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1 INTRODUCTION
Most formalisms for multi-agent systems (MAS) are not adept at ex-

plicitlyexpressingofdata sharingbetweenagents.Yet, disclosureand

hidingof data amongst agents impacts on their strategic abilities, and

so has a strong baring on non-classical logics that formally capture

agents’ coalitions, e.g., Alternating-time Temporal Logic (ATL) [1].

To this end, we devise concurrent game structures with proposi-
tional control for atom-visibility (vCGS). In vCGS, agents a and b have
an explicit endowment to see some of each others’ variables, without

other agents partaking in this. Second, we ascertain that the model

checking problem for ATL with imperfect information and perfect

recall on vCGS is undecidable. Third, we put forward a methodology

to model check a formula φ in ATL∗ on a vCGS M, by verifying a

suitable translation of φ in a submodel of M.

2 AGENTSWITHVISIBILITY-CONTROL
We introduce a class of systems where each agent can change the

truth value of atoms she controls, and can make them (in)visible to

other agents. On the underlying concurrent game structure, we in-

terpret ATL
∗
. We consider finite setsAд andAP of agents and atoms.

Definition 2.1 (Visibility-Controlling Agents: Syntax). Given atom
v ∈AP and agenta ∈Aд,vis (v,a) denotes a visibility atom expressing

intuitively that thevalueofv is visible toa. ByVA,wedenote the setof
allvisibilityatoms vis (v,a), forv ∈AP anda ∈Aд. ByVAa={vis (v,a) ∈
VA |v ∈AP }, we denote the set of visibility atoms for agent a.

Given setAP of atoms, an agent is a tuple a= ⟨AP ,Va ,GCa⟩ s.t.
• Va ⊆AP is the set of atoms controlled by agent a;
• GCa is a finite set of guarded commands, which are of the form:

γ ::= φ⇝ v1 := tv, ...,vk := tv,
vis (vk+1,a1) := tv...,vis (vk+m,am ) := tv

where eachvi ∈Va is an atom controlled by a that occurs at most

once, guardφ is a boolean formula overAP∪VAa , all a1,...,am are

agents inAд different from a, and tv is a truth value in {tt,ff}.
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We denote with g(γ ) and asд(γ ) the guard and assignment,

respectively. Moreover, guarded commands can be of two dis-

joint types: init- or update-type. In the former, the guard is al-

ways equal to tt (and thus omitted) and the assignment contains

vis (v,a) ::= tt for every atom v ∈ Va (i.e., an agent always has

visibility of the atoms she controls).

Intuitively,Def. 2.1 says that (1) every agenta can change the value
of the atoms inVa ⊆AP through assignmentsv := tv; (2) agent a can
switch the visibility for some other agent ai over some of a’s atoms,

by means of assignmentsvis (v,ai ) := tv; (this is unlike [2, 18]); (3)
since a1,...,am are required to be different from a, agent a cannot
remove visibility of her own atoms.

Hereafter, we assume that control is exclusive: for any two distinct
agents a and b, Va ∩Vb = ∅, i.e., the sets of controlled atoms are

disjoint. Since control is exclusive, we often talk about the owner
own(v ) ∈Aд of an atomv ∈AP .

Definition 2.2 (Visibility-Controlling Agents: Semantics). Given a
set Aд of agents as in Def. 2.1, all defined on set AP of atoms, an

iCGS with propositional control for atom-visibility (vCGS) is a tuple
M= ⟨Aд,AP ,{Acta }a∈Aд ,S,S0,P ,τ ,{∼a }a∈Aд ,π ⟩where:
• For every a ∈Aд,Acta =GCa .
• S = {s ⊆AP∪VA | for every a ∈Aд,v ∈Va ,vis (v,a) ∈ s} is the set of
states. Fors ∈S anda ∈Aд,Vis (s,a)= {v ∈AP |vis (v,a) ∈s} is the set
of atoms visible to a in state s . By def.,Va ⊆Vis (s,a) for every s ∈S .
• S0 ⊆S is the set of states s0 ∈S such that for every a ∈Aд, for some

γ ∈ init(Acta ), for every v ∈Va , if v :=tt occurs in asд(γ ), then
v ∈s0; and ifv :=ff occurs in asд(γ ), thenv <s0. That is, atoms are

initialised as either true or false only via an init command.

• For every state s ∈ S and agent a ∈ Aд, the protocol function P :

S×Aд→2

⋃
a∈AдActa

returns the set P (s,a) of update-commands

γ such thatAP (g(γ )) ⊆Vis (s,a) and s |=g(γ ), whereAP (ϕ) is the
set of atoms occurring in formula ϕ. That is, all atoms appearing

in the guard are visible to the agent and the guard is indeed true.

• The transition function τ : S × ACT → S is such that a transi-

tion τ (s, (γ1, ... ,γn )) = s ′ holds iff (1) for every a ∈ Aд, γa ∈
P (s,a); (2) for every v ∈ AP and own(v ) ∈ Aд, v ∈ s ′ iff either

asд(γown (v ) ) contains an assignment v := tt or v ∈ s; whereas
v < s ′ iff either asд(γown (v ) ) contains an assignment v := ff or

v <s; (3) for everyv ∈AP and own(v ) ∈Aд,vis (v,a) ∈ s ′ iff either

asд(γown (v ) ) contains an assignmentvis (v,a) :=tt orvis (v,a) ∈s ;
whereas vis (v,a) < s ′ if either asд(γown (v ) ) contains an assign-

mentvis (v,a) :=ff orvis (v,a)<s .
• Let the set R⊆S of reachable states be the transitive closure of S0
under the transition function τ . The indistinguishability relation



is defined so that for every s,s ′ ∈R, s ∼a s
′
iffVis (s,a)=Vis (s ′,a)

and for everyv ∈Vis (s,a)=Vis (s ′,a),v ∈ s iffv ∈ s ′; whereas for
states in S \R, each ∼a is the identity relation. We can easily check

that if s∼a s
′
then P (s,a)=P (s ′,a).

• The labelling function π :S→2
AP

is the identity, i.e., each state

is named with the atoms belonging to it.

ATL Syntax. State (φ) and path (ψ ) formulas inATL∗ are defined
as follows, where q ∈ AP and A ⊆ Aд: φ ::= q | ¬φ | φ ∧φ | ⟨⟨A⟩⟩ψ ;
ψ ::=φ | ¬ψ |ψ ∧ψ | Xψ | (ψUψ ). Formulas in the ATL fragment of

ATL∗ are obtained by restricting path formulasψ as follows, where

φ is a state formula:ψ ::=Xφ | (φUφ) | (φRφ).
ATL Semantics. Given a vCGS M, a path p is a sequence s1s2... of

states such that for every i >1 there exists a joint action α⃗ ∈ACT such

that τ (si ,α⃗ )=si+1. A finite pathh ∈S0 ·S
∗
starting in an initial state is

called ahistory. Hereafter,we extend the indistinguishability relation
∼a to histories in S0 ·S

∗
in a synchronous and pointwise manner,

that is,h∼a h
′
iff |h |= |h′ | and for every i ≤ |h |,hi ∼a h

′
i . A uniform,

memoryful strategy for agent a ∈Aд is a function fa :S0 ·S
∗→Acta

such that for all historiesh,h′ ∈S0 ·S
∗
, (i) fa (h) ∈P (last (h),a); and (ii)

ifh∼a h
′
then fa (h)= fa (h

′). Given a joint strategy FA= { fa |a ∈A}
for coalitionA⊆Aд, and history h ∈ S0 ·S

∗
, let out (h,FA ) be the set

of all infinite paths p starting from history h and compatible with

FA. More formally, we set out (h,FA ) = {p | p≤ |h | =h and for all i ≥
|h |,pi+1=τ (pi ,α⃗ ),where for all a ∈A,αa = fa (p≤i )}.
The satisfaction relation |= for a vCGS M, path p, index i ∈N, and

ATL∗ formula ϕ is defined as follows (clauses for Boolean operators

and temporal operators are immediate and thusomitted): (1) (M,p,i ) |=
q iff q ∈π (pi ); (2) (M,p,i ) |= ⟨⟨A⟩⟩ψ iff for some joint strategy FA, for
all paths p′ ∈out (p≤i ,FA ), (M,p

′) |=ψ ; (3) (M,p) |=φ iff (M,p,1) |=φ.
A formula φ is satisfied by a vCGS M, or M |= φ, iff for all paths p

starting in an initial state, (M,p,1) |=φ. Note that we adopt the objec-
tive interpretation ofATL∗ [15], whereby strategy operator ⟨⟨A⟩⟩ is
evaluated against all paths p ∈out (h,FA ) starting from the present

history h. Themodel-checking problem for vCGS asks for checking
whether a given vCGS M satisfies a givenATL∗ formula φ.

We state the main result of this section.

Theorem 2.3. The model checking problem forATL∗ (resp.ATL)
on vCGS is undecidable.

Theorem 2.3 is proved by showing that model checkingATL on
standard iCGS [15],which is known to beundecidable [10], is PTIME-

reducible to the same problem on vCGS. A proof can be found in [3].

3 FORMULA-BASEDMODELREDUCTION
Now, we put forward a methodology to model check a formula φ
in ATL∗ on a vCGS M, by verifying a suitable translation of φ in a

submodel of M. This reduction leads in general to a smaller state

space and a less complex model checking instance. Under specific

circumstances it might lead to decidable model checking.

Definition 3.1. Given a vCGS M and formulaφ, we define bymutual

recursion the sets ∆⊆AP of atoms and Γ⊆Aд of agents:

∆0 = AP (φ) Γ0=Own(∆0)

∆n+1 = ∆n∪{AP (g(γ )) | somev ∈∆n appears in asд(γ )}∪

{v ∈AP |vis (v,b) appears inγ for some b ∈ Γn ,γ ∈Act }

∪{v ∈AP |vis (v,b) ∈g(γ ) for somev ′ ∈∆n in asд(γ )}

Γn+1 = Γn∪Own(∆n )

where we recall that AP (ϕ) ⊆ AP is the set of atoms appearing in

formula ϕ, and we takeOwn(∆i ) to be {own(v ) |v ∈∆i } ⊆Aд. Then,
let ∆=

⋃
n∈N∆n ⊆AP and Γ=

⋃
n∈NΓn ⊆Aд .

Intuitively, ∆ is the set of all atoms that are relevant to determine

theatoms in formulaφ, thevisibilityof agents in Γ, or of actionguards
that influence the truth of atoms in ∆ (includingAP (φ)); whereas Γ
is the set of owners of the atoms in ∆.

Definition 3.2. Given ∆ and Γ as in Def.3.1 and an agent a ∈ Γ, we
define a new agent a′= (∆,V ′a ,GC

′
a ) such that

(1) V ′a =Va∩∆;
(2) GC ′a = {γ

′
::=g(γ )⇝asд(γ ) |∆,Γ |γ ∈GCa ,AP (g(γ ))

∪{v ∈AP |vis (v,a) appears in g(γ )} ⊆∆};
where asд(γ ) |∆,Γ is the restriction of asд(γ ) to ∆ and Γ.

We now state the main result of this section. First of all, given a

model M, wewrite M |∆,Γ for themodel generated by using agents as in

Def.3.2 and restricted over∆. Further, given a formulaφ, wewriteφ |Γ
for the formula generated by substituting every sub-formula ⟨⟨A⟩⟩ψ
ofφ with ⟨⟨A∩Γ⟩⟩ψ . Also, given a pathp,p |∆,Γ = (p1) |∆,Γ ,(p2) |∆,Γ ,...
is the component-wise restriction of p to ∆ and Γ.

Theorem 3.3. Given a vCGS M and a formula φ, we have that
(M,p,i ) |=φ iff (M |∆,Γ ,p |∆,Γ ,i ) |=φ |Γ

By Theorem 3.3 we obtain the following corollary.

Corollary3.4. GivenavCGSMwith reductionM |∆,Γ , anda formula
⟨⟨A⟩⟩φ, if Γ⊆A then it is decidable whether M |=φ.

4 RELATEDWORKANDCONCLUSIONS
Coalition logic basedonpropositional control [20]hasbeenextended

with transfer of control in [4, 11, 12, 19]. Yet, these mainly deal

with coalition logic, which is the “next” ⟨⟨A⟩⟩X fragment of ATL,
while assuming perfect information. Meanwhile, we analyse the

case of imperfect information and for the whole ofATL∗. This is also
unlike verification of just game-theoretic equilibria under imperfect

information [13, 14], in reactive modules with guarded commands

[2]. Similarly, other works miss the strategic-ability edge that we

have, yet they focus on more expressivity, e.g., at the epistemic

level. This is the case of [16] where (propositional) visibility is also

analysed but employing modal operators for visibility. Only limited

typeof strategic reasoning, stemmingfromnolocal “implementation”

of actions, is also offered by another semantics similar to ours, i.e.,

dynamic epistemic logic andepistemicplanning [21]. Finally, various

restrictions on iCGS to retain decidability of model checking under

imperfect information and perfect recall has been recently explored

in [5–9, 17].

We put forward a formalism for the explicit expression of private-

data sharing in multi-agent systems. On these “MAS with 1-to-1

private-channels”, we ascertain that the model checking problem

for Alternating-time Temporal Logic under imperfect information

and perfect recall is, as expected, undecidable. Yet, we put forward a

methodology tomodel check a formulaφ inATL∗ on a vCGS M, by ver-
ifying a suitable translation of φ in a submodel of M. As future work,
we aim to find general classes of vCGS for which the model checking

of ATL becomes decidable, and show-case vCGS in modelling ICT

problems.
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