL∗

CTL∗ combines the syntax of LTL and CTL: it strictly extends both.
The semantics is obtained by extending LTL’s with CTL’s clauses for path
quantifiers.
Theoretical interest but seldom used in applications.

CTL∗

LTL CTL
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Conclusions

1 Linear-time Temporal Logic (LTL)
1 Syntax
2 Semantics
3 Expressivity

2 Computation-tree Temporal Logic (CTL)
1 Syntax
2 Semantics
3 Expressivity

3 Comparison between LTL et CTL
1 CTL∗
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Part 3: Verification and Complexity

Verification and Complexity
3.1 Decision Problems
3.2 Complexity of Model Checking Temporal Logics

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 109



Part 3: Verification and Complexity

3.1 Decision Problems
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What’s the Use of MAS Logics?

Modelling & Design
Modeling systems (the frameworks provide intuitive conceptual structures,
and a systematic approach);

Specifying desirable properties of systems.

Analysis & Verification
Reasoning about concrete systems;

Correctness testing.
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What’s the Use of MAS Logics?

Automatic Generation of Behaviors
Programming with executable specifications;

Automatic planning.

Philosophy of Mind and Agency
Characterization of mental attitudes;

Discussion of rational agents;

Testing rationality assumptions.

In this course, we focus on modeling, specification, and verification

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 112



Motivating Example: Rescue Robots

Tasks
Check whether everybody will eventually be safe.

Verify that if person i gets outside the building then she will never be in
danger anymore.

Check if, in all rescue missions, everybody will always be safe, from some
moment on.

Show or disprove that everybody may eventually be safe, if everything goes
fine.

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 113



Motivating Example: Voting

Tasks
Verify that the voter can vote, and can refrain from voting.

Design a system that does not issue receipts.

Show (or disprove) that no system will ever reveal how a particular voter
voted.
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Logical Problems

Decision problem: given representation of an instance, decide whether it
belongs to the set of “good” instances.

Typical logical problems: validity, satisfiability, and model checking:

Validity: given formula ϕ, determine if ϕ is valid (true in every model)

Satisfiability: given formula ϕ, determine if ϕ is satisfiable (true in some
model)

Model checking: given formula ϕ and model M , determine if ϕ is true in M
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Motivating Example: Rescue Robots

Check whether everybody will eventually be safe.

Model checking of
∧
i∈People AFsafei

in the model of the rescue mission

Verify that if person i gets outside the building then she will never be in
danger anymore.

Model checking of AG(outsidei → AGsafei)
in the model of the rescue mission

Check if, in all rescue missions, everybody will always be safe, from some
moment on.

Validity checking of
∧
i∈People FGsafei

Show or disprove that everybody may eventually be safe, if everything goes
fine.

Validity checking of
∧
i∈People EFsafei
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Motivating Example: Voting

Verify that the voter can vote, and can refrain from voting:

Model checking of EFvotedi ∧ EG¬votedi

in the model of the voting protocol

Design a system that does not issue receipts:

Satisfiability checking of AG(
∧
c∈V oters ¬receipti)

Show (or disprove) that no system will ever reveal how any voter i voted:

Validity checking of AG(
∧
i∈V oters ¬revealedi)
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Logical Problems

Decision problem can be seen as a Yes/No question.
The answer depends on the input, i.e., the actual parameters.

Algorithmic view:
We want a machine (algorithm) to answer the question.
We give the input, the machine returns the answer!

We use Turing machines as models of computation.

A. Turing, Intelligent Machinery, 1948:

. . . an unlimited memory capacity obtained in the form of an infinite tape marked
out into squares, on each of which a symbol could be printed. At any moment
there is one symbol in the machine [. . . ]. The machine can alter the scanned
symbol, and its behavior is in part determined by that symbol [. . . ]. [T]he tape
can be moved back and forth through the machine, this being one of the
elementary operations of the machine.

Will that work?
It depends on how difficult the question is
; Computational Complexity
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Some Complexity Classes

Time and space are the two parameters of the complexity of decision problems.
PTIME (polynomial time): problems solvable in polynomial time by a deterministic
Turing machine.

NP (polynomial non-deterministic time): problems solvable in polynomial time by a
non-deterministic Turing machine.

PSPACE (polynomial space): problems solvable by a (deterministic) Turing machine
that uses only polynomially many memory cells.

EXPTIME (exponential time): problems solvable in exponential time by a deterministic
Turing machine.

LOG
Space

PTIME NPco
-N

P

PSPACE

EXPTIME

EXPSPACE

.

.

.

ELEMENTARY
2EXPTIME

R
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Looking for Completeness

Ideally, we would like to characterize precisely the complexity of a decision
problem ; Completeness

A decision problem is complete wrt a complexity class C iff

it belongs to C: there is a Turing machine to decide the problem in C
(membership)

we cannot do better: there is a reduction to another C-complete problem
(hardness)

Church’s thesis
If there is an algorithm (in C), then there is a Turing machine (in C).
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Complexity

Theoretical complexity has many deficiencies: it refers only to the worst (hardest)
instance in the set, neglects coefficients in the function characterizing the
complexity, etc.

What is this about?

Scalability!

The problems in PTIME can in principle be solved efficiently by a brute force
approach.

NP collects problems that can be solved fast if one comes up with the right
heuristics.

Problems in EXPTIME do not scale even with smart heuristics; they are
inherently exponential in terms of the time that they demand.
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Part 3: Verification and Complexity

3.2 Complexity of Model Checking Temporal Logics
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Complexity of CTL Model Checking

Theorem 3.1
Model checking of CTL is PTIME-complete, and can be done in linear time with
respect to the size of the model and the length of the formula.

Is that precise enough...?
What does linear mean precisely?
And how do we measure the size of the model?

Theorem 3.2
Model checking of CTL is PTIME-complete, and can be done in time O(m · l)
where m is the number of transitions in the model and the l is the number of
subformulas in the formula.
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Complexity of LTL Model Checking

Theorem 3.3
Model checking of LTL is PSPACE-complete, and can be done in linear time with
respect to the size of the model and exponential time wrt the length of the
formula.

Theorem 3.4

Model checking of LTL is PSPACE-complete, and can be done in time O(m · 2l)
where m is the number of transitions in the model and the l is the number of
subformulas in the formula.
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Summary of Complexity Results

Model Cheking Satisfiability
CTL PTIME-complete EXPTIME-complete
LTL PSPACE-complete PSPACE-complete

CTL* PSPACE-complete 2EXPTIME-complete

Take-home message:

Model checking LTL and CTL can be done efficiently.

Several model checking tools available

CTL: NuSMV, TAPAs, . . .

LTL: Spin, LTSmin, PAT, . . .

Check:
https://en.wikipedia.org/wiki/List_of_model_checking_tools
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Part 4: Reasoning about Strategic Abilities

Reasoning about Strategic Abilities
4.1 Concurrent Game Structures
4.2 Alternating-Time Temporal Logic
4.3 Agents, Systems, Games
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What Agents Can Achieve

So far, we specified how things must or may evolve.

In multi-agent systems, it is often very important to know who can make
them evolve in a particular way.

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 128



Motivating Example: Rescue Robots

Properties to express
The robots can rescue all the people in the building.

If person i gets outside the building then she can stay away from trouble
forever.

Person i may be rescued without any robot ever entering the building, but
guaranteed rescue requires some robots to enter.

The robots can rescue all the people.

The robots can rescue all the people, and they know that they can.

The robots can rescue all the people, and they know how to do it.
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Motivating Example: Voting

Properties to express
Privacy: The system cannot reveal how a particular voter voted.

Receipt-freeness: The voter cannot gain any information (a receipt) which can
be used to prove to a coercer that she voted in a certain way.

Coercion-resistance: The voter cannot cooperate with the coercer to prove to
him that she voted in a certain way.
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What Agents Can Achieve

McCarthy and Hayes, Some Philosophical Problems from the Standpoint of Artificial
Intelligence, 1969:

We want a computer program that decides what to do by inferring in a formal
language [i.e., a logic] that a certain strategy will achieve a certain goal.
This requires formalizing concepts of causality, ability, and knowledge.

1988 : Belnap and Perloff: logic of “seeing to it that” (STIT)
1985 : Parikh: Game Logic
2000 : Pauly: Coalition Logic
2002 : Alur, Henzinger and Kupferman: Alternating-time Temporal Logic

A word of caution:
The main logic-based approaches to reasoning about strategic play are weak in
game-theoretic sense.
They are based on the worst case analysis (“surely winning”) and binary winning
conditions.
; roughly correspond to maxmin analysis in two-player zero-sum games with binary
payoffs.
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Part 4: Reasoning about Strategic Abilities

4.1 Concurrent Game Structures
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Concurrent Game Structures

Concurrent game structures (aka multi-player game frames)
Generalization of repeated games by allowing different strategic games to be
played at different stages.
Or, equivalently, generalization of transition systems to a multi-agent setting.

Main features:

Agents, actions, transitions, atomic propositions

Atomic propositions + interpretation

Actions are abstract
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Concurrent Game Structures

Fix a set AP of atomic propositions (or atoms).

Definition 4.1 (Concurrent Game Structure)
A concurrent game structure is a tuple M = 〈Agt, St,V, Act, d, o〉, where:

Agt = {1, . . . , k} is a finite set of agents

St = {q1, q2, . . . } is a set of states

V : AP → 2St is a valuation of atoms

Act = {α1, . . . , αm} is a finite set of actions

protocol d : Agt× St→ 2Act defines actions available to an agent in a state

o : St×ActAgt → St is a (partial) transition function that assigns outcome
states q′ = o(q, α1, . . . , αk) to states and joint actions.

Transitions are deterministic.
Transition o(q, α1, . . . , αk) is defined iff all αa are enabled in q, that is,
αa ∈ d(a, q) for all agents a ∈ Agt.
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Example: Robots and Carriage

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

push,w
ait

wait,push

pos2

w
ait,pushw

ai
t,p

us
h

Consider CGS M = 〈Agt, St,V, Act, d, o〉, where:
Agt = {1, 2}
St = {q0, q1, q2}
for i ≤ 2, V(posi) = {qi}
Act = {push,wait} and for every agent a and state q, d(a, q) = Act

o(qi, push, push) = o(qi, wait, wait) = qi,
o(qi, push,wait) = qi+1 ( mod 3),
o(qi, wait, push) = qi−1 ( mod 3).
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Part 4: Reasoning about Strategic Abilities

4.2 Alternating-Time Temporal Logic
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What Agents Can Achieve: ATL

ATL: Alternating-time Temporal Logic (Alur et al. 1997-2002)

Motto: Temporal Logic meets Game Theory

Overarching Idea: cooperation modalities

〈〈A〉〉Φ: coalition A has a joint strategy to achieve goal Φ (independently of
whatever agents in Agt \A do.)

Generalization of the branching-time temporal logic CTL∗ (and therefore both
LTL and CTL).

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 137



Example Formulas

〈〈jamesbond〉〉G(ski ∧ ¬getBurned):
“James Bond can always go skiing without getting burned”

〈〈jamesbond, bondsgirl〉〉(¬destruction)UendOfMovie:
“James Bond and his girlfriend are able to save the world from destruction
until the end of the movie”

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 138



Alternating-time Temporal Logic: Syntax

Definition 4.2 (ATL∗)

State (Φ) and path (γ) formulas in ATL∗ are defined as follows, where q ∈ AP
and A ⊆ Ag:

Φ ::= p | ¬Φ | Φ ∧ Φ | 〈〈A〉〉γ
γ ::= Φ | ¬γ | γ ∧ γ | Xγ | γUγ

Formulas in ATL∗ are all and only the state formulas.

〈〈A〉〉γ: “the agents in coalition A have a strategy to achieve γ” (no matter what
the agents in A = Agt \A do).

As before, eventually F and always G can be defined from until U:
Fγ ≡ trueUγ
Gγ ≡ ¬F¬γ

[[A]]γ ≡ ¬〈〈A〉〉¬γ: no matter what the agents in coalition A do, the outcome γ is
unavoidable (agents in A cannot enforce ¬γ).
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Alternating-time Temporal Logic: Syntax

Two main syntactic variants:

ATL*: no syntactic restrictions

“Vanilla” ATL: formulas in the ATL fragment of ATL∗ are obtained from
Def. 4.2 by restricting path formulas γ as follows, where Φ is a state formula:

γ ::= XΦ | ΦUΦ

Temporal operators apply to cooperation formulas only.

This is equivalent to the following syntax:

Φ ::= p | ¬Φ | Φ ∧ Φ | 〈〈A〉〉XΦ | [[A]]XΦ | 〈〈A〉〉(ΦUΦ) | [[A]](ΦUΦ)
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Syntax: Examples

Let AP = {x = 1, x < 2, x ≥ 3} and Agt = {1, 2, 3}. Then, what about:

1 〈〈1, 2〉〉X(x = 1)?

2

3

4

5

6

7
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Syntax: Examples

Let AP = {x = 1, x < 2, x ≥ 3} and Agt = {1, 2, 3}. Then, what about:

1 〈〈1, 2〉〉X(x = 1) 3

2 [[2, 3]]X(x = 1)?

3

4

5

6

7
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Syntax: Examples

Let AP = {x = 1, x < 2, x ≥ 3} and Agt = {1, 2, 3}. Then, what about:

1 〈〈1, 2〉〉X(x = 1) 3

2 [[2, 3]]X(x = 1) 3

3 〈〈1, 2〉〉(F(x < 2) ∨G(x = 1)) ?

4

5

6

7
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Syntax: Examples

Let AP = {x = 1, x < 2, x ≥ 3} and Agt = {1, 2, 3}. Then, what about:

1 〈〈1, 2〉〉X(x = 1) 3

2 [[2, 3]]X(x = 1) 3

3 〈〈1, 2〉〉(F(x < 2) ∨G(x = 1)) 3

4 (x = 1 ∧ [[1, 2]]U(x ≥ 3))?

5

6

7
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Syntax: Examples

Let AP = {x = 1, x < 2, x ≥ 3} and Agt = {1, 2, 3}. Then, what about:

1 〈〈1, 2〉〉X(x = 1) 3

2 [[2, 3]]X(x = 1) 3

3 〈〈1, 2〉〉(F(x < 2) ∨G(x = 1)) 3

4 (x = 1 ∧ [[1, 2]]U(x ≥ 3)) 7

5 〈〈∅〉〉X(trueU(x = 1))?

6

7
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Syntax: Examples

Let AP = {x = 1, x < 2, x ≥ 3} and Agt = {1, 2, 3}. Then, what about:

1 〈〈1, 2〉〉X(x = 1) 3

2 [[2, 3]]X(x = 1) 3

3 〈〈1, 2〉〉(F(x < 2) ∨G(x = 1)) 3

4 (x = 1 ∧ [[1, 2]]U(x ≥ 3)) 7

5 〈〈∅〉〉X(trueU(x = 1)) 3

6 [[1, 2]]X(x = 1 ∧ 〈〈2, 3〉〉GX(x ≥ 3))?

7
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Syntax: Examples

Let AP = {x = 1, x < 2, x ≥ 3} and Agt = {1, 2, 3}. Then, what about:

1 〈〈1, 2〉〉X(x = 1) 3

2 [[2, 3]]X(x = 1) 3

3 〈〈1, 2〉〉(F(x < 2) ∨G(x = 1)) 3

4 (x = 1 ∧ [[1, 2]]U(x ≥ 3)) 7

5 〈〈∅〉〉X(trueU(x = 1)) 3

6 [[1, 2]]X(x = 1 ∧ 〈〈2, 3〉〉GX(x ≥ 3)) 3

7 〈〈2, 4〉〉X[[2, 3]](trueU(x = 1))?
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Syntax: Examples

Let AP = {x = 1, x < 2, x ≥ 3} and Agt = {1, 2, 3}. Then, what about:

1 〈〈1, 2〉〉X(x = 1) 3

2 [[2, 3]]X(x = 1) 3

3 〈〈1, 2〉〉(F(x < 2) ∨G(x = 1)) 3

4 (x = 1 ∧ [[1, 2]]U(x ≥ 3)) 7

5 〈〈∅〉〉X(trueU(x = 1)) 3

6 [[1, 2]]X(x = 1 ∧ 〈〈2, 3〉〉GX(x ≥ 3)) 3

7 〈〈2, 4〉〉X[[2, 3]](trueU(x = 1)) 7

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 141



Strategies

How to interpret strategic operators?

Definition 4.3 (Strategy)
A strategy is a conditional plan.
We represent strategies by functions sa : St+ → Act such that
sa(q1, . . . , qn) ∈ d(a, qn).

; memory-based (perfect recall) strategies

Particular case: memoryless (positional) strategies sa : St→ Act such that
sa(q) ∈ d(a, q).
Or, equivalently, for all histories h, h′ ∈ St+, last(h) = last(h′) implies
sa(h) = sa(h′).

A joint strategy is a tuple of individual strategies, one for each agent.

Strategies can freely assign arbitrary choices to histories (resp. states).
CGS include no semantic means to represent the agents’ uncertainty.
; CGS can only be used to model agents that have perfect information
about the current state of the system.
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Strategy Outcomes

Definition 4.4 (Outcome of a strategy)
out(q, sA) is the set of paths that result from coalition A executing joint strategy
sA from state q onward.

For a memoryless strategy the set out(q, sA) is given as follows:

λ = q0, q1, q2 . . . ∈ out(q, sA) iff

1 q0 = q

2 for every i ≥ 0 there exists a joint action 〈αi1, . . . , αik〉 such that
1 αia ∈ d(a, qi) for every a ∈ Agt (all αia are enabled in each qi)
2 αia = sA[a](qi) for every a ∈ A
3 qi+1 = o(qi, α

i
1, . . . , α

i
k).

For a memory-based strategy the outcome set is given as:
2.2 αia = sA[a](q0, . . . , qi) for every a ∈ A
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Example: Robots and Carriage

Strategies for Robot_1
memoryless:

Robot_1 executes wait no matter what: s1(q0) = s1(q1) = s1(q2) = wait
Robot_1 waits unless the carriage is in position 2; in that case, he pushes:
s′1(q0) = s′1(q1) = wait, s′1(q2) = push

memory-based
s′′1 (h) = push if the length of h is even and it ends with q0, otherwise wait.

Outcomes:
out(q0, s1) = {λ ∈ {q0, q1, q2}ω | λ[0] = q0 and for all i ≥ 0,

if λ[i] = qj then λ[i+ 1] = qj or λ[i+ 1] = q(j−1) mod 3}

out(q0, s
′′
1 ) = {λ ∈ {q0, q1, q2}ω | λ[0] = q0 and for all i ≥ 0,

if |λ[0..i]| = 2m and λ[i] = q0 then λ[i+ 1] = q0 or λ[i+ 1] = q1,

else if λ[i] = qj then λ[i+ 1] = qj or λ[i+ 1] = q(j−1) mod 3}
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Semantics of ATL∗

Formulas in ATL∗ are interpreted on Concurrent Game Structures.

Definition 4.5 (Semantics of ATL*: state formulas)

(M, q) |= p iff q is in V(p)

(M, q) |= ¬Φ iff (M, q) 6|= Φ

(M, q) |= Φ1 ∧ Φ2 iff (M, q) |= Φ1 and (M, q) |= Φ2

(M, q) |= 〈〈A〉〉γ iff there is a joint strategy sA such that, for every path
λ ∈ out(q, sA), (M,λ) |= γ

Definition 4.6 (Semantics of ATL*: path formulas)

(M,λ) |= Xγ iff (M,λ[1..∞]) |= γ

(M,λ) |= γ1Uγ2 iff (M,λ[i..∞]) |= γ2 for some i ≥ 0,
and (M,λ[j..∞]) |= γ1 for all 0 ≤ j ≤ i

.
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(M,λ) |= Φ iff (M,λ[0]) |= Φ, for a state formula Φ

(M,λ) |= ¬γ iff (M,λ) 6|= γ

(M,λ) |= γ1 ∧ γ2 iff (M,λ) |= γ1 and (M,λ) |= γ2

(M,λ) |= Xγ iff (M,λ[1..∞]) |= γ

(M,λ) |= γ1Uγ2 iff (M,λ[i..∞]) |= γ2 for some i ≥ 0,
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Semantics of ATL∗: Derived Operators

Recall: [[A]]Φ ≡ ¬〈〈A〉〉¬Φ.

Semantics of ATL*: state formulas

(M, q) |= [[A]]Φ iff for every joint strategy sA there exists some path λ ∈
out(q, sA) such that (M,λ) |= Φ

As usual, Fγ ≡ trueUγ and Gγ ≡ ¬F¬γ.

Semantics of ATL*: path formulas

(M,λ) |= Fγ iff M,λ[i..∞] |= γ for some i ≥ 0;

(M,λ) |= Gγ iff M,λ[i..∞] |= γ for all i ≥ 0;
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State-Based Semantics for ATL

The semantics of “vanilla” ATL can be given entirely in terms of states:

(M, q) |= p iff p is in V(q)
(M, q) |= ¬ϕ iff (M, q) 6|= ϕ

(M, q) |= ϕ1 ∧ ϕ2 iff (M, q) |= ϕ1 and (M, q) |= ϕ2

(M, q) |= 〈〈A〉〉Xϕ iff there is a joint strategy sA such that, for every path
λ ∈ out(q, sA), (M,λ[1]) |= ϕ

(M, q) |= [[A]]Xϕ iff for every joint strategy sA, there is some path λ ∈
out(q, sA) such that (M,λ[1]) |= ϕ

(M, q) |= 〈〈A〉〉ϕ1Uϕ2 iff there is sA such that, for every λ ∈ out(q, sA),
(M,λ[i]) |= ϕ2 for some i ≥ 0 and (M,λ[j]) |= ϕ1

for all 0 ≤ j ≤ i
(M, q) |= [[A]]ϕ1Uϕ2 iff for every sA, there exists some λ ∈ out(q, sA) such

that (M,λ[i]) |= ϕ2 for some i ≥ 0 and (M,λ[j]) |= ϕ1

for all 0 ≤ j ≤ i
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Example: Robots and Carriage

(M, q0) |= 〈〈1〉〉G¬pos1?

no agent can enforce the carriage to move to any particular position:

(M, q0) |= ¬〈〈1〉〉Xpos0 ∧ ¬〈〈2〉〉Xpos0

the robots together can move the carriage to any position they like:

(M, qi) |= 〈〈1, 2〉〉Fpos0 ∧ 〈〈1, 2〉〉Fpos1 ∧ 〈〈1, 2〉〉Fpos2

(M, qi) |= 〈〈1, 2〉〉(Fpos0 ∧ Fpos1 ∧ Fpos2)
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Part 4: Reasoning about Strategic Abilities

4.3 Agents, Systems, Games
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Connection to Temporal Analysis of Systems

Strategy operators allow a number of useful concepts to be formally specified:

Safety properties: 〈〈os〉〉G¬crash

Liveness properties: 〈〈alice, bob〉〉FpaperAccepted

Fairness properties: 〈〈prod, dlr〉〉G(carRequested → FcarDelivered)
(Note: this is an ATL* formula!)
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Connection to Multi-Agent/Multi-Process Systems

Validity 
 General properties of systems

Satisfiability 
 System synthesis

Model checking 
 Verification

ATL is just another specification language in this context...
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Connection to Games

Concurrent game structure = generalized extensive game

〈〈A〉〉γ: operator 〈〈A〉〉 splits the agents into proponents and opponents

formula γ defines the winning condition
; infinite 2-player, binary, zero-sum game

Flexible and compact specification of winning conditions

Solving a game ≈ checking if (M, q) |= 〈〈A〉〉γ
Model checking ATL corresponds to game solving in game theory!

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 152



Connection to Games

What about other problems?

Validity 
 General properties of games

Satisfiability 
 Game design

e.g., building a model for 〈〈∅〉〉γ1 ∧ 〈〈A〉〉γ2 
 designing a game in which γ1 is
guaranteed and A can achieve γ2

(Frame satisfiability 
 Mechanism design)
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Motivating Example: Rescue Robots

The robots can rescue all the people in the building.∧
i∈People〈〈Robots〉〉Fsafei

Alternative formalization:
〈〈Robots〉〉F

(∧
i∈People safei

)
If person i gets outside the building then she can stay away from trouble
forever.

AG(outsidei → 〈〈i〉〉Gsafei)

Person i may be rescued without any robot ever entering the building, but
guaranteed rescue requires some robots to enter.

E
(
(
∧
j∈Robots outsidej)Usafei

)
∧ ¬〈〈Robots〉〉

(
(
∧
j∈Robots outsidej)Usafei

)
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Motivating Example: Rescue Robots

The robots can rescue all the people, and they know that they can

Cannot be expressed in ATL* !

The robots can rescue all the people, and they know how to do it

Cannot be expressed in ATL* !
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Motivating Example: Voting

The system cannot reveal how a particular voter voted.

¬〈〈system〉〉F(
∨
c∈Candidates revealedVotei,c)

A voter i can gain no receipt which can be used to prove that she voted in a
certain way.

¬〈〈i〉〉F(
∨
c∈Candidates receiptVotei,c)

A voter i cannot cooperate with the coercer to prove to him that she voted in
a certain way.

¬〈〈i, coercer〉〉F . . .?

Cannot be expressed in ATL* (we need a notion
of knowledge for the coercer) !

Beware: even for the first two properties, we need the right modeling of
epistemic capabilities in the scenario!
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Concluding Remarks

ATL∗/ATL can be seen as a logic for reasoning about agents with perfect
information.

CGS do not allow for a representation of agents’ uncertainty.

It is implicitly assumed that each agent always precisely knows the current
state of the system/game.

The notions of perfect vs. imperfect information will be address in Lecture 6.
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Part 5: Verification of Strategic Ability

Verification of Strategic Ability
5.1 Properties of Alternating-time Temporal Logic
5.2 Model Checking ATL
5.3 Model Checking ATL∗
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Part 5: Verification of Strategic Ability

5.1 Properties of Alternating-time Temporal Logic
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Semantic Embedding of CTL∗ into ATL∗

Temporal reasoning can be semantically embedded into strategic reasoning:

think of a transition system as a concurrent game structure with a single
agent (“the system” s)

transitions are due to actions of agent s.

Eγ (“there is a path on which γ holds”) can be then translated as 〈〈s〉〉γ (“the
system can behave in a way that makes γ true”).
Or [[∅]]γ equivalently.

Aγ (“for all paths, γ holds”) can be translated as [[s]]γ (“γ is enforced
whatever all the agents – i.e., the system – do”).
Or 〈〈∅〉〉γ equivalently.
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Syntactic Embedding of CTL∗ into ATL∗

Moreover, ATL∗ extends the branching-time logic CTL∗ by the following
syntactic translation:

Eγ ≡ 〈〈Agt〉〉γ (“there is a path” = outcomes obtainable by grand coalition).
Or [[∅]]γ equivalently.

Aγ ≡ [[Agt]]γ (“for all paths” = necessary outcomes).
Or 〈〈∅〉〉γ equivalently.

In particular,

〈〈Agt〉〉γ ≡ [[∅]]γ
[[Agt]]γ ≡ 〈〈∅〉〉γ

But in general,

〈〈A〉〉γ 6≡ [[A]]γ
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Determinacy in Turn-based Games

Definition 5.1 (Determinacy)
In each state, either the players in A can win with objective γ, or the players not
in A can win with the complementary objective ¬γ.

Chess, checkers, etc, are determined.

Theorem 5.2
Turn-based games (of perfect information) are determined.

Corollary 5.3
The following formula is valid in turn-based CGS:

〈〈A〉〉γ ≡ ¬〈〈A〉〉¬γ
≡ [[A]]γ

In general, this scheme of formula is only valid for A = Agt (see previous slide).
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Determinacy in CGS

We have that 〈〈A〉〉γ → [[A]]γ
But the converse is not true in general.

s0

win1 win2

(S, P )
(R,S)
(P,R)

(P, S)
(S,R)
(R,P )(P, P )

(S, S)
(R,R)

(∗, ∗) (∗, ∗)

Figure: a CGS for rock-paper-scissors.

In s0 we have that [[2]]Xwin1

But, s0 6|= 〈〈1〉〉Xwin1
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Memory and Strategic Abilities in “Vanilla” ATL

Let us discern between two definitions of the satisfaction relation:

|=R: perfect recall is assumed, strategies are of type f : St+ → Act

|=r: only memoryless strategies are allowed, i.e., f : St→ Act

Theorem 5.4
For any CGS M , state q and ATL formula ϕ, we have:

(M, q) |=r ϕ ⇔ (M, q) |=R ϕ.

Memory does not influence strategic abilities in “Vanilla” ATL!
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Memory and Strategic Abilities in “Vanilla” ATL

Definition 5.5 (Tree-unfolding)
Given a CGS M = 〈Agt, St,V, Act, d, o〉 and state q ∈ St, the tree unfolding
T (M, q) = 〈Agt, St∗,V∗, Act, d∗, o∗〉 of M from q is defined as:

St∗ = histM (q)

V∗(h) = V(last(h))

d∗i (h) = di(last(h))

o∗(h, α) = h · o(last(h), α).

Perfect recall strategies in M correspond to memoryless strategies in T (M, q): for
every q and ϕ,

(T (M, q), q) |=r ϕ iff (M, q) |=R ϕ

For every (M, q), we have T (M, q) �β M for β = {(h, last(h)) | h ∈ histM (q)}.
Finally, by invariance under bisimulation,

(M, q) |=r ϕ iff T (M, q), q) |=r ϕ iff (M, q) |=R ϕ
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ATL∗ and Memory

For ATL∗ – contrary to “vanilla” ATL – memory matters:

Theorem 5.6
There is a CGS M , a state q in M , and an ATL∗ formula ϕ, such that

(M, q) |=r ϕ 6⇔ (M, q) |=R ϕ

Counterexample:

M: •qp β
//

α
��

•q′
α

��

j j jϕ = 〈〈a〉〉(Xp ∧XX¬p)
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Fixpoint Properties

Theorem 5.7
The following formulas are valid in ATL:

〈〈A〉〉ϕ1Uϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉X〈〈A〉〉ϕ1Uϕ2)

〈〈A〉〉Fϕ ↔ ϕ ∨ 〈〈A〉〉X〈〈A〉〉Fϕ
〈〈A〉〉Gϕ ↔ ϕ ∧ 〈〈A〉〉X〈〈A〉〉Gϕ

Key remark for model checking:

Corollary
Strategies for A that achieve objectives specified in “vanilla” ATL can be
synthesized incrementally (no backtracking is necessary).
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Part 5: Verification of Strategic Ability

5.2 Model Checking ATL

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 169



Model Checking ATL

A well-known nice result: model checking ATL is tractable!

Theorem (Alur, Kupferman & Henzinger 1998)
ATL model checking is PTIME-complete, and can be done in linear time.

No worse than CTL! (or at least it seems so)

So... let’s model check!
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Model Checking ATL: lower bound

Theorem
ATL model checking is (at least) as hard as CTL model checking (which is
PTIME-hard).

Check the semantic embedding in the previous part.
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Model Checking ATL: upper bound

Procedure mcheck(M, ϕ).
Global model checking formulas of ATL.
Returns the exact subset of St for which formula ϕ holds.

case ϕ ≡ p : return V(p)

case ϕ ≡ ¬ψ : return St \mcheck(M, ψ)

case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M, ψ1) ∩mcheck(M, ψ2)

case ϕ ≡ 〈〈A〉〉Xψ : return pre(A,mcheck(M, ψ))

case ϕ ≡ 〈〈A〉〉Gψ : return mcheckG(A,M, ψ)

case ϕ ≡ 〈〈A〉〉ψ1Uψ2 : return mcheckU(A,M, ψ1, ψ2)
end case

pre(A,Q) = {q | there exist αA such that for all αA, o(q, αA, αA) ∈ Q}

Function pre() returns the set of states Q′ such that, when the system is in a
state q ∈ Q′, agents in A can enforce the next state to be in Q.
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Model Checking ATL: upper bound

To verify a formula of type 〈〈A〉〉γ, the algorithm tries to construct a winning
strategy for A, i.e., one that guarantees γ no matter what the other agents do.

function mcheckG(A,M, ψ).
Returns the subset of St for which formula 〈〈A〉〉Gψ holds.
Q1 := Q;
Q2 := Q3 := mcheck(M, ψ);
while Q1 6⊆ Q2 do
Q1 := Q2;
Q2 := pre(A,Q1) ∩Q3

od;
return Q1
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Model Checking ATL: upper bound

function mcheckU(A,M, ψ1, ψ2).
Returns the subset of St for which formula 〈〈A〉〉ψ1Uψ2 holds.
Q1 := ∅;
Q2 := mcheck(M, ψ2);
Q3 := mcheck(M, ψ1);
while Q2 6⊆ Q1 do
Q1 := Q1 ∪Q2;
Q2 := pre(A,Q1) ∩Q3

od;
return Q1
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Example: Simple Rocket Domain

Assume that there are 3 workers in the rocket (agents 1, 2, and 3)

Each agent has different capabilities:
Agent 1 can try to load the cargo, try to unload the cargo, initiate the flight, or do
nothing (action nop)
Agent 2 can do unload or nop
Agent 3 can do load, refill the fuel tank (action fuel), or do nop

Flying has highest priority: if agent 1 initiates the flight, current actions of the
other agents have no effect
If loading is attempted when the cargo is not around, nothing happens
Same for unloading when the cargo is not in the rocket, and refilling a full
tank
If different agents try to load and unload at the same time then the majority
prevails
Refilling fuel can be done in parallel with loading/unloading
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Example: Simple Rocket Domain

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

< >load ,nop ,fuel1 2

< >unload ,unload ,fuel1 2

< >nop ,nop ,nop1 2 3
< >load ,unload ,nop1 2 3

< >nop ,unload ,load1 2 3

< >unload ,unload ,nop1 2 3

< >unload ,nop ,nop1 2 3

< >unload ,nop ,fuel1 2

< >load ,unload ,fuel1 2

< >nop ,nop ,fuel1 2

< >nop ,unload ,fuel1 2

< >nop ,nop ,load1 2 3
< >load ,nop ,load1 2 3

< >load ,unload ,load1 2 3

< >load ,nop ,nop1 2 3
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Example: Simple Rocket Domain

Verification examples

We want to find the set of states from which agents 1 and 3 can move the
cargo to any given location: 〈〈1, 3〉〉FcaP ∧ 〈〈1, 3〉〉FcaL

How does that work for the coalition of agents 1 and 2: 〈〈1, 2〉〉FcaP?

What about a maintenance goal, like agent 3 keeping the cargo in Paris
forever: 〈〈3〉〉GcaP?
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Simple Rocket Domain: Verification of 〈〈1, 3〉〉FcaP

Done!
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Simple Rocket Domain: Verification of 〈〈1, 3〉〉FcaP

Done!
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Simple Rocket Domain: Verification of 〈〈1, 2〉〉FcaP

Done!
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Simple Rocket Domain: Verification of 〈〈1, 2〉〉FcaP

Done!
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Simple Rocket Domain: Verification of 〈〈1, 2〉〉FcaP

Done!
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Simple Rocket Domain: Verification of 〈〈3〉〉GcaP

Done!
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Simple Rocket Domain: Verification of 〈〈3〉〉GcaP

Done!
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Simple Rocket Domain: Verification of 〈〈3〉〉GcaP
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Simple Rocket Domain: Verification of 〈〈3〉〉GcaP

Done!
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Model Checking ATL: Soundness

Soundness of the MC algorithm follows from the fixpoint characterizations of
strategic modalities.
Procedures mcheckG() and mcheckU() define functors τ1, τ2 on sets:

τ1(Z) = mcheck(ψ) ∩ pre(A,Z) = ψ ∧ 〈〈A〉〉XZ
τ2(Z) = mcheck(ψ2) ∪ (mcheck(ψ1) ∩ pre(A,Z)) = ψ2 ∨ (ψ1 ∧ 〈〈A〉〉XZ)

Loop compute fixed points: sets Z such that τ(Z) = Z.
Recall equivalences:

〈〈A〉〉Gψ ↔ ψ ∧ 〈〈A〉〉X〈〈A〉〉Gψ
〈〈A〉〉ψ1Uψ2 ↔ ψ2 ∨ (ψ1 ∧ 〈〈A〉〉X〈〈A〉〉ψ1Uψ2)

⇒ 〈〈A〉〉Gψ and 〈〈A〉〉ψ1Uψ2 are the fixed points computed by
mcheckG(A,ψ) and mcheckU(A,ψ1, ψ2) respectively.
It does not matter whether perfect recall or memoryless strategies are used:
the algorithm is correct for the R-semantics, but it always finds an r-strategy.
The algorithm can be adapted for the, seemingly more difficult, task of
strategy synthesis for temporal goals.
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Model Checking ATL: Complexity

Theorem (Alur, Kupferman & Henzinger 1998/2002)
Model checking ATL is PTIME-complete, and can be done in linear time.

wrt the
size of the model and the length of the formula

ATL is strictly more expressive than CTL with no computational price to pay.
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Model Checking ATL: Complexity

Theorem (Alur, Kupferman & Henzinger 1998/2002)
Model checking ATL is PTIME-complete, and can be done in time linear wrt the
size of the model and the length of the formula.

ATL is strictly more expressive than CTL with no computational price to pay.
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Model Checking ATL: Complexity

Theorem (Alur, Kupferman & Henzinger 1998/2002)

Model checking ATL is PTIME-complete, and can be done in time O(ml) where
m = #transitions in the model and l = #symbols in the formula.

ATL is strictly more expressive than CTL with no computational price to pay.
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Part 5: Verification of Strategic Ability

5.3 Model Checking ATL∗
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Model Checking ATL∗: Complexity

Theorem (Alur, Kupferman & Henzinger 1998)
ATL∗R model checking is 2EXPTIME-complete in the number of the
transitions in the model and the length of the formula.

ATL∗r model checking is PSPACE-complete in the number of the transitions
in the model and the length of the formula.
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Model Checking ATL∗R: lower bound

Theorem 5.8
ATL∗R model checking is (at least) as hard as LTL realizability (which is
2EXPTIME-hard).

Definition 5.9 (Realizability)
Let X, Y be disjoint, non-empty sets of atoms.

An LTL formula ψ on X ∪ Y is realizable iff there exists a function
f : (2X)+ → 2Y such that for every finite sequence X0, X1 . . . Xn with Xi ⊆ X,
path (X0 ∪ f(X0))(X1 ∪ f(X0X1)) . . . (Xn ∪ f(X0X1 . . . Xn)) satisfies ψ.
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Model Checking ATL∗R: lower bound

Let X, Y be disjoint, non-empty sets of atoms.
Define a 2-player, turn-based CGS M = 〈Agt, St,V, Act, d, o〉 such that

Agt = {1, 2}
St; valuations of atoms in X ∪ Y
V : AP → 2St is the identity function
Act; player 1 controls atoms in X, player 2 atoms in Y
d; agents can change the value of any atom, at any state
o; the value of atoms is updated as determined by agents.

Lemma 5.10
An LTL formula ψ is realizable iff 〈〈2〉〉Xτ(ψ) is true in M .

Translation τ “adds” X operators: it is linear.
LTL realizability can be reduced to ATL∗R model checking.
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Model Checking ATL∗R: upper bound

Theorem 5.11
ATL∗R model checking is in 2EXPTIME.

We can reuse procedure mcheck(M,ϕ) but for formulas of type 〈〈A〉〉γ.

We provide a separate procedure to deal with such formulas.

Intuition:

1 Guess a perfect-recall strategy sA for coalition A.

2 Consider the execution tree T consistent with coalition A following strategy
sA.

3 Check the CTL∗ formula Aγ on T .
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Model Checking ATL∗R: upper bound

1 Given a joint strategy sA and state q, the CGS M can be unfolded into a
(q,A)-execution tree: q-rooted tree representing all possible behaviors
consistent with coalition A following strategy sA.

2 There exists a Büchi tree automaton AM,q,A that accepts exactly all
(q,A)-execution trees.

3 There exists a Rabin tree automaton Aγ that accepts exactly all trees that
satisfy the CTL∗ formula Aγ

4 The product AM,q,A ×Aγ is a Rabin tree automaton that accepts exactly all
(q,A)-execution trees that satisfy Aγ.

5 The language of AM,q,A ×Aγ is non-empty iff (M, q) |= 〈〈A〉〉γ.

Complexity analysis:

Notice that |AM,q,A| = O(|M |) and |Aγ | = 22O(γ)

.

Then |AM,q,A ×Aγ | = O(|AM,q,A| × |Aγ |) = O(|M | × 22O(γ)

).
Non-emptyness of AM,q,A ×Aγ can be checked in polynomial time.
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Model Checking ATL∗r : lower bound

Theorem 5.12
ATL∗r model checking is (at least) as hard as LTL model checking (which is
PSPACE-hard).

Reduction: an LTL formula ϕ is equivalent to the ATL∗ formula 〈〈∅〉〉ϕ.
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Model Checking ATL∗r : upper bound

Theorem 5.13
ATL∗r model checking is in PSPACE.

Again, the case of interest is for formulas of type 〈〈A〉〉γ.

1 Guess a memoryless strategy sA for coalition A: now this can be done in
polynomial space.

2 Trim model M according to sA: all transitions that cannot occur by following
sA are removed.

3 Check the CTL∗ formula Aγ in the trimmed model MsA : this can be done in
PSPACE.

Complexity analysis:
This procedure can be performed in NPSPACE = PSPACE.
The complexity of the whole procedure is in PPSPACE = PSPACE.
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Model Checking Temporal and Strategic Logics: Summary

memoryless strategies perfect recall
CTL PTIME-complete
LTL PSPACE-complete

CTL∗ PSPACE-complete
ATL PTIME-complete
ATL∗ PSPACE-complete 2EXPTIME-complete

ATL : memory does not affect the complexity of model checking.

ATL∗ : memory makes verification strictly harder.
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Part 6: Abilities under Imperfect Information

Abilities under Imperfect Information
6.1 Strategies and Knowledge
6.2 Properties of ATLi
6.3 The Subjective Interpretation
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Ability and Knowledge

So far we considered games of perfect information: players are completely
aware of the structure of the system as well as the current state of the play.

In concrete MAS this is seldom the case: usually players have only partial
information, both about the general setup and about the specific play.

Hereafter we try to answer the following question:

What can players achieve in such scenarios?
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Ability and Knowledge

Classic AI: ability and knowledge are intimately connected

1969 : McCarthy & Hayes:
We want a computer program that decides what to do by inferring
in a formal language [i.e., a logic] that a certain strategy will
achieve a certain goal. This requires formalizing concepts of
causality, ability, and knowledge.

1981 : R. Moore; Reasoning about Knowledge and Action
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Ability and Knowledge

[McCarthy & Hayes, 1969]: what does it mean that “a computer program π to be
able to achieve a state of affairs φ?”

1 objective ability (omniscient external observer): “there is a sub-program σ
[. . . ] which would achieve φ if it were in memory, and control were
transferred to π. No assertion is made that π knows σ or even knows that σ
exists.”

2 subjective ability: “σ exists as above and that σ will achieve φ follows from
information in memory according to a proof that π is capable of checking.”

3 practical ability (strategy synthesis): “π’s standard problem-solving
procedure will find σ if achieving φ is ever accepted as a subgoal.”
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Motivating Example: Rescue Robots

Properties to express
The robots can rescue person i

The robots can rescue person i, and they know that they can

The robots can rescue person i, and they know how to do it

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 197



Ability and Knowledge

[Moore, 1981]: Reasoning about Knowledge and Action

Formalisation of ability in terms of knowledge and action:

(Can φ) ↔ ∃αK(Res α φ) ∨ ∃αK(Res α(Can φ))

Agents know the identity of actions.

Hereafter we focus on strategies (i.e., conditional plans) rather than simple
actions.
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Strategies under Uncertainty

ATL includes no notion of knowledge (or, dually uncertainty)

. . . which makes reasoning in ATL rather unrealistic for MAS.

In this lecture, we introduce knowledge and uncertainty into reasoning about
strategic abilities.

Note on terminology: in Game Theory we have

incomplete information: uncertainty about the game structure

imperfect information: uncertainty about the current state of the game

We use the two terms interchangeably: our models allow for representing both
types of uncertainty uniformly.
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Motivating Example: Voting

Properties to express
Privacy: The system cannot reveal how a particular voter voted.

Receipt-freeness: The voter cannot gain any information (a receipt) which can
be used to prove to a coercer that she voted in a certain way.

Coercion-resistance: The voter cannot cooperate with the coercer to prove to
him that she voted in a certain way.
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Part 6: Abilities under Imperfect Information

6.1 Strategies and Knowledge
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Strategies and Knowledge

How can we reason about multi-step games with imperfect information?

we extend CGS with indistinguishability relations ∼a, one per agent.

A game of matching pennies:

∗, ∗

∗, H ∗, T

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
(T, ∗) (H, ∗)

(T, ∗)

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A
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How can we reason about multi-step games with imperfect information?

we extend CGS with indistinguishability relations ∼a, one per agent.

A game of matching pennies:

∗, ∗

∗, H ∗, T

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
(T, ∗) (H, ∗)

(T, ∗)

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A
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Concurrent Game Structures with Imperfect Information

Definition 6.1 (iCGS)
A concurrent game structure with imperfect information is a tuple
M = 〈Agt, St, {∼a}a∈Agt,V, Act, d, o〉, where:

Agt, St, V, o are defined as for CGS

for every a ∈ Agt, ∼a is an equivalence relation on St

d : Agt× St→ 2Act defines actions available to an agent in a state such
that if s ∼a s′ then d(s, a) = d(s′, a).

Standard CSG are iCGS where every ∼a is the identity relation.
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Strategies and Knowledge

Matching pennies again:

∗, ∗ |= 〈〈A〉〉FwinA

∗, H ∗, T

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
(T, ∗) (H, ∗)

(T, ∗)

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A

Winning strategy σ such that
σ(∗, ∗) = ∗
σ(∗, H) = H

σ(∗, T ) = T
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Strategies and Knowledge

Matching pennies again:

∗, ∗

|= 〈〈A〉〉FwinA

∗, H ∗, T

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
(T, ∗) (H, ∗)

(T, ∗)

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A

Does strategy σ still make sense?

Does (∗, ∗) |= 〈〈A〉〉FwinA?
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Strategies and Knowledge

Kings, Queens, and Aces (K ≥ Q ≥ A ≥ K).

q0

q10q9q8q7 q11 q12 q13 q14 q15 q16 q17 q18

win win

start

win win win win

q1 q2 q3 q4 q5 q6

( , )- -

(Q
,K

)

(A,K) (A,Q) (K,A) (K,Q) (Q,A) (Q,K)

(A
,K

)

(K
,Q

)

(A
,Q

)

(Q
,A

)

(K
,A

)

(A
,Q

)

(K
,Q

)

(K
,A

)

(Q
,A

)

(A
,K

)

(Q
,K

)

(−,−) |= 〈〈a〉〉Fwin

Does it make sense?
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Strategies and Knowledge

Kings, Queens, and Aces (K ≥ Q ≥ A ≥ K).

q0

q10q9q8q7 q11 q12 q13 q14 q15 q16 q17 q18

win win

start

win win win win

q1 q2 q3 q4 q5 q6

( , )- -

(Q
,K

)

(A,K) (A,Q) (K,A) (K,Q) (Q,A) (Q,K)

(A
,K

)

(K
,Q

)

(A
,Q

)

(Q
,A

)

(K
,A

)

(A
,Q

)

(K
,Q

)

(K
,A

)

(Q
,A

)

(A
,K

)

(Q
,K

)

keep keep keep keep keep keep
trade trade trade trade trade trade

(−,−) |= 〈〈a〉〉Fwin

Does it make sense?
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Schobbens’ Robber

A vault is protected by a binary code: either 0 or 1.
The code is set anew every morning by the guard.
Some time later the robber (r) enters the bank and tries to open the vault.
However, he doesn’t know the current code (q0 ∼r q1).

q′0

q0 q1

q2

open

q3
alarm

r

〈−
, s
et
0
〉 〈−

, set
1 〉

〈
tr
y
0
,−
〉

〈try
1 ,−〉 〈tr

y1
,−
〉 〈

tr
y
0
,−
〉

Can we say that the rober has the ability to get access to the vault?
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Example: Poor Duck Problem

A man wants to shoot down a yellow rubber duck in a shooting gallery.
The duck is in one of two cells, but he does not know in which one.
The man can either shoot left, right, or reach out to the cells and look.

q0 q1

q4 q5

q2

shot

q3

a

s
h
o
o
t
L

shoot
R sh

oo
tR

s
h
o
o
t
L

look look

The man does not have a (subjective) strategy to shoot the duck in one step.
He should be able to ensure it in multiple steps if he has a perfect recall.
The man can shot the duck in one step if he is told the right strategy . . .
. . . though he would not be able to come up with it on his own.
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Strategies and Knowledge

Problem:
Strategic and epistemic abilities are not independent!

〈〈A〉〉γ = A can enforce γ

It should at least mean that A are able to execute the right strategy!

Executable strategies = uniform strategies

In many cases, we also mean that A are able to identify the strategy...

In order to identify a strategy as successful, the agents must check its outcome
paths from indistinguishable states
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Executable Strategies

Definition 6.2 (Uniform strategy)
Strategy sa is uniform iff it returns the same action in indistinguishable states:

no recall: if q ∼a q′ then sa(q) = sa(q′)

perfect recall: if h ≈a h′ then sa(h) = sa(h′)
where h ≈a h′ iff h[i] ∼a h′[i] for every i.

A collective strategy is uniform iff it consists only of uniform individual strategies.
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Strategies and Knowledge: Poor Duck Problem

Note:
Having a successful strategy does not imply knowing that we have it!

Knowing that a successful strategy exists does not imply knowing the strategy
itself!

q0 q1

q2

shot

q3

a

s
h
o
o
t
L

shoot
R sh

oo
tR

s
h
o
o
t L
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Levels of Strategic Ability

Our cases for 〈〈A〉〉γ under imperfect information:

1 There is σ (not necessarily executable!) such that, for every execution of σ,
γ holds.

2 There is a uniform σ such that, for every execution of σ, γ holds (objective
interpretation).

3 A know that there is a uniform σ such that, for every execution of σ, γ holds.

4 There is a uniform σ such that A know that, for every execution of σ, γ holds
(subjective interpretation).

Hereafter we focus on 2 and 4 (starting with 2).
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Semantics of ATLi*: Objective Interpretation

Definition 6.3 (Semantics of ATLi*)
(M, q) |=i 〈〈A〉〉γ iff there is a collective uniform strategy sA such that, for every

path λ ∈ out(q, sA), (M,λ) |= γ.

Definition 6.4 (Semantics of ATLi*: path formulae)

Same as for CTL* and ATL*

(M,λ) |=i Xγ iff (M,λ[1..∞]) |=i γ

(M,λ) |=i γ1Uγ2 iff (M,λ[k..∞]) |=i γ2 for some k ≥ 0,
and (M,λ[j..∞]) |=i γ1 for all 0 ≤ j ≤ k

As for ATL*, we can consider both perfect and imperfect recall strategies.
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Semantics of ATLi*: Objective Interpretation

Definition 6.3 (Semantics of ATLi*)
(M, q) |=i 〈〈A〉〉γ iff there is a collective uniform strategy sA such that, for every

path λ ∈ out(q, sA), (M,λ) |= γ.

Definition 6.4 (Semantics of ATLi*: path formulae)

(M,λ) |=i ϕ iff (M,λ[0]) |=i ϕ, for a state formula ϕ

(M,λ) |=i Xγ iff (M,λ[1..∞]) |=i γ

(M,λ) |=i γ1Uγ2 iff (M,λ[k..∞]) |=i γ2 for some k ≥ 0,
and (M,λ[j..∞]) |=i γ1 for all 0 ≤ j ≤ k

As for ATL*, we can consider both perfect and imperfect recall strategies.
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Strategies and Knowledge

Matching pennies revisited:

∗, ∗

6|= 〈〈A〉〉FwinA

∗, H ∗, T

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
(T, ∗) (H, ∗)

(T, ∗)

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A

Alice no longer has a winning strategy!
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Alternating-time Temporal Logic: Summary

Four variants of ability: IR, Ir, iR, ir (Schobbens 2004)
memory R/r: perfect/imperfect recall.
knowledge I/i: perfect/imperfect information.

r: sa : St→ Act (memoryless strategies)
R: sa : St+ → Act (perfect recall strategies)

i: only uniform strategies,
I: no restrictions

r: sa is uniform iff q ∼a q′ ⇒ sa(q) = sa(q′)
R: sa is uniform iff h ≈a h′ ⇒ sa(h) = sa(h′)
where h ≈a h′ iff for all i, h[i] ∼a h′[i]

imperfect recall perfect recall
perfect information ATLIr* ATLIR*

imperfect information ATLir* ATLiR*

and similarly for ATL.
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Part 6: Abilities under Imperfect Information

6.2 Properties of ATLi
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Fixpoint (Non-)Equivalences

Interesting: 〈〈A〉〉i are not fixpoint operators any more!

Theorem 6.5
The following formulas are not valid for ATLi:

〈〈A〉〉iϕ1Uϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉i X〈〈A〉〉iϕ1Uϕ2

〈〈A〉〉i Fϕ ↔ ϕ ∨ 〈〈A〉〉i X〈〈A〉〉i Fϕ
〈〈A〉〉i Gϕ ↔ ϕ ∧ 〈〈A〉〉i X〈〈A〉〉i Gϕ

What is this about? forgetting and non-composability of strategies

; we cannot have incremental model checking algorithms as for ATLI.
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Non-Composability of Strategies: Matching Pennies

∗, ∗

|= 〈〈A〉〉X〈〈A〉〉FwinA

6|= 〈〈A〉〉FwinA

∗, H

〈〈A〉〉FwinA |=

∗, T

|= 〈〈A〉〉FwinA

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
(T, ∗) (H, ∗)

(T, ∗)

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A

Hence,

〈〈A〉〉X〈〈A〉〉FwinA 6→ 〈〈A〉〉FwinA
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Non-Composability of Strategies: Matching Pennies

∗, ∗

|= 〈〈A〉〉X〈〈A〉〉FwinA

6|= 〈〈A〉〉FwinA

∗, H〈〈A〉〉FwinA |= ∗, T |= 〈〈A〉〉FwinA

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)
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(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A
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Non-Composability of Strategies: Matching Pennies

∗, ∗ |= 〈〈A〉〉X〈〈A〉〉FwinA

6|= 〈〈A〉〉FwinA

∗, H〈〈A〉〉FwinA |= ∗, T |= 〈〈A〉〉FwinA

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
(T, ∗) (H, ∗)

(T, ∗)

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A

Hence,

〈〈A〉〉X〈〈A〉〉FwinA 6→ 〈〈A〉〉FwinA
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Non-Composability of Strategies

In general, the following are validities in ATLir:

〈〈A〉〉iϕ1Uϕ2 → ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉i X〈〈A〉〉iϕ1Uϕ2)

〈〈A〉〉i Fϕ → ϕ ∨ 〈〈A〉〉i X〈〈A〉〉i Fϕ
〈〈A〉〉i Gϕ → ϕ ∧ 〈〈A〉〉i X〈〈A〉〉i Gϕ

But,

ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉i X〈〈A〉〉iϕ1Uϕ2) 6→ 〈〈A〉〉iϕ1Uϕ2

ϕ ∨ 〈〈A〉〉i X〈〈A〉〉i Fϕ 6→ 〈〈A〉〉i Fϕ
ϕ ∧ 〈〈A〉〉i X〈〈A〉〉i Gϕ 6→ 〈〈A〉〉i Gϕ

For ATLiR the opposite is the case.
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Fixpoint (Non-)Equivalences

Conjecture
Strategies cannot be synthesized incrementally.

Indeed...

Theorem (Schobbens 2004; Jamroga & Dix 2006)

Model checking ATLir is ∆P
2 -complete.
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Memory and Imperfect Information

Under perfect information, memory does not affect the interpretation of ATL.

But it does affect ATL∗.

What is it like for imperfect information?
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Memory and Imperfect Information

Obviously, ATLir* 6= ATLiR*.
But also ATLir 6= ATLiR:

qI

q0 q1

q4 q5

q2

shot

q3

ah
id
e h

ide

s
h
o
o
t
L

shoot
R sh

oo
tR

s
h
o
o
t
L

look look

qI 6|=ir 〈〈a〉〉Fshot

qI |=iR 〈〈a〉〉Fshot
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Motivating Example: Rescue Robots

The robots can rescue all the people in the building.∧
i∈People〈〈Robots〉〉Fsafei

Alternative formalization:
〈〈Robots〉〉F

(∧
i∈People safei

)
Note: these look like the specifications in ATL, but a uniform strategy is
required for the robots now!

The robots can rescue all the people, and they know that they can

Cannot be expressed in ATLi* !

The robots can rescue all the people, and they know how to do it

Cannot be expressed in ATLi* !
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Motivating Example: Voting

The system cannot reveal how a particular voter voted.

¬〈〈system〉〉F(
∨
c∈Candidates revealedVotei,c)

A voter i can gain no receipt which can be used to prove that she voted in a
certain way.

¬〈〈i〉〉F(
∨
c∈Candidates receiptVotei,c)

A voter i cannot cooperate with the coercer to prove to him that she voted in
a certain way.

Cannot be expressed in ATLi* !

Note: now for the first two properties we can model the epistemic capabilities in
the scenario!
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Part 6: Abilities under Imperfect Information

6.3 The Subjective Interpretation
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Levels of Strategic Ability

Our cases for 〈〈A〉〉γ under imperfect information:

1 There is a strategy σ (not necessarily executable!) such that, for every
execution of σ, γ holds.

2 There is a uniform strategy σ such that, for every execution of σ, γ holds
(objective interpretation).

3 A know that there is a uniform σ such that, for every execution of σ, γ holds.

4 There is a uniform σ such that A know that, for every execution of σ, γ holds
(subjective interpretation).

We dealt with 2 in the last lecture

Hereafter we focus on 4. Why?
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Strategies and Knowledge: Poor Duck Problem

Note:
Having a successful strategy does not imply knowing that we have it!

q0 q1

q4 q5

q2

shot

q3

a

s
h
o
o
t
L

shoot
R sh

oo
tR

s
h
o
o
t
L

look look

q0 |= 〈〈a〉〉X shot and q1 |= 〈〈a〉〉Xshot

But for two different strategies!
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Knowing How to Play: Subjective Interpretation

Case [4]: knowing how to play

Single agent case: we consider all paths starting from indistinguishable
states:

outs(q, sa) =
⋃

q′∼aq
outo(q

′, sa)

〈〈a〉〉ir γ: agent a knows how to play to enforce γ from all the states she
considers possible

What about coalitions?

outs(q, sA) =
⋃
a∈A

⋃
q′∼aq

outo(q
′, sA)

〈〈A〉〉ir γ: all agents in A know how to play to enforce γ.

Definition 6.6 (Subjective Semantics of ATLi*)
(M, q) |=s 〈〈A〉〉γ iff there is a collective uniform strategy sA such that, for every

path λ ∈ outs(q, sA), (M,λ) |= γ.
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Strategies and Knowledge: Poor Duck Problem Revisited

q0 q1

q4 q5

q2

shot

q3

a

s
h
o
o
t
L

shoot
R sh

oo
tR

s
h
o
o
t
L

look look

q0 6|=r 〈〈a〉〉F shot and q1 6|=r 〈〈a〉〉Fshot

But,

q0 |=R 〈〈a〉〉F shot and q1 |=R 〈〈a〉〉Fshot
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Decomposability of Strategies: Matching Pennies

∗, ∗

6|= 〈〈A〉〉X〈〈A〉〉FwinA

∗, H

〈〈A〉〉FwinA 6 |=

∗, T

6|= 〈〈A〉〉FwinA

H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
(T, ∗) (H, ∗)

(T, ∗)

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)

A

Hence,

〈〈A〉〉X〈〈A〉〉FwinA → 〈〈A〉〉FwinA
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Decomposability of Strategies: Matching Pennies

∗, ∗
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A
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H,HwinA T ,H H, T T , T winA

(∗,H) (∗,T)

(H, ∗)
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(T, ∗)
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Example: Robots and Carriage

Robot 1 only perceives the color of the surface;

Robot 2 only perceives the texture.

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push
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ai

t

push,wait

w
ait,push
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wait,push

w
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1
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Example: Robots and Carriage

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

1

2

pos0 → ¬〈〈1〉〉sr G¬pos1

pos0 → ¬〈〈1, 2〉〉sr G¬pos1

pos0 → 〈〈1, 2〉〉sr Fpos1

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 231



Part 7: Model Checking Imperfect Information

Model Checking Imperfect Information
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Model Checking under Imperfect Information

Imperfect information makes the model checking problem harder to solve.

ATL I i

r linear time ∆P
2 -complete

R undecidable

ATL∗ I i

r PSPACE-c
R 2EXPTIME-c undecidable

The complexity does not change for the objective and subjective interpretation.

We first consider imperfect recall and then perfect recall.
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Model Checking ATLir

Recall: 〈〈A〉〉i are not fixpoint operators any more

Conjecture
Strategies for A cannot be synthesized incrementally.

Indeed,

the choice of an action at state q has non-local consequences: it fixes agent
a’s choices at all states q′ indistinguishable from q for i.

for two different members of coalition A, uniformity of their parts of the
coalitional strategy imposes different constraints on their choices.

the agents’ ability to identify a strategy as winning also varies throughout the
game in an arbitrary way (agents can learn as well as forget).
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Model Checking ATLir

Theorem (Schobbens 2004; Jamroga & Dix 2006)

Model checking ATLir is ∆P
2 -complete in the number of transitions in the model

and the length of the formula.

∆P
2 : class of problems solvable in polynomial time by a deterministic Turing

machine making calls to an oracle solving NP problems.

How to prove that?

We prove the upper bound by showing a nondeterministic algorithm, and the
lower bound by a reduction to an appropriate problem
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Model Checking ATLir: Upper Bound

Checking (M, q) |=ir 〈〈A〉〉γ where γ includes no nested cooperation modalities:

1 Guess a uniform, memoryless strategy sA for coalition A
this can be done in polynomial time.

2 Remove fromM all the transitions that are not going to be executed
according to sA

3 Model-check the CTL formula Aγ in the resulting model.
recall that model-checking CTL is in PTIME.

This procedure is in non-deterministic polynomial time (NP).

For nested cooperation modalities, we proceed recursively (bottom up)

The whole procedure calls a linear number of times (O(|ϕ|)) a procedure in NP:
PNP = ∆P

2 .

F. Belardinelli · Logics for Strategic Reasoning in AI Imperial College London – Spring Term 2019 236



Model Checking ATLir: Lower Bound

We prove NP-hardness by reducing model checking ATLir to the Boolean
satisfiability problem (SAT)

Definition (Boolean satisfiability)
Input: Boolean formula ϕ(x1, . . . , xk) in Conjunctive Normal Form (CNF).

Output: True iff ∃v1, . . . , vk ϕ(v1, . . . , vk).

Proposition
SAT is NP-complete.

So:
If we reduce SAT to our problem, then our problem must be NP-hard.
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Model Checking ATLir: Lower Bound
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Model Mϕ for ϕ ≡ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

Proposition
∃v1, . . . , vk . ϕ(v1, . . . , vk) iff (Mϕ, q0) |= 〈〈v〉〉Fyes.
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Model Checking ATLir*

Good News: Model checking ATLir* is PSPACE-complete (just like perfect information).

Theorem
Model checking ATLir* is in PSPACE.

Again, the case of interest is for formulas of type 〈〈A〉〉γ.
1 Guess a uniform, memoryless strategy sA for coalition A

this can be done in polynomial time.

2 Trim model M according to sA: all transitions that cannot occur by following sA are
removed.

3 Check the CTL∗ formula Aγ in the trimmed model MsA

recall that model-checking CTL∗ is in PSPACE.

This procedure can be performed in non-deterministic polynomial space NPSPACE =
PSPACE.

For nested cooperation modalities, we proceed recursively (bottom up).

The whole procedure calls a linear number of times (O(|ϕ|)) a procedure in PSPACE:
PPSPACE = PSPACE.

PSPACE-hardness: model checking ATLir* is as hard as model checking LTL.
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Model Checking Imperfect Information Games

Corollary
Imperfect information strategies cannot be synthesized incrementally:
we cannot do better than guess the whole strategy and check if it succeeds.

Imperfect information makes model checking harder!
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Model Checking ATLiR

What about agents with perfect recall and imperfect information?

The news are bad...

Theorem [Dima and Tiplea, 2011]
Model checking ATLiR is undecidable.

Proof: by a reduction of the non-halting problem for deterministic Turing
machines.

3 players suffice (2 proponents + 1 opponent)
The players play one at a time (taking turns)
Subsequent configurations of the TM T are represented as levels in the tree
unfolding of the iCGS MT .

Proposition
A deterministic Turing machine T does not halt on the empty word iff
(MT , sinit) |=iR 〈〈1, 2〉〉Gok.
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Model Checking Complexity for Variants of ATL: Summary

ATL I i

r linear time ∆P
2 -complete

R undecidable

ATL∗ I i

r PSPACE-c
R 2EXPTIME-c undecidable
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