Tractable Verification of Multi-agent Systems

Francesco Belardinelli ¹

 $^1 \, {\rm Imperial}$ College London, UK and Université d'Evry, France

joint work with S. Demri, A. Lomuscio, N. Murano, and S. Rubin

University of Surrey - 29 May 2019

Verification of (Multi-agent) Systems

The Verification Problem: given a system S and specification P, does S satisfy P?

• safety-critical systems (avionics, AUVs), security and communication protocols, etc.

Verification of (Multi-agent) Systems

The Verification Problem: given a system S and specification P, does S satisfy P?

• safety-critical systems (avionics, AUVs), security and communication protocols, etc.

Model checking in a nutshell [Clarke, Emerson, Sifakis]

- Model S as some transition system M_S
- **2** Represent specification P as a formula ϕ_P in some logic-based language
- **③** Check whether $M_S \models \phi_P$

Verification of (Multi-agent) Systems

The Verification Problem: given a system S and specification P, does S satisfy P?

• safety-critical systems (avionics, AUVs), security and communication protocols, etc.

Model checking in a nutshell [Clarke, Emerson, Sifakis]

- Model S as some transition system M_S
- **2** Represent specification P as a formula ϕ_P in some logic-based language
- Check whether $M_S \models \phi_P$

Background assumptions:

- Discrete graphs/games are a good model for MAS.
- Logic is a good tool for representing properties.

80's-90's: monolithic systems, systems in isolation: LTL, CTL.

Temporal Properties	
• the robot will always stay in the safe zone.	G safe
• the robot will finally reach its target.	F target
• the robot will always makes progress towards its goal.	GF move

From System to Game Verification

Since 2000: systems with several components, interacting agents, game structures: ATL, Coalition Logic, Strategy Logic.

Epistemic properties

• Anonimity: the attacker does not know how agent *i* has voted.

Strategic properties

Coercion Resistance: the attacker has no strategy whereby he will know how agent *i* has voted.
 ¬⟨⟨att⟩⟩F ∨_{1<j<c} K_{att}(ch_i = j)

 $\bigwedge_{1 \le j \le c} \neg K_{att}(ch_i = j)$

• There is a [Nash, subgame-perfect, *k*-robust, ...] equilibrium.

Notions of strategies, equilibria from Game Theory \rightarrow Rational Synthesis [KPV16]

 \Rightarrow Automated verification of strategic abilities of autonomous agents (MoChA, Verics, MCMAS)

From System to Game Verification

Since 2000: systems with several components, interacting agents, game structures: ATL, Coalition Logic, Strategy Logic.

Epistemic properties

• Anonimity: the attacker does not know how agent *i* has voted.

Strategic properties

Coercion Resistance: the attacker has no strategy whereby he will know how agent *i* has voted.
 ¬⟨⟨att⟩⟩F ∨_{1<j<c} K_{att}(ch_i = j)

 $\bigwedge_{1 \le j \le c} \neg K_{att}(ch_i = j)$

• There is a [Nash, subgame-perfect, k-robust, ...] equilibrium.

Notions of strategies, equilibria from Game Theory \rightarrow Rational Synthesis [KPV16]

 \Rightarrow Automated verification of strategic abilities of autonomous agents (MoChA, Verics, MCMAS)

So far, so good ...

The Problems with MAS Verification

- MAS require imperfect information:
 - Agents have partial observability.
 - Perfect information unachievable or computationally costly.
 - Imperfect information makes things hard(er).
- Actions have costs:
 - Costs are not normally modelled in these specification languages.
 - Extension of logic for strategies with production/consumption of resources.

The Problems with MAS Verification

- MAS require imperfect information:
 - Agents have partial observability.
 - Perfect information unachievable or computationally costly.
 - Imperfect information makes things hard(er).
- Actions have costs:
 - Costs are not normally modelled in these specification languages.
 - Extension of logic for strategies with production/consumption of resources.

This talk:

- MAS with public actions only ⇒ Tractable model checking even with imperfect information. [BLMR17a, BLMR17b, BLMR18]
- Irractable reasoning about resources in MAS.

[BD19]

The Impact of Imperfect Information on Verification

The Impact of Imperfect Information on Verification

• Model checking ATL:

	perfect	erfect imperfect	
memoryless	РТІМЕ-с. (А. Н. К., 2002) -	Δ_2^P -C. (Jamroga, Dix, 2006)	
perfect recall		undec. (Dima, Tiplea, 2011)	

The Impact of Imperfect Information on Verification

The Information Problem: agents have imperfect/incomplete information about the overall state of the system.

Model checking ATL:

	perfect	imperfect
memoryless	РТІМЕ-с. (А. Н. К., 2002) -	Δ_2^P -C. (Jamroga, Dix, 2006)
perfect recall		undec. (Dima, Tiplea, 2011)

• Long known and not limited to ATL.

Perfect Information: decidable

- Synthesis for LTL goals
- Nash equilibria for LTL goals

Imperfect Information: undecidable

Synthesis for reachability goals

(Büchi, Landweber, 1969), (Rabin, 1972), (Pnueli, Rosner, 1989)

(Mogavero, Murano, Vardi, 2010)

(Peterson, Reif, 1979)

How to tame Imperfect Information

• Abstractions, Approximations: bisimulations, 3-valued logics.

[BCD⁺17]: bisimulations for the verification of anonymity and coercion-resistance in the ThreeBallot voting protocol.

→ check Catalin Dima's 2018 talk @Surrey

How to tame Imperfect Information

• Abstractions, Approximations: bisimulations, 3-valued logics.

[BCD⁺17]: bisimulations for the verification of anonymity and coercion-resistance in the ThreeBallot voting protocol.

→ check Catalin Dima's 2018 talk @Surrey

• In this talk

Semantic restrictions: MAS with only public actions.

[BLMR17a, BLMR17b, BLMR18]

How to tame Imperfect Information

• Abstractions, Approximations: bisimulations, 3-valued logics.

[BCD⁺17]: bisimulations for the verification of anonymity and coercion-resistance in the ThreeBallot voting protocol.

→ check Catalin Dima's 2018 talk @Surrey

- In this talk
 - Semantic restrictions: MAS with only public actions.

[BLMR17a, BLMR17b, BLMR18]

The source of undecidability in [DT11] is the interplay between...

- agents having incomparable observations
- agents using private communication

What happens if we drop 1 or 2?

Drop incomparable observations

All following approaches preserve decidability.

Hierarchies of observations

· Hierarchical observations: chains of visibility

(Peterson, Reif, 1979), (Pnueli, Rosner, 1990), (Kupferman, Vardi, 2001), (Schewe, Finkbeiner, 2007)

• Hierarchical information: information sets form a chain

(Berwanger, Mathew, vdBogaard, 2015)

• Hierarchical instances: instance = formula + arena + hierarchy

(Berthon, Maubert, Murano, 2017)

Drop incomparable observations

All following approaches preserve decidability.

Hierarchies of observations

· Hierarchical observations: chains of visibility

(Peterson, Reif, 1979), (Pnueli, Rosner, 1990), (Kupferman, Vardi, 2001), (Schewe, Finkbeiner, 2007)

· Hierarchical information: information sets form a chain

(Berwanger, Mathew, vdBogaard, 2015)

• Hierarchical instances: instance = formula + arena + hierarchy

(Berthon, Maubert, Murano, 2017)

Here we focus on dropping 2.

- Public Announcement Logic is decidable
- Epistemic planning is easier
- LTLK synthesis is decidable

Research question: is there a meaningful set up with imperfect information and public actions enjoying a tractable model checking problem?

(Gerbrandy & Groeneveld, 1997)

(Pinchinat et al., 2015)

(vdMeyden & Wilke, 2005)

Concurrent Game Structures with Imperfect Information

iCGS

An iCGS $M = \langle Ag, AP, S, S_0, \{Act_a\}_{a \in Ag}, \delta, \lambda, \{\sim_a\}_{a \in Ag} \rangle$ includes

- agents Ag
- atomic propositions AP
- actions Act_a and joint actions $ACT = \prod_{a \in Ag} Act_a$
- states S with initial states $S_0 \subseteq S$
- transition function $\delta : S \times ACT \rightarrow S$
- labelling function $\lambda : AP \rightarrow 2^S$
- indistinguishability relation $\sim_a \subseteq S^2$.
- **Perfect Information**: for each $a \in Ag$, \sim_a is the identity relation.

Public Actions iCGS

PA-iCGS

An iCGS S has only public actions if for every agent $a \in Ag$, states $s, s' \in S$, and joint actions $J, J' \in ACT$,

$$s \sim_a s'$$
 and $J \neq J'$ imply $\delta(s, J) \not\sim_a \delta(s', J')$

Intuition: no private communication can take place.

Public Actions iCGS

PA-iCGS

An iCGS S has only public actions if for every agent $a \in Ag$, states $s, s' \in S$, and joint actions $J, J' \in ACT$,

$$s \sim_a s'$$
 and $J \neq J'$ imply $\delta(s, J) \not\sim_a \delta(s', J')$

Intuition: no private communication can take place.

Captures many scenarios of interest in Computer Science

- card/board games
- open-outcry auctions
- tweeting
- recording contexts
- broadcasting systems
- planning via public actions

(FHMV, 1995)

(Lomuscio, Meyden & Ryan, 2000)

(Kominis & Geffner, 2015)

Definition (ATL*)

State (φ) and **path** (ψ) **formulas** are defined for $p \in AP$ and $A \subseteq Ag$:

$$\begin{array}{lll} \varphi & ::= & p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \psi \\ \psi & ::= & \varphi \mid \neg \psi \mid \psi \land \psi \mid X\psi \mid G\psi \mid \psi U\psi \end{array}$$

• ATL is the fragment of ATL* where path formulas are restricted as

$$\psi$$
 ::= $X\varphi \mid G\varphi \mid \varphi U\varphi$

Definition (ATL*)

State (φ) and **path** (ψ) **formulas** are defined for $p \in AP$ and $A \subseteq Ag$:

$$\begin{array}{lll} \varphi & ::= & p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \psi \\ \psi & ::= & \varphi \mid \neg \psi \mid \psi \land \psi \mid X\psi \mid G\psi \mid \psi U\psi \end{array}$$

• ATL is the fragment of ATL* where path formulas are restricted as

$$\psi$$
 ::= $X\varphi \mid G\varphi \mid \varphi U\varphi$

Strategies

- deterministic with perfect recall: $\sigma: S^+ \rightarrow \cup_{a \in Ag} Act_a$
- coherent for agent a: σ(h) ∈ Act_a
- uniform for agent *a*: $h \sim_a h'$ implies $\sigma(h) = \sigma(h')$

Interpretation given on perfect recall, synchronous iCGS.

Definition (Semantics)

```
Consider an iCGS M, history h \in S^+, computation \pi \in S^{\omega}, and i \in \mathbb{N}.
```

$(M,h) \models p$	iff	$last(h) \in \lambda(p)$
$(M,h) \models \neg \varphi$	iff	$(M,h) \not\models \varphi$
$(M,h) \models \varphi_1 \land \varphi_2$	iff	$(M,h) \models \varphi_1$ and $(M,h) \models \varphi_2$
$(M,h) \models \langle\!\langle A \rangle\!\rangle \psi$	iff	for some joint strategy σ_A ,
		for all computations π consistent with h and σ_A , $(M, \pi, h) \models \psi$
$(M, \pi, i) \models \varphi$	iff	$(M, \pi_{\leq i}) \models \varphi$
$(M, \pi, i) \models \neg \psi$	iff	$(M, \pi, i) \not\models \psi$
$(M, \pi, i) \models \psi_1 \wedge \psi_2$	iff	$(M, \pi, i) \models \psi_1$ and $(M, \pi, i) \models \psi_2$
$(M, \pi, i) \models X\psi$	iff	$(M, \pi, i+1) \models \psi$
$(M, \pi, i) \models \psi_1 U \psi_2$	iff	for some $j \ge i$, $(M, \pi, j) \models \psi_2$,
		for all k, $i \leq k < j$ implies $(M, \pi, k) \models \psi_1$

Interpretation given on perfect recall, synchronous iCGS.

Definition (Semantics)

```
Consider an iCGS M, history h \in S^+, computation \pi \in S^\omega, and i \in \mathbb{N}.
```

$(M,h) \models p$	iff	$last(h) \in \lambda(p)$
$(M,h) \models \neg \varphi$	iff	$(M,h) \not\models \varphi$
$(M,h) \models \varphi_1 \land \varphi_2$	iff	$(M,h) \models \varphi_1$ and $(M,h) \models \varphi_2$
$(M,h) \models \langle\!\langle A \rangle\!\rangle \psi$	iff	for some joint strategy σ_A ,
		for all computations π consistent with h and σ_A , $(M, \pi, h) \models \psi$
$(M, \pi, i) \models \varphi$	iff	$(M, \pi_{\leq i}) \models \varphi$
$(M, \pi, i) \models \neg \psi$	iff	$(M, \pi, i) \not\models \psi$
$(M, \pi, i) \models \psi_1 \land \psi_2$	iff	$(M, \pi, i) \models \psi_1$ and $(M, \pi, i) \models \psi_2$
$(M, \pi, i) \models X\psi$	iff	$(M, \pi, i+1) \models \psi$
$(M, \pi, i) \models \psi_1 U \psi_2$	iff	for some $j \ge i$, $(M, \pi, j) \models \psi_2$,
		for all k, $i \leq k < j$ implies $(M, \pi, k) \models \psi_1$

[DT11]: model checking ATL on iCGS with perfect recall is undecidable.

Theorem ([BLMR17a])

Model checking ATL* on PA-iCGS is decidable. Specifically, it is 2EXPTIME-complete.

- Lower bound: model checking ATL* is 2EXPTIME-hard already for perfect information (and perfect recall).
- Upper bound: the set of strategies making a formula true is recognised by a tree automaton (there exists a bijective encoding μ : S₀ × ACT^{*} → S⁺).

Theorem ([BLMR17a])

Model checking ATL* on PA-iCGS is decidable. Specifically, it is 2EXPTIME-complete.

- Lower bound: model checking ATL* is 2EXPTIME-hard already for perfect information (and perfect recall).
- Upper bound: the set of strategies making a formula true is recognised by a tree automaton (there exists a bijective encoding μ : S₀ × ACT^{*} → S⁺).

[BLMR17b]: decidability extends to Strategy Logic

- SL extends ATL* with explicit quantification on strategies as well as strategy binding.
- Model checking SL on PA-iCGS is decidable (TOWER-complete).

 \Rightarrow Complex specifications can *in principle* be checked on synchronous, perfect recall MAS as long as evolution is via public actions.

Application: Rational Synthesis

A game $G = \langle M, \{\gamma_a\}_{a \in Ag} \rangle$ is such that

- M is an iCGS
- LTL-formula γ_a is an individual objective for agent a ∈ Ag.

E-NASH (Kupferman et al., 2016)

Consider game G and (LTL) specification φ . Is there some strategy profile $\vec{\sigma}$ such that

- **(**) $\vec{\sigma}$ is a Nash equilibrium for *G*
- **(2)** the path induced by $\vec{\sigma}$ satisfies φ ?

Strong rational synthesis (or A-NASH) amounts to decide whether all NE $\vec{\sigma}$ induce φ -satisfying paths.

Application: Rational Synthesis

G is a game on some PA-iCGS.

E-Nash Reduction

E-NASH for (G, φ) can be solved by model checking the SL specification:

$$M \models \exists x_1 \ldots \exists x_n(x_1, a_1) \ldots (x_n, a_n) \left[\bigwedge_{a \in Ag} (\exists y(y, a) \gamma_a \to \gamma_a) \land \varphi \right]$$

A-NASH can similarly be established.

 \Rightarrow E-NASH (resp. A-NASH) on PA-iCGS is decidable, can be solved via model checking SL.

Summary

Results:

- Imperfect information makes MAS verification hard(er): with perfect recall, it leads to undecidability
- PA-iCGS: a significant class of MAS for which model checking is decidable under the same assumptions.
- Verification of games with public actions only (incl. broadcasting protocols), where no private moves are possible.
- Extension to Strategy Logic and application to rational synthesis (E-NASH, A-NASH).

Future Work:

- Weakening public actions: allowing a "finite amount" of private information.
- Analysis of fragments of SL with lower complexity.

Background

• ATL: logic to reason about the strategic abilities of agents in MAS.

Background

• ATL: logic to reason about the strategic abilities of agents in MAS. actions have no cost (?!)

Background

- ATL: logic to reason about the strategic abilities of agents in MAS. actions have no cost (?!)
- RB \pm ATL: resource-bounded extension of ATL.

[ALNR14]

Background

- ATL: logic to reason about the strategic abilities of agents in MAS. actions have no cost (?!)
- RB±ATL: resource-bounded extension of ATL. [ALNR14] normally harder model checking problem.

Background

- ATL: logic to reason about the strategic abilities of agents in MAS. actions have no cost (?!)
- RB±ATL: resource-bounded extension of ATL. [ALNR14] normally harder model checking problem.

Research Question

• Can we reason about resources efficiently?

Background

- ATL: logic to reason about the strategic abilities of agents in MAS. actions have no cost (?!)
- RB±ATL: resource-bounded extension of ATL. [ALNR14]
 normally harder model checking problem.

Research Question

• Can we reason about resources efficiently?

Main Contribution

• Model checking $RB \pm ATL(\{1\}, 1)$ is PTIME-complete.

[BD19]

Background

- ATL: logic to reason about the strategic abilities of agents in MAS. actions have no cost (?!)
- RB±ATL: resource-bounded extension of ATL. [ALNR14] normally harder model checking problem.

Research Question

• Can we reason about resources efficiently?

Main Contribution

· Reasoning about a single resource in CTL comes at no extra computational complexity.

Background

- ATL: logic to reason about the strategic abilities of agents in MAS. actions have no cost (?!)
- RB±ATL: resource-bounded extension of ATL. [ALNR14]
 normally harder model checking problem.

Research Question

• Can we reason about resources efficiently?

Main Contribution

Reasoning about a single resource in CTL comes at no extra computational complexity.

Proof Strategy: we show that the control state reachability and non-termination problems for 1-VASS are in PTIME.

Background

- ATL: logic to reason about the strategic abilities of agents in MAS. actions have no cost (?!)
- RB±ATL: resource-bounded extension of ATL.

[ALNR14]

normally harder model checking problem.

Research Question

• Can we reason about resources efficiently?

Main Contribution

• Reasoning about a single resource in CTL comes at no extra computational complexity.

Proof Strategy: we show that the control state reachability and non-termination problems for 1-VASS are in PTIME.

Hereafter we assume perfect information!

Motivating Scenario

- A rover is exploring an unknown area.
- At any time the rover can move around or recharge its battery, but not at the same time.
- Moving around consumes one energy unit at every time step, whereas the rover can recharge of one energy unit at a time.
- Switching between modes also requires one energy unit.

Motivating Scenario

- A rover is exploring an unknown area.
- At any time the rover can move around or recharge its battery, but not at the same time.
- Moving around consumes one energy unit at every time step, whereas the rover can recharge
 of one energy unit at a time.
- Switching between modes also requires one energy unit.

Specification:

• Is it always the case that, given an energy budget of b units, the rover will be able to move?

Resource-bounded Concurrent Game Structures

Intuition: extension of CGS where actions consume as well as produce resources.

Definition (RB-CGS)

A resource-bound CGS is a tuple $S = \langle Ag, AP, S, S_0, \{Act_a\}_{a \in Ag}, \delta, \lambda, \mathbf{r}, \mathbf{cost} \rangle$ such that

- $\langle Ag, AP, S, S_0, \{Act_a\}_{a \in Ag}, \delta, \lambda \rangle$ is a CGS (with perfect information)
- $r \ge 1$ is the number of *resources*
- **cost** : $S \times Ag \times Act \rightarrow \mathbb{Z}^r$ is the *cost function*.

Resource-bounded Concurrent Game Structures

Intuition: extension of CGS where actions consume as well as produce resources.

Definition (RB-CGS)

A resource-bound CGS is a tuple $S = \langle Ag, AP, S, S_0, \{Act_a\}_{a \in Ag}, \delta, \lambda, \mathbf{r}, \mathbf{cost} \rangle$ such that

- $\langle Ag, AP, S, S_0, \{Act_a\}_{a \in Ag}, \delta, \lambda \rangle$ is a CGS (with perfect information)
- $r \ge 1$ is the number of *resources*
- **cost** : $S \times Ag \times Act \rightarrow \mathbb{Z}^r$ is the *cost function*.

Resource-bounded Alternating-time Temporal Logic

RB \pm ATL: extension of ATL to reason about resources.

Definition (Satisfaction)

 $(M,s) \models \langle\!\!\langle A \rangle\!\!\rangle^{\vec{b}} \psi$ iff for some joint \vec{b} -strategy σ_A , for all computations $\pi \in Comp(s, \sigma_A)$, $(M, \pi) \models \psi$

• For a \vec{b} -strategy $\sigma_A: S^+ \to Act_A$ all computation are consistent with budget \vec{b} .

[ALNR14]

• the actions of opponent coalition $Ag \setminus A$ are unrestricted.

Resource-bounded Alternating-time Temporal Logic

RB \pm ATL: extension of ATL to reason about resources.

Definition (Satisfaction)

 $(M,s) \models \langle\!\!\langle A \rangle\!\!\rangle^{\vec{b}} \psi$ iff for some joint \vec{b} -strategy σ_A , for all computations $\pi \in Comp(s, \sigma_A)$, $(M, \pi) \models \psi$

- For a \vec{b} -strategy $\sigma_A: S^+ \to Act_A$ all computation are consistent with budget \vec{b} .
 - the actions of opponent coalition Ag \ A are unrestricted.
- For |Ag| = 1, we obtain a resource-bounded version of CTL:

$$E^{\vec{b}}\psi::=\langle\!\langle\{1\}\rangle\!\rangle^{\vec{b}}\psi \quad \text{ and } \quad A^{\vec{b}}\psi::=\neg E^{\vec{b}}\neg\psi=[\{1\}]^{\vec{b}}\psi$$

[ALNR14]

Resource-bounded Alternating-time Temporal Logic

RB \pm ATL: extension of ATL to reason about resources.

Definition (Satisfaction)

 $(M,s) \models \langle\!\langle A \rangle\!\rangle^{\vec{b}} \psi$ iff for some joint \vec{b} -strategy σ_A , for all computations $\pi \in Comp(s, \sigma_A)$, $(M, \pi) \models \psi$

- For a \vec{b} -strategy $\sigma_A : S^+ \to Act_A$ all computation are consistent with budget \vec{b} .
 - the actions of opponent coalition $Ag \setminus A$ are unrestricted.
- For |Ag| = 1, we obtain a resource-bounded version of CTL:

$$E^{\vec{b}}\psi ::= \langle\!\langle \{1\}
angle^{\vec{b}}\psi$$
 and $A^{\vec{b}}\psi ::= \neg E^{\vec{b}}\neg \psi = [\{1\}]^{\vec{b}}\psi$

Example

It is always the case that, given an energy budget of b units, the rover will be able to move:

 $A^{\omega}G E^{b}F$ move

[ALNR14]

Model Checking RB±ATL*: Complexity

$r \setminus Ag $	∞	≥ 2	1
∞	2EXPTIME-c [ABDL18]		EXPSPACE-c. [ABDL18]
\geq 1	((same as ATL*)	pspace-c [ABDL18]
			(same as CTL*)

- Tight complexity bounds for all flavours of RB±ATL*.
- In several cases the same complexity as resource-free logics.
- Still, very much intractable.

4

Model Checking RB±ATL: Complexity

r\ Ag	∞ \geq 2	1
∞	2exptime-c. [ABDL18]	EXPSPACE-c. [ABDL18]
<u>≥ 4</u>	EXPTIME-c. [ABDL18]	in pspace [ABDL18]
3	in EXPTIME [ABDL18]	PSPACE-h. [BFG ⁺ 15]
2	PSPACE-h. [BFG ⁺ 15]	
1	in pspace [ALNR17]	ntime c [RD10]
1	PTIME-h. (from ATL)	ptime-c. [BD19]

Limitations:

- The model checking problem is normally harder (from PTIME-c. up to 2EXPTIME-c.).
- Loose complexity bounds in several cases (e.g., r = 2, 3 and $|Ag| \ge 2$).

Positive Results:

• Model checking $RB \pm ATL(\{1\}, 1)$ is PTIME-complete.

 \Rightarrow as hard as CTL: reasoning about resources comes at no extra computational complexity!

Decision problems for VASS

We prove the PTIME-upper bound by solving decision problems for 1-VASS.

Definition (VASS)

A Vector Addition System with States is a tuple $V = \langle Q, r, R \rangle$ such that

- **Q** is a set of **control states**
- **2** $r \ge 1$ is the number of **counters**
- **③** the **transition relation** *R* is a finite subset of $Q \times \mathbb{Z}^r \times Q$.

A 1-VASS is a VASS with a single counter (r = 1).

Decision problems for VASS

We prove the PTIME-upper bound by solving decision problems for 1-VASS.

Definition (VASS)

A Vector Addition System with States is a tuple $V = \langle Q, r, R \rangle$ such that

- **Q** is a set of **control states**
- **2** $r \ge 1$ is the number of **counters**
- **(**) the **transition relation** *R* is a finite subset of $Q \times \mathbb{Z}^r \times Q$.

A 1-VASS is a VASS with a single counter (r = 1).

Control state reachability problem CREACH(VASS):

Input: a VASS V, a configuration (q_0, \vec{x}_0) , and a control state q_f . Question: Is there a finite run from (q_0, \vec{x}_0) to a (final) configuration with state q_f ?

Non-termination problem NONTER(VASS):

Input: a VASS V and a configuration (q_0, \vec{x}_0) . Question: Is there an infinite run with initial configuration (q_0, \vec{x}_0) ?

Decision problems for VASS

We prove the PTIME-upper bound by solving decision problems for 1-VASS.

Definition (VASS)

A Vector Addition System with States is a tuple $V = \langle Q, r, R \rangle$ such that

- **Q** is a set of **control states**
- **2** $r \ge 1$ is the number of **counters**
- **(**) the **transition relation** *R* is a finite subset of $Q \times \mathbb{Z}^r \times Q$.

A 1-VASS is a VASS with a single counter (r = 1).

Control state reachability problem CREACH(VASS):

Input: a VASS V, a configuration (q_0, \vec{x}_0) , and a control state q_f . Question: Is there a finite run from (q_0, \vec{x}_0) to a (final) configuration with state q_f ?

Non-termination problem NONTER(VASS):

Input: a VASS V and a configuration $(q_0, \vec{x_0})$. Question: Is there an infinite run with initial configuration $(q_0, \vec{x_0})$?

Theorem

Both CREACH(1-VASS) and NONTER(1-VASS) are decidable in PTIME.

Decidability Results for 1-VASS

Theorem

CREACH(1-VASS) is decidable in PTIME.

Proof Idea: configuration (q_f, x_f) is reachable from (q_0, x_0) iff there is a finite run with

- In initial simple run (no repetitions)
- a simple strictly positive loop
- a final simple path.

Same proof idea as [RY86], but actually we fixed that proof.

Decidability Results for 1-VASS

Theorem

CREACH(1-VASS) is decidable in PTIME.

Proof Idea: configuration (q_f, x_f) is reachable from (q_0, x_0) iff there is a finite run with

- an initial simple run (no repetitions)
- a simple strictly positive loop
- a final simple path.

Same proof idea as [RY86], but actually we fixed that proof.

Theorem

NONTERM(1-VASS) is decidable in PTIME.

Proof Idea: there exists a non-terminating run from (q_0, x_0) iff there is a finite run that satisfies (1) and (2) above.

To decide whether $M \models \varphi$, we introduce a labelling algorithm that works bottom-up on the structure of formula φ .

- Subformulas $\phi = E^b(\phi_1 U \phi_2)$ are dealt with by solving CREACH(V^M).
- Subformulas $\phi = E^b G \phi'$ are dealt with by solving NONTERM(V^M).

The whole procedure is in PTIME.

Summary

Main Result

• Reasoning about a single resource in CTL comes at no extra computational complexity!

Summary

Main Result

• Reasoning about a single resource in CTL comes at no extra computational complexity!

Future Work

- Budget Synthesis: find a (minimal) budget b such that $M \models \langle\!\langle A \rangle\!\rangle^b \psi$.
- Implementation in a model checking tool.
- Open problems: model checking complexity of $RB\pm ATL(\{1,2\},1)$?

Conclusion

- Verification is a key issue for the deployment of Multi-agent Systems.
- We presented tractable instances of MAS model checking, mainly by restricting *meaningfully* the class of systems.
- Still lots to do ...

References

N. Alechina, N. Bulling, S. Demri, and B. Logan.

On the complexity of resource-bounded logics. Theoretical Computer Science, 750:69–100, 2018,

N. Alechina, B. Logan, H.N. Nguyen, and F. Raimondi.

Decidable model-checking for a resource logic with production of resources. In *ECAI'14*, pages 9–14, 2014.

N. Alechina, B. Logan, H.N. Nguyen, and F. Raimondi.

Model-checking for resource-bounded ATL with production and consumption of resources. Journal of Computer and System Sciences, 88:126–144, 2017.

F. Belardinelli, R. Condurache, C. Dima, W. Jamroga, and A. V. Jones.

Bisimulations for verifying strategic abilities with an application to threeballot. In AAMAS17, pages 1286–1295, 2017.

F. Belardinelli and S. Demri.

Resource-bounded atl: the quest for tractable fragments. In Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS19), 2019.

29

M. Blondin, A. Finkel, S. Göller, C. Haase, and P. McKenzie.

Reachability in two-dimensional vector addition systems with states is PSPACE-complete. In LICS'15, pages 32–43. ACM Press, 2015.

Verification of multi-agent systems with imperfect information and public actions. In 17, pages 1268–1276, 2017.

Verification of broadcasting multi-agent systems against an epistemic strategy logic. In Carles Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 91–97. ijcai.org, 2017.

F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin.

Decidable verification of multi-agent systems with bounded private actions. In Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS18), 2018.

C. Dima and F. Tiplea.