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Verification of (Multi-agent) Systems

The Verification Problem: given a system S and specification P, does S satisfy P?

• safety-critical systems (avionics, AUVs), security and communication protocols, etc.

Model checking in a nutshell [Clarke, Emerson, Sifakis]

1 Model S as some transition system MS

2 Represent specification P as a formula φP in some logic-based language

3 Check whether MS |= φP

Background assumptions:

• Discrete graphs/games are a good model for MAS.

• Logic is a good tool for representing properties.

2



Verification of (Multi-agent) Systems

The Verification Problem: given a system S and specification P, does S satisfy P?

• safety-critical systems (avionics, AUVs), security and communication protocols, etc.

Model checking in a nutshell [Clarke, Emerson, Sifakis]

1 Model S as some transition system MS

2 Represent specification P as a formula φP in some logic-based language

3 Check whether MS |= φP

Background assumptions:

• Discrete graphs/games are a good model for MAS.

• Logic is a good tool for representing properties.

2



Verification of (Multi-agent) Systems

The Verification Problem: given a system S and specification P, does S satisfy P?

• safety-critical systems (avionics, AUVs), security and communication protocols, etc.

Model checking in a nutshell [Clarke, Emerson, Sifakis]

1 Model S as some transition system MS

2 Represent specification P as a formula φP in some logic-based language

3 Check whether MS |= φP

Background assumptions:

• Discrete graphs/games are a good model for MAS.

• Logic is a good tool for representing properties.

2



Properties to check

80’s-90’s: monolithic systems, systems in isolation: LTL, CTL.

Temporal Properties

• the robot will always stay in the safe zone. G safe

• the robot will finally reach its target. F target

• the robot will always makes progress towards its goal. GF move
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From System to Game Verification

Since 2000: systems with several components, interacting agents, game structures: ATL,
Coalition Logic, Strategy Logic.

Epistemic properties

• Anonimity: the attacker does not know how agent i has voted.
∧

1≤j≤c ¬Katt(chi = j)

Strategic properties

• Coercion Resistance: the attacker has no strategy whereby he will know how agent i has
voted. ¬〈〈att〉〉F

∨
1≤j≤c Katt(chi = j)

• There is a [Nash, subgame-perfect, k-robust, . . . ] equilibrium.

Notions of strategies, equilibria from Game Theory → Rational Synthesis [KPV16]

⇒ Automated verification of strategic abilities of autonomous agents (MoChA, Verics, MCMAS)

So far, so good . . .
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The Problems with MAS Verification

1 MAS require imperfect information:

I Agents have partial observability.

I Perfect information unachievable or computationally costly.

I Imperfect information makes things hard(er).

2 Actions have costs:

I Costs are not normally modelled in these specification languages.

I Extension of logic for strategies with production/consumption of resources.

This talk:

1 MAS with public actions only ⇒ Tractable model checking even with imperfect information.
[BLMR17a, BLMR17b, BLMR18]

2 Tractable reasoning about resources in MAS. [BD19]
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The Impact of Imperfect Information on Verification

The Information Problem: agents have imperfect/incomplete information about the overall state
of the system.

• Model checking ATL:

perfect imperfect
memoryless

PTIME-c. (A. H. K., 2002)
∆P

2 -c. (Jamroga, Dix, 2006)

perfect recall undec. (Dima, Tiplea, 2011)

• Long known and not limited to ATL.

Perfect Information: decidable

I Synthesis for LTL goals (Büchi, Landweber, 1969), (Rabin, 1972), (Pnueli, Rosner, 1989)

I Nash equilibria for LTL goals (Mogavero, Murano, Vardi, 2010)

Imperfect Information: undecidable

Synthesis for reachability goals (Peterson, Reif, 1979)
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How to tame Imperfect Information

• Abstractions, Approximations: bisimulations, 3-valued logics.

[BCD+17]: bisimulations for the verification of anonymity and coercion-resistance in the ThreeBallot
voting protocol.

 check Catalin Dima’s 2018 talk @Surrey

• In this talk
I Semantic restrictions: MAS with only public actions. [BLMR17a, BLMR17b, BLMR18]

The source of undecidability in [DT11] is the interplay between. . .

1 agents having incomparable observations

2 agents using private communication

What happens if we drop 1 or 2?
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Drop incomparable observations

All following approaches preserve decidability.

Hierarchies of observations

• Hierarchical observations: chains of visibility
(Peterson, Reif, 1979), (Pnueli, Rosner, 1990), (Kupferman, Vardi, 2001), (Schewe, Finkbeiner, 2007)

• Hierarchical information: information sets form a chain
(Berwanger, Mathew, vdBogaard, 2015)

• Hierarchical instances: instance = formula + arena + hierarchy
(Berthon, Maubert, Murano, 2017)

Here we focus on dropping 2.
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Idea: drop private communication

• Public Announcement Logic is decidable (Gerbrandy & Groeneveld, 1997)

• Epistemic planning is easier (Pinchinat et al., 2015)

• LTLK synthesis is decidable (vdMeyden & Wilke, 2005)

Research question: is there a meaningful set up with imperfect information and public actions
enjoying a tractable model checking problem?
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Concurrent Game Structures with Imperfect Information

iCGS

An iCGS M = 〈Ag ,AP, S, S0, {Acta}a∈Ag , δ, λ, {∼a}a∈Ag 〉 includes

• agents Ag

• atomic propositions AP

• actions Acta and joint actions ACT =
∏

a∈Ag Acta

• states S with initial states S0 ⊆ S

• transition function δ : S × ACT → S

• labelling function λ : AP → 2S

• indistinguishability relation ∼a⊆ S2.

• Perfect Information: for each a ∈ Ag , ∼a is the identity relation.
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Public Actions iCGS

PA-iCGS

An iCGS S has only public actions if for every agent a ∈ Ag , states s, s′ ∈ S, and joint actions
J, J′ ∈ ACT ,

s ∼a s′ and J 6= J′ imply δ(s, J) 6∼a δ(s′, J′)

Intuition: no private communication can take place.

Captures many scenarios of interest in Computer Science

• card/board games

• open-outcry auctions

• tweeting

• recording contexts (FHMV, 1995)

• broadcasting systems (Lomuscio, Meyden & Ryan, 2000)

• planning via public actions (Kominis & Geffner, 2015)
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Alternating-time Temporal Logic

Definition (ATL∗)

State (ϕ) and path (ψ) formulas are defined for p ∈ AP and A ⊆ Ag :

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | Gψ | ψUψ

• ATL is the fragment of ATL∗ where path formulas are restricted as

ψ ::= Xϕ | Gϕ | ϕUϕ

Strategies

• deterministic with perfect recall: σ : S+ → ∪a∈AgActa
• coherent for agent a: σ(h) ∈ Acta

• uniform for agent a: h ∼a h′ implies σ(h) = σ(h′)
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Alternating-time Temporal Logic

Interpretation given on perfect recall, synchronous iCGS.

Definition (Semantics)

Consider an iCGS M, history h ∈ S+, computation π ∈ Sω , and i ∈ N.

(M, h) |= p iff last(h) ∈ λ(p)
(M, h) |= ¬ϕ iff (M, h) 6|= ϕ
(M, h) |= ϕ1 ∧ ϕ2 iff (M, h) |= ϕ1 and (M, h) |= ϕ2

(M, h) |= 〈〈A〉〉ψ iff for some joint strategy σA,
for all computations π consistent with h and σA, (M, π, |h|) |= ψ

(M, π, i) |= ϕ iff (M, π≤i ) |= ϕ
(M, π, i) |= ¬ψ iff (M, π, i) 6|= ψ
(M, π, i) |= ψ1 ∧ ψ2 iff (M, π, i) |= ψ1 and (M, π, i) |= ψ2

(M, π, i) |= Xψ iff (M, π, i + 1) |= ψ
(M, π, i) |= ψ1Uψ2 iff for some j ≥ i , (M, π, j) |= ψ2,

for all k, i ≤ k < j implies (M, π, k) |= ψ1

[DT11]: model checking ATL on iCGS with perfect recall is undecidable.
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Decidable Model Checking

Theorem ([BLMR17a])

Model checking ATL∗ on PA-iCGS is decidable. Specifically, it is 2EXPTIME-complete.

• Lower bound: model checking ATL∗ is 2EXPTIME-hard already for perfect information
(and perfect recall).

• Upper bound: the set of strategies making a formula true is recognised by a tree automaton
(there exists a bijective encoding µ : S0 × ACT∗ → S+).

[BLMR17b]: decidability extends to Strategy Logic

• SL extends ATL∗ with explicit quantification on strategies as well as strategy binding.

• Model checking SL on PA-iCGS is decidable (TOWER-complete).

⇒ Complex specifications can in principle be checked on synchronous, perfect recall MAS as long
as evolution is via public actions.
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Application: Rational Synthesis

A game G = 〈M, {γa}a∈Ag 〉 is such that

• M is an iCGS

• LTL-formula γa is an individual objective for agent a ∈ Ag .

E-NASH (Kupferman et al., 2016)

Consider game G and (LTL) specification ϕ.
Is there some strategy profile ~σ such that

1 ~σ is a Nash equilibrium for G

2 the path induced by ~σ satisfies ϕ?

Strong rational synthesis (or A-NASH) amounts to decide whether all NE ~σ induce ϕ-satisfying
paths.
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Application: Rational Synthesis

G is a game on some PA-iCGS.

E-Nash Reduction

E-NASH for (G , ϕ) can be solved by model checking the SL specification:

M |= ∃x1 . . . ∃xn(x1, a1) . . . (xn, an)

 ∧
a∈Ag

(∃y(y , a)γa → γa) ∧ ϕ



A-NASH can similarly be established.

⇒ E-NASH (resp. A-NASH) on PA-iCGS is decidable, can be solved via model checking SL.
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Summary

Results:

• Imperfect information makes MAS verification hard(er): with perfect recall, it leads to
undecidability

• PA-iCGS: a significant class of MAS for which model checking is decidable under the same
assumptions.

• Verification of games with public actions only (incl. broadcasting protocols), where no
private moves are possible.

• Extension to Strategy Logic and application to rational synthesis (E-NASH, A-NASH).

Future Work:

• Weakening public actions: allowing a “finite amount” of private information.

• Analysis of fragments of SL with lower complexity.
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The Cost of Actions

Background

• ATL: logic to reason about the strategic abilities of agents in MAS.

actions have no cost (?!)

• RB±ATL: resource-bounded extension of ATL. [ALNR14]

normally harder model checking problem.

• Can we reason about resources efficiently?

•

Proof Strategy: we show that the control state reachability and non-termination problems
for 1-VASS are in ptime.
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normally harder model checking problem.

Research Question

• Can we reason about resources efficiently?

Main Contribution

• Reasoning about a single resource in CTL comes at no extra computational complexity.

Proof Strategy: we show that the control state reachability and non-termination problems
for 1-VASS are in ptime.

Hereafter we assume perfect information!
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Motivating Scenario

• A rover is exploring an unknown area.

• At any time the rover can move around or recharge its battery, but not at the same time.

• Moving around consumes one energy unit at every time step, whereas the rover can recharge
of one energy unit at a time.

• Switching between modes also requires one energy unit.

Specification:

• Is it always the case that, given an energy budget of b units, the rover will be able to move?
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Resource-bounded Concurrent Game Structures

Intuition: extension of CGS where actions consume as well as produce resources.

Definition (RB-CGS)

A resource-bound CGS is a tuple S = 〈Ag ,AP, S ,S0, {Acta}a∈Ag , δ, λ, r, cost〉 such that

• 〈Ag ,AP, S ,S0, {Acta}a∈Ag , δ, λ〉 is a CGS (with perfect information)

• r ≥ 1 is the number of resources

• cost : S × Ag × Act → Zr is the cost function.

Example (the rover)

s1 s2move : −1 recharge : +1

switch : −1

switch : −1
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Resource-bounded Alternating-time Temporal Logic

RB±ATL: extension of ATL to reason about resources. [ALNR14]

Definition (Satisfaction)

(M, s) |= 〈〈A〉〉~bψ iff for some joint ~b-strategy σA,
for all computations π ∈ Comp(s, σA), (M, π) |= ψ

• For a ~b-strategy σA : S+ → ActA all computation are consistent with budget ~b.
I the actions of opponent coalition Ag \ A are unrestricted.

• For |Ag | = 1, we obtain a resource-bounded version of CTL:

E
~bψ ::= 〈〈{1}〉〉~bψ and A

~bψ ::= ¬E~b¬ψ = [[{1}]]~bψ

Example

It is always the case that, given an energy budget of b units, the rover will be able to move:

AωG EbF move
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Model Checking RB±ATL∗: Complexity

‘

r\|Ag | ∞ ≥ 2 1
∞ 2exptime-c [ABDL18] expspace-c. [ABDL18]
≥ 1 (same as ATL∗) pspace-c [ABDL18]

(same as CTL∗)

• Tight complexity bounds for all flavours of RB±ATL∗.

• In several cases the same complexity as resource-free logics.

• Still, very much intractable.
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Model Checking RB±ATL: Complexity

r\|Ag | ∞ ≥ 2 1
∞ 2exptime-c. [ABDL18] expspace-c. [ABDL18]
≥ 4 exptime-c. [ABDL18] in pspace [ABDL18]

3 in exptime [ABDL18] pspace-h. [BFG+15]
2 pspace-h. [BFG+15]

1
in pspace [ALNR17]

ptime-c. [BD19]
ptime-h. (from ATL)

Limitations:

• The model checking problem is normally harder (from ptime-c. up to 2exptime-c.).

• Loose complexity bounds in several cases (e.g., r = 2, 3 and |Ag | ≥ 2).

Positive Results:

• Model checking RB±ATL({1}, 1) is ptime-complete.

⇒ as hard as CTL: reasoning about resources comes at no extra computational complexity!
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Decision problems for VASS

We prove the ptime-upper bound by solving decision problems for 1-VASS.

Definition (VASS)

A Vector Addition System with States is a tuple V = 〈Q, r ,R〉 such that

1 Q is a set of control states

2 r ≥ 1 is the number of counters

3 the transition relation R is a finite subset of Q × Zr × Q.

A 1-VASS is a VASS with a single counter (r = 1).

Control state reachability problem CREACH(VASS):
Input: a VASS V , a configuration (q0, ~x0), and a control state qf .

Question: Is there a finite run from (q0, ~x0) to a (final) configuration with state qf ?

Non-termination problem NONTER(VASS):
Input: a VASS V and a configuration (q0, ~x0).

Question: Is there an infinite run with initial configuration (q0, ~x0)?

Theorem

Both CREACH(1-VASS) and NONTER(1-VASS) are decidable in ptime.
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Decidability Results for 1-VASS

Theorem

CREACH(1-VASS) is decidable in ptime.

Proof Idea: configuration (qf , xf ) is reachable from (q0, x0) iff there is a finite run with

1 an initial simple run (no repetitions)

2 a simple strictly positive loop

3 a final simple path.

q0, x0 q, x qf
simple run simple path

simple strictly positive loop

Same proof idea as [RY86], but actually we fixed that proof.

Theorem

NONTERM(1-VASS) is decidable in ptime.

Proof Idea: there exists a non-terminating run from (q0, x0) iff there is a finite run that satisfies
(1) and (2) above.
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ptime-Upper Bound for RB±ATL({1}, 1)

To decide whether M |= ϕ, we introduce a labelling algorithm that works bottom-up on the
structure of formula ϕ.

• Subformulas φ = Eb(φ1Uφ2) are dealt with by solving CREACH(VM).

• Subformulas φ = EbGφ′ are dealt with by solving NONTERM(VM).

The whole procedure is in ptime.
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Summary

Main Result

• Reasoning about a single resource in CTL comes at no extra computational complexity!

Future Work

• Budget Synthesis: find a (minimal) budget b such that M |= 〈〈A〉〉bψ.

• Implementation in a model checking tool.

• Open problems: model checking complexity of RB±ATL({1, 2}, 1)?
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Conclusion

• Verification is a key issue for the deployment of Multi-agent Systems.

• We presented tractable instances of MAS model checking, mainly by restricting meaningfully
the class of systems.

• Still lots to do . . .
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