
10th Workshop on Quantitative Aspects of
Programming Languages

QAPL 2012

Tallinn, Estonia, 31 March–1 April 2012

Pre-Proceedings

10th Workshop on Quantitative Aspects of
Programming Languages

QAPL 2012

Tallinn, Estonia, 31 March–1 April 2012

Pre-Proceedings

Institute of Cybernetics at Tallinn University of Technology

Tallinn ◦ 2012

10th Workshop on Quantitative Aspects of Programming Languages
QAPL 2012
Tallinn, Estonia, 31 March–1 April 2012
Pre-Proceedings

Edited by Mieke Massink and Herbert Wiklicky

Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia
http://www.ioc.ee/

The final proceedings of QAPL 2012 will appear in Electron. Proc. in Theor. Comput. Sci. (EPTCS).

Sponsored by Formal Methods Europe

c© 2012 the editors and authors

Preliminary Report. Final version to appear in:
QAPL 2012

Preface

This volume contains the preliminary proceedings of the Tenth Workshop on Quantitative Aspects
of Programming Languages (QAPL 2012), held in Tallinn, Estonia, on March 31–April 1, 2012. QAPL
2012 is a satellite event of the European Joint Conferences on Theory and Practice of Software (ETAPS
2012).

The central theme of the workshop is that of quantitative aspects of computation. These aspects
are related to the use of physical quantities (storage space, time, bandwidth, etc.) as well as mathemat-
ical quantities (e.g. probability and measures for reliability, security and trust), and play an important
(sometimes essential) role in characterising the behavior and determining the properties of systems. Such
quantities are central to the definition of both the model of systems (architecture, language design, se-
mantics) and the methodologies and tools for the analysis and verification of the systems properties.
The aim of this workshop is to discuss the explicit use of quantitative information such as time and
probabilities either directly in the model or as a tool for the analysis of systems.

In particular, the workshop focuses on:

• the design of probabilistic, real-time and quantum languages, and the definition of semantical
models for such languages;

• the discussion of methodologies for the analysis of probabilistic and timing properties (e.g. se-
curity, safety, schedulability) and of other quantifiable properties such as reliability (for hardware
components), trustworthiness (in information security) and resource usage (e.g. worst-case mem-
ory/stack/cache requirements);

• the probabilistic analysis of systems which do not explicitly incorporate quantitative aspects (e.g.
performance, reliability and risk analysis);

• applications to safety-critical systems, communication protocols, control systems, asynchronous
hardware, and to any other domain involving quantitative issues.

The history of QAPL starts in 2001, when its first edition was held in Florence, Italy, as a satellite
event of the ACM Principles, Logics, and Implementations of high-level programming languages, PLI
2001. The second edition, QAPL 2004, was held in Barcelona, Spain, as a satellite event of ETAPS
2004. Since then, QAPL has become a yearly appointment with ETAPS. In the following years, QAPL
was held in Edinburgh, Scotland (QAPL 2005), Vienna, Austria (QAPL 2006), Braga, Portugal (QAPL
2007), Budapest, Hungary (QAPL 2008), York, UK (QAPL 2009), Paphos, Cyprus (QAPL 2010) and
Saarbrücken, Germany (QAPL 2011). The proceedings of the workshops upto and including 2009 are
published as volumes in Electronic Notes in Theoretical Computer Science (ENTCS). The editions of
2010 and 2011 are published as volume 28 and volume 57, respectively, of Electronic Proceedings in
Theoretical Computer Science (EPTCS).

Three special issues of the journal of Theoretical Computer Science are dedicated to the QAPL 2004,
QAPL 2006 and QAPL 2010 events, and are published in Volume 346(1), Volume 382(1) and Volume
413(1) respectively. A special issue of the journal of Theoretical Computer Science dedicated to QAPL
2011 and QAPL 2012 is planned.

iv

The Program Committee of QAPL 2012 was composed by:

Alessandro Aldini University of Urbino, Italy
Christel Baier Technical University of Dresden, Germany
Marco Bernardo University of Urbino, Italy
Nathalie Bertrand INRIA Rennes Bretagne Atlantique, France
Luca Bortolussi University of Trieste, Italy
Jeremy Bradley Imperial College London, UK
Tomás Bráždil Masaryk University, Czech Republic
Antonio Cerone United Nations University - IIST, Macao
Kostas Chatzikokolakis Eindhoven University of Technology, the Netherlands
Josée Desharnais University of Laval, Canada
Alessandra Di Pierro University of Verona, Italy
Mieke Massink (Co-chair) Italian National Research Council - ISTI, Pisa, Italy
Paulo Mateus Technical University of Lisbon, Portugal
Annabelle McIver Macquarie University, Australia
Gethin Norman University of Glasgow, UK
David Parker Oxford University, UK
Anne Remke University of Twente, the Netherlands
Jeremy Sproston University of Turin, Italy
Herbert Wiklicky (Co-chair) Imperial College London, UK

The programme committee selected 8 regular papers and 4 presentation-only papers. All regular papers
were reviewed by at least three reviewers. They are included in this volume. Authors of regular papers
will be asked to submit a revised version for the post-proceedings to appear in the Electronic Proceedings
in Theoretical Computer Science (EPTCS). The workshop programme includes three keynote presenta-
tions: Kim G. Larsen (Aalborg University, Denmark); Boris Köpf (IMDEA Software Institute, Madrid,
Spain) and Jeremy Bradley (Imperial College London, U.K.). We would like to thank the QAPL steering
committee for its support, Formal Methods Europe (FME) for their financial support for the speakers,
and furthermore all the authors, the invited speakers, the programme committee and the external referees
for their valuable contributions.

February 2012

Mieke Massink and Herbert Wiklicky
Program Co-chairs

v

Workshop Programme

Saturday, March 31

9:25 - 9:30 Opening

9:30 - 10:30
Invited speaker: Kim G. Larsen (Aalborg University, Denmark)
Statistical Model Checking for Priced Timed Automata

10:30 - 11:00 Coffee

Session: Model Checking

11:00 - 11:30
Sergio Giro
Efficient computation of exact solutions for quantitative model checking

11:30 - 12:00
Elise Cormie-Bowins and Franck Van Breugel
Measuring Progress of Probabilistic LTL Model Checking

12:00 - 12:30
Francesco Belardinelli, Pavel Gonzalez and Alessio Lomuscio
Automated Verification of Quantum Protocols using MCMAS

12:30 - 14:00 Lunch

Session: Fluid Flow and Stochastic Modelling

14:00 - 15:00
Invited speaker: Jeremy Bradley (Imperial College London, U.K.)
Mean field and fluid approaches to Markov chain analysis

15:00 - 15:30
Anna Kolesnichenko, Anne Remke, Pieter-Tjerk De Boer and Boudewijn Haverkort
A logic for model-checking of mean-field models (Presentation only)

15:30 - 16:00 Coffee

16:00 - 16:30
Mark Timmer, Joost-Pieter Katoen, Jaco Van De Pol and Mariëlle I. A. Stoelinga
Efficient Modelling and Generation of Markov Automata (Presentation only)

16:30 - 17:00
Luca Bortolussi and Jane Hillston
Towards Fluid Model Checking (Presentation only)

vi

Sunday, April 1

9:30 - 10:30
Invited speaker: Boris Köpf (IMDEA Software Institute, Madrid, Spain)
Quantifying Side-Channels in RSA and AES

10:30 - 11:00 Coffee

Session: Security, Information Flow and Privacy

11:00 - 11:30
Ivan Gazeau, Dale Miller and Catuscia Palamidessi
A non-local method for robustness analysis of floating point programs

11:30 - 12:00
Hirotoshi Yasuoka and Tachio Terauchi
Quantitative Information Flow as Safety and Liveness Hyperproperties

12:00 - 12:30
Catuscia Palamidessi and Marco Stronati
Differential privacy for relational algebra: improving the sensitivity bounds via constraint systems

12:30 - 14:00 Lunch

Session: Hybrid and Time

14:00 - 14:30
Luca Bortolussi, Vashti Galpin and Jane Hillston
Hybrid performance modelling of opportunistic networks

14:30 - 15:00
Marco Bernardo
Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations
for Concurrent Processes

15:00 - 15:30
Henri Hansen and Mark Timmer
Why Confluence Reduction is Better than Partial Order Reduction in
Probabilistic and Non-Probabilistic Branching Time (Presentation only)

15:30 - 16:00 Coffee

16:00 - 16:30 Closing

Preliminary Report. Final version to appear in:
QAPL 2012

© P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Z. Wang
This work is licensed under the
Creative Commons Attribution License.

UPPAAL-SMC:
Statistical Model Checking for Priced Timed Automata ∗

Peter Bulychev Alexandre David Kim Guldstrand Larsen
Marius Mikučionis Danny Bøgsted Poulsen

Department of Computer Science
Aalborg University, Denmark

{pbulychev,adavid,kgl,marius,dannybp}@cs.aau.dk

Axel Legay
INRIA Rennes, France

Department of Computer Science
Aalborg University, Denmark

alegay@irisa.fr

Zheng Wang
Shanghai Key Laboratory of Trustworthy Computing

Software Engineering Institute
East China Normal University, China

This paper offers a survey of UPPAAL-SMC, a the major extension of the real-time verification tool
UPPAAL. UPPAAL-SMC allows for the efficient analysis of performance propertiesof networks of
priced timed automata under a natural stochastic semantics. In particular, UPPAAL-SMC relies on
a series of extensions of the statistical model checking approach generalized to handle real-time
systems and estimate undecidable problems. UPPAAL-SMC comes together with a friendly user
interface that allows a user to specify complex problems in an efficient manner as well as to get
feedback in the form of probability distributions and compare probabilities to analyze performance
aspects of systems. The focus of the survey is on the evolution of the tool – including modeling and
specification formalisms as well as techniques applied – together with applications of the tool to case
studies.

1 Introduction

Quantitative properties of stochastic systems are usually specified in logics that allow one to compare the
measure of executions satisfying certain temporal properties with thresholds. The model checking prob-
lem for stochastic systems with respect to such logics is typically solved by a numerical approach [3, 13]
that iteratively computes (or approximates) the exact measure of paths satisfying relevant sub-formulas;
the algorithms themselves depend on the class of systems being analyzed as well as the logic used for
specifying the properties.

Another approach to solve the model checking problem is tosimulatethe system for finitely many
runs, and usehypothesis testingto infer whether the samples provide astatisticalevidence for the sat-
isfaction or violation of the specification [39]. The crux of this approach isthat since sample runs of
a stochastic system are drawn according to the distribution defined by the system, they can be used to
get estimates of the probability measure on executions. Those techniques, also calledStatistical Model
Checking techniques(SMC) [25, 35, 39, 34], can be seen as a trade-off between testing and formal verifi-
cation. In fact, SMC is very similar to Monte Carlo used in industry, but it relieson a formal model of the
system. The core idea of SMC is to monitor a number of simulations of a system whose behaviors de-
pend on a stochastic semantic. Then, one uses the results of statistics (e.g. sequential hypothesis testing
or Monte Carlo) together with the simulations to get an overall estimate of the probability that the system

∗The paper is supported by VKR Centre of Excellence – MT-LAB and the IDEA4CPS center established on a grant from
Danish National Research Foundation

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Statistical Model Checking for Priced Timed Automata

will behave in some manner. While the idea resembles the one of classical MonteCarlo simulation, it is
based on a formal semantic of systems that allows us to reason on very complex behavioral properties
of systems (hence the terminology). This includes classical reachability property such as “can I reach
such a state?”, but also non trivial properties such as “can I reach thisstate x times in less than y units
of time?”. Of course, in contrast with an exhaustive approach, such a simulation-based solution does not
guarantee a result with 100% confidence. However, it is possible to bound the probability of making an
error. Simulation-based methods are known to be far less memory and time intensive than exhaustive
ones, and are sometimes the only option [40, 26].

Statistical model checking is now widely accepted in various research areas such as software engi-
neering, in particular for industrial applications [5, 32, 17], or even for solving problems originating from
systems biology [16, 28]. There are several reasons for this success. First, SMC is very simple to under-
stand, implement, and use. Second, it does not require extra modeling or specification effort, but simply
an operational model of the system, that can be simulated and checked against state-based properties.
Third, it allows us to verify properties [14, 15, 5] that cannot be expressed in classical temporal logics.
Finally, SMC allows to approximate undecidable problems. This latter observation is crucial. Indeed
most of emerging problems such as energy consumption are undecidable [23, 8] and can hence only be
estimated. SMC has been applied to a wide range of problems that goes from embedded systems[14]
and systems biology [14, 15] to more industrial applications [5].

In a series of recent works [21, 12, 20], we have investigated the problem of Statistical Model Check-
ing for networks of Priced Timed Automata (PTA). PTAs are timed automata, whose clocks can evolve
with different rates, while1 being used with no restrictions in guards and invariants. In [20], we have
proposed a natural stochastic semantic for such automata, which allows to perform statistical model
checking. Our work has latter been implemented in UPPAAL-SMC, that is a stochastic and statistical
model checking extension of UPPAAL. UPPAAL-SMC relies on a series of extensions of the statistical
model checking approach generalized to handle real-time systems and estimateundecidable problems.
UPPAAL-SMC comes together with a friendly user interface that allows a user to specify complex prob-
lems in an efficient manner as well as to get feedback in the form of probability distributions and compare
probabilities to Analise performance aspects of systems.

The objective of this paper is to offer a survey of UPPAAL-SMC. This includes modeling and speci-
fication formalism as well as techniques applied – together with applications of the tool to case studies.

Structure of the paper In Section 2, we introduce the formalism of networks of Priced timed automata.
Section 3 overviews some existing statistical model checking algorithm, while Sections 4 and 5 introduce
the GUI and give some details on the engine of UPPAAL-SMC. Finally, Section 6 presents a series of
applications for the tool-set and Section 7 concludes the paper.

2 Modeling Formalism

The new engine of UPPAAL-SMC [21] supports the analysis of Priced Timed Automata (PTAs) that are
timed automata whose clocks can evolve with different rates in different locations. In fact, the expressive
power (up to timed bisimilarity) of NPTA equals that of general linear hybrid automata (LHA) [1],
rendering most problems – including that of reachability – undecidable. We also assume PTAs are input-
enabled, deterministic (with a probability measure defined on the sets of successors), and non-zeno.

1in contrast to the usual restriction of priced timed automata [6, 2]

P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Z. Wang 3

PTAs communicate via broadcast channels and shared variables to generate Networks of Price Timed
Automata (NPTA).

A1

A0
x<=1

a!

B1

B0
y<=2

b!
T1

T3

T0

C’==2

C’==4
a?

b?

A B T

Figure 1: An NPTA,(A|B|T).

Fig. 1 provides an NPTA with three componentsA, B, andT as
specified using the UPPAAL GUI. One can easily see that the compos-
ite system(A|B|T) has the transition sequence:
(

(A0,Bo,T0), [x = 0,y = 0,C = 0]
) 1
−→

a!
−→

(

(A1,B0,T1), [x = 1,y = 1,C = 4]
) 1
−→

b!
−→

(

(A1,B1,T2), [x = 2,y = 2,C = 6]
)

,

demonstrating that the final locationT3 of T is reachable. In fact, lo-
cationT3 is reachable within cost 0 to 6 and within total time 0 and 2
in (A|B|T) depending on when (and in which order)A andB choose to
perform the output actionsa! andb!. Assuming that the choice of these
time-delays is governed by probability distributions, a measure on sets
of runs of NPTAs is induced, according to which quantitative properties such as“the probability of T3

being reached within a total cost-bound of 4.3”become well-defined.

Time
Cost

Time/Cost

pr
ob

ab
ili

ty

0

0.12

0.24

0.36

0.48

0.60

0.72

0 1.2 2.4 3.6 4.8 6.0

Figure 2: Cumulative probabilities fortime
andCost-bounded reachability ofT3.

In our early works [20], we provide a natural
stochastic semantics, where PTA components associate
probability distributions to both the time-delays spend
in a given state as well as to the transition between
states. In UPPAAL-SMC uniform distributions are ap-
plied for bounded delays and exponential distributions
for the case where a component can remain indefinitely
in a state. In a network of PTAs the components repeat-
edly race against each other, i.e. they independently
and stochastically decide on their own how much to
delay before outputting, with the “winner” being the
component that chooses the minimum delay. For in-
stance, in the NPTA of Fig. 1,A wins the initial race
overB with probability 0.75.

As observed in [20], though the stochastic semantic of each individual PTA in UPPAAL-SMC is rather
simple (but quite realistic), arbitrarily complex stochastic behavior can be obtained by their composition
when mixing individual distributions through message passing. The beauty of our model is that these
distributions are naturally and automatically defined by the network of PTAs.

The Hammer Game To illustrate the stochastic semantics further consider the network of two priced
timed automata in Fig. 3 modeling a competition between the two players Axel and Alex both having
to hammer three nails down. As can be seen by the representingWork-locations the time (-interval) and
rate of energy-consumption required for hammering a nail depends on theplayer and the nail-number.
As expected Axel is initially quite fast and uses a lot of energy but becomesslow towards the last nail,
somewhat in contrast to Alex. To make it an interesting competition, there is onlyonehammer illustrated
by repeated competitions between the two players in theReady-locations, where the slowest player has
to wait in theIdle-location until the faster player has finished hammering the next nail. Interestingly,
despite the somewhat different strategy applied, the best- and worst-case completion times are identical
for Axel and Alex: 59 seconds and 150 seconds. So, there is no difference between the two players and
their strategy, or is there?

4 Statistical Model Checking for Priced Timed Automata

a) Axel x<=15 && D’==2

go! done!

x=0

x=0 x=0x=0 x=0

x=0

x<=12x<=12 x<=13 && D’==3

x=0

x=0

x<=11 && D’==4x<=10
x=0

Work2Ready2 Ready3

Idle2

done?

Idle1

Ready1 Work1

go?

x>=5x>=6 x>=4 x>=3

Idle3

Work3

x>=6

Done

x>=7

go?

go!

go?done?

done!go!

done?

done!

b) Alex x<=10 && C’==4

go! done!

x=0

x=0 x=0x=0 x=0

x=0

x<=13x<=13 x<=12 && C’==3

x=0

x=0

x<=13 && C’==2x<=15
x=0

Work2Ready2 Ready3

Idle2

done?

Idle1

Ready1 Work1

go?

x>=5x>=4 x>=6 x>=7

Idle3

Work3

x>=4

Done

x>=2

go?

go!

go?done?

done!go!

done?

done!

Figure 3: 3-Nail Hammer Game between Axel and Alex.

Assume now that a third person wants to bet on who is the more likely winner – Axel or Alex – given
a refined semantics, where the time-delay before performing an output is chosen stochastically (e.g. by
drawing from a uniform distribution) and independently by each player (component).

Under such a refined semantics there is a significant difference betweenthe two players (Axel and
Alex) in the Hammer Game. In Fig. 4a) the probability distributions for either of thetwo players winning
before a certain time is given. Though it is clear that Axel has a higher probability of winning than Alex
(59% versus 41%) given unbounded time, declaring the competition a draw ifit has not finished before
50 seconds actually makes Alex the more likely winner. Similarly, Fig. 4b) illustrates the probability
of either of the two players winning given an upper bound on energy. Withan unlimited amount of
energy, clearly Axel is the most likely winner, whereas limiting the consumption ofenergy to maximum
52 “energy-units” gives Alex an advantage.

Some
Axel
Alex
Both

Time

pr
ob

ab
ili

ty

0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

32 42 52 62 72 82 92 102 112 122

Time−Dependent Distribution

Axel
Alex

Cost (C for Alex, D for Axel)

pr
ob

ab
ili

ty

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

30 40 50 60 70 80 90 100 110 120 130 140 150 160

Cost−Dependent Distribution

a) b)
Figure 4: Time- and Cost-dependent Probability of winning the Hammer Game

Extended Input Language UPPAAL-SMC takes as input NPTAs as described above. Additionally,
there is support for other features of the UPPAAL model checker’s input language such as integer vari-
ables, data structures and user-defined functions, which greatly easemodeling. UPPAAL-SMC allows the
user to specify an arbitrary (integer) rate for the clocks on any location.In addition, the automata support
branching edges where weights can be added to give a distribution on discrete transitions. It is important
to note that rates and weights may be general expressions that depend onthe states and not just simple
constants.

To illustrate the extended input language, we consider a train-gate example.This example is available

P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Z. Wang 5

in the distributed version of UPPAAL-SMC. A number of trains are approaching a bridge on which there
is only one track. To avoid collisions, a controller stops the trains. It restarts them when possible to
make sure that trains will eventually cross the bridge. There are timing constraints for stopping the trains
modeling the fact that it is not possible to stop trains instantly. The interesting point w.r.t. SMC is to
define the arrival rates of these trains. Figure 5(a) shows the template for a train. The locationSafe
has no invariant and defines the rate of the exponential distribution for delays. Trains delay according
to this distribution and then approach and synchronize withappr[i]! with the gate controller. Here
we define the rational1+id

N2 whereid is the identifier of the train andN the number of trains. Rates are
given by expressions that can depend on the current states. Trains with higher id arrive faster. Taking
transitions from locations with invariants is given by a uniform distribution. This happens inAppr,
Cross, andStart, e.g., it takes some time picked uniformly between 3 and 5 time units to cross the
bridge. Figure 5(b) shows the gate controller that keeps track of the trains with an internal queue data-
structure (not shown here). It uses functions to queue trains (when atrain is approaching while the bridge
is occupied inOcc) or dequeue them when possible (when the bridge is free and some train is queued).

(1 + id) : N*N

stop[id]?

leave[id]!

x<= 15x<=20

x<=5

appr[id]!

go[id]?

x>=10

Start

x<=10

x>=3

x>=7

Safe

Appr

Stop

Cross

x=0

x=0x=0

x=0

appr[e]?

leave[e]?

appr[e]? dequeue()

enqueue(e)
stop[tail()]!

go[front()]!

Occ

Stopping

Free

e == front()

e:id_t

e : id_t

e : id_t

enqueue(e)

len == 0

len > 0

(a) (b)

Figure 5: Template of a Train (a) and the Gate Controller (b).

Floating Point Arithmetic For modeling certain systems, e.g., biological systems, integer arithmetic
shows its precision limits very quickly. The current engine implements simple arithmetic operations on
clocks as floating point variables. This allows various tricks, in particular the tool can compute nontrivial
functions using small step integration. For example, Figure 6(a) shows a timedautomaton with floating
point arithmetic. The clockssin t andcos t are used to computesin(t) andcos(t) using simple facts

sin_t’==0 &&
cos_t’==0

1000

sin_t=sin_t + cos_t*dt,
cos_t=cos_t − sin_t*dt,
dt=0

sin_t=0,
cos_t=1

cos_t
sin_t

time

va
lu

e

−1.1

−0.6

−0.1

0.4

0.9

0 3.0 6.0 9.0 12.0

sin(t)

cos(t)

va
lu

e

−1.1

−0.6

−0.1

0.4

0.9

−1.00 −0.01 0.98

(a) (b) (c)
Figure 6: How to use clock arithmetic to integrate complex functions.

6 Statistical Model Checking for Priced Timed Automata

assin(t + dt) ≈ sin(t) + sin′(t)dt for small steps ofdt → 0, whereassin′(t) = cos(t) andsin(0) = 0,
and similarly forcos(t). The interesting trick on the model is the high exponential rate (1000) that tells
the engine to take small (random) time steps and record the duration in clockdt. The other clocks are
stopped and updated on transition. The value evolution of variablessin t andcos t in terms of time
are plotted in Figure 6(b). Figure 6(c) showssin t values with correspondingcos t which form almost
perfect circle. These plots are rendered using value monitoring features described in Section 4.

3 Properties and Queries

For specifying properties of NPTAs, we use weighted temporal properties over runs expressed in the
logic WMTL≤[9], defined by the grammarϕ ::= ap|¬ϕ |ϕ1∧ϕ2 |Oϕ |ϕ1U

x
≤dϕ2, whereap is an atomic

proposition,d is a natural number andx is a clock. Here, the logical operators are interpreted as usual,
andO is a next state operator. An WMTL≤-formulaϕ1U

x
≤dϕ2 is satisfied by a run ifϕ1 is satisfied on

the run untilϕ2 is satisfied, and this will happen before the value of the clockx increases with more than
d. For an NPTAM we definePM(ψ) to be the probability that a random run ofM satisfiesψ .

The problem of checkingPM(ψ) ≥ p (p ∈ [0,1]) is unfortunately undecidable in general2. For
the sub-logic of cost-bounded reachability problemsPM(3x≤Cφ) ≥ p, whereφ is a state-predicate,x
is a clock andC is bound, we approximate the answer using simulation-based algorithms knownunder
the name of statistical model checking algorithms. We briefly recap statistical algorithms permitting to
answer the following three types of questions:

1. Hypothesis Testing:Is the probabilityPM(3x≤Cφ) for a given NPTAM greater or equal to a certain
thresholdp∈ [0,1] ?

2. Probability evaluation:What is the probabilityPM(3x≤Cφ) for a given NPTAM?

3. Probability comparison:Is the probabilityPM(3x≤Cφ2) greater than the probabilityPM(3y≤Dφ2]?

From a conceptual point of view solving the above questions using SMC is simple. First, each run
of the system is encoded as a Bernoulli random variable that is true if the run satisfies the property and
false otherwise. Then a statistical algorithm groups the observations to answer the three questions. For
the qualitative questions (1 and 3), we shall use sequential hypothesis testing, while for the quantitative
question (2) we will use an estimation algorithm that resemble the classical MonteCarlo simulation. The
two solutions are detailed hereafter.

Hypothesis Testing This approach reduces the qualitative question to the test the hypothesisH : p =
PM(3x≤Cφ) ≥ θ againstK : p < θ . To bound the probability of making errors, we use strength parame-
tersα andβ and we test the hypothesisH0 : p≥ p0 andH1 : p≤ p1 with p0 = θ +δ0 andp1 = θ −δ1.
The intervalp0− p1 defines an indifference region, andp0 andp1 are used as thresholds in the algorithm.
The parameterα is the probability of acceptingH0 whenH1 holds (false positives) and the parameter
β is the probability of acceptingH1 whenH0 holds (false negatives). The above test can be solved by
using Wald’ssequential hypothesis testing[38]. This test computes a proportionr among those runs that
satisfy the property. With probability 1, the value of the proportion will eventually cross log(β/(1−α)
or log((1−β)/α) and one of the two hypothesis will be selected. In UPPAAL-SMC we use the following
query:Pr[bound](φ)>=p0, wherebounddefines how to bound the runs. The three ways to bound them
are 1) implicitly by time by specifying<=M (where M is a positive integer), 2) explicitly by cost with

2Exceptions being PTA with 0 or 1 clocks.

P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Z. Wang 7

x<=M wherex is a specific clock, or 3) by number of discrete steps with#<=M. In the case of hypothesis
testingp0 is the probability to test for. The formulaφ is either<> q or [] q whereq is a state predicate.

Probability Estimation This algorithm [25] computes the number of runs needed in order to produce
an approximation interval[p− ε, p+ ε] for p = Pr(ψ) with a confidence 1−α . The values ofε andα
are chosen by the user and the number of runs relies on the Chernoff-Hoeffding bound. In UPPAAL-SMC

we use the following query:Pr[bound](φ)

Probability Comparison This algorithm, which is detailed in [20], exploits an extended Wald testing.
In UPPAAL-SMC, we use the following query:Pr[bound1](φ1)>= Pr[bound2](φ2).

In addition to those three classical tests, UPPAAL-SMC also supports the evaluation of expected
values of min or max of an expression that evaluates to a clock or an integer value. The syntax is
as follows:E[bound;N](min:expr) or E[bound;N](max:expr), whereboundis as explained in this
section,N gives the number of runs explicitly, andexpr is the expression to evaluate. For this property,
no confidence is given (yet).

Full WMTL≤ Regarding implementation, the reader shall observe that both of the above statistical
algorithms are trivially implementable. To support the full logic of WMTL≤is slightly more complex
as our simulation engine needs to rely on monitors for such logic. In [9], we proposed an extension of
UPPAAL-SMC that can handle arbitrary formulas of WMTL≤. Given a propertyϕ , our implementation
first constructs deterministic under- and over-approximation monitoring PTAs for ϕ . Then it puts these
monitors in parallel with a given modelM, and applies SMC-based algorithms to bound the probability
thatϕ is satisfied onM.

4 Graphical User Interface

Besides short ’yes’ or ’no’ answers and probability estimates, UPPAAL-SMC verifier also provides a
few statistical measures in terms of time (or cost), including frequency histogram, average time (or
cost), probability density distribution, cumulative probability distribution (the last two with confidence
intervals, e.g. using the Clopper-Pearson method [18]).

These statistical data can also be superposed onto a single plot for comparison purposes using the
plot composer tool. Figure 7 shows the superposed probability distributionsof trains 0, 3 and 5 crossing
from our train-gate example. On the left side of the plot composer window theuser can select a particular
data to be added to the plot and on the right side user can see the superposed plot and can also change
some details such as labels, shapes and colors.

Monitoring Expressions UPPAAL-SMC now allows the user to visualize the values of expressions
(evaluating to integers or clocks) along runs. This gives insight to the user on the behavior of the system
so that more interesting properties can be asked to the model-checker. To demonstrate this on our previ-
ous train-gate example, we can monitor whenTrain(0) andTrain(5) are crossing as well as the length
of the queue. The query issimulate 1 [<=300]{Train(0).Cross,Train(5).Cross,Gate.len}.
This gives us the plot of Figure 8. InterestinglyTrain(5) crosses more often (since it has a higher arrival
rate). Secondly, it seems unlikely that the gate length drops below 3 after some time (say 20), which is
not an obvious property from the model. We can confirm this by askingPr[<=300](<> Gate.len <

3 and t > 20) and adding a clockt. The probability is in[0.102,0.123].

8 Statistical Model Checking for Priced Timed Automata

Figure 7: Snapshot of the plot composer displaying three probability distributions.

Gate.len
Train[5].Cross
Train[0].Cross

time

va
lu

e

0

1.5

3.0

4.5

6.0

0 50 100 150 200 250 300

Simulations

Figure 8: Visualizing the gate length and whenTrain(0) andTrain(5) cross on one random run.

As a second example to illustrate this feature, we consider the modeling of chemical reactions. Fig-
ure 9(a) and 9(b) show two symmetric timed automata that model the concentrations of reactantsa and
b (here as integers). The exponential rate for taking the transition is givenby the concentration ofa and
b. Figure 9(c) shows the evolution of the system when it is started witha=99 andb=1: a is consumed to
produceb and vice-versa, and the concentrations oscillate.

The simulations are obtained by queryingsimulate 1 [<=10]{a,b}. Figure 9(c) is showing one
evolution ofa andb over time. The tool can also plot clouds of trajectories, which is useful to identify
patterns in the behavior, as shown in figure 9(d).

It is important to notice that generating such curves is not as trivial as it seems. In fact, on such
models, if the exponential rates are higher, then the time steps are much smaller,which generates a lot
of points, up to consuming several GB of memory. Drawing such plots is not practical. The tool would
not work due to out-of-memory problems or in the best case will take around30s to transfer the data and
several seconds for every redraw. To solve this the engine applies anon-the-fly filtering of the points
based on the principle that if two points are too close to each other to be distinguished on the screen, then
they are considered to be the same. A resolution parameter is used to define the maximal resolution of
the plot and eliminates the memory and speed problems completely (down to almost not measurable).

This plot in Figure 6(b) is obtained by askingsimulate 1 [<=12]{sin t,cos t} to the model-
checker. Interestingly, UPPAAL-SMC can generate a run bounded by any clock so we can also plot
simulate 1 [cos t<=1]{sin t} and obtain a circle as shown in Figure 6(c).

P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Z. Wang 9

a

a>1 && b<limit
a−−, b++

(a)

b

b>1 && a<limit
b−−, a++

b
a

time

va
lu

e

0

12

24

36

48

60

72

84

96

0 2.0 4.0 6.0 8.0 10.0

b
a

time

va
lu

e

0

11

22

33

44

55

66

77

88

99

0 2.0 4.0 6.0 8.0 10.0

(b) (c) (d)

Figure 9: Evolution of the concentrations of two reactantsa andb.

5 Engine

The actual techniques to achieve the current performance of the tool were never exposed before. In this
section, we present a few key optimizations to implement the algorithms presentedand new features that
were not available in earlier versions of UPPAAL-SMC.

Distributed SMC The problem in distributing the implementation of the sequential SMC algorithm
is that abiasmay be introduced. The reason is that sequential testing relies on collecting outcomes of
the generated runs on-the-fly. If some computation cores generate some accepting runs faster, which
is possible if rejecting runs happen to be longer or simply more expensive to compute, then the result
will be biased. The solution of this problem is to force all the cores to generate the same amount of
simulations. The paper [39] proposes a method to ensure this by splitting the simulations into batches
of the same size, and this method has been generalized and implemented in UPPAAL-SMC [12]. The
distributed implementation gives a linear speed-up in the number of cores used.

Detection of States When choosing the delays, the engine does not know if it willskip the state that
should be observed by the query or not. This problem is present when picking delays to take transitions as
well. For example, the query could be<> A.critical and x >= 2 and x <= 3 wherex is a clock.
The engine should not delay 4 time units from a state wherex=0 because the first possible transition is
enabled at this point. Special care is taken to make sure that the formula is part of the nextinteresting
points that are computed when choosing the delays. Now comes the question of how to detect those
interesting points in both the formula and the guards.

The technique we use follows the decorator pattern where we evaluate guards (for detecting which
transitions will be enabled in the future) and formulas in the query to keep track of the lower bounds.
We wrap a state inside a decorator state that keeps track of the constraints on-the-fly, only remembering
the bounds that we need. The point of the technique here is to avoidsymbolicstates that would require
zones typically implemented with different bound matrices.

Early Termination The engine checks for query on-the-fly on every generated run. Ifa query is
satisfied then the computation of the run is stopped before it reaches the specified bound. In addition,
in order to give the user a way to stop runs earlier, the engine supports anuntil property:p U q can be
queried instead of<> q and cut the runs as soon asp stops to hold.

10 Statistical Model Checking for Priced Timed Automata

Dependencies and Reuse of Choice When a process takes an action, if may not affect other processes,
which means that from a stochastic point-of-view, picking a new delay fromscratch or keeping the old
choice (that was random) is equivalent. The engine exploit this independence: it remembers the previous
delays chosen by the processes and invalidates them when dependent transitions are taken. A process has
its delay invalidated if there is a dependency with another transition being taken, which happens in case
of synchronization or a dependency through a clock rate, invariant, guard, or update. A static analysis is
made at the granularity ofhow transitions affect processes3.

The result is that whenever a processneedsto pick a delay, it does so. Whenever a process takes a
transition, the processes that may be affected by it must pick a new delay atthe next step. Otherwise,
processes keep their choices from the previous step in the simulation4.

Checking the queryPr[<=300](<> Train(0).Cross and (forall (i:id t) i!=0 imply

Trains 5 10 20 40
Proba. 0.985-0.995 0.286-0.297 0-0.008 0-0.005
Time− 3.9s 17.3s 41.1s 98.1s
Time+ 3.5s 14.8s 33.2s 74.8s
Gain 10.2% 14.4% 19.2% 23.8%

Table 1: Probability and time results without (-) and with (+)
reuse.

Train(i).Stop)) to evaluate the
probability ofTrain(0) crossing while
all the others are stopped gives the re-
sults in table 1 for different numbers of
trains. The results are obtained with the
parameterε = 0.005 and the probabil-
ity results agree with or without reuse
within ε. The experiments are made on
a core i7 at 2.66GHz. This optimization
is designed to improve on systems with large number of components, which is shown by the increasing
improvement relative to verifications without reuse.

6 Case-Studies

In this section we evaluate the applicability of the developed techniques on practical case studies.

Robot Control In the paper [9] we considered a case – explored in [4] – of a robot moving on a two-
dimensional grid. Each field of the grid is eithernormal, on fire, cold asice or it is a wall which
cannot be passed. Also, there is agoal field that the robot must reach. The robot is moving in a random
fashion i.e. it stays in a field for some time, and then moves to a neighboring field at random (if it is not
a wall).

Frozen
Burned
Goal

run duration in time

pr
ob

ab
ili

ty

0

0.06

0.12

0.18

0.24

0.30

0.36

0.5 3.6 6.7 9.8

Cumulative Probability Distribution

Figure 10: Cumulative Probability

We are interested in the probability that the robot reaches its
goal location without staying on consecutive fire fields for more
than one time unit and on consecutive ice fields for more than
two time units. This property is captured by the WMTL≤ formula
ϕ ≡ (ϕ1 ∧ϕ2)U

τ
≤10goal, whereτ is a special clock that grows

with rate 1 and is never reset, and:

ϕ1 ≡ ice =⇒ 3
τ
≤2(fire∨normal∨goal)

ϕ2 ≡ fire =⇒ 3
τ
≤1(ice∨normal∨goal)

We applied UPPAAL-SMC to compute the probability of the robot reaching the goalϕ , staying too
long in the fire or too long on the ice. Figure 10 shows the cumulative distributionfor these probabilities.

3We judge that keeping track of the dependencies down to the locations may have a too large overhead.
4If time elapses then of course the delays chosen are updated.

P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Z. Wang 11

Firewire. IEEE 1394 High Performance Serial Bus or Firewire for short is used totransport multime-
dia signals among a network of consumer devices. The protocol has beenextensively studied (see [36]
for comparison) and in particular [30] uses probabilistic timed automata in PRISM [29]. In paper [21] we
adopt the model from [30] and demonstrate how UPPAAL-SMC can be used to evaluate fairness of a node
becoming a root (leader) with respect to the mode of operation.

fast
slow
comparison

time

pr
ob

ab
ili

ty

0

0.14

0.28

0.42

0.56

0.70

0.84

0.98

0 300 600 900 1200 1500

Probability comparison

Figure 11: Probability Comparison

UPPAAL-SMC provides two methods for comparing probabili-
ties: estimating the probabilities and then comparing them (slow
method) or using indirect probability comparison from [38] (fast
method). Figure 11 contains a resulting plot of estimated proba-
bilities (red and blue lines) and a comparison (yellow area). The
red and blue probability estimates appear very close to each other
in entire range, while the yellow area shows that at the beginning
the probabilities are indistinguishable (yellow area is at 0.5 level),
then thefastnode has higher probability to become aroot (at 1.0
level), and later the probabilities become too close to be distin-
guishable again (at 0.5 level).

energy

pr
ob

ab
ili

ty

0

0.021

0.042

0.063

0.084

2440 3130 3820 4510

Figure 12: Energy consumption.

Bluetooth [33] is a wireless telecommunication protocol using
frequency-hopping to cope with interference between the devices
in the wireless network. In paper [21] we adopted the model
from [22], annotated the model to record the power utilization
and evaluated the probability distributions of likely response times
and energy consumption. Figure 12 shows that after 70s the cost
of a device operation is at least 2440 energy units and the mean is
about 2853 energy units.

Lightweight Medium Access Protocol (LMAC) [37] is a communication scheduling protocol based
on time slot distribution for nodes sharing the same medium. The protocol is designed for wireless sensor
networks in mind: it is simple enough to fit on a modest hardware and at the sametime robust against
topology reconfiguration, minimizing collisions and power consumption. Paper[24] studies LMAC pro-
tocol using classical UPPAAL verification techniques by systematically exploring networks of up to five
nodes but the state space explosion prevents formal verification of larger networks. In paper [20] we
adopt the model by removing verification optimizations and parameterizing with probabilistic weights,
and show how collisions can be analyzed and power consumption estimated using statistical model
checking techniques. The study showed that there are still perpetual collisions in a ring topology but

ring
chain

energy

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.0003

0.0006

0.0009

0.0012

0.0015

3.01E4 3.45E4 3.89E4

Figure 13: Likely energy consumption.

the probability that the network will not recover is
very low (0.35%). The likely energy consumption
of different network topologies is compared in UP-
PAAL plot (Figure 13), which shows that on aver-
age the likely energy consumption after 1000 time
units in a ring is higher than in a chain by 10%,
possibly due to more collisions in a ring. In [12]
distributed techniques are applied in exploring over
10000 larger networks of up to 10 nodes, the worst
(star-like) and the best (chain-like) topologies in

12 Statistical Model Checking for Priced Timed Automata

terms of collisions are identified and evaluated.

Computing Nash Equilibrium in Wireless Ad Hoc Networks One of the important aspects in de-
signing wireless ad-hoc networks is to make sure that a network is robust tothe selfish behavior of its
participants, i.e. that its configuration satisfies Nash equilibrium (NE).

 0 0.2 0.4 0.6 0.8 1
 0 0.2 0.4 0.6 0.8 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

NE
Opt

p’ p

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 14: Nash Equilibrium for Aloha CSMA/CD

In paper [10] we proposed an SMC-based al-
gorithm for computing NE for the case when a
network nodes are modeled by SPTA and an util-
ity function of a single node is equal to a probabil-
ity that the node will reach its goal. Our algorithm
consists of two phases. First, we use UPPAAL-
SMC to find a strategy that most likely (heuristic)
satisfies NE. In the second phase we apply statis-
tics to test the hypothesis that this strategy actually
satisfies NE.

We applied this algorithm to compute NE for Aloha CSMA/CD and IEEE 802.15.4 CSMA/CA
protocols. Figure 14 depicts the utility function plot for Aloha CSMA/CD protocol with two nodes.
Here p and p′ axis correspond to the strategies of the honest and cheater nodes (a strategy defines how
persistent these nodes are in sending their data). We see, that NE strategy is slightly less efficient than
the symmetric optimal strategy (Opt), but it still results in a high value of the utility function.

start [2,5] [1,2] End

wt
2

1start [1,6] [2,3] End

[r1 = 4] [r2 = 2]

[r1 = 1, r2 = 2] [r1 = 2, r2 = 1]

Figure 15: Rectangles are busy states and circles are
for waiting when resources are not available. There are
r1 = 5 andr2 = 3 resources available.

Duration Probabilistic Automata In [19]
we compared UPPAAL-SMC to Prism [29]
in the context of Duration Probabilistic Au-
tomata (DPA) [31]. A Duration Probabilistic
Automaton (DPA) is a composition of Sim-
ple Duration Probabilistic Automata (SDPA).
An SDPA is a linear sequence of tasks that
must be performed in a sequential order.

Param. Estim. Hyp. Testing
n k m Prism U pp U pd U pc Prism U pp U pd U pc

4 4 3 2.7 0.3 0.2 0.2 2.0 0.1 0.1 0.1
6 6 3 7.7 0.6 0.5 0.4 3.9 0.2 0.2 0.3
8 8 3 26.5 1.2 0.9 0.7 16.4 0.5 0.4 0.3

20 40 20 >300 >300 35.5 26.2 20.7
30 40 20 >300 >300 61.2 41.8 33.2
40 40 20 >300 >300 92.2 56.9 59.5
40 20 20 >300 >300 41.1 31.2 26.5
40 30 20 >300 >300 68.8 46.7 46.1
40 55 40 >300 >300 219.5

Table 2: Performance of SMC (sec). Then column is the num-
ber SDPAs, thek column is the number of tasks per SDPA and
them column is the number resource types in the model.U pp

is the UPPAAL model that matches Prism,U pd the discrete en-
coding andU pc the continuous time encoding.

Each task is associated with a du-
ration interval which gives the possible
durations of the task. The actual du-
ration of the tasks is given by a uni-
form choice from this interval. To
model races between the SDPAs we
introduce resources to the model such
that an SDPA might have to wait for re-
sources before processing a task. When
two SDPAs are in waiting position for
the same resource, a scheduler decides
which SDPA is given the resource in a
deterministic manner.

The comparison with Prism was
made by randomly generating models
with a specific number of SDPAs and a

P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Z. Wang 13

specific number of tasks per SDPA and
translate these into Prism and UPPAAL models. The Prism model uses a discrete time semantics whereas
three models were made for UPPAAL- one with continuous time semantics, one that matches the Prism
model as close as possible and one with discrete semantics that makes full useof our formalism.
The queries to the models wereWhat is the probability of all SDPAs ending within t time units(Estima-
tion)andIs the probability that all SDPAs end within t time units greater than40% (Hypothesis testing).
The value oft is different for each model as it was computed by simulating the system 369 timesand
represent the value for which at least 60% of the runs finished all their tasks.

The result of the experiments are shown in Table 2 and indicates that UPPAAL is notably faster than
Prism, even with a encoding that closely matches that of Prism.

20
10
5
1

runs

pr
ob

ab
ili

ty

0

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

10 90 170 250 330 410

Figure 16: Probability distributions ob-
tained with 1, 5, 10, and 20 cores.

Checking of Distributed Statistical Model Checking
As we wrote in the Section 5, a naive (and incorrect) dis-
tributed implementation of the sequential SMC algorithms
might introduce a bias towards the results that are gener-
ated by shorter simulations.

The interesting question is how much this bias affects
the SMC results. In the paper [11] we answered this ques-
tion by modeling the naive distributed SMC algorithm in
UPPAAL-SMC itself. The comparison was made on the ba-
sis of the SPTA model that ends up in theOK location after
100 time units with probability 0.58, otherwise it ends up
in theNOK location after 1 time unit (thus producingNOK
requires 100 times less time than producingOK).

We used UPPAAL-SMC to compute the probability that
the naive distributed SMC algorithm will accept the hypothesisPr[<=100](3 OK)≥ 0.5. The results
for the different numbers of computational cores are given at the plot at Figure 16. Thex axis denotes
the total number of runs of the SPTA model on all the cores, and they axis depicts the probability that
an SMC algorithm accepts the hypothesis not later than after this number of runs. You can see, that the
probability of accepting the hypothesis tends (incorrectly) to 0 as the numberof computational cores
increases.

7 Conclusions

This paper overviews the features of UPPAAL-SMC, our new efficient extension of UPPAAL for Statis-
tical Model Checking. Contrary to other existing SMC-based tool-sets, UPPAAL-SMC allows to handle
systems with real-time features. The tool has been applied to a series of casestudies that are beyond the
scope of classical model checkers. UPPAAL-SMC has a large potential for future work and applications.

Among others, the following extensions of UPPAAL-SMC are contemplated.

Floating Point So far the support of floating point is done via misusing and extending clockoperations.
A better more general support is needed since the tool has now departedfrom traditional timed automata
and model-checking.

Since the tool now supports floating point arithmetic and we can integrate complex functions, it is
a natural extension to add differential equations as well to support hybrid systems in a more general

14 Statistical Model Checking for Priced Timed Automata

way. To fit with the stochastic semantics (in particular how to pick delays), onlysimple equations whose
analytical solutions are known are planned.

New Applications With the extended expressivity of our hybrid modeling language, our tool can be
applied to different domains, in particular for biological systems. UPPAAL-SMC now offers powerful
visualization capabilities needed by biologists and a logic to do statistical model-checking.

Another application is to analyze performance of controllers generated byUPPAAL-TIGA, in partic-
ular their stability or energy consumption. SMC can also be used in the domain ofrefinement checking,
which is in the end just another type of game.

Rare Events Statistical model checking avoids the exponential growth of states associated with prob-
abilistic model checking by estimating properties from multiple executions of a system and by giving
results within confidence bounds. Rare properties are often very important but pose a particular chal-
lenge for simulation-based approaches, hence a key objective under these circumstances is to reduce the
number and length of simulations necessary to produce a given level of confidence. Importance sampling
is a well-established technique that achieves this, however to maintain the advantages of statistical model
checking it is necessary to find good importance sampling distributions withoutconsidering the entire
state space. Such problem has been recently investigated for the case ofdiscrete stochastic systems. As
an example, in [27] we presented a simple algorithm that uses the notion of cross-entropy to find the
optimal parameters for an importance sampling distribution. Our Objective is to extend our results to
PTAs by exploiting pure timed model checking to improve the search for efficient distribution.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis &
S. Yovine (1995):The algorithmic analysis of hybrid systems. Theoretical Computer Science138(1), pp.
3–34.

[2] Rajeev Alur, Salvatore La Torre & George J. Pappas (2001): Optimal Paths in Weighted Timed Automata.
In Benedetto & Sangiovanni-Vincentelli [7], pp. 49–62. Available athttp://link.springer.de/link/
service/series/0558/bibs/2034/20340049.htm.

[3] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns & Joost-Pieter Katoen (2003):Model-Checking
Algorithms for Continuous-Time Markov Chains. IEEE Trans. Software Eng.29(6), pp. 524–541.

[4] Benôıt Barbot, Taolue Chen, Tingting Han, Joost-Pieter Katoen &Alexandru Mereacre (2011):Efficient
CTMC Model Checking of Linear Real-Time Objectives. In ParoshAziz Abdulla & K.RustanM. Leino, ed-
itors: Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Sci-
ence6605, Springer Berlin Heidelberg, pp. 128–142, doi:10.1007/978-3-642-19835-9 12. Available at
http://dx.doi.org/10.1007/978-3-642-19835-9 12.

[5] A. Basu, S. Bensalem, M. Bozga, B. Caillaud, B. Delahaye &A. Legay (2010):Statistical Abstraction and
Model-Checking of Large Heterogeneous Systems. In: FORTE, LNCS 6117, Springer, pp. 32–46.

[6] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen, Paul Pettersson, Judi Romijn
& Frits W. Vaandrager (2001):Minimum-Cost Reachability for Priced Timed Automata. In Benedetto
& Sangiovanni-Vincentelli [7], pp. 147–161. Available athttp://link.springer.de/link/service/

series/0558/bibs/2034/20340147.htm.

[7] Maria Domenica Di Benedetto & Alberto L. Sangiovanni-Vincentelli, editors (2001):Hybrid Systems: Com-
putation and Control, 4th International Workshop, HSCC 2001, Proceedings. LNCS 2034, Springer.

http://link.springer.de/link/service/series/0558/bibs/2034/20340049.htm
http://link.springer.de/link/service/series/0558/bibs/2034/20340049.htm
http://dx.doi.org/10.1007/978-3-642-19835-9_12
http://dx.doi.org/10.1007/978-3-642-19835-9_12
http://link.springer.de/link/service/series/0558/bibs/2034/20340147.htm
http://link.springer.de/link/service/series/0558/bibs/2034/20340147.htm

P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Z. Wang 15

[8] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen & NicolasMarkey (2010):Timed automata with observers
under energy constraints. In: HSCC, ACM ACM, pp. 61–70.

[9] Peter Bulychev, Alexandre David, Kim G. Larsen, Axel Legay, Guangyuan Li, Danny Bøgsted Poulsen &
Amelie Stainer (2012):Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic. In:
LPAR-18. To appear in LNCS.

[10] Peter Bulychev, Alexandre David, Kim G. Larsen, Axel Legay & Marius Mikǔcionis (2012):Computing
Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach. In: iWIGP. To appear in
EPTCS.

[11] Peter Bulychev, Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikǔcionis & Danny Bøgsted Poulsen
(2012):Checking & Distributing Statistical Model Checking. In: NFM 2012 : Fourth NASA Formal Methods
Symposium. To appear in LNCS.

[12] Peter Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius Mikǔcionis & Axel Legay: Distributed
Parametric and Statistical Model Checking. In Jǐrı́ Barnat & Keijo Heljanko, editors:Proceedings 10th
International Workshop on Parallel and Distributed Methods in Verification, EPTCS, arxiv.org, doi:10.4204/
EPTCS.72.

[13] F. Ciesinski & M. Gr̈oßer (2004):On Probabilistic Computation Tree Logic. In: Validation of Stochastic
Systems, LNCS, 2925, Springer, pp. 147–188.

[14] E. M. Clarke, A. Donźe & A. Legay (2008):Statistical Model Checking of Mixed-Analog Circuits with an
Application to a Third Order Delta-Sigma Modulator. In: Haifa Verification Days, LNCS 5394, Springer,
pp. 149–163.

[15] E. M. Clarke, A. Donźe & A. Legay (2009):On Simulation-based Probabilistic Model Checking of Mixed-
Analog Circuits. Formal Methods in System DesignTo appear.

[16] E. M. Clarke, J. R. Faeder, C. James Langmead, L. A. Harris, S. K. Jha & A. Legay (2008):Statistical Model
Checking in BioLab: Applications to the Automated Analysisof T-Cell Receptor Signaling Pathway. In:
CMSB, LNCS 5307, Springer, pp. 231–250.

[17] Edmund M. Clarke & Paolo Zuliani (2011):Statistical Model Checking for Cyber-Physical Systems. In:
ATVA , Lecture Notes in Computer Science6996, Springer, pp. 1–12.

[18] C. J. Clopper & E. S. Pearson (1934):The Use of Confidence or Fiducial Limits Illustrated in the Case
of the Binomial. Biometrika26(4), pp. 404–413, doi:10.1093/biomet/26.4.404. Available athttp://
biomet.oxfordjournals.org/content/26/4/404.short.

[19] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, Danny Bøgsted Poulsen, Jonas Van Vliet
& Zheng Wang (2011):Statistical model checking for networks of priced timed automata. In: Proceedings of
the 9th international conference on Formal modeling and analysis of timed systems, FORMATS’11, Springer-
Verlag, Berlin, Heidelberg, pp. 80–96. Available athttp://dl.acm.org/citation.cfm?id=2044973.

2044982.

[20] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, Danny Bøgsted Poulsen, Jonas van Vliet
& Zheng Wang (2011):Statistical Model Checking for Networks of Priced Timed Automata. In Uli Fahren-
berg & Stavros Tripakis, editors:Formal Modeling and Analysis of Timed Systems, LNCS 6919, springer,
pp. 80–96.

[21] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis & Zheng Wang (2011):Time for Statistical
Model Checking of Real-Time Systems. In Ganesh Gopalakrishnan & Shaz Qadeer, editors:Computer Aided
Verification, Lecture Notes in Computer Science6806, Springer, pp. 349–355.

[22] Marie Duflot, Marta Kwiatkowska, Gethin Norman & David Parker (2006):A formal analysis of bluetooth
device discovery. International Journal on Software Tools for Technology Transfer (STTT)8, pp. 621–632,
doi:10.1007/s10009-006-0014-x.

[23] Uli Fahrenberg, Line Juhl, Kim G. Larsen & Jirı́ Srba (2011):Energy Games in Multiweighted Automata. In:
ICTAC, Lecture Notes in Computer Science6916, Springer, pp. 95–115.

http://dx.doi.org/10.4204/EPTCS.72
http://dx.doi.org/10.4204/EPTCS.72
http://dx.doi.org/10.1093/biomet/26.4.404
http://biomet.oxfordjournals.org/content/26/4/404.short
http://biomet.oxfordjournals.org/content/26/4/404.short
http://dl.acm.org/citation.cfm?id=2044973.2044982
http://dl.acm.org/citation.cfm?id=2044973.2044982
http://dx.doi.org/10.1007/s10009-006-0014-x

16 Statistical Model Checking for Priced Timed Automata

[24] Ansgar Fehnker, Lodewijk van Hoesel & Angelika Mader (2007): Modelling and Verification of the LMAC
Protocol for Wireless Sensor Networks. In Jim Davies & Jeremy Gibbons, editors:Integrated Formal Meth-
ods, LNCS 4591, Springer Berlin / Heidelberg, pp. 253–272.

[25] Thomas H́erault, Richard Lassaigne, Fréd́eric Magniette & Sylvain Peyronnet (2004):Approximate Proba-
bilistic Model Checking. In: VMCAI , LNCS 2937, Springer, pp. 73–84.

[26] D. N. Jansen, J. Katoen, M. Oldenkamp, M. Stoelinga & I. S. Zapreev (2008):How Fast and Fat Is Your
Probabilistic Model Checker? An Experimental PerformanceComparison. In: Haifa Verification Confer-
ence, LNCS 4899, Springer, pp. 69–85.

[27] Cyrille Jégourel, Axel Legay & Sean Sedwards (2012):Cross-entropy optimisation of importance sampling
parameters for statistical model checking. CoRRabs/1201.5229.

[28] Sumit Kumar Jha, Edmund M. Clarke, Christopher James Langmead, Axel Legay, André Platzer & Paolo
Zuliani (2009): A Bayesian Approach to Model Checking Biological Systems. In: CMSB, LNCS 5688,
Springer, pp. 218–234.

[29] M. Z. Kwiatkowska, G. Norman & D. Parker (2004):PRISM 2.0: A Tool for Probabilistic Model Checking.
In: QEST, IEEE, pp. 322–323.

[30] Marta Kwiatkowska, Gethin Norman & Jeremy Sproston (2003): Probabilistic Model Checking of Deadline
Properties in the IEEE 1394 FireWire Root Contention Protocol. Formal Aspects of Computing14, pp.
295–318. Available athttp://dx.doi.org/10.1007/s001650300007. 10.1007/s001650300007.

[31] Oded Maler, Kim G. Larsen & Bruce H. Krogh (2010):On Zone-Based Analysis of Duration Probabilistic
Automata. In: INFINITY , EPTCS39, pp. 33–46.

[32] Jõao Martins, Andŕe Platzer & Jõao Leite (2011):Statistical Model Checking for Distributed Probabilistic-
Control Hybrid Automata with Smart Grid Applications. In: ICFEM, Lecture Notes in Computer Science
6991, Springer, pp. 131–146.

[33] P. McDermott-Wells (2005):What is Bluetooth? Potentials, IEEE23(5), pp. 33 – 35, doi:10.1109/MP.
2005.1368913.

[34] Johan Oudinet, Alain Denise, Marie-Claude Gaudel, Richard Lassaigne & Sylvain Peyronnet (2011):Uni-
form Monte-Carlo Model Checking. In: FASE, Lecture Notes in Computer Science6603, Springer, pp.
127–140.

[35] Koushik Sen, Mahesh Viswanathan & Gul Agha (2004):Statistical Model Checking of Black-Box Proba-
bilistic Systems. In: CAV, LNCS 3114, Springer, pp. 202–215.

[36] Mariëlle Stoelinga (2003):Fun with FireWire: A Comparative Study of Formal Verification Methods Applied
to the IEEE 1394 Root Contention Protocol. Formal Aspects of Computing14, pp. 328–337. Available at
http://dx.doi.org/10.1007/s001650300009. 10.1007/s001650300009.

[37] L.F.W. van Hoesel & P.J.M. Havinga (2004):A Lightweight Medium Access Protocol (LMAC) for Wireless
Sensor Networks: Reducing Preamble Transmissions and Transceiver State Switches. In: 1st International
Workshop on Networked Sensing Systems (INSS, Society of Instrument and Control Engineers (SICE),
Tokio, Japan, pp. 205–208. Available athttp://doc.utwente.nl/64756/.

[38] R. Wald (2004):Sequential Analysis. Dove Publisher.

[39] Håkan L. S. Younes (2005):Verification and Planning for Stochastic Processes with Asynchronous Events.
Ph.D. thesis, Carnegie Mellon.

[40] Håkan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman & David Parker (2006):Numerical vs. statisti-
cal probabilistic model checking. STTT 8(3), pp. 216–228.

http://dx.doi.org/10.1007/s001650300007
http://dx.doi.org/10.1109/MP.2005.1368913
http://dx.doi.org/10.1109/MP.2005.1368913
http://dx.doi.org/10.1007/s001650300009
http://doc.utwente.nl/64756/

Preliminary Report. Final version to appear in:
QAPL 2012

Efficient computation of exact solutions for quantitative
model checking

Sergio Giro
Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK∗

Quantitative model checkers for Markov Decision Processes typically use finite-precision arithmetic,
since exact techniques are generally too expensive or limited in scalability. In this paper we propose
a method for obtaining exact results starting from an approximated solution in finite-precision arith-
metic. The input of the method is a description of a scheduler, which can be obtained by a model
checker using finite precision. Given a scheduler, we show how to obtain a corresponding basis in a
linear-programming problem, in such a way that the basis is optimal whenever the scheduler attains
the worst-case probability. This correspondence is already known for discounted MDPs, we show
how to apply it in the undiscounted case provided that some preprocessing is done. Using the corre-
spondence, the linear-programming problem can be solved in exact arithmetic starting from the basis
obtained. As a consequence, the method finds the worst-case probability even if the scheduler pro-
vided by the model checker was not optimal. In our experiments, the calculation of exact solutions
from a candidate scheduler is significantly faster than the calculation using the simplex method under
exact arithmetic starting from a default basis.

1 Introduction

Model checking of Markov Decision Processes (MDPs) has been proven to be a useful tool to verify and
evaluate systems with both probabilistic and non-deterministic choices. Given a model of the system un-
der consideration and a qualitative property concerning probabilities, such as “the system fails to deliver
a message with probability at most 0.05”, a model checker deduces whether the property holds or not for
the model. As different resolutions of the non-deterministic choices lead to different probability values,
verification techniques for MDPs rely on the concept of schedulers (also called policies, or adversaries),
which are defined as functions choosing an option for each of the paths of an MDP. Model-checking
algorithms for MDPs proceed by reducing the model-checking problem to that of finding the maximum
(or minimum) probability to reach a set of states under all schedulers [5].

Different techniques for calculating these extremal probabilities exist: for an up-to-date tutorial,
see [10]. Some of them (for instance, value iteration) are approximate in nature, while a technique using
linear programming (LP) can be used to obtain exact solutions. However, even the linear programming
method is often carried out using finite-precision, and so the results are always approximations. Exact
solutions are hard to get in practice, because linear programming methods for MDPs using exact arith-
metic do not scale well. (To support this claim we performed some experiments showing how costly it
is to compute exact probabilities using LP without our method.) In addition, the native operators in pro-
gramming languages like Java have finite precision: the extension to exact arithmetic involves significant
reworking of the existing code.

∗The authors are part supported by DARPA/Air Force Research Laboratory contract FA8650-10-C-7077 (PRISMATIC)

18 Efficient computation of exact solutions for quantitative model checking

We propose a method for computing exact solutions. Given any approximative algorithm being able
to provide a description of a scheduler, our method shows how to extend the algorithm in order to get
exact solutions. The method exploits the well-known correspondence between model-checking problems
and linear programming problems [5], which allows to compute worst-case probabilities by computing
optimal solutions for LP problems.

The simplex algorithm [6] for linear programming works by iterating over different bases, which are
submatrices of the matrix associated to the LP problem. Each basis defines a solution, that is, a valuation
on the variables of the problem. The simplex method stops when the basis yields a solution with certain
properties, more precisely, a so-called feasible and dual feasible solution. By algebraic properties, such
a solution is guaranteed to be optimal.

The core of our method is the interpretation of the scheduler as a basis for the linear programming
problem. Given a scheduler complying with certain natural conditions, a basis corresponding to the
scheduler can be used as a starting point for the simplex algorithm. We show that, if the scheduler is
optimal, then the solution associated to the corresponding basis is feasible and dual feasible, and so a
simplex solver provided with this basis needs only to check dual feasibility and compute the solution
corresponding to the basis. As our experiments show, these computations can be done in exact arith-
metic without a huge impact in the overall model-checking time. In fact, using the dual variant of the
simplex method, the time to obtain the exact solution is less than the time spent by value iteration. If the
scheduler is not optimal, the solver starts the iterations from the basis. This is useful for two reasons:
we can let the simplex solver finish in order to get the exact solution; or, once we know that we are not
getting the optimal solution, we can perform some tuning in the model checker as, for instance, reduce
the convergence threshold (we also show a case in which the optimal scheduler cannot be found with
thresholds within the 64-bit IEEE 754 floating point precision).

The correspondence between schedulers and bases is already known for discounted MDPs (see, for
instance [8]). We show the correspondence for the undiscounted case in case some states of the system are
eliminated in preprocessing steps. The preprocessing steps we consider are usual in model checking [10]:
given a set of target states, one of the preprocessing algorithms removes the states that cannot reach the
target, while the other one removes the states that can avoid reaching the target. These are qualitative
algorithms based on graphs that do not perform any arithmetical operations.

The next section introduces the preliminary concepts we need along the paper. Section 3 presents our
method and the proof of correctness. The experiments are shown in Section 4. The last section discusses
related results concerning complexity and policy iteration.

2 Preliminaries

We introduce the definitions and known-results used throughout the paper, concerning both Markov
decision process and linear programming.

2.1 Markov decision processes

Definition 1. Let Dist(A) denote the set of discrete probability distributions over the set A. A Markov
Decision Process (MDP) M is a pair (S,T) where S is a finite set of states and T ⊆ S×Dist(S) is a set

Sergio Giro 19

of transitions 1. Given µ = (s,d) ∈ T, the value d(t) is the probability of making a transition to t from
s using µ . We write µ(t) instead of d(t), and write state(µ) for s. We define the set en(s) as the set of
all transitions µ with state(µ) = s. For simplicity, we make the usual assumption that every state has at
least one enabled transition: en(s) 6= /0 for all s ∈ S.

We write s
µ−→ t to denote µ ∈ en(s)∧ µ(t) > 0. A path in an MDP is a (possibly infinite) sequence

ρ = s0.µ1.s1. · · · ..µn.sn, where µ i ∈ en(si−1) and µ i(si) > 0 for all i. If ρ is finite, the last state of ρ is
denoted by last(ρ), and the length is denoted by len(ρ) (a path having a single state has length 0). Given
a set of states U , we define reach(U) to be the set of all infinite paths ρ = s0.µ1.s1. · · · such that si ∈U
for some i.

The semantics of MDPs is given by schedulers. A scheduler η for an MDP M is a function η : S→T

such that η(s) ∈ en(s) for all s. In words, the scheduler chooses an enabled transition based on the
current state. For all schedulers η , t ∈ S, the set Paths(t,η) contains all the paths s0.µ1.s1. · · · .µn.sn such

that s0 = t, µ i = η(si−1) and si−1 µ i

−→ si for all i. The reader familiar with MDPs might note that we are
restricting to Markovian non-randomized schedulers (that is, they map states to transitions, instead of
the more general schedulers mapping paths to distributions on transitions). As explained later on, these
schedulers suffice for our purposes.

The probability Prt,η
M (ρ) of the path ρ under η starting from t is ∏

len(ρ)
i=1 µ i(si) if ρ ∈ Paths(t,η). If

ρ 6∈ Paths(t,η), then the probability is 0. We often omit the subindices M and/or t if they are clear from
the context.

We are interested on the probability of (sets of) infinite paths. Given a finite path ρ , the probability
of the set ρ↑ comprising all the infinite paths that have ρ as a prefix is defined by Prη(ρ↑) = Prη(ρ).
In the usual way (that is, by resorting to the Carathéodory extension theorem) it can be shown that the
definition on the sets of the form ρ↑ can be extended to σ -algebra generated by the sets ρ↑.

The verification of PCTL∗ [5] and ω-regular formulae [7] (for example LTL) can be reduced to the
problem of calculating maxs,η Prs,η

M′ (reach(U)) (or mins,η Prs,η
M′ (reach(U))) for MDPs M′, states s and sets

U obtained from the formula.
In consequence, in the rest of the paper we concentrate on the following problems.

Definition 2. Given an MDP M, an initial state s and set of target states U , a reachability problem
consists of computing maxs,η Prs,η

M (reach(U)) (or minη Prs,η
M (reach(U))).

From classic results in MDP theory (for these results applied to model checking see, for instance, [2,
Chapter 3]) there exists a scheduler η∗ such that

η
∗ = argmax

η
Prs,η

M (reach(U)) (1)

for all s ∈ S. That is, η∗ attains the maximum probability for all states.
An analogous result holds for the the case of minimum probabilities. There exists η∗ such that

η
∗ = argmin

η
Prs,η

M (reach(U)) (2)

for all s ∈ S.
Even in a more general setting allowing for non-Markovian and randomized schedulers, it can be

proven that we can assume η∗ to be Markovian and non-randomized. The existence of η∗ justifies our
restriction to Markovian and non-randomized schedulers.

1Defining transitions as pairs helps to deal with the case in which the same distribution is enabled in several states

20 Efficient computation of exact solutions for quantitative model checking

Markov chains A Markov chain (MC) is an MDP such that |en(s)| = 1 for all s ∈ S. Note that a
Markov chain has exactly one scheduler, namely the one that chooses the only transition enabled in each
state. Hence, for Markov chains, we often disregard the scheduler and denote the probability of reaching
U as Prs

M(reach(U)).

Definition 3. Given an MDP M = (S,T) and a scheduler η , we define the Markov chain M ↓ η = (S,T′)

where µ ∈ T′ iff η(state(µ)) = µ .

A simple application of the definitions yields

Prs,η
M (reach(U)) = Prs

M↓η(reach(U)) . (3)

2.2 Linear programming

We use a particular canonical form of linear programs suitable for our needs. It is based on [6, Appendix
B], which is also a good reference for all the concepts and results given in this subsection.

A linear programming problem consists in computing

min
x
{cx | Ax = b∧x≥ 0} , (4)

given a constraint matrix A, a constraint vector b and a cost vector c. In the following, we assume that
A has m rows and m+ n columns, for some m > 0 and n ≥ 0. Hence, c is a row vector with m+ n
components, and b is a column vector with m components.

A solution is any vector x of size m+ n. The i-th component of x is denoted by xi. We say that
that a solution is feasible if Ax = b and x ≥ 0; it is optimal if is feasible and cx is minimum over all
feasible x. A problem is feasible if it has a feasible solution, and bounded if it has an optimal solution.
A non-singular m×m submatrix of A is called a basis. We overload the letter B to denote both the basis
and the set of indices of the corresponding columns in A. A variable xk is basic if k ∈ B. Note that, given
our assumptions on the dimension of the constraint matrix, for all bases there are m basic variables and
n non-basic variables. Given a basis B, and any vector t, let tB be the subvector of t having only the
components in B. When B is clear from the context, we use N to denote the set of columns not in B, and
use tN accordingly. For a matrix A, let AN be submatrix of A having only the columns that are not in B.
The solution x induced by the basis B is defined as xk = 0 for all k 6∈ B, while the values for k ∈ B are
given by the vectorial equation xB = B−1b. A solution x is basic if there is a basis that induces x. Given
B and k ∈ N, the reduced cost ck of a variable xk is defined as ck−cBB−1Ak, where Ak is the k-th column
of A. A solution is dual feasible if it correspond to a basis such that ck ≥ 0 for all k ∈ N.

In our proofs we make use of the following lemma, which is particular to our canonical form.

Lemma 1.
Ax = b if x is basic .

Proof. By splitting A into basic and non-basic columns we get Ax = BxB +ANxN = BB−1b+AN0 =

Ib = b . (Note that x might not be feasible as it could be x 6≥ 0.)

Correctness of the simplex method relies on the following well-known facts about LP problems:
• Every solution that is both feasible and dual feasible is optimal
• If there exists an optimal solution, then there exists a basic solution that is feasible and dual feasible

(and hence optimal)

Sergio Giro 21

As the problems we deal with are ensured to be bounded and feasible, we assume that there exists
an optimal solution. In this context, the simplex algorithm explores different bases until it finds a basis
whose corresponding solution is feasible and dual feasible.

In several implementations of the algorithm the starting basis can be specified (when it is not, a de-
fault one is used). The initial basis does not need to be feasible nor dual feasible. In case the starting
basis complies with both feasibilities, the simplex algorithm finishes after checking that these feasibil-
ities are met, without any further exploration. In Subsection 2.3, we show how reachability problems
correspond to LP problems. In Section 3 we show that, under a certain assumption on the model checker
(Assumption 1), a basis can be obtained from the scheduler provided by the model checker. In particular,
optimal schedulers yield feasible bases (Theorem 3). Under our assumption, all the bases obtained from
schedulers are dual feasible (Theorem 4).

Among the different variants of the simplex method, in our experiments (Section 4) we use the dual
simplex, which first looks for a dual-feasible basis (in the so-called first phase) and next tries to find a
feasible one while keeping dual feasibility (in the second phase). This is appropriate in our case since,
under our assumptions, the first phase is not needed (as formalized in Theorem 4). In contrast to the
dual simplex, the primal simplex (or, simply, simplex) looks for a feasible basis in the first phase. As
a consequence, if iterations are required (according to our results in Section 3, this is case in which the
model checker fails to provide the optimal scheduler), then the primal simplex performs both phases.
However, both variants can be used and, as our experiments show, the starting basis obtained from the
scheduler is useful to save iterations. In the few cases in which PRISM did not provide the optimal
schedulers, the dual simplex required less iterations than the primal one; both of them perform far better
when starting from a basis corresponding to a near-optimal scheduler than when starting from the default
basis (see Section 4).

2.3 Linear programming for Markov decision processes

Linear programming can be used to compute optimal probabilities for some of the states in the system.
The set of states whose maximum (minimum, resp.) probability is 0 is first calculated using graph-
based techniques [10, Sec. 4.1]. This qualitative calculation is often considered as a preprocessing
step before the proper quantitative model checking. Given a set of target states U , let Smax0 be the
set of states S such that maxη Prs,η

M (reach(U)) = 0. Similarly, let Smin0 be the set of states such that
minη Prs,η

M (reach(U)) = 0. When focusing on maximum probabilities, we write the set S \ (Smax0∪U)

as S? (called the set of maybe states), while for minimum probabilities S? is S\ (Smin0∪U).
The maximum probabilities for s ∈ Smax0 are 0 by definition of Smax0. For s ∈U the probabilities

are 1, since when starting from a state in U , the set U is reached in the initial state, regardless of the
scheduler. The minimum probabilities for sSmin0 are 0 by definition of Smin0, and the probabilities for
s ∈U are again 1. Next we show how to obtain the probabilities for the states in S?, thus covering all the
states in the system.

In order to avoid order issues, we assume that the states are S? = s1, · · · ,sn and the transitions are:

T= µ1, · · · ,µm (5)

in such a way that if si = state(µ j), si′ = state(µ j′) and i < i′, then j < j′ (from Def. 1, recall that state(µi)

is the state in which µi is enabled). Roughly speaking, the transitions are ordered with respect to the states
in which they are enabled. From now on, we use this orderings consistently throughout the paper.

22 Efficient computation of exact solutions for quantitative model checking

In the following theorem, the matrix A|I associated to a reachability problem maxPrs,η
M (reach(U)) is

a m× (n+m) matrix whose last m columns form the identity matrix. We define of Ai, j for the column
j ≤ n as: Ai, j = µi(s j) if s j 6= state(µi), or Ai, j = µi(s j)−1 if s j = state(µi). The vector b is defined as
bi =−∑s∈U µi(s).

Theorem 1. For all states si ∈ S?, the value maxη Prsi,η
M (reach(U)) is the value of the variable xi in an

optimal solution of the following LP problem:

min (

n︷ ︸︸ ︷
1, · · · ,1,

m︷ ︸︸ ︷
0, · · · ,0)x

(A | Im×m)x = b
x≥ 0 .

(6)

Analogously, the value minη Prsi,η
M (reach(U)) is the value of the variable xi in an optimal solution of

the following LP problem.

min −(
n︷ ︸︸ ︷

1, · · · ,1,
m︷ ︸︸ ︷

0, · · · ,0)x
(−A | Im×m)x =−b
x≥ 0 .

(7)

(Note that, in the constraint, the matrix A is negated, while I is not.)

This theorem is just the well-known correspondence between reachability problems and LP prob-
lems [12],[10, Section 4.2], written in our LP setting.

The variables that multiply the columns in the identity matrix are called slack variables in the LP

literature. They are also the variables xµ in the following notation.

Notation 1. From now on, we identify each column 1≤ j≤ n of (A|I) with the state s j, and each column
n < j ≤ n+m with the transition µ j. Each row i is identified with µi. In consequence, we write Aµ,s for
the elements of the matrix, and xs or xµ for the components of the solution x.

3 A method for exact solutions

Our method serves as a complement to a model checker being able to:
• calculate the set S?, and
• give a description of a scheduler, that the model checker considers optimal based on finite precision

calculations
We only require a weak “optimality” condition on the scheduler returned by the model checker, which we
refer to as apt: we say that a scheduler η is apt iff Prs,η

M (reach(U))> 0 for all s ∈ S?. In order words, we
only require the scheduler to reach U for all states that can reach it (no matter with which probability). In
the case of minimum probabilities, every scheduler is apt, since if we have Prs,η

M (reach(U)) = 0 for some
η , then s 6∈ S? (by definition of Smin0). For the case of the maximum, the existence of an apt scheduler
follows from the definition of S?, the scheduler η∗ in (1) being a suitable witness.

Assumption 1. We assume that the model checker is able to provide an apt scheduler, in the sense that
our method is not guaranteed to return a value in case the scheduler is not apt.

Sergio Giro 23

input : An MDP M and a set of states U
output: x such that xs = maxη Prs,η

M (reach(U)) (minη Prs,η
M (reach(U)), resp.) for all s ∈ S?

// Use model checker to get the set S? and a scheduler1

(S?,η)← reach analysis (M, U);2

L ← construct problem (M, S?);3

Bη ← construct basis (L , η);4

start simplex solver (L , Bη) ;5

if the exact simplex solver finishes in one iteration then6

return argminx L , obtained from the solver;7

else if the solver performs several iterations then // η is not optimal8

return argminx L , obtained from the solver once it finishes;9

// Or interrupt the solver and change the model checker parameters10

else if the solver reports that the basis is singular then11

// For the minimum, this case cannot happen12

error η is not apt;13

end14

Algorithm 1: Method to get exact solutions

Our method is described in the Algorithm 1. The function construct problem constructs the LP

problems (6) and (7). Given η , the basis Bη obtained by construct basis is defined as

s ∈ Bη , for all s ∈ S? xµ ∈ Bη ⇐⇒ η(state(µ)) 6= µ . (8)

Roughly speaking, the basis contains all states, and all the transitions that are not chosen by η . Some-
times (particularly in the proof of Theorem 4) we write BM′,η to make it clear that the basis belongs to
an MDP M′.

The rest of this section is devoted to prove the correctness of the algorithm, in the sense made precise
by the following theorem (which is proven later).

Theorem 2. If the algorithm returns a value, then the value corresponds to the output specification.
Moreover, if the scheduler η provided by the model checker is apt, then the matrix defined by (8) is a
basis, and the algorithm returns optimum values from the LP solver. If the scheduler provided by the
model checker is optimum as in (1), then the basis in (8) is both feasible and dual feasible.

Recall from Subsection 2.2 that the simplex algorithm stops as soon as it finds a solution that is
feasible and dual feasible. Hence, the fact that an optimal scheduler yields a basic, feasible and dual
feasible solution causes the simplex solver to stop as soon as the feasibility checks are finished.

The rest of this section is devoted to prove Theorem 2. In our proofs we resort to the following
definitions and lemmata. The first definition uses indices as explained in Notation 1.

Definition 4. Given a scheduler η , we write the set of transitions complying with η(state(µ)) = µ as
Tη = {µ1, · · · ,µn}, and we assume that this ordering respects the ordering in (5). We define Cη to be
the n×n matrix whose elements are as Cη

i, j = µ i(s j). Consider the matrix A in (6). We define (A↓η) to
be the n×n submatrix of A comprising all the rows µ ∈ Tη and the columns s for all s ∈ S?.

Lemma 2. The transitions µ i ∈Tη comply with state(µ i) = si for all si ∈ S?. In consequence, η(si) = µ i.

24 Efficient computation of exact solutions for quantitative model checking

Proof. Note that since the order in Tη respects the order in (5), we have that the sequence state(µ1), · · · ,
state(µn) is a sequence of states s j1 , · · · ,s jn with j1 ≤ ·· · ≤ jn. Since there are n states, and for each state
s we have exactly one transition µ such that η(s) = µ , it must be s j1 = s1, · · · ,s jn = sn. This implies
state(µ i) = s ji = si as desired. Using this equality and µ i ∈ Tη we have η(si) = η(state(µ i)) = µ i.

Lemma 3. For all η , we have (A↓η) =Cη − I.

Proof. By definition of (A ↓η) and the definition of the matrix A in (6) we have (A ↓η)i, j = Aµ i,s j
=

µ i(s j)−Qi, j, where Qi, j = 1 if state(µ i) = s j, or otherwise Qi, j = 0. By Lemma 2, we have state(µ i) = s j

iff i = j. Hence Qi, j is the identity matrix and (A↓η)i, j = µ i(s j)− Ii, j =Cη

i, j− Ii, j, which completes the
proof.

The matrix (A ↓η) happens to be very important in our proofs. We profit from the fact that it is
non-singular provided that η is apt.

Lemma 4. For all apt η , the matrix (A↓η) is non-singular.

Proof. Suppose, towards a contradiction, that there exists x 6= 0 such that (A ↓ η)x = 0. Then, by
Lemma 3, we have (Cη − I)x = 0, which implies Cηx = x and hence (Cη)zx = x for all z ≥ 0. We
arrive to a contradiction by showing that for all j there exists z such that

|((Cη)zx) j|< max
s′
|xs′ | . (9)

In particular, for q = argmaxs′ |xs′ | this yields |((Cη)zx)q|< |xq|, which contradicts (Cη)zx = x.
Now we prove (9). Since η is apt, from every s j ∈ S? there exists a path ρ ∈ Paths(s j,η) with

last(ρ) ∈U , such that all the states previous to last(ρ) are not in U . We prove that z can be taken to be
len(ρ). We proceed by induction on the length of ρ . If len(ρ) = 1, by Lemma 2 we have η(s j)(u) =
µ j(u)> 0 for some u ∈U , and hence2

∑t∈S? µ j(t)< 1. Taking z = 1 we obtain

|(Cηx) j|= |∑
t∈S?

µ
j(t)xt | ≤ ∑

t∈S?

µ
j(t)|xt | ≤ ∑

t∈S?

µ
j(t)max

s′
|xs′ |< max

s′
|xs′ | ,

which proves that we can take z = 1 = len(ρ). The last strict inequality holds only if maxs′ |xs′ | > 0,
which follows from x 6= 0.

If len(ρ) = l +1, there exists sq ∈ S? such that µ j(sq)> 0 and q reaches U in l steps. The inductive
hypothesis holds for q, and hence |((Cη)lx)q|< maxs′ |xs′ |, from which we obtain:

|((Cη)l+1x) j|= |(Cη(Cη)lx) j| ≤ ∑
t∈S?\{sq}

µ
j(t) |((Cη)lx)t | + µ

j(sq) |((Cη)lx)q|

= ∑
t∈S?\{sq}

µ
j(t) |xt | + µ

j(sq) |((Cη)lx)q| ≤ ∑
t∈S?\{sq}

µ
j(t)max

s′
|xs′ | + µ

j(sq) |((Cη)lx)q|

< ∑
t∈S?\{sq}

µ
j(t)max

s′
|xs′ | + µ

j(sq)max
s′
|xs′ | ≤max

s′
|xs′ |

This finishes the proof of (9). Assuming that (A ↓ η)x = 0 for some x 6= 0, we derived (9), which
contradicts (Cη)zx = x for all z≥ 0, thus finishing the proof.

2The result for discounted MDPs does not use S? as the analogous of this sum is always less than 1 due to the discounts

Sergio Giro 25

Lemma 5. For all apt schedulers η , the basis defined in (8) is non-singular.

Proof. We show that the equation Bηx = 0 holds only if x = 0. Note that the vector x has one component
for each column of the basis, that is, one component for each state in S? (called xs), and one component
for each transition such that η(state(µ)) 6= µ (called xµ). The matrix equation Bηx = 0 corresponds to
m equations, one for each transition. If µ ∈ Bη , since t ∈ Bη for all t ∈ S?, the equation corresponding to
µ is

∑
t∈S?

Aµ,txt + xµ = 0 . (10)

If µ 6∈ Bη , the corresponding equation is

∑
t∈S?

Aµ,txt = 0 . (11)

(Note that the sum term xµ has disappeared. This corresponds to the fact that the column corresponding
to xµ is not in the basis.) Since the transitions µ 6∈ Bη are those such that η(state(µ)) = µ , the set of
equations (11) is equivalent to (A↓η)s = 0, where s is the subvector of x having only the components
corresponding to states. In consequence, if Bηx = 0 holds, then in particular (A↓η)s = 0 and, since η is
apt, by Lemma 4 it must be s = 0, that is, xt = 0 for all t ∈ S?. Using this in (10) we have xµ = 0 for all
µ ∈ Bη . We have proven x j = 0 for every component j of x, thus showing x = 0.

Theorem 3. If a scheduler is optimal as in (1) (or (2), resp.) then the solution induced by the basis Bη

is feasible.

Proof. Let x be the solution induced by Bη for some optimal η . By Lemma 1, we need to prove x≥ 0.
We prove this inequality by showing that xs = Prs,η

M (reach(U))≥ 0 for all s and xµ ≥ 0 for all µ .
Since in Bη the variables xµ ∈ Tη are non basic, in the solution xη induced by Bη we have xµ = 0

for all µ ∈ Tη . Then, using Lemma 1 for our particular constraint matrix A|I, we obtain

xs = ∑
t∈S?

η(s)(t) xt + ∑
t∈U

η(s)(t) . (12)

This is equivalent to (A↓η)x = q for some vector q. By Lemma 4, there exists exactly one x satisfy-
ing (12). Let vη

s be Prs,η
M (reach(U)). A classic result for MDPs (see, for instance, [10, Section 4.2], [2,

Theorem 3.10]) states that, for an optimal scheduler η , it holds

vη
s = max

µ∈en(s)
∑

t∈S?

µ(t)vη

t + ∑
t∈U

µ(t) (13)

and
η(s) ∈ arg max

µ∈en(s)
∑

t∈S?

µ(t)vη

t + ∑
t∈U

µ(t) .

for all states s. From the last two equations:

vη
s = ∑

t∈S?

η(s)(t) vη

t + ∑
t∈U

η(s)(t) .

26 Efficient computation of exact solutions for quantitative model checking

This is equivalent to (A↓η)vη = q as before. After (12) we have seen that this equation has a unique
solution, and so xs = vη

s for all s ∈ S?. By (13) we have

xs ≥ ∑
t∈S?

µ(t) xt + ∑
t∈U

µ(t) (14)

for all s ∈ S?, µ ∈ en(s). Applying Lemma 1 to our particular constraint matrix A|I, we have

xµ = xs− ∑
t∈S?

µ(t)xt −∑
t∈U

µ(t) .

Hence, xµ ≥ 0 for all µ by (14). In conclusion, xs = vη
s ≥ 0 for all s ∈ S? and xµ ≥ 0 for all µ . Then, the

solution x induced by Bη is feasible.
For the case of the minimum, the analogue of (13) is:

vη
s = min

µ∈en(s)
∑

t∈S?

µ(t)vη

t + ∑
t∈U

µ(t) (15)

The fact that the equation (A↓η)vη = q has a unique solution again yields xs = vη . For xµ , using the
constraint matrix −A|I for the minimum and (15) we obtain

xµ =−xs + ∑
t∈S?

µ(t)xt + ∑
t∈U

µ(t) = ∑
t∈U

µ(t)+ ∑
t∈S?

µ(t)− xt ≥ 0 .

Theorem 4. Given an apt scheduler η , the solution induced by the basis Bη is dual feasible. (For the
definition of dual feasible see Subsection 2.2.)

Proof. First we find a matrix expression for B−1
η . Suppose we reorder the rows of Bη so that the rows

corresponding to transitions in the basis occur first. The resulting matrix is

B′η =

(
A′ I(m−n)×(m−n)

(A↓η) 0

)
where A′ is a submatrix of Bη . We can write

B′η = PBη (16)

where P is a permutation matrix. In order to find the inverse of B′η we pose the following matrix equation:(
A′ I(m−n)×(m−n)

(A↓η) 0

)(
A11 A12

A21 A22

)
=

(
A′A11 +A21 A′A12 +A22

(A↓η)A11 (A↓η)A12

)
= I =

(
In×n 0

0 I(m−n)×(m−n)

)
These equations, suggest that we can take A11 = 0, and hence A21 = I. Moreover, it must be A12 = (A↓
η)−1 (which exists by Lemma 5) and hence A22 = −A′(A ↓η)−1. The equation below can be easily
checked by verifying that B′−1

η B′η = I

B′−1
η =

(
0n×(m−n) (A↓η)−1

I(m−n)×(m−n) −A′(A↓η)−1

)
(17)

Sergio Giro 27

Next, we use (17) to show that the reduced costs depend only on the constraint coefficients of the
transitions chosen by the scheduler.

We consider first the case of the maximum. Recall that our constraint matrix is A|I and the costs cµ

associated to the transitions variables are 0 for all µ (see (6)). According to the definition of reduced cost
(see Subsection 2.2), to prove dual feasibility we need to show −cBη B−1

η Iµ ≥ 0 for all µ 6∈ Bη , where Iµ

is the column of the identity matrix corresponding to µ . From (16), we have B−1
η = B′−1

η P, and hence
our inequality is −cBη B′−1

η PIµ ≥ 0. Since P is a permutation matrix, we know that PIµ is a column of
the identity matrix, say Ik(µ). Given our costs in (6), and given the definition of Bη , we have that cBη

is the vector (

n︷ ︸︸ ︷
1, · · · ,1,

m−n︷ ︸︸ ︷
0, · · · ,0), and hence from (17) we get cBη B′−1

η = (01×(m−n), 11×n(A ↓η)−1). In
conclusion, we have proven

−cBη B−1
η Iµ =−(01×(m−n), 11×n(A↓η)−1) Ik(µ) , (18)

and we must prove that this number is greater than or equal to 0 for all µ 6∈ Bη .
Whenever k(µ)≤ m−n, the result holds since (18) is 0.
In case k(µ)> m−n, we prove the result using the fact that these values depend only on the transi-

tions chosen by η . In fact, given the MDP M and the scheduler η , if we write (18) for the Markov chain
M ↓ η (see Def. 3), we obtain

−cB(M↓η),η B−1
(M↓η),η Iµ = −11×n(A↓η)−1 Iµ (19)

for all µ 6∈ B(M↓η),η . Note that for M ↓ η there is no need to reorder (as there are no transitions in the
basis) and so µ = k(µ). Given that all the transitions M ↓ η are chosen by η , the basis B(M↓η),η contains
all the states and no transitions. In this equation, Iµ can be any column of In×n (again, due to the fact that
there are no transitions in the basis).

Suppose, towards a contradiction, that (18) is less than 0 for some k(µ)> m−n. This is equivalent
to −11×n(A ↓η)−1 Ik(µ)−(m−n) < 0. By (19) we have −11×n(A ↓η)−1 Iµ ′ < 0 for some µ ′ in M ↓ η .
Then, the solution induced by the basis is not dual feasible for the problem associated to M ↓ η . As
there is at least one optimal basic and dual feasible solution (the one found by simplex method), there
exists an optimal solution xC such that the corresponding basis BC is not B(M↓η),η . As in M ↓ η there
exists only one basis containing all states (namely B(M↓η),η), there exists s 6∈ BC. In consequence, we
have xC

s = 0. Since xC is optimal, by Theorem 1, we obtain Prs,η
M↓η(reach(U)) = 0, from which (3) yields

Prs,η
M (reach(U)) = 0. This contradicts the fact that η is apt.

The proof for the case of the minimum is completely analogous: despite the differences in the con-
straints and the cost vector, the reduced costs in (18) are the same as before:

−cBη B−1
η Iµ =−(−01×(m−n), −11×n(−(A↓η)−1)) Ik(µ) =−(01×(m−n), 11×n(A↓η)−1) Ik(µ) .

These values again coincide with the ones in a system having only the transitions chosen by η .

Proof (of Theorem 2). If the algorithm returns a value, then it is argminx L , where L is the problem (6)
(or (7) for the minimum). Hence, by Theorem 1, the returned value coincides with the output speci-
fication. We have that if η is apt, then Bη is a basis by Lemma 5. As a consequence, the algorithm
never enters the branch in line 10, and so the result is returned. The termination in a single iteration
is a consequence of the fact that the solution corresponding to an optimal scheduler η is both feasible
(Theorem 3) and dual feasible (Theorem 4).

28 Efficient computation of exact solutions for quantitative model checking

4 Experimental results

Implementation. We implemented our method by extending the model checker PRISM [11], using the
LP library glpk [3]. We compiled glpk using the library for arbitrary precision gmp. We needed to
modify the code of glpk: although there is a solver function that uses exact arithmetic internally, this
function does not allow us to retrieve the exact value. Aside from these changes to glpk and some
additional code scattered around the PRISM code (in order to gather information about the scheduler),
the specific code for implementing our method is less than 300 lines long. With these modifications,
PRISM is able to print the numerator and the denominator of the probabilities calculated.

Our implementation works as follows: in the first step, we use the value iteration already imple-
mented in PRISM to calculate a candidate scheduler. In the next step, the LP problem is constructed by
iterating over each state: for each transition enabled, the corresponding probabilities are inserted in the
matrix. The basis is constructed along this process: when a transition is considered, the description of
the scheduler (implemented as an array) is queried about whether this transition is the one chosen by the
scheduler. Next we solve the LP problem. For the reasons explained in Subsection 2.2, in Algorithm 1
we use the dual simplex method, except when we compare it to the primal one. The reader familiar with
glpk might notice that the dual variant is not implemented under exact arithmetic on glpk: to overcome
this, instead of providing glpk with the original problem, we provided the dual problem and retrieved
the values of the dual variables (the dual problem is obtained by providing the transpose of the constraint
matrix and by negating the cost coefficients, and so it does not affect the running time).

The experiments were carried out on an Intel i7 @3.40Ghz with 8Gb RAM, running Windows 7.

Case studies. We studied three known models available from the PRISM benchmark suite [1], where
the reader can look for matters not explained here (for instance, details about the parameters of each
model). For the parameters whose values are not specified here, we use the default values. In the IEEE
802.11 Wireless LAN model, two stations use a randomised exponential backoff rule to minimise the
likelihood of transmission collision. The parameter N is the number of maximum backoffs. We compute
the maximum probability that the backoff counters of both stations reach their maximum value. The
second model concerns the consensus algorithm for N processes of Aspnes & Herlihy [4], which uses
shared coins. We calculate the maximum probability that the protocol finishes without an agreement.
The parameter K is used to bound a shared counter. Our third case study is the IEEE 1394 FireWire
Root Contention Protocol (using the PRISM model which is based on [13]). We calculate the minimum
probability that a leader is elected before a deadline of D time units.

Linear programming versus Algorithm 1. Table 1 allows us to compare (primal and dual) simplex
starting from a default basis, against Algorithm 1, which provides a starting basis from a candidate
scheduler. Aside from the construction of the MDP from the PRISM language description (which is
the same either using LP or Algorithm 1, and is thus disregarded in our comparisons), the steps in our
implementation are: (1) perform value iteration to obtain a candidate scheduler; (2) construct the LP

problem; (3) solve the problem in exact arithmetic in zero or more iterations (the latter is the case in
which the scheduler is not optimal). All these times are shown in Table 1, as well as its sum, expressed
in seconds. The experiments for LP were run with a time-out of one hour (represented with a dash).

Our method always outperforms the naive application of LP. The case with the lowest advantage is
Consensus (3,5), and still our method takes less than 1/6 of the time required by dual simplex.

With respect to the time devoted to exact arithmetic in Algorithm 1, in all cases the simplex under

Sergio Giro 29

Time (seconds)
LP without Alg. 1 Algorithm 1

Model
Para-
meters

n = |S?| m Primal Dual
Value
iter.

LP
constr.

Dual
simplex Total

Wlan 3 2529 96302 19.53 11.76 0.36 0.05 0.03 0.44
(N) 4 5781 345000 110.32 61.83 2.30 0.21 0.06 2.57

5 12309 1295218 535.76 326.64 14.93 1.32 0.15 16.40
Consensus 3,3 3607 3968 251.74 35.32 2.93 0.04 0.15 3.12
(N, K) 3,4 4783 5216 488.84 64.00 6.47 0.06 0.58 7.11

3,5 5959 6464 1085.70 105.36 12.74 0.06 1.87 14.67
4,1 11450 12416 - 432.98 2.88 0.11 0.19 3.18
4,2 21690 22656 - 1951.91 20.41 0.23 0.37 21.01
4,3 31930 32896 - - 59.73 0.49 0.58 60.80
4,4 42170 43136 - - 134.62 0.64 0.78 136.04
4,5 52410 53376 - - 246.90 0.91 0.96 248.77

Firewire 200 1071 80980 4.50 2.65 0.28 0.04 0.01 0.33
(D) 300 23782 213805 - 1314.32 2.89 1.04 0.24 4.17

400 81943 434364 - - 11.05 8.74 0.88 20.67

Table 1: Comparison of primal and dual simplex starting from a default basis against Algorithm 1

exact arithmetic takes a fraction of the time spent by the other operations of the algorithm (namely, to
perform value iteration and to construct the LP problem). In Consensus (3,5), the simplex algorithm
takes less than 1/6 of the time devoted to the other operations. In all other cases the ratio is even lower.

The greatest number found was 28821938103543398400, the denominator in the solution of Firewire
400. It needs 65 bits to be stored. The computations were performed using 32 bit libraries, and so the
exact arithmetic computations used around 3 words in the worst case (which is not really a challenge for
an arbitrary precision library). We can conclude that, even for systems with more than 10000 states (up
to 80000, in our experiments), the overhead introduced by exact arithmetic is manageable.

Suboptimal schedulers as suboptimal bases. Other than measuring whether the calculation is reason-
ably quick in case the scheduler from PRISM is optimal, a secondary measuring concerns how close is
the basis to an optimal one in case the scheduler provided by PRISM is not optimal.

Except in cases Consensus (3,·), simplex stopped after 0 iterations, thus indicating that PRISM was
able to find the optimal scheduler. For optimal schedulers there is no difference between using primal
or dual simplex in Algorithm 1 (we ran the experiments and the running time of the simplex variants
differed by at most 0.05 seconds).

The probabilities obtained in each step of the value iteration converge to those of an optimal sched-
uler. Given a threshold ε , value iteration stops only after |xs− x′s| ≤ ε for all s, where x and x′ are the
vectors obtained in the last two iterations.

In Table 2 we compare the amount of iterations and the time spent by primal and dual simplex for
schedulers obtained using different thresholds. We considered only the cases Consensus (3,·), as in other
cases the scheduler returned by PRISM was optimum except for gross thresholds above 0.05, which are
rarely used in practice (the default ε in PRISM is 10−6). In addition to the default value, we considered
representatives the value 10−7 (since 10−8 already yields the exact solution for (3,3) in the dual case:
a value smaller than 10−7 would have yielded uninteresting numbers for this case) and the value 10−16,
since in (3,5) the scheduler does not improve beyond such threshold. In fact, for 10−16 the result is
the same as for 10−323, and 10−324 is not a valid double. In Java, the type double corresponds to a
IEEE 754 64-bit floating point.

In consequence, we have one case (namely, Consensus (3,5)), where PRISM cannot find the worst-

30 Efficient computation of exact solutions for quantitative model checking

Primal Dual
Iterations Time (seconds) Iterations Time (seconds)

ε (10−n) 6 7 16 6 7 16 6 7 16 6 7 16
Consensus (3,3) 187 134 0 3.43 2.43 0.10 10 6 0 0.19 0.15 0.10
Consensus (3,4) 2497 6278 0 74.42 202.58 0.14 37 28 0 0.63 0.51 0.13
Consensus (3,5) 4990 4340 1239 190.53 160.44 49.487 94 61 6 1.93 1.24 0.25

Table 2: Time spent when the starting basis is not optimal

case scheduler for any double threshold (and thus should be recoded to use another arithmetic primitives
to get exact results), while our method is able to calculate exact results using less than two seconds after
value iteration, as shown in Table 1.

For Consensus (3,·) we see that dual simplex performs betters than primal simplex. Consensus (3,4)
shows that the primal simplex can behave worse when starting from Bη than the dual simplex starting
from the default basis (compare with the corresponding row in Table 1). Moreover, it can be the case that
it takes more time as the threshold decreases (note that, in contrast, in Consensus (3,5) the time decreases
with the threshold, as expected). This suggests that the dual variant should be preferred over the primal.

Comparing against Table 1, we see that, for each variant of the simplex method, starting from the
basis Bη results in a quicker calculation than starting from the default basis.

5 Discussion and further work

Linear programming versus policy iteration. It is known that the dual simplex method applied for dis-
counted MDPs is just the same as policy iteration (for an introduction to this method see [10]) seen from
a different perspective. Indeed, this has been used to obtain complexity bounds (see [14]). Theorems 3
and 4 establish for undiscounted MDPs the same correspondence between basis and schedulers as known
for the discounted case, and as a consequence the dual simplex is policy iteration disguised, also in the
undiscounted case.

Even without considering the results in this paper at all, exact solutions can also be calculated by
implementing policy iteration with exact arithmetic as, in each iteration, the method calculates the prob-
abilities corresponding to a scheduler and checks whether they can be improved by another scheduler.
Roughly speaking, if the calculation and the check are performed using exact arithmetic, then the result
is also exact.

Despite this existing alternative, the correspondence between bases and schedulers we presented in
this paper allows to obtain an exact solution by using LP solvers, thus profiting from all the knowledge
concerning LP problems (and from existing implementations such as glpk).

Complexity. To the best of our knowledge, the precise complexity of the simplex method in our case is
unknown. There are recent results for the simplex applied to similar problems. For instance, in [14] it is
proven that simplex is strongly polynomial for discounted MDPs. Nevertheless, [9] shows an exponential
lower bound to calculate rewards in the undiscounted case. Unfortunately (or not, as there is still hope
that we can prove the time to be polynomial in our case), the construction used in [9] cannot be carried
out easily to our setting, as some of the rewards in the construction are negative (and the equivalent to
the rewards in our setting are the sums ∑t∈U µ(t)).

Sergio Giro 31

Further work. In the comparison of our method against LP, we considered only the simplex method, as
glpk only implements this method in exact arithmetic. The feasibility/applicability of other algorithms
to solve LP problems using exact arithmetic is yet to be studied.

The fact that the probabilities obtained are exact allows to prove additional facts about the system
under consideration. For instance, the exact values can be used in correctness certificates, or be the input
of automatic theorem provers, if they require exact values to prove some other properties of the system.
We plan to concentrate on these uses of exact probabilities.

Acknowledgements. The author is grateful to David Parker, Vojtech Forejt and Marta Kwiatkowska for
useful comments and proofreading.

References

[1] http://www.prismmodelchecker.org/benchmarks/.

[2] Luca de Alfaro (1998): Formal Verification of Probabilistic Systems. Thesis CS-TR-98-1601, Stanford Uni-
versity, Department of Computer Science.

[3] Copyright by Andrew Makhorin: glpk. http://www.gnu.org/s/glpk/.

[4] James Aspnes & Maurice Herlihy (1990): Fast Randomized Consensus Using Shared Memory. J. Algorithms
11(3), pp. 441–461. Available at http://dx.doi.org/10.1016/0196-6774(90)90021-6.

[5] Andrea Bianco & Luca de Alfaro (1995): Model Checking of Probabalistic and Nondeterministic Systems.
In: FSTTCS 1995, pp. 499–513. Available at http://dx.doi.org/10.1007/3-540-60692-0_70.

[6] Stephen P. Bradley, Arnoldo C. Hax & Thomas L. Magnanti (1977): Applied Mathematical Programming.
Addison-Wesley.

[7] Costas Courcoubetis & Mihalis Yannakakis (1990): Markov Decision Processes and Regular Events (Ex-
tended Abstract). In Mike Paterson, editor: ICALP, Lecture Notes in Computer Science 443, Springer, pp.
336–349. Available at http://dx.doi.org/10.1007/BFb0032043.

[8] F. D’Epenoux (1963): A probabilistic production and inventory problem. Management Science 10, pp. 98–
108.

[9] John Fearnley (2010): Exponential Lower Bounds for Policy Iteration. In: ICALP 2010 (2), pp. 551–562.
Available at http://dx.doi.org/10.1007/978-3-642-14162-1_46.

[10] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman & David Parker (2011): Automated Verification
Techniques for Probabilistic Systems. In: SFM, pp. 53–113. Available at http://dx.doi.org/10.1007/
978-3-642-21455-4.

[11] M. Kwiatkowska, G. Norman & D. Parker (2011): PRISM 4.0: Verification of Probabilistic Real-time Sys-
tems. In G. Gopalakrishnan & S. Qadeer, editors: CAV 2011, LNCS 6806, Springer, pp. 585–591. Available
at http://dx.doi.org/10.1007/978-3-642-22110-1_47.

[12] Martin L. Puterman (1994): Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st
edition. John Wiley & Sons, Inc., New York, NY, USA.

[13] M. Stoelinga & F. Vaandrager (1999): Root Contention in IEEE 1394. In J.-P. Katoen, editor: Proc. 5th
International AMAST Workshop on Real-Time and Probabilistic Systems (ARTS’99), LNCS 1601, Springer,
pp. 53–74. Available at http://dx.doi.org/10.1007/3-540-48778-6_4.

[14] Yinyu Ye (2011): The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Deci-
sion Problem with a Fixed Discount Rate. Mathematics of Operations Research 36(4), pp. 593–603. Available
at http://dx.doi.org/10.1287/moor.1110.0516.

http://www.prismmodelchecker.org/benchmarks/
http://www.gnu.org/s/glpk/
http://dx.doi.org/10.1016/0196-6774(90)90021-6
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1007/BFb0032043
http://dx.doi.org/10.1007/978-3-642-14162-1_46
http://dx.doi.org/10.1007/978-3-642-21455-4
http://dx.doi.org/10.1007/978-3-642-21455-4
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/3-540-48778-6_4
http://dx.doi.org/10.1287/moor.1110.0516

Preliminary Report. Final version to appear in:
QAPL 2012

c© Elise Cormie-Bowins and Franck van Breugel

Measuring Progress of Probabilistic LTL Model Checking

Elise Cormie-Bowins∗ and Franck van Breugel†

DisCoVeri Group, Department of Computer Science, York University,
4700 Keele Street, Toronto, ON, M3J 1P3, Canada

Recently, Zhang and Van Breugel introduced the notion of a progress measure for a probabilistic
model checker. Given a linear-time property φ and a description of the part of the system that
has already been checked, the progress measure returns a real number in the unit interval. The real
number captures how much progress the model checker has made towards verifying φ . If the progress
is zero, no progress has been made. If it is one, the model checker is done. They showed that the
progress measure provides a lower bound for the measure of the set of execution paths that satisfy φ .
They also presented an algorithm to compute the progress measure when φ is an invariant.

In this paper, we present an algorithm to compute the progress measure when φ is a formula of a
positive fragment of linear temporal logic. In this fragment, we can express invariants but also many
other interesting properties. The algorithm is exponential in the size of φ and polynomial in the size
of that part of the system that has already been checked. We also present an algorithm to compute a
lower bound for the progress measure in polynomial time.

1 Introduction

Due to the infamous state space explosion problem, model checking a property of source code that
contains randomization often fails. In many cases, the probabilistic model checker simply runs out of
memory without reporting any useful information. In [11], Zhang and Van Breugel proposed a progress
measure for probabilistic model checkers. This measure captures the amount of progress the model
checker has made with its verification effort. Even if the model checker runs out of memory, the amount
of progress may provide useful information.

Our aim is to develop a theory that is applicable to probabilistic model checkers in general. Our
initial development has been guided by a probabilistic extension of the model checker Java PathFinder
(JPF) [9]. This model checker can check properties, expressed in linear temporal logic (LTL), of Java
code containing probabilistic choices.

We model the code under verification as a probabilistic transition system (PTS), and the systematic
search of the system by the model checker as the set of explored transitions of the PTS. We focus on
linear-time properties, in particular those expressed in LTL. The progress measure is defined in terms
of the set of explored transitions and the linear-time property under verification. The progress measure
returns a real number in the interval [0,1]. The larger this number, the more progress the model checker
has made with its verification effort.

Zhang and Van Breugel showed that their progress measure provides a lower bound for the measure
of the set of execution paths that satisfy the linear-time property under verification. If, for example, the
progress is 0.9999, then the probability that we encounter a violation of the linear-time property when
we run the code is at most 0.0001. Hence, despite the fact the model checker may fail by running out
of memory, the verification effort may still be a success by providing an acceptable upper bound on the
probability of a violation of the property.

∗Supported by an Ontario Graduate Scholarship.
†Supported by the Natural Sciences and Engineering Research Council of Canada and the Leverhulme Trust.

Elise Cormie-Bowins and Franck van Breugel 33

The two main contributions of this paper are

1. a characterization of the progress measure for a positive fragment of LTL. This fragment includes
invariants, and most examples found in, for example, [2, Section 5.1] can be expressed in this
fragment. This characterization forms the basis for an algorithm to compute the progress measure.

2. a polynomial time algorithm to compute a lower bound for the progress measure for the positive
fragment of LTL. The lower bound is tight for invariants, that is, this algorithm computes the
progress for invariants.

2 A Progress Measure

In this section, we review some of the key notions and results of [11]. We represent the system to be
verified by the probabilistic model checker as a probabilistic transition system.

Definition 1 A probabilistic transition system is a tuple 〈S,T,AP,s0,source, target,prob, label〉 consist-
ing of

• a countable set S of states,

• a countable set T of transitions,

• a set AP of atomic propositions,

• an initial state s0,

• a function source : T → S,

• a function target : T → S,

• a function prob : T → (0,1], and

• a function label : S → 2AP

such that

• s0 ∈ S and

• for all s ∈ S, ∑{prob(t) | source(t) = s}= 1.

Example 2 The probabilistic transition system S depicted by

s1

1
2 //1

2

{{

s3

1
��

s0
1
2

;;

1
2

&&MMMMMM

s2

1
��

has three states and six transitions. In this example, we use the indices of the source and target to name
the transitions. For example, the transition from s0 to s2 is named t02. Given this naming convention,
the functions sourceS and targetS are defined in the obvious way. For example, sourceS (t02) = s0 and
targetS (t02) = s2. The function probS can be easily extracted from the above diagram. For example,
probS (t02) = 1

2 . All states are labelled with the atomic proposition a and the states s1 and s2 are also
labelled with the atomic proposition b. Hence, for example, labelS (s2) = {a,b}.

34 Measuring Progress of Probabilistic LTL Model Checking

Instead of 〈S,T,AP,s0,source, target,prob, label〉 we usually write S and we denote, for example,
its set of states by SS . We model the potential executions of the system under verification as execution
paths of the PTS.

Definition 3 An execution path of a PTS S is an infinite sequence of transitions t1t2 . . . such that

• for all i≥ 1, ti ∈ TS ,

• sourceS (t1) = s0S , and

• for all i≥ 1, targetS (ti) = sourceS (ti+1).

The set of all execution paths is denoted by ExecS .

Example 4 Consider the PTS of Example 2. For this system, t02t22
ω , t01t13t33

ω , and t01t10t02t22
ω are

examples of execution paths.

To define the progress measure, we use a measurable space of execution paths. We assume that the
reader is familiar with the basics of measure theory as can be found in, for example, [3]. Recall that a
measurable space consists of a set, a σ -algebra and a measure. In our case, the set is ExecS . The σ -
algebra ΣS is generated from the basic cylinder sets defined below. We denote the set of finite prefixes
of execution paths in ExecS by pref(ExecS).

Definition 5 Let e ∈ pref(ExecS). Its basic cylinder set Be
S is defined by

Be
S = {e′ ∈ ExecS | e is a prefix of e′ }.

The measure µS is defined on a basic cylinder set Bt1...tn
S by

µS (Bt1...tn
S) = ∏

1≤i≤n
probS (ti).

The measurable space 〈ExecS ,ΣS ,µS 〉 is a sequence space as defined, for example, in [5, Chapter 2].
The verification effort of the probabilistic model checker is represented by its search of the PTS. The

search is captured by the set of transitions that have been explored during the search.

Definition 6 A search of a PTS S is a finite subset of TS .

Example 7 Consider the PTS of Example 2. The sets /0, {t01}, {t02}, {t01, t02} and {t01, t02, t10, t13, t22, t33}
are examples of searches.

A PTS is said to extend a search if the transitions of the search are part of the PTS. We will use this
notion in the definition of the progress measure.

Definition 8 The PTS S ′ extends the search T of the PTS S if for all t ∈ T ,

• t ∈ TS ′ ,

• s0S = s0S ′ ,

• sourceS ′(t) = sourceS (t),

• targetS ′(t) = targetS (t),

• probS ′(t) = probS (t),

• labelS ′(sourceS ′(t)) = labelS (sourceS (t)), and

Elise Cormie-Bowins and Franck van Breugel 35

• labelS ′(targetS ′(t)) = labelS (targetS (t)).

Example 9 Consider the PTS of Example 2 and the search {t01, t02}. The PTS

s1
1

&&MMMMMM

s0

1
2

88qqqqqq

1
2

&&MMMMMM s3

1
��

s2
1

88qqqqqq

extends the search.

Since the PTSs we will consider in the remainder of this paper all extend a search T of a PTS S , we
write s0 instead of s0S to avoid clutter. PTSs that extend a particular search give rise to the same set of
execution paths if we restrict ourselves to those execution paths that only consist of transitions explored
during the search.

Proposition 10 If the PTS S ′ extends the search T of the PTS S , then

(a) T ∗∩pref(ExecS) = T ∗∩pref(ExecS ′) and

(b) T ω ∩ExecS = T ω ∩ExecS ′ .

PTSs that extend a particular search also assign the same measure to basic cylinder sets of prefixes
of execution paths only consisting of transitions explored during the search.

Proposition 11 If the PTS S ′ extends the search T of the PTS S , then µS (Be
S) = µS ′(Be

S ′) for all
e ∈ T ∗∩pref(ExecS).

The function labelS assigns to each state the set of atomic propositions that hold in the state. This
function is extended to (prefixes of) execution paths as follows.

Definition 12 The function traceS : ExecS → (2APS)ω is defined by

traceS (t1t2 . . .) = labelS (sourceS (t1))labelS (sourceS (t2)) . . .

The function traceS : pref(ExecS)→ (2APS)∗ is defined by

traceS (t1 . . . tn) = labelS (sourceS (t1)) . . . labelS (sourceS (tn))labelS (targetS (tn))

Example 13 Consider the PTS S of Example 2.

traceS (t02t22
ω) = {a}{a,b}ω

traceS (t01t13t33
ω) = {a}{a,b}{a}ω

traceS (t01t10t02t22
ω) = {a}{a,b}{a}{a,b}ω

For the definition of linear-time property and the satisfaction relation |= we refer the reader to, for
example, [2, Section 3.2]. Based on these notions, we define when an execution path of a PTS satisfies a
linear-time property.

Definition 14 The satisfaction relation |=S is defined by

e |=S φ if traceS (e) |= φ .

36 Measuring Progress of Probabilistic LTL Model Checking

For PTSs that extend a particular search, those execution paths that only consist of transitions ex-
plored by the search satisfy the same linear-time properties.

Proposition 15 Let φ be a linear-time property. If the PTS S ′ extends the search T of the PTS S , then
e |=S φ iff e |=S ′ φ for all e ∈ T ω ∩ExecS .

Proof Since S ′ extends T of S , traceS (e) = traceS ′(e) for all e ∈ T ω ∩ExecS . �

Next, we introduce the notion of a progress measure. Given a search of a PTS and a linear-time
property, it captures the amount of progress the search of the probabilistic model checker has made
towards verifying the linear-time property.

Definition 16 Let the PTS S ′ extend the search T of PTS S and let φ be a linear-time property. The
set Bφ

S ′(T) is defined by

Bφ

S ′(T) =
⋃
{Be

S ′ | e ∈ T ∗∧∀e′ ∈ Be
S ′ : e′ |=S ′ φ }.

The set Bφ

S ′(T) is the union of those basic cylinder sets Be
S ′ the execution paths of which satisfy the

linear-time property φ . Hence, Be
S ′ does not contain any execution paths violating φ . The set Bφ

S ′(T) is
measurable, as shown in [11, Proposition 1]. Hence, the measure µS ′ assigns it a real number in the unit
interval. This number represents the “size” of the basic cylinder sets that do not contain any violations
of φ . This number captures the amount of progress of the search T verifying φ , provided that the PTS
under consideration is S ′. However, we have no knowledge of the transitions other than the search.
Therefore, we consider all extensions S ′ of T and consider the worst case in terms of progress.

Definition 17 The progress of the search T of the PTS S of the linear-time property φ is defined by

progS (T,φ) = inf
{

µS ′

(
Bφ

S ′(T)
)
|S ′ extends T of S

}
.

Example 18 Consider the PTS S of Example 2 and the linear temporal logic formulae �a, ♦a, ♦b and
©b. In the table below, we present the progress of these properties for a number of searches.

search �a ♦a ♦b ©b
/0 0 1 0 0
{t01} 0 1 1

2
1
2

{t02} 0 1 1
2

1
2

{t01, t02} 0 1 1 1
{t01, t13, t33} 1

4 1 1
2

1
2

{t01, t10, t13, t33} 1
3 1 1

2
1
2

In [11, Theorem 1], Zhang and Van Breugel prove the following key property of their progress
measure. They show that it is a lower bound for the probability that the linear-time property holds.

Theorem 19 Let T be a search of the PTS S and let φ be a linear-time property. Then

progS (T,φ)≤ µS ({e ∈ ExecS | e |=S φ }).

The setting in this paper is slightly different from the one in [11]. In this paper we assume that PTSs
do not have final states. This assumption can be made without loss of any generality: simply add a self
loop with probability one to each final state.

Elise Cormie-Bowins and Franck van Breugel 37

3 Negation and Violations

In this section, we consider the relationship between making progress towards verifying a linear-time
property and finding a violation of its negation. First, we formalize that a search has not found a violation
of a linear-time property.

Definition 20 The search T of the PTS S has not found a violation of the linear-time property φ if there
exists a PTS S ′ which extends T of S such that e |=S ′ φ for all e ∈ ExecS ′ .

This definition is slightly stronger than the one given in [11, Definition 7]. All results of [11] remain
valid for this stronger version. Next, we prove that if a search has made some progress towards verifying
a linear-time property ¬φ , then that search has also found a violation of φ .

Proposition 21 Let T be a search of the PTS S and let φ be a linear-time property. If progS (T,¬φ)>0
then T has found a violation of φ .

Proof By the definition of prog, µS ′(B¬φ

S ′(T))> 0 for each PTS S ′ which extends T of S . Hence,
B¬φ

S ′(T) 6= /0. Therefore, there exists e∈ T ∗ such that Be
S ′ 6= /0 and ∀e′ ∈ Be

S ′ : e′ |=S ′ ¬φ . Hence, e′ 6|= φ

and e′ ∈ ExecS ′ . Therefore, T has found a violation of φ . �

The reverse implication does not hold in general, as shown in the following example.

Example 22 Consider the PTS

s0
1
2

//

1
2

��
s1

1
��

Assume that the state s0 satisfies the atomic proposition a and the state s1 does not. Consider the linear-
time property �a and the search {t00}. Note that t00

ω 6|= ¬�a and, hence, {t00} has found a violation of
¬�a. Also note that progS ({t00},�a) = 0.

We conjecture that the reverse implication does hold for safety properties (see, for example, [2,
Definition 3.22] for a formal definition of safety property). However, so far we have only been able to
prove it for invariants.

Proposition 23 If the search T of the PTS S has found a violation of the invariant φ then
progS (T,¬φ)>0.

Proof For every PTS S ′ that extends T , e 6|=S ′ �a for some e ∈ ExecS ′ . Hence, e = e f te` for some
e f ∈ T ∗ ∩ pref(ExecS ′) and t ∈ T such that a 6∈ labelS ′(sourceS ′(t)). Therefore, for all e′ ∈ Be f

S ′ we
have that e′ |=S ′ ¬�a and Be f

S ′ 6= /0. Hence, µS ′(Be f
S ′)>0 and, therefore, progS (T,¬�a)>0. �

4 A Positive Fragment of LTL

Next, we introduce a positive fragment of linear temporal logic (LTL). This fragment lacks negation. In
Section 5 we will show how to compute the progress measure for this fragment.

Definition 24 The logic LTL+ is defined by

φ ::= true | false | a | φ ∧φ | φ ∨φ | ©φ | φ1 U φ2 | φ1 R φ2

where a ∈ AP.

38 Measuring Progress of Probabilistic LTL Model Checking

The grammar defining LTL+ is the same as the grammar defining the logic PNF introduced in [2,
Definition 5.23], except that the grammar of LTL+ does not contain ¬a. For each LTL formula, there
exists an equivalent PNF formula (see, for example, [2, Section 5.1.5]). Such a result, of course, does
not hold for LTL+.

A property of LTL+ that is key for our development is presented next.

Proposition 25 For all LTL+ formulae φ and σ ∈ (2AP)∗, σ /0ω |= φ iff ∀ρ ∈ (2AP)ω : σρ |= φ .

Proof We prove two implications. Let φ be a LTL+ formula and let σ ∈ (2AP)∗. Assume that
∀ρ ∈ (2AP)ω : σρ |= φ . Since /0ω ∈ (2AP)ω , we can immediately conclude that σ /0ω |= φ .
The other implication is proved by structural induction on φ . Let σ ∈ (2AP)∗. We distinguish the follow-
ing cases.

• In case φ = true, clearly ∀ρ ∈ (2AP)ω : σρ |= φ and, hence, the property is satisfied.
• In case φ = false, obviously σ /0ω |= φ is not satisfied and, therefore, the property holds.
• Let φ = a. If σ /0ω |= φ , then |σ |>0 and a ∈ σ [0] and, hence, ∀ρ ∈ (2AP)ω : σρ |= φ .
• Let φ = φ1 ∧ φ2. Assume that σ /0ω |= φ . Then σ /0ω |= φ1 and σ /0ω |= φ2. By induction,
∀ρ ∈ (2AP)ω : σρ |= φ1 and ∀ρ ∈ (2AP)ω : σρ |= φ2. Hence, ∀ρ ∈ (2AP)ω : σρ |= φ .

• The case φ = φ1∨φ2 is similar to the previous case.
• For ©φ we distinguish the following two cases. Assume |σ | = 0. Suppose σ /0ω |= ©φ . Then

/0ω [1 . . .] = /0ω |= φ . By induction, ∀ρ ∈ (2AP)ω : ρ |= φ . Hence, ∀ρ ∈ (2AP)ω : ρ |=©φ .
Assume |σ | ≥ 1. Suppose σ /0ω |= ©φ . Then (σ /0ω)[1 . . .] = σ [1 . . .] /0ω |= φ . By induction,
∀ρ ∈ (2AP)ω : σ [1 . . .]ρ |= φ . Since σ [1 . . .]ρ = (σρ)[1 . . .], we have that ∀ρ ∈ (2AP)ω : σρ |=©φ .

• Next, let φ = φ1 U φ2. Assume that σ /0ω |= φ . Then there exists some j ≥ 0 such that
(a) (σ /0ω)[i . . .] |= φ1 for all 0≤ i< j and
(b) (σ /0ω)[j . . .] |= φ2 .
We distinguish two cases. Suppose j < |σ |. From (a) we can conclude that for all 0 ≤ i < j,
(σ /0ω)[i . . .] = σ [i . . .] /0ω |= φ1. By induction, ∀ρ ∈ (2AP)ω : σ [i . . .]ρ |= φ1. Since σ [i . . .]ρ =
(σρ)[i . . .], we have that ∀ρ ∈ (2AP)ω : (σρ)[i . . .] |= φ1. From (b) we can deduce that (σ /0ω)[j . . .] =
σ [j . . .] /0ω |= φ2. By induction, ∀ρ ∈ (2AP)ω : σ [j . . .]ρ |= φ2. Since σ [j . . .]ρ = (σρ)[j . . .], we have
that ∀ρ ∈ (2AP)ω : (σρ)[j . . .] |= φ2. Combining the above, we get ∀ρ ∈ (2AP)ω : σρ |= φ1 U φ2.
Suppose j ≥ |σ |. For 0 ≤ i < |σ |, the argument for (a) is the same as above. For |σ | ≤ i < j,
(a) simply says that /0ω |= φ1, which, by induction, implies that ∀ρ ∈ (2AP)ω : ρ |= φ1. Hence,
∀ρ ∈ (2AP)ω : (σρ)[i . . .] |= φ1 for all 0≤ i< j. In this case, (b) means /0ω |= φ2, which, by induction,
implies that ∀ρ ∈ (2AP)ω : ρ |= φ2. Hence, ∀ρ ∈ (2AP)ω : (σρ)[j . . .] |= φ2. Combining the above,
we obtain that ∀ρ ∈ (2AP)ω : σρ |= φ1 U φ2.

• Finally, we consider φ1 R φ2. According to [2, page 256], φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2) and
¬(φ1 U φ2) ≡ (¬φ2) W (¬φ1 ∧¬φ2). According to [2, page 252], φ1 W φ2 ≡ (φ1 U φ2)∨�φ1.
Hence, we can derive that φ1 R φ2 ≡ (φ2 U (φ1∧φ2))∨�φ2. Therefore, proving that the property
is satisfied by �φ , combined with the proofs for ∧, ∨ and U above, suffices as proof for φ1 R φ2.
Thus, we consider �φ . Suppose that σ /0ω |= �φ . Then (σ /0ω)[j . . .] |= φ for all j ≥ 0. We dis-
tinguish two cases. For all 0 ≤ j < |σ |, we have that (σ /0ω)[j . . .] = σ [j . . .] /0ω |= φ . By induction,
∀ρ ∈ (2AP)ω : σ [j . . .]ρ |= φ and, hence, ∀ρ ∈ (2AP)ω : (σρ)[j . . .] |= φ .
For all j ≥ |σ |, we have that (σ /0ω)[j . . .] = /0ω |= φ . By induction, ∀ρ ∈ (2AP)ω : ρ |= φ and,
therefore, ∀ρ ∈ (2AP)ω : (σρ)[j . . .] |= φ . Combining the above, we get ∀ρ ∈ (2AP)ω : σρ |= �φ .

�

Elise Cormie-Bowins and Franck van Breugel 39

The above result does not hold for all LTL formulae, as shown in the following example.

Example 26 Consider the LTL formula ¬a. Note that this formula is not equivalent to any LTL+ for-
mula. Let σ = ε . Obviously, /0ω |= ¬a, but it is not the case that ∀ρ ∈ (2AP)ω : ρ |= ¬a (just take a
ρ ∈ (2AP)ω with a ∈ ρ[0]).

5 An Algorithm to Compute Progress

To obtain an algorithm to compute the progress for the positive fragment of LTL, we present an alternative
characterization of the progress measure. This alternative characterization is cast in terms of a PTS built
from the search as follows. We start from the transitions of the search and their source and target states.
We add a sink state, which has a transition to itself with probability one and which does not satisfy
any atomic proposition. For each state which has not been fully explored yet, that is, the sum of the
probabilities of its outgoing transitions is less than one, we add a transition to the sink state with the
remaining probability. This PTS can be viewed as the minimal extension of the search (we will formalize
this in Proposition 34). The PTS is defined as follows.

Definition 27 Let T be a search of the PTS S . The set ST
S is defined by

ST
S = {sourceS (t) | t ∈ T }∪{ targetS (t) | t ∈ T }∪{s0}.

For each s ∈ ST
S ,

outS (s) = ∑{probS (t) | t ∈ T ∧ sourceS (t) = s}.

The PTS ST is defined by

• SST = ST
S ∪{s⊥},

• TST = T ∪{ ts | s ∈ ST
S ∧outS (s)<1}∪{t⊥},

• sourceST (t) =


sourceS (t) if t ∈ T
s if t = ts
s⊥ if t = t⊥

• targetST (t) =
{

targetS (t) if t ∈ T
s⊥ if t = t⊥ or t = ts

• probST (t) =


probS (t) if t ∈ T
1−outS (s) if t = ts
1 if t = t⊥

• labelST (s) =
{

/0 if s = s⊥
labelS (s) otherwise

The above definition is very similar to [11, Definition 10]. The main difference is that we do not have
final states.

Proposition 28 Let T be a search of the PTS S . Then the PTS ST extends T .

Proof Follows immediately from the definition of ST . �

Next, we will show that the PTS ST is the minimal extension of the search T of the PTS S . More
precisely, we will prove that for any other extension S ′ of T we have that µST (Bφ

ST
)≤ µS ′(Bφ

S ′). To
prove this result, we introduce two new notions and some of their properties.

40 Measuring Progress of Probabilistic LTL Model Checking

Definition 29 Let T be a search of the PTS S and let φ be a linear-time property. The set Eφ

S (T) is
defined by

Eφ

S (T) = {e ∈ T ∗∩pref(ExecS) | ∀e′ ∈ Be
S : e′ |=S φ }.

The set Eφ

ST
(T) is minimal among the Eφ

S ′(T) where S ′ extends T .

Proposition 30 Let the PTS S ′ extend the search T of the PTS S . For any LTL+ formula φ ,
Eφ

ST
(T)⊆ Eφ

S ′(T).

Next, we restrict our attention to those elements of Eφ

S (T) which are minimal with respect to the
prefix order.

Definition 31 Let T be a search of the PTS S and let φ be a linear-time property. The set MEφ

S (T) is
defined by

MEφ

S (T) = {e ∈ Eφ

S (T) | |e|>0⇒∃e′ ∈ Be[|e|−1]
S : e′ 6|=S φ }.

Note that e ∈MEφ

S (T) if and only if it belongs to Eφ

S (T) and none of its prefixes belong to Eφ

S (T).

Proposition 32 Let the PTSs S ′ and S ′′ extend the search T of the PTS S and let φ be a linear-time
property. Then ⋃

ē∈MEφ

S ′′ (T)

Bē
S ′ =

⋃
e∈Eφ

S ′′ (T)

Be
S ′ .

Proof Since MEφ

S ′′(T) ⊆ Eφ

S ′′(T), we can conclude that the set on the left hand side is a subset of the
set on the right hand side. Next, we prove the other inclusion. We show that for each e ∈ Eφ

S ′′(T) there
exists ē ∈ MEφ

S ′′(T) such that Be
S ′ ⊆ Bē

S ′ by induction on the length of e. In the base case, |e| = 0,
then e ∈ Eφ

S ′′(T) implies e ∈ MEφ

S ′′(T) and, hence, we take ē to be e. Let |e|> 0. We distinguish two
cases. If ∃e′ ∈ Be[|e|−1]

S ′ : e′ 6|=S φ then we also take ē to be e. Otherwise, e[|e|−1] ∈ Eφ

S ′′(T). Obviously,
Be

S ′ ⊆ Be[|e|−1]
S ′ and, by induction, there exists a ē ∈MEφ

S ′′(T) such that Be[|e|−1]
S ′ ⊆ Bē

S ′ . �

Proposition 33 Let the PTSs S ′ and S ′′ extend the search T of the PTS S , and let φ be a linear-time
property. If Eφ

S ′(T)⊆ Eφ

S ′′(T) then

µS ′′(
⋃
{Be

S ′′ | e ∈MEφ

S ′(T)}) = ∑
e∈MEφ

S ′ (T)

µS ′′(Be
S ′′). (1)

Proof We have that

MEφ

S ′(T) ⊆ Eφ

S ′(T) [by definition]

⊆ Eφ

S ′′(T) [by assumption]

⊆ pref(ExecS ′′) [by definition]

Hence, for all e ∈ MEφ

S ′(T), we have that Be
S ′′ ∈ ΣS ′′ . Since the set T is finite, the set T ∗ is countable

and, hence, the set MEφ

S ′(T) is countable as well. Since a σ -algebra is closed under countable unions,⋃
{Be

S ′′ | e ∈MEφ

S ′(T)} ∈ ΣS ′′ . Hence, the measure µS ′′ is defined on this set.

To conclude (1), it suffices to prove that for all e1, e2 ∈ MEφ

S ′(T) such that e1 6= e2, e1 is not a prefix
of e2, since this implies that Be1

S ′ and Be2
S ′ are disjoint. Towards a contradiction, assume that e1 is a

prefix of e2. Since ∀e′1 ∈ Be1
S ′ : e′1 |=S ′ φ and e1 is a prefix of e2 and e1 6= e2, it cannot be the case that

∃e′2 ∈ Be2[|e2|−1]
S ′ : e′2 6|=S ′ φ . This contradicts the assumption that e2 ∈MEφ

S ′(T). �

Elise Cormie-Bowins and Franck van Breugel 41

Now, we are ready to prove that the PTS ST is the minimal extension of the search T of the PTS S .

Proposition 34 Let the PTS S ′ extend the search T of the PTS S and let φ be a LTL+ formula. Then

µST (Bφ

ST
(T))≤ µS ′(Bφ

S ′(T)).

Proof

µST (Bφ

ST
(T))

= µST (
⋃
{Be

ST
| e ∈ Eφ

ST
(T)})

= µST (
⋃
{Be

ST
| e ∈MEφ

ST
(T)}) [Proposition 32]

= ∑
e∈MEφ

ST
(T)

µST (Be
ST

) [Proposition 33]

= ∑
e∈MEφ

ST
(T)

µS ′(Be
S ′) [Proposition 11]

= µS ′(
⋃
{Be

S ′ | e ∈MEφ

ST
(T)}) [Proposition 30 and 33]

= µS ′(
⋃
{Be

S ′ | e ∈ Eφ

ST
(T)}) [Proposition 32]

≤ µS ′(
⋃
{Be

S ′ | e ∈ Eφ

S ′(T)}) [Proposition 30]

= µS ′(Bφ

S ′(T))

�

The above proposition gives us an alternative characterization of the progress measure.

Theorem 35 Let T be a search of the PTS S and let φ be a LTL+ formula. Then

progS (T,φ) = µST (Bφ

ST
(T)).

Proof This is a direct consequence of the definition of the progress measure and Proposition 34. �

Hence, in order to compute progS (T,φ), it suffices to compute the measure of Bφ

ST
(T). Next, we

will show that the latter is equal to the measure of the set of execution paths of ST that satisfy φ . The
proof consists of two parts. First, we prove the following inclusion.

Proposition 36 Let T be a search of the PTS S and let φ be a linear-time property. Then

Bφ

ST
(T)⊆ {e ∈ ExecST | e |=ST φ }.

Proof Let e ∈ Bφ

ST
(T). Then e ∈ Be′

ST
for some e′ ∈ T ∗ such that ∀e′′ ∈ Be′

ST
: e′′ |=ST φ . Hence,

e |=ST φ . �

The opposite inclusion does not hold in general, as shown in the following example.

Example 37 Consider the PTS S

s0
1
2

//

1
2

��
s1

1
��

42 Measuring Progress of Probabilistic LTL Model Checking

Consider the search {t00}. Then the PTS ST can be depicted by

s0
1
2

//

1
2

��
s⊥

1
��

Assume that the state s0 satisfies the atomic proposition a. Hence, t00
ω |=ST �a. By construction, the

state s⊥ does not satisfy a. Therefore, t00
ω 6∈B�a

ST
.

However, we will show that the set {e ∈ ExecST | e |=ST φ } \Bφ

ST
(T) has measure zero. In the

proof, we will use the following proposition.

Proposition 38 Let T be a search of the PTS S and let φ be a linear-time property. Assume that T has
not found a violation of φ . Then for all e ∈ T ω ∩ExecST , e |=ST φ .

Proof Let e ∈ T ω ∩ExecST . Since T has not found a violation of φ , by definition there exists a PTS S ′

that extends T of S such that e′ |=S ′ φ for all e′ ∈ ExecS ′ . Then e ∈ ExecS ′ ∩T ω by Proposition 10(b),
because S ′ and ST both extend T . Hence, e |=S ′ φ . Therefore, from Proposition 15 we can conclude
that e |=ST φ . �

Proposition 39 Let T be a search of the PTS S and let φ be a LTL+ formula. If T has not found a
violation of φ then

µST ({e ∈ ExecST | e |=ST φ }\Bφ

ST
(T)) = 0.

Proof To avoid clutter, we denote the set {e ∈ ExecST | e |=ST φ }\Bφ

ST
(T) by Z.

First, we show that Z ⊆ T ω . Assume that e ∈ Z. Towards a contradiction, suppose that e 6∈ T ω . From
the construction of ST we can deduce that e = e′tst⊥ω for some e′ ∈ T ∗. Let traceST (e′) = σ . Then
traceST (e) = σ /0ω . Since e ∈ Z, we have that e |=ST φ and, hence, σ /0ω |= φ . By Proposition 25,
∀ρ ∈ (2AP)ω : σρ |= φ . Hence, ∀e′′ ∈ Be′

ST
: e′′ |=ST φ . Since e ∈ Be′

ST
, we have that e ∈Bφ

ST
(T), which

contradicts our assumption that e ∈ Z.
Next, we show that each state in { targetST (e) | e ∈ pref(Z)} is transient. Roughly speaking, a state s
is transient if the probability of reaching s in one or more transitions when starting in s is strictly less
than one (see, for example, [1, Section 7.3] for a formal definition). It suffices to show that each state in
{ targetST (e) | e ∈ pref(Z)} can reach the state s⊥, since in that case the probability of reaching s⊥ and,
hence, not returning to the state itself, is greater than zero.
Since T has not found a violation of φ , we can conclude from Proposition 38 that e |=ST φ for all e∈ T ω .
Hence, from the construction of ST we can deduce that if e 6|=ST φ then e 6∈ T ω and, hence, e reaches s⊥.
Let e ∈ pref(Z). Hence, there exists e′ ∈ Be

ST
such that e′ 6|=ST φ . Therefore, e′ reaches s⊥ and, hence,

targetST (e) can reach s⊥.
Since Z ⊆ T ω , the set { targetST (e) | e ∈ pref(Z)} is finite. According to [1, page 223], the probability
of remaining in a finite set of transient states is zero. As a consequence, the probability of remaining in
the set { targetS ′(e) | e ∈ pref(Z)} is zero. Hence, we can conclude that µST (Z) = 0. �

From the above, we can derive the following result.

Theorem 40 Let T be a search of the PTS S and let φ be a LTL+ formula. If T has not found a violation
of φ then

µST (Bφ

ST
(T)) = µST ({e ∈ ExecST | e |=ST φ }).

Elise Cormie-Bowins and Franck van Breugel 43

Proof

µST (Bφ

ST
(T))

≤ µST ({e ∈ ExecST | e |=ST φ }) [Proposition 36 and µST is monotone]

= µST (Bφ

ST
(T))+ µST ({e ∈ ExecST | e |=ST φ }\Bφ

ST
(T)) [Proposition 36 and µST is additive]

= µST (Bφ

ST
(T)) [Proposition 39]

�

Combining Theorem 35 and 40, we obtain the following characterization of the progress measure.

Corollary 41 Let T be a search of the PTS S and let φ be a LTL+ formula. If T has not found a
violation of φ then

progS (T,φ) = µST ({e ∈ ExecST | e |=ST φ }).

Proof Immediate consequence of Theorem 35 and 40. �

How to compute µST ({e ∈ ExecST | e |=ST φ }) can be found, for example, in [4, Section 3.1].
Computing this measure is exponential in the size of φ and polynomial in the size of T .

6 An Algorithm to Efficiently Compute a Lower Bound of Progress

The algorithm developed in the previous section to compute progS (T,φ) is exponential in the size
of φ . In this section, we trade precision for efficiency. We present an algorithm that does not com-
pute progS (T,φ), but only provides a lower bound in polynomial time. This lower bound is tight for
invariants. However, we also show an example in which the lower bound does not provide us any infor-
mation.

Next, we show that subsets of ExecS can be characterized as countable intersections of countable
unions of basic cylinder sets. For A ⊆ ExecS and n ∈ N, we use A[n] to denote the set {e[n] | e ∈ A},
where e[n] denotes the execution path e truncated at length n. We prove the characterization by showing
two inclusions. The first inclusion holds for arbitrary subsets of ExecS .

Proposition 42 For PTS S , let A⊆ ExecS . Then

A⊆
⋂

n∈N

⋃
e∈A[n]

Be
S .

Proof Let e′ ∈ A. It suffices to show that

e′ ∈
⋃

e∈A[n]

Be
S (2)

for all n ∈ N. Let n ∈ N. To prove (2), it suffices to show that e′ ∈ Be
S for some e ∈ A[n]. Since e′ ∈ A,

we have that e′[n] ∈ A[n]. Because e′[n] is a prefix of e′ and e′ ∈ ExecS , we have that e′ ∈ Be′[n]
S , which

concludes our proof. �

The reverse inclusion does not hold in general. In some of the proofs below we use some metric
topology. Those readers unfamiliar with metric topology are referred to, for example, [8]. To prove the
reverse inclusion, we use that the set is closed.

44 Measuring Progress of Probabilistic LTL Model Checking

Proposition 43 For PTS S , let A⊆ ExecS . If A is closed then⋂
n∈N

⋃
e∈A[n]

Be
S ⊆ A.

Proof Let e′ ∈
⋂

n∈N
⋃

e∈A[n] B
e
S . Then e′ ∈

⋃
e∈A[n] B

e
S for all n ∈ N. Hence, for each n ∈ N there exists

a en ∈ A[n] such that e′ ∈ Ben
S . Thus, for each n ∈ N there exists a e′n ∈ A such that e′ ∈ Be′n[n]

S and, hence,
e′n[n] is a prefix of e′.

We distinguish two cases. Assume that for some n ∈ N, e′n[n] = e′n. Then e′n is a prefix of e′. Since also
e′, e′n ∈ ExecS , we can conclude that e′ = e′n. Since e′n ∈ A we have that e′ ∈ A.

Otherwise, e′n[n] 6= e′n for all n ∈ N. Since also e′n[n] is a prefix of e′, we can conclude that e′n[n] = e′[n].
Let the distance function d : (pref(ExecS)∪ExecS)× (pref(ExecS)∪ExecS) → [0,1] be defined by
d(e1,e2) = inf{2−n | e1[n] = e2[n]}. Then, d(e′n,e

′) ≤ 2−n, that is, the sequence (e′n)n converges to e′.
Because all the elements of the sequence (e′n)n are in A and A is closed, we can conclude that the limit e′

is in A as well (see, for example, [8, Proposition 3.7.15 and Lemma 7.2.2]). �

PTSs that extend a particular search assign the same measure to closed sets of execution paths con-
sisting only of explored transitions.

Proposition 44 Let the PTS S ′ extend the search T of the PTS S and let A ⊆ T ω ∩ExecS . If A is
closed then µS (A) = µS ′(A).

Proof Obviously, for all e ∈ T ∗ and t ∈ T , we have Be
S ⊇ Bet

S . As a consequence,
⋃

e∈A[n] B
e
S ⊇⋃

e∈A[n+1] B
e
S for all n ∈ N. Furthermore, µS (

⋃
e∈A[0] B

e
S) = µS (Bε

S) = 1 and, hence, µS (
⋃

e∈A[0] B
e
S)

is finite. Since a measure is continuous (see, for example, [3, Theorem 2.1]), we can conclude from the
above that

µS

 ⋂
n∈N

⋃
e∈A[n]

Be
S

 = lim
n∈N

µS

 ⋃
e∈A[n]

Be
S

 . (3)

Therefore,

µS (A) = µS

 ⋂
n∈N

⋃
e∈A[n]

Be
S

 [Proposition 42 and 43]

= lim
n∈N

µS

 ⋃
e∈A[n]

Be
S

 [(3)]

= lim
n∈N ∑

e∈A[n]
µS (Be

S) [a measure is countably additive]

= lim
n∈N ∑

t1...tn∈A[n]
∏

1≤i≤n
probS (ti)

= lim
n∈N ∑

t1...tn∈A[n]
∏

1≤i≤n
probS ′(ti) [S ′ extends T of S]

= µS ′(A) [by symmetric argument].

�

Elise Cormie-Bowins and Franck van Breugel 45

Hence, the PTSs S and ST assign the same measure to the closed set of those execution paths
consisting only of explored transitions.

Corollary 45 Let T be a search of the PTS S . Then µS (T ω ∩ExecS) = µST (T ω ∩ExecST).

Proof Since the sets ExecS and T ω are closed, their intersection is also closed (see, for example, [8,
Proposition 3.7.5]) and, hence, the result follows immediately from Proposition 44 and 10(b). �

Now we can show that the measure of the set of execution paths consisting only of explored transi-
tions is a lower bound for the progress measure.

Theorem 46 Let T be a search of the PTS S and let φ be a LTL+ formula. If T has not found a violation
of φ then

µST (T ω ∩ExecST)≤ progS (T,φ).

Proof

µST (T ω ∩ExecST)
≤ µST ({e ∈ ExecST | e |=ST φ }) [Proposition 38]

= progS (T,φ) [Corollary 41]

�

From the construction of ST we can conclude that µST (T ω ∩ ExecST) is the same as
µST ({e ∈ ExecST | e does not reach s⊥ }), which is the same as 1−µST ({e ∈ ExecST | e reaches s⊥ }).
The latter can be computed in polynomial time using, for example, Gaussian elimination (see, for exam-
ple, [2, Section 10.1.1]). This algorithm has been implemented and incorporated into an extension of the
model checker JPF [10]. While JPF is model checking sequential Java code which contains probabilistic
choices, our extension also keeps track of the underlying PTS. The amount of memory needed to store
this PTS is in general only a small fraction of the total amount of memory needed. Once our extension of
JPF runs almost out of memory, it can usually free enough memory so that the progress can be computed
from the stored PTS.

As was shown in [11, Theorem 4], the above bound is tight for invariants.

Proposition 47 If the search T of the PTS S has not found a violation of invariant φ then

µST (T ω ∩ExecST) = progS (T,φ).

In the example below, we present a search of a PTS for a LTL+ formula of which the progress is one
whereas the bound is zero. In this case, the bound does not provide us any information.

Example 48 Consider the PTS

s0
1

// s1

1
��

Assume that the state s1 satisfies the atomic proposition a. Consider the linear-time property ©a and
the search {t01}. In this case, we have that progS ({t01},©a) = 1 but µS{t01}

({t01}ω ∩ExecS{t01}
) =

µS{t01}
(/0) = 0.

46 Measuring Progress of Probabilistic LTL Model Checking

7 Conclusion

Our work is based on the paper by Zhang and Van Breugel [11]. The work by Pavese, Braberman and
Uchitel [6] is also related. They aim to measure the probability that a run of the system reaches a state
that has not been visited by the model checker. Also the work by Della Penna et al. [7] seems related.
They show how, given a Markov chain and an integer i, the probability of reaching a particular state s
within i transitions can be computed.

As we have seen, there seems to be a trade off between efficiency and accuracy when it comes to
computing progress. Our algorithm to compute progS (T,φ) is exponential in the size of the LTL+
formula φ and polynomial in the size of the search T . We even conjecture (and leave it to future work to
prove) that the problem of computing progress is PSPACE-hard. However, in general the size of the LTL
formula is small, whereas the size of the search is huge. Hence, we expect our algorithm to be useful.

Providing a lower bound for the progress measure can be done in polynomial time. As we have
shown, this bound is tight for invariants. Invariants form an important class of properties. Determining
the class of LTL+ formulae for which the bound is tight is another topic for further research.

The approach to handle the positive fragment of LTL seems not applicable to all of LTL. We believe
that a different approach is needed and leave this for future research.

Acknowledgments We thank the referees for their constructive feedback.

References
[1] Robert B. Ash (1970): Basic Probability Theory. John Wiley & Sons.
[2] Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. The MIT Press.
[3] Patrick Billingsley (1995): Probability and Measure. John Wiley & Sons.
[4] Costas Courcoubetis & Mihalis Yannakakis (1995): The Complexity of Probabilistic Verification. Journal of

the ACM 42(4), pp. 857–907.
[5] John G. Kemeny, J. Laurie Snell & Anthony W. Knapp (1966): Denumerable Markov Chains. Van Nostrand.
[6] Esteban Pavese, Victor Braberman & Sebastian Uchitel (2010): My Model Checker Died!: how well did it

do? In: Proceedings of the 2010 ICSE Workshop on Quantitative Stochastic Models in the Verification and
Design of Software Systems, ACM, Cape Town, pp. 33–40.

[7] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci & Marisa Venturini Zilli (2006):
Finite Horizon Analysis of Markov Chains with the Murϕ Verifier. International Journal on Software Tools
for Technology 8(4/5), pp. 397–409.

[8] Wilson A. Sutherland (1975): Introduction to Metric and Topological Spaces. Clarendon Press.
[9] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park & Flavio Lerda (2003): Model Checking

Programs. Automated Software Engineering 10(2), pp. 203–232.
[10] Xin Zhang & Franck van Breugel (2010): Model Checking Randomized Algorithms with Java PathFinder.

In: Proceedings of 7th International Conference on Quantitative Evaluation of Systems, IEEE, Williamburgh,
pp. 157–158.

[11] Xin Zhang & Franck van Breugel (2011): A Progress Measure for Explicit-State Probabilistic Model-
Checkers. In: Luca Aceto, Monika Henzinger & Jirı́ Sgall, editors: Proceedings of the 38th International
Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science 6756, Springer-
Verlag, Zurich, pp. 283–294.

Preliminary Report. Final version to appear in:
QAPL 2012

c© F. Belardinelli, P. Gonzalez and A. Lomuscio
This work is licensed under the
Creative Commons Attribution License.

Automated Verification of Quantum Protocols using MCMAS

Francesco Belardinelli Pavel Gonzalez
Alessio Lomuscio

{f.belardinelli, pavel.gonzalez09, a.lomuscio}@imperial.ac.uk
Imperial College London

London, UK

We present a methodology for the automated verification of quantum protocols using MCMAS, a
symbolic model checker for multi-agent systems [17]. The method is based on the logical framework
developed by D’Hondt and Panangaden [10] for investigating epistemic and temporal properties, built
on the model for Distributed Measurement-based Quantum Computation (DMC) [9], an extension
of the Measurement Calculus [8] to distributed quantum systems. We describe the translation map
from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in
multi-agent systems [14]. Then, we introduce DMC2ISPL, a compiler into the input language of the
MCMAS model checker [17]. We demonstrate the technique by verifying the Quantum Teleportation
Protocol, and discuss the performance of the tool.

1 Introduction

Quantum computing has gained prominence in the last decade due to theoretical advances as well as
applications to security, information processing, and simulation of quantum mechanical systems [19].
With this increase of activity, the need for validation of correctness of quantum algorithms has arisen.
Model checking has shown to be a promising verification technique [6]. However, tools and techniques
for model checking both temporal and epistemic properties of quantum systems have not been developed
yet. In this paper we aim to bridge this gap by introducing a methodology for the automated verification
of quantum protocols using MCMAS [17], a symbolic model checker for multi-agent systems (MAS).

The fundamental question from an epistemic point of view is how to model a flow of quantum
information. Is it meaningful to talk about “quantum knowledge”? And if it is, how can we express this
concept? Several logics, which can be used for reasoning about knowledge in the context of distributed
quantum computation, have been recently suggested. One of the first attempts to our knowledge was based
on Quantum Message Passing Environments [18]. A different approach, i.e. Quantum Dynamic-Epistemic
Logic [1, 2, 3], was developed to model the behaviour of quantum systems. A third account [7, 10, 11] was
built on the Distributed Measurement-based Quantum Computation [9], which extends the Measurement
Calculus [8], a universal formal model for one-way quantum computations. Among all these accounts,
the logic based on Distributed Measurement-based Quantum Computation (DMC) has an underlying
operational semantics similar to the semantics of interpreted systems [14]. This feature makes it a
well-suited theoretical framework to be used with MCMAS.

In this paper we describe a translation from DMC to interpreted systems (IS). We also report on
a source-to-source compiler that performs the translation into the Interpreted Systems Programming
Language (ISPL), the modular input language of the MCMAS model checker. The compiler enables the
use of MCMAS to verify automatically temporal and epistemic properties of quantum protocols specified
in DMC. We verify the Quantum Teleportation protocol [5] against the properties stated and informally
proved in [10], and show that one specification does not hold contrary to the paper’s claim.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

48 Automated Verification of Quantum Protocols using MCMAS

Related Work. Several approaches to model checking quantum systems have already appeared in the
literature. To our knowledge, the only dedicated verification tool for quantum protocols is the Quantum
Model Checker (QMC) [15]. The model checker supports specifications in quantum computational
temporal logic (QCTL), but quantum operators are restricted to the Clifford group, which is the normalizer
of the group of Pauli operators [19]. Although it contains many common operators, quantum circuits that
involve only Clifford group operators are not universal. Such circuits can be simulated in polynomial time
on a classical computer; however, this leads to a loss of expressive power.

In the same research line [20] a theoretical framework to model check LTL properties using quantum
automata is proposed, and an algorithm for checking invariants of quantum systems is presented. Finally,
in [13] the Quantum Key Distribution (QKD) protocol is verified against specific eavesdropping security
properties. The authors elaborate an ad hoc model of the protocol, that they analyse using PRISM [16].

However, we stress that none of these contributions explicitly deal with knowledge. So, these
approaches do not allow the verification of the temporal epistemic properties discussed in [10].

Structure. Organizationally, Section 2 gives an overview of the Distributed Measurement-based
Quantum Computation, Interpreted Systems, and Quantum Epistemic Logic. Section 3 presents a
methodology for translating a protocol specified in DMC into the corresponding IS. Section 4 describes
and evaluates an implementation of the formal methodology. Section 5 offers brief conclusions.

2 Preliminaries

We discuss only the issues directly related to the paper and refer the reader to the relevant references for an
in-depth coverage of these topics. We assume familiarity with the concepts of quantum computation [19].

2.1 Distributed Measurement-based Quantum Computation

At the heart of the Measurement Calculus are measurement patterns [8]. A pattern P = (V, I,O,A)
consists of a computation space V , which contains all qubits involved in the execution of P , a set I of
input qubits, a set O of output qubits, and a finite sequence A of commands Ap . . .A1, which are applied to
qubits in V from right to left. The possible commands are the entanglement operator Eqr, the measurement
Mα

q , and the corrections Xq and Zq, where q and r represent the qubits on which these commands operate,
and α is a measurement angle in [0,2π].

An agent A [9], denoted as A(i,o) : Q.E , is characterised by its classical input i and output o, by a
set Q of qubits, and by a finite event sequence E , which consists of patterns and commands for classical
(c?x, c!y) and quantum (qc?x, qc!q) communication. A network N of agents [9] is defined as a set
of concurrently acting agents, together with the global quantum state σ , specifically N = A1(i1,o1) :
Q1.E1 | . . . | Am(im,om) : Qm.Em ‖ σ , abbreviated as N = |i Ai(ii,oi) : Qi.Ei ‖ σ . The configuration C
of a network N at a particular point in time is described by a set of agents, their classical local states, and
the quantum state σ , formally C = σ ,Γ1,a1 | Γ2,a2 | . . . | Γm,am, abbreviated as C = σ , |i Γi,ai, where Γi

represents the classical state of agent ai, which is defined as a partial mapping from classical variables to
values. The set CN contains all configurations that potentially occur during the execution of the network
N .

Operational and denotational semantics for DMC are defined in [9]; however, here we are more
interested in its small-step semantics. The following small-step rules for configuration transitions describe
how the network evolves over time. If the quantum state does not change in an evaluation step, the writing
σ ` precedes the rule. Also, we use a shorthand notation for agents: ai = Ai : Qi.Ei, ai.E = Ai : Qi.[Ei.E],

F. Belardinelli, P. Gonzalez and A. Lomuscio 49

a−q = A : Q\q.E , and a+q = A : Q]q.E [q/x], where E is some event.

σ ,P(V, I,O,A)−→λ σ ′,Γ′

σ ,Γ,A : I]R.[E .P] =⇒λ σ ′,Γ∪Γ′,A : O]R.E
(1)

Γ2(y) = v
σ ` (Γ1,a1.c?x | Γ2,a2.c!y =⇒ Γ1[x 7→ v],a1 | Γ2,a2)

(2)

σ ` (Γ1,a1.qc?x | Γ2,a2.qc!q =⇒ Γ1,a+q
1 | Γ2,a−q

2)
(3)

L =⇒λ R
L | L′ =⇒λ R | L′

(4)

The first rule refers to local operations. Since a pattern’s big-step semantics is given by a probabilistic
transition system, described by −→, a probability λ is introduced here. Also, an agent changes its sort
depending on the pattern’s output O. The next two rules are for the classical and the quantum rendez-
vous. For the quantum rendez-vous a substitution q for x in the event sequence of the receiving agent is
performed and agents need to update their qubit sorts. (4) is a metarule, which is required to express that
any of the other rules may fire in the context of a larger system.

2.2 Interpreted Systems and MCMAS

Interpreted systems [14] are the typical formalism for reasoning about time and knowledge in multi-agent
systems. In IS each agent i from a non-empty set Ag of agents is modelled by a set of local states Li, a
set of actions Acti that she may perform according to her protocol function Pi, and an evolution function
ti. A special agent E, representing the environment in which the other agents operate, is also described
by a set of local states LE , a set of actions ActE , a protocol PE , and an evolution function tE . For every
j ∈ Ag∪{E}, the protocol Pj is defined as a function Pj : L j→ 2Act j , assigning a set of actions to a given
local state. Intuitively, α j ∈ Pj(l j) means that action α j is enabled in l j. The evolution function t j is
a transition function returning the target local state given the current local state and the set of actions
performed by all agents, formally t j : L j×Act1×·· ·×Actn×ActE → L j under the constraint α j ∈ Pj(l j).
Agents evolve simultaneously in every state of the system according to the joint transition function t.

The set Act of joint actions is defined as the Cartesian product of all agents’ actions, formally
Act = Act1×·· ·×Actn×ActE . The Cartesian product S = Li×·· ·×Ln×LE of the agents’ local states
is the set of all global states of the system. The local state of agent i in the global state g ∈ S is denoted
as li(g). The description of an interpreted system is concluded by including a set of atomic propositions
AP = {p1, p2, . . .} and an evaluation relation V ⊆ AP×S. Formally, an interpreted system is defined as a
tuple IS = 〈(Li,Acti,Pi, ti)i∈Ag,(LE ,ActE ,PE , tE),V 〉 .

Interpreted systems can be used to interpret CTLK, a logic combining the branching-time temporal
logic CTL with epistemic modalities. The formal language L is built from propositional atoms p ∈ AP
and agents i ∈ Ag as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ϕ | EXϕ | EGϕ | EϕUψ | Ki

The formulae in L have the following intuitive meaning. EXϕ : there is a path where ϕ holds in the next
state; EGϕ: there is a path where ϕ always holds; EϕUψ: there is a path where ϕ holds at least until at
some state ψ holds; Kiϕ: agent i knows ϕ . The other standard CTL formulae, e.g., AFϕ: for all paths
ϕ eventually holds, can be derived from the above. The formal definition of satisfaction in interpreted
systems follows.

50 Automated Verification of Quantum Protocols using MCMAS

In an interpreted system M the evolution function t determines a transition relation M−→ on states such
that s M−→ s′ iff there is a joint action α ∈ Act such that t(s,α) = s′. A path π is an infinite sequence of

states s0
M−→ s1

M−→ Further, πn denotes the n-th state in the sequence, i.e, sn. Finally, for each agent
i ∈ Ag, we introduce the epistemic equivalence relation ∼M

i such that s∼M
i s′ iff li(s) = li(s′).

Given the IS M , a state s, and a formula φ ∈L , the satisfaction relation � is defined as follows:

(M ,s) � p iff V (p,s)
(M ,s) � ¬φ iff (M ,s) 6� φ

(M ,s) � φ ∨φ ′ iff (M ,s) � φ or (M ,s) � φ ′

(M ,s) � EXφ iff there is a path π such that π0 = s, and (M ,π1) � φ

(M ,s) � EGφ iff there is a path π such that π0 = s, and for all n ∈ N, (M ,πn) � φ

(M ,s) � EφUφ ′ iff there is a path π such that π0 = s, for some n ∈ N, (M ,πn) � φ ′,
and for all n′, 0≤ n′ < n implies (M ,πn′) � φ

(M ,s) � Kiφ iff for all s′ ∈ S, s∼M
i s′ implies (M ,s′) � φ

A formula φ ∈L is true in an IS M , or M � φ , iff for all s ∈ S, (M ,s) � φ .
In [17] the authors present a methodology for the verification of IS based on model checking [6] via

ordered binary decision diagrams. These verification techniques have been implemented in the MCMAS

model checker. The input to the model checker is given as an ISPL program, which is essentially a
machine readable IS.

2.3 Quantum Epistemic Logic

A formal framework for reasoning about temporal and epistemic properties of distributed quantum systems
was developed in [10] on top of DMC. The authors argue that quantum knowledge is not a meaningful
concept, but it is of interest to reason about classical knowledge pertaining to a quantum system. In this
sense, the quantum information possessed by an agent concerns the qubits she owns, the local operations
she applies to these qubits, the non-local entanglement she shares initially, and possibly prior knowledge
of her local quantum inputs. All this information is contained in her local state Γi and her event sequence
Ei. Given a network N , the epistemic accessibility relation ∼N

i for an agent Ai is defined in [10] as
follows: for all configurations C = σ , |i Γi,Ai : Qi.Ei and C′ = σ ′, |i Γ′i,Ai : Q′i.E

′
i in CN , C and C′ are

indistinguishable to agent Ai, written as C ∼N
i C′, if Γi = Γ′i and Ei = E ′i . The semantics for the modal

operator Ki for the knowledge of agent Ai is then defined in the usual way: (C,N) � Kiϕ iff for all C′,
C′ ∼N

i C implies (C′,N) � ϕ .
We now give the truth conditions for all formulae in L in a network N .The set of atomic propositions

AP = {x = v,x = y,Ai has q,q1 . . .qn = |ψ〉 ,qi = q j} is considered in [7]. In a configuration C of a
network N the truth conditions for these atomic propositions are given as follows:

(C,N) � x = v iff there is an agent i such that Γi(x) = v
(C,N) � x = y iff there are agents i, j such that Γi(x) = Γi(y)
(C,N) � Ai has q iff q ∈ Qi

(C,N) � q1 . . .qn = |ψ〉 iff q1 . . .qn = |ψ〉
(C,N) � qi = q j iff there is |ψ〉 such that |ψ〉= qi = q j

In networks the small-step rules given in Section 2.1 determine a transition relation N−→ such that
C N−→C′ iff there is a rule that applied to C returns C′. A path γ is an infinite sequence of configurations
C0

N−→C1
N−→ Further, γn denotes the n-th state in the sequence, i.e, Cn. Finally, for each agent Ai

F. Belardinelli, P. Gonzalez and A. Lomuscio 51

in the network, we introduce the epistemic equivalence relation ∼N
i such that C ∼N

i C′ iff Γi = Γ′i and
Ei = E ′i .

Given the network N , a configuration C, and a formula φ ∈L , the satisfaction relation � is defined
as follows:

(C,N) � p iff C satisfies the corresponding condition above for atomic p ∈ AP
(C,N) � ¬φ iff (C,N) 6� φ

(C,N) � φ ∨φ ′ iff (C,N) � φ or (C,N) � φ ′

(C,N) � EXφ iff there is a path γ such that γ0 =C, and (γ1,N) � φ

(C,N) � EGφ iff there is a path γ such that γ0 =C, and for all n ∈ N, (γn,N) � φ

(C,N) � EφUφ ′ iff there is a path γ such that γ0 =C, for some n ∈ N, (γn,N) � φ ′,
and for all n′, 0≤ n′ < n implies (γn′ ,N) � φ

(C,N) � Kiφ iff for all C′ ∈N , C ∼N
i C′ implies (C′,N) � φ

A formula φ ∈L is true in a network N , or N � φ , iff for all configurations C, (C,N) � φ .

2.4 Quantum Teleportation Protocol
The goal of the Quantum Teleportation Protocol (QTP) is to transmit a qubit from one party to another
with the aid of an entangled pair of qubits and classical resources. For reasons of space we refer to [5] for
a detailed presentation of QTP. The DMC specification of the protocol is given in [9] as:

NQT P = A : {1,2}.[(c!s2s1).M
0,0
12 E12] | B : {3}.[Xx2

3 Zx1
3 .(c?x2x1)] ‖ E23.

The informal reading is as follows: Alice A and Bob B share the entangled pair E23 of qubits 2 and 3, and
Alice wants to transmit the input qubit 1. In the first step, she entangles (E12) her qubits 1 and 2. Then she
measures (M0,0

12) both of them. Next, she sends via classical communication (c!s2s1) the measurement
outcomes to Bob. Upon receipt (c?x2x1), Bob applies corrections (Xx2

3 Zx1
3) to his qubit 3 depending on

these measurements. The result is that Bob’s qubit 3 is guaranteed to be in the same state as Alice’s input
qubit 1.

3 Formal Mapping

In this section we present a methodology for translating a protocol specified in DMC into the corresponding
IS. Formally, we define a mapping f : DMC→ IS, such that f preserves satisfaction of formulae in the
specification language L . First, we describe the translation of the global quantum state and classical
states of agents. Then we cover the rules in DMC. Finally, we show that f is sound.

3.1 Classical States of Agents and Global Quantum State

Given a network N we introduce an agent i ∈ Ag for each agent Ai(ii,oi) : Qi.Ei in N , as well as the
Environment agent E. We take a local state li ∈ Li of agent i to be a tuple of vector variables (~x,~y,~s,~q, pc)
defined as follows:

• Each classical input bit in ii is mapped to a variable y ∈ li in the domain {0,1}.
• A bit received from an agent via the classical receive event c?x in the event sequence Ei is mapped

to a variable x ∈ li in the domain {0,1,⊥}, where ⊥ denotes the undefined value before communi-
cation.

52 Automated Verification of Quantum Protocols using MCMAS

• A variable s ∈ li, called signal, represents the outcome of a measurement event Mα
q in the event

sequence Ei, where q is the measured qubit and α is a measurement angle. A signal can attain
values {0,1,⊥}, where ⊥ denotes the undefined value of the signal before the agent executes the
measurement.

• A variable q ∈ li in the domain {0,1,2} represents the ownership relation between agent Ai and
qubit q with the following meaning: if Ai is not in possession of q, i.e., q /∈ Qi, then we take q = 0.
If Ai owns the qubit q, i.e., q ∈ Qi, then q = 1 or q = 2. The former value represents that Ai does
not know the exact state of the qubit, the latter value represents that she knows it. We assume
that the agent knows the state of the qubit once she measures it or prepares it in a specific state.
This is motivated as there is classical information involved in both cases. However, the agent loses
this knowledge when she sends the qubit to another agent, as it is no longer in her possession, or
entangles it with another qubit. Note that correction commands preserve knowledge because they
are deterministic actions that neither entangle nor separate qubits.

• pc ∈ li is a counter for the events in the event sequence Ei executed by agent Ai.

Example 1. Consider the specification of QTP in DMC as given in Section 2.4. The local state
of Alice is described by the tuple lA = (s1,s2,q1,q2,q3, pc), and similarly the local state of Bob is
lB = (x1,x2,q1,q2,q3, pc). In the initial state Alice owns the input qubits q1 and q2 in the entangled pair,
while Bob owns the qubit q3, and neither of them knows anything about their qubits. Alice has not yet
measured any qubit nor has she sent anything to Bob. The program counters of both agents point to the
first event in their event sequences. All this is captured in variable assignments (⊥,⊥,1,1,0,1) for Alice
and (⊥,⊥,0,0,1,1) for Bob.

A local state lE ∈ LE of the Environment represents the quantum state σ of the network. lE is a tuple
of vector variables (~q,~q′,~e,gc) defined as follows:
• We divide the global quantum state at any given time into the smallest possible substates - individual

qubits and/or systems of entangled qubits - such that these are in pure states, i.e., they can be
represented as a vector in a Hilbert space. We generate the reachable quantum state space of the
network using the small-step rules for patterns and enumerate all such encountered substates. Thus,
every reachable substate has an associated name qsn, n ∈ N.

• For every qubit q ∈N we introduce a variable q ∈ lE . The domain of q is the set of names of
quantum states that q may attain in any run of the protocol, together with the value ⊥ indicating
that the qubit is not in a pure state but entangled with other qubits.

• Similarly, for every system of entangled qubits we introduce a variable e ∈ lE . The domain of e is
the set of names of quantum states that the system may attain, together with the value ⊥ indicating
that either the system is not in a pure state or its qubits are not entangled.

• Each variable q and e is assigned a name if only if they are pure and cannot be further separated.
Otherwise, they are assigned the value ⊥. The global state σ is then the tensor product of these
substates.

• In addition, we make use of an auxiliary variable q′ for each qubit q ∈N recording the name of its
initial state, and introduce the global counter gc ∈ lE that increases with every action in the network.
This is used to track the global time and to enumerate the configurations in CN according to their
occurrence in the path.

F. Belardinelli, P. Gonzalez and A. Lomuscio 53

Action Qubit/Entangled System State Name

Initially q1 [a,b]T qs1
e23

1
2 [1,1,1,−1]T qs2

E12 e123
1
2 [a,a,a,−a,b,b,−b,b]T qs3

M0
1

q1

1
2 [
√

2,
√

2]T qs4
1
2 [
√

2,−
√

2]T qs5

e23

1
2 [a+b,a+b,a−b,−a+b]T qs6
1
2 [a−b,a−b,a+b,−a−b]T qs7

M0
2

q2

1
2 [
√

2,
√

2]T qs4
1
2 [
√

2,−
√

2]T qs5

q3

[a,b]T qs1
[a,−b]T qs8
[b,a]T qs9
[−b,a]T qs10

Xx2
3 Zx1

3 q3 [a,b]T qs1

Table 1: Enumeration of quantum substates in the evolution of QTP.

Example 2. The global quantum state of QTP is represented in the local state of the Environment
E as the tuple lE = (q1,q2,q3,q′1,q

′
2,q
′
3,e23,e123,gc). The initial state of the input qubit q1 is [a,b]T , for

a,b ∈ C. We assume that it is not equal to states [1,0]T and [0,1]T of the standard basis, nor to states
1
2 [
√

2,
√

2]T and 1
2 [
√

2,−
√

2]T of the measurement basis. In these cases there are fewer states, but the
procedure is analogous. Table 1 shows the enumeration of substates occurring in all possible runs of the
network, as Alice and Bob execute quantum commands according to QTP. For instance, the initial state
of the network is (qs1,⊥,⊥,qs1,⊥,⊥,qs2,⊥,1). Note that only the input qubit q1 and the system of two
entangled qubit e23 have assigned named states. This is because the individual qubits q2 and q3 are not in
a pure state and the system of all three qubit e123 can be further separated. Indeed, the whole quantum
state can be expressed as the tensor product [a,b]T ⊗ 1

2 [1,1,1,−1]T , or by using names qs1⊗qs2.

3.2 Transition Rules

Events in the event sequence Ei of agent Ai are mapped into actions in Acti. Actions are executed according
to a protocol function Pi and their effects are described by evolution functions ti and tE depending on
whether the classical state of agent Ai changes, or the quantum state σ of the system changes, or both.
Before introducing the mapping for events, note that DMC is a probabilistic calculus, whereas IS have a
Boolean semantics. We deal with this issue by allowing all admissible transitions, abstracting away from
the probability distribution. As a result, we lose the ability to reason about the probability of reaching a
state. However, this is not an issue for us as we need to reason about non-probabilistic properties only as
the choice of the language L demonstrates.

Note also that the execution of a pattern P in DMC occurs in a single transition step and depends
on the big-step semantics of the pattern (see Rule 1). However, we handle transitions at the level of
individual commands of P , and so the execution depends on the small-step semantics of patterns and
may span across several time steps. This leads to a finely grained state space. In the rest of this section we
present the actions, the protocols, and the evolution functions associated with the classical and quantum
communication and the quantum commands presented in Section 2.1.

Classical rendez-vous. Assume that agent Ai sends the value of y to agent A j who stores it in x,
specified in DMC as Γi,Ai : Qi.c!y and Γ j,A j : Q j.c?x, and that this is the vth (resp. wth) event in Ei

54 Automated Verification of Quantum Protocols using MCMAS

(resp. E j). We translate this by considering the actions snd j y0 and snd j y1 in the set Acti of actions for
agent i, and action rcv i x in Act j. The protocol functions are:

Pi(li) = {snd j y0}, if pc = v∧ y = 0,
Pi(li) = {snd j y1}, if pc = v∧ y = 1,

Pj(l j) = {rcv i x}, if pc = w.

The configuration transition, described by Rule 2, is translated into the following evolution functions for
the agents i and j:

ti(li,Acti,Act j) = pc 7→ pc+1, if (Acti = snd j y0∨Acti = snd j y1)∧Act j = rcv i x,

t j(l j,Acti,Act j) = pc 7→ pc+1∧ x 7→ 0, if Acti = snd j y0∧Act j = rcv i x,

t j(l j,Acti,Act j) = pc 7→ pc+1∧ x 7→ 1, if Acti = snd j y1∧Act j = rcv i x.

The rationale behind the above equations is that when agents perform paired send/receive actions at
the same time step, their program counters are incremented, and variable x of agent A j is assigned the
transmitted value.

Quantum communication. Assume that agent Ai sends a qubit q ∈ Qi to agent A j, described as
Γi,Ai : Qi.qc!q and Γ j,A j : Q j.qc?q, and that this is the vth (resp. wth) event in Ei (resp. E j). We introduce
actions qsnd j q and qrcv i q in Acti and Act j respectively. The protocol functions are:

Pi(li) = {qsnd j q}, if pc = v,

Pj(l j) = {qrcv i q}, if pc = w.

Rule 3 defines the configuration transition in terms of sets of qubits Qi and Q j. When Ai sends the qubit
q, it is removed from her set, and when A j receives q, it is added to her set. This is translated into IS by
the evolution functions:

ti(li,Acti,Act j) = pc 7→ pc+1∧q 7→ 0, if Acti = qsnd j q∧Act j = qrcv i q,

t j(l j,Acti,Act j) = pc 7→ pc+1∧q 7→ 1, if Acti = qsnd j q∧Act j = qrcv i q.

This means that when both agents concurrently execute the respective quantum communication events,
their local program counters are incremented, and the ownership of the qubit changes, i.e., Ai is no longer
in possession of q while A j owns it but does not know its state.

Corrections. The events X s
q and Zs

q differ only in their matrix representations, so we describe them
together. Assume that agent Ai executes the Pauli operator X or the Pauli operator Z on a qubit q at step
v of Ei if signal s = 1, otherwise she skips the event. This scenario has the following DMC description:
Γi,Ai : q]Ri.U s

q , with U s
q ∈ {X s

q ,Z
s
q}. We introduce actions x q and z q in Acti, and since the agent applies

the event conditionally, we also include the action skip. In the rest of the description we refer to both
actions x q and z q as u q. The protocol function is then given as:

Pi(li) = {skip} if pc = v∧ s = 0;
Pi(li) = {u q} if pc = v∧ s = 1.

For example, we have the following ground protocol function for Bob in QTP:

PB(lB) = {skip}, if pc = 3∧ x1 = 0; PB(lB) = {skip}, if pc = 4∧ x2 = 0;
PB(lB) = {z q3}, if pc = 3∧ x1 = 1; PB(lB) = {x q3}, if pc = 4∧ x2 = 1.

F. Belardinelli, P. Gonzalez and A. Lomuscio 55

The small-step semantics for corrections is defined as σ ,Γi
U s

q−→U
sΓi
r σ ,Γi. Assume that the qubit q is in

system e, which again may be just q or some entangled system. The local state of the agent Ai changes
only through the pc increment. We define the evolution functions as:

tE(lE ,Acti) = gc 7→ gc+1∧ e 7→ qsy, if e = qsx∧Acti = u q;
ti(li,Acti) = pc 7→ pc+1, if Acti = u q∨Acti = skip;

where qsx (resp. qsy) is the name of the state before (resp. after) the execution. The ground evolution
function of E in QTP with respect to Bob’s corrections Xx2

3 Zx1
3 is given as the following equations

corresponding to measurement outcomes x1x2 7→ 10, x1x2 7→ 01, and x1x2 7→ 11 respectively. Note that in
the last case Bob executes both actions z q3 and x q3 sequentially, while in the first two cases he executes
only one of them and skips the other.

tE(lE ,ActB) = gc 7→ gc+1∧q3 7→ qs1, if q3 = qs8∧ActB = z q3;
tE(lE ,ActB) = gc 7→ gc+1∧q3 7→ qs1, if q3 = qs9∧ActB = x q3;
tE(lE ,ActB) = gc 7→ gc+1∧q3 7→ qs9, if q3 = qs10∧ActB = z q3.

Entanglement. Assume that agent Ai applies at step v of Ei the entanglement operator Eqr on qubits q
and r. The DMC definition of the agent in this case is Γi,Ai : q,r]Ri.Eqr. Since this event is independent
of signals, we add only one corresponding action ent q r to Acti and define the following protocol function:

Pi(li) = {ent q r}, if pc = v. The small-step rule for entanglement is given as σ ,Γi
Eqr−→ CZqrσ ,Γi, where

CZqr is the controlled-Z operator realising the entanglement. Since we divide the global state σ into its
smallest pure substates, we have two possible situations. In the first case q ∈ e′ and r ∈ e′′, where e′ and
e′′ are isolated qubits, distinct entangled systems, or combination of both. The resulting entangled system
e is the union of the two systems e′ and e′′, and we define the evolution function of the Environment E as:

tE(lE ,Acti) = gc 7→ gc+1∧ e 7→ qsz∧ e′ 7→ ⊥∧ e′′ 7→ ⊥, if e′ = qcx∧ e′′ = qcy∧Acti = ent q r;

where qsx, qsy, and qsz are the names of the quantum states in which the systems e′, e′′ are during the
execution of the event, and e after the execution. For instance, the ground evolution function in QTP for
Alice’s entanglement E12 is:

tE(lE ,ActA) = gc 7→ gc+1∧ e123 7→ qs3∧q1 7→ ⊥∧ e23 7→ ⊥,
if q1 = qc1∧ e23 = qc2∧ActA = ent q1 q2.

Note that there may be many possible combinations of various states for e′ and e′′, and we have to define
the evolution function for all of them. In the second case the qubits q and r are part of the same system e
and we simply have the evolution function:

tE(lE ,Acti) = gc 7→ gc+1∧ e 7→ qsy, if e = qsx∧Acti = ent q r;

where qsx (resp. qsy) is the name of the state before (resp. after) the execution. In both cases the local
state of agent Ai is updated as follows:

ti(li,Acti) = pc 7→ pc+1∧q 7→ 1∧ r 7→ 1, if Acti = ent q r.

This equation states that the counter of Ai is incremented and the agent loses any knowledge about the
state of q and r she might have had, since neither qubit is in a pure state anymore.

Measurement. This is a complex event modifying the quantum state of the network as well as the
local states of agents. Suppose that agent Ai in step v of Ei measures her qubit q in the {|+α〉 , |−α〉} basis,
specified in DMC as Γi,Ai : q]Ri.

t [Mα
q]

s, where s and t are signals. A measurement is a stochastic event

56 Automated Verification of Quantum Protocols using MCMAS

/0 /0 Actions m q +α , m q −α

Protocol Pi(li(g)) = {m q +α ,m q −α}, if pc = v

s /0
Actions m q s0 +α , m q s0 −α , m q s1 +α , m q s1 −α

Protocol Pi(li(g)) = {m q s0 +α ,m q s0 −α}, if pc = v∧ s = 0
Pi(li(g)) = {m q s1 +α ,m q s1 −α}, if pc = v∧ s = 1

/0 t
Actions m q t0 +α , m q t0 −α , m q t1 +α , m q t1 −α

Protocol Pi(li(g)) = {m q t0 +α ,m q t0 −α}, if pc = v∧ t = 0
Pi(li(g)) = {m q t1 +α ,m q t1 −α}, if pc = v∧ t = 1

s t

Actions m q s0 t0 +α , m q s0 t0 −α , m q s0 t1 +α , m q s0 t1 −α ,
m q s1 t0 +α , m q s1 t0 −α , m q s1 t1 +α , m q s1 t1 −α

Protocol

Pi(li(g)) = {m q s0 t0 +α ,m q s0 t0 −α}, if pc = v∧ s = 0∧ t = 0
Pi(li(g)) = {m q s0 t1 +α ,m q s0 t1 −α}, if pc = v∧ s = 0∧ t = 1
Pi(li(g)) = {m q s1 t0 +α ,m q s1 t0 −α}, if pc = v∧ s = 1∧ t = 0
Pi(li(g)) = {m q s1 t1 +α ,m q s1 t1 −α}, if pc = v∧ s = 1∧ t = 1

Table 2: Actions and protocol rules for various degree of dependency of measurements.

and may also depend on signals s and t. We express this non-determinism by associating two actions to a
given local state li of agent i. However, due to a possible dependency on signals s and t, there are four
different sets of actions and protocol rules. We list them in Table 2, where /0 means that the measurement
does not depend on a particular signal.

The following two transitions are defined in the small-step semantics for the measurement event:

σ ,Γi

t [Mα
q]

r

−−−→λ 〈+αΓi
|
q

σ ,Γi[0/q] and σ ,Γi
t [Mα

r]
s1

−−−−→λ 〈−αΓi
|
q

σ ,Γi[1/q]. This is the source of non-determinism
in the transition system, but we do not consider the probability λ as long as it is non-zero.

There are again four types of evolution functions. They differ in the computation of quantum states,
and since we give only the general rules, here we describe the evolution functions only for the independent
measurement, i.e., when s = t = /0. As far as the translation rules are concerned, the other three types
differ only in the names of the actions and the actual names of quantum states. We can translate them
analogously.

We now consider two cases where both measurement outcome are possible. First, for the measurement
of an isolated qubit q we define the evolution function of the Environment E as follows:

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs+α
, if q = qcx∧Acti = m q +α ;

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs−α
, if q = qcx∧Acti = m q −α ;

where qs+α
and qs−α

are names of the {|+α〉 , |−α〉} measurement basis. If the qubit q is part of an
entangled system e, then the system becomes separated on measurement. The measured qubit q collapses
and the rest of qubits form a new system e′. We define the evolution function as follows:

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs+α
∧ e 7→ ⊥∧ e′ 7→ qsy, if e = qcx∧Acti = m q +α ,

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs−α
∧ e 7→ ⊥∧ e′ 7→ qsz, if e = qcx∧Acti = m q −α .

In both cases the measurement outcome is assigned to a signal variable s′ of agent Ai and her evolution
function is given by:

ti(li,Acti) = pc 7→ pc+1∧ s′ 7→ 0∧q 7→ 2, if Acti = m q +α ;
ti(li,Acti) = pc 7→ pc+1∧ s′ 7→ 1∧q 7→ 2, if Acti = m q −α .

For instance, consider the first measurement that Alice performs in QTP. All three qubits are entangled
together and therefore measuring the input qubit q1 causes separation of the system e123 into two parts,

F. Belardinelli, P. Gonzalez and A. Lomuscio 57

q1 and e23, and has two possible outcomes. Both have probability λ = 0.5, but we do not take this into
account since all we require is that they are non-zero, therefore the respective transitions are admissible.
We have the following ground evolution functions for the Environment and Alice:

tE(lE ,ActA) = gc 7→ gc+1∧q1 7→ qs4∧ e123 7→ ⊥∧ e23 7→ qs6, if e123 = qc3∧ActA = m q1 +α ;
tE(lE ,ActA) = gc 7→ gc+1∧q1 7→ qs5∧ e123 7→ ⊥∧ e23 7→ qs7, if e123 = qc3∧ActA = m q1 −α ;
tA(lA,ActA) = pc 7→ pc+1∧ s1 7→ 0∧q1 7→ 2, if ActA = m q1 +α ;
tA(lA,ActA) = pc 7→ pc+1∧ s1 7→ 1∧q1 7→ 2, if ActA = m q1 −α .

In the case that the measured qubit is in a state that coincides with one of the states of the measurement
basis, there is only one possible outcome and we need to prevent reaching an impossible state. The
translation of the transition function in case that a measurement outcome has zero probability requires
modification of the evolution functions. We only show the case when measuring |−α〉 is impossible. The
evolution function of the Environment is given as:

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs+α
, if q = qc+α

∧ (Acti = m q +α ∨Acti = m q −α).

The Environment “signals” that the measurement of q in a quantum state qsx has only one possible
outcome. We introduce action envx in ActE and define the following protocol function: PE(lE) = {envx},
if q = qsx. The evolution function of agent i is then defined as:

ti(li,Acti,ActE) = pc 7→ pc+1∧ s′ 7→ 0∧q 7→ 2, if Acti = m q +α ∨(Acti = m q −α ∧ActE = envx),

ti(li,Acti,ActE) = pc 7→ pc+1∧ s′ 7→ 1∧q 7→ 2, if Acti = m q −α ∧ActE 6= envx.

3.3 Correctness Proof

We now show that the translation f defined in the previous section is sound, that is, f preserves the
truth conditions of formulae defined in the language L introduced in Section 2.2 from the set of atomic
propositions AP = {x = y,qi = q j}. In [7] the truth conditions for the atoms in AP in a configuration C of
a network N are given as follows:

(C,N) |= x = y iff there are agents i, j such that Γi(x) = Γi(y);

(C,N) |= qi = q j iff the global quantum state σ is such that σ = qi = q j.

Intuitively, x = y holds iff the bits denoted by x and y are equal. Also, qi = q j holds iff the qubits
denoted by qi and q j are equal. We can prove the following result on the translation f and the language
L .

Theorem 1. For every formula φ ∈L ,

(C,N) |= φ iff (f (N), f (C)) |= φ

Proof. The proof is by induction on the length of φ . For reasons of space, we only provide a sketch
of the proof. If φ is an atomic formula, then φ is of the form a = b, where a and b are both either
bits or qubits. By the definition of f (C) in Section 3.1 we can easily check that (C,N) |= a = b iff
(f (N), f (C)) |= a= b. Thus, the base case holds. The inductive case for propositional connectives ¬
and ∨ is straightforward.

If φ = EXψ , then by the translation of events in the event sequence E into actions in Act defined
in Section 3.2, we can see that two configurations C,C′ ∈N are in the temporal relation induced by

58 Automated Verification of Quantum Protocols using MCMAS

E , or C N−→C′, iff their translations f (C), f (C′) ∈ f (N) are in the temporal relation induced by Act, or

f (C)
f (N)−−−→ f (C′). The result then follows by the induction hypothesis. The inductive case for the other

temporal operators is similar.
If φ = Kiψ , then by the definition of the local state li of an agent i in Section 3.1, we have that

li(f (C)) = l′i(f (C′)) iff Γi = Γ′i and Ei = E ′i , that is, C ∼N
i C′ iff f (C)∼ f (N)

i f (C′). Also in this case the
result follows by the induction hypothesis. This completes the sketch.

Theorem 1 allows us to check whether a specification φ ∈L is satisfied in a network N by verifying
φ in the corresponding interpreted system f (N).

4 Implementation and Evaluation

In this section we present an implementation of the formal map above. DMC2ISPL1 is a source-to-source
compiler, written in C++ and using GNU Octave libraries for matrix operations. DMC2ISPL translates a
protocol specified in a machine-readable DMC input format into an ISPL program. The code generated is
then run by MCMAS, which in turn reports on the specification requirements of the protocol.

We modified DMC, so it can be read by the compiler. The adaptation closely follows the syntax of
the original DMC, but also reflects some features of ISPL. A DMC file consists of five modules: a set of
agents, a set of qubits, whose initial state is explicitly declared, a set of groups of agents that are used
in formulae involving group modalities, a set of formulae to be verified, and a set of macros that allow
agents to perform complex quantum operations in a single time step. The declaration of an agent consists
of a set of input qubits, a set of a priori known qubits, a set of classical inputs, and a set of events the
agent executes. For illustration, the DMC code snippet for QTP can be found in Listing 1.

1 −− AGENTS
2 A l i c e : {1 ,2} ,
3 {} ,
4 {} ,
5 {c ! (Bob , s2) , c ! (Bob , s1) , Me(2 ,0 ,− ,− , s2) , Me(1 ,0 ,− ,− , s1) , En (1 , 2) } ;
6
7 Bob : {3} ,
8 {} ,
9 {} ,

10 {cX (3 , x2) , cZ (3 , x1) , c ? (Al i ce , x2) , c ? (Al i ce , x1) } ;
11
12 −− QUBITS
13 1 : ? ;
14 2 , 3 : { (0 . 5 , 0) , (0 . 5 , 0) , (0 . 5 , 0) , (−0.5 , 0) } ;
15
16 −− FORMULAE
17 AF {3 = i n i t (1) } ;
18 ! EF K (Al ice , {3}) and ! EF K (Bob , {3}) ;
19 AF K(Bob , {3 = i n i t (1) }) ;
20 ! EF K(Al ice , {3 = i n i t (1) }) ;

Listing 1: QTP.dmc

DMC2ISPL has the architecture of a standard compiler. It consists of the three following components:
a module for parsing and validating the DMC input file, a module for generating the reachable quantum

1The source code is available from http://www.doc.ic.ac.uk/ pg809/dmc2ispl.tar.gz

F. Belardinelli, P. Gonzalez and A. Lomuscio 59

ψC (|)〉
00
2

ψC (|)〉
00
4

ψC (|)〉
00
3

ψC (|)〉
01
2

ψC (|)〉
01
4

ψC (|)〉
01
3

ψC (|)〉
10
2

ψC (|)〉
10
4

ψC (|)〉
10
3

ψC (|)〉
11
2

ψC (|)〉
11
4

ψC (|)〉
11
3

ψC (|)〉1

Figure 1: The epistemic accessibility relations of Alice and Bob in the QTP network.

state space, and a module for generating the ISPL output file. Essentially, since MCMAS does not
support matrix arithmetic, the compiler is responsible for computation of the reachable quantum state
space, enumeration of encountered quantum states, and generation of the evolution function of the global
quantum system. Quantum states of a n-qubit system are represented as 2n×1 complex matrices and
unitary operators and measurement projections as 2n×2n sparse complex matrices. After the elimination
of the global phase, whenever two identical state matrices are encountered during the evolution of the
quantum state of the n-qubit system, they have assigned the same name. MCMAS then works with these
enumerations.

We used the compiler to verify QTP, as well as the Quantum Key Distribution (QKD) [12], and the
Superdense Coding (SDC) [4] protocol against the properties from the reference papers [7, 10]. Table 3
summarises these properties. We discuss QTP in more detail.

The figure 1 gives a graphical representation of the possible configurations in the QTP network. Note
that configurations are parametrised by measurement outcomes and the quantum input |ψ〉. The first
formula in QTP section of Table 3 states that the NT P network is correct, since the state of Bob’s qubit
q3 will eventually be equal to the initial state of Alice’s qubit q1. The second formula states that neither
agent knows the actual quantum state of the qubit q3 at any point of the computation. The third formula
states that Bob eventually knows that the state of his qubit q3 is equal to the initial state of qubit q1. The
last formula states that Alice never knows this fact.

Interestingly, while [10] states that all four formulae are true in the model, MCMAS evaluated the
last formula to false. The reason is that even though Alice cannot distinguish configuration C00

3 (|ψ〉)
from C00

4 (|ψ〉), the atom q3 = init(q1) holds in both configurations as Bob does not apply any correction
for measurement outcomes s1s2 7→ 00, and so the quantum state of the system is invariant along this
path. This shows the importance of an automated algorithmic approach to verification as opposed to a
hand-made inspection.

We conclude with some performance considerations. The tests were carried out on a 32-bit Fedora
12 Linux machine with a 2.26GHz Intel Core2 Duo processor and 2.9GiB RAM as follows: first, we
translated the DMC specification into the corresponding ISPL code using the compiler, then we analysed
the resulting code using MCMAS. Table 4 reports the results for the three protocols. It can be seen that

60 Automated Verification of Quantum Protocols using MCMAS

Protocol Formula Reading

QTP

AF(q3 = init(q1)) q3 eventually equals to initial q1
¬EFKA(q3 = |ψ〉)∧¬EFKB(q3 = |ψ〉) neither A nor B ever knows state of q3

AFKB(q3 = init(q1)) B eventually knows q1 was teleported
¬EFKA(q3 = init(q1)) A never knows q1 was teleported

QKD αA = αB→ AF(KA(s1 = s2)∧KB(s1 = s2)) success if A & B used the same basis
αA 6= αB→¬EF(KA(s1 = s2)∨KB(s1 = s2)) failure if A & B used different bases

SDC
AF(s1 = y1∧ s2 = y2) B eventually receives the inputs of A

AFKB(s1 = y1∧ s2 = y2) B eventually knows the inputs
¬EFKAKB(s1 = y1∧ s2 = y2) A never knows the fact above

Table 3: Verified properties of QKD and SDC protocols.

Protocol Reachable States Memory (kB) Time (s)
DMC2ISPL MCMAS DMC2ISPL MCMAS DMC2ISPL MCMAS

QTP 40 108 7184 6068 0.015 0.066
QKD 53 348 7240 6119 0.016 0.014
SDC 4239 2192 8132 6279 0.112 0.407

Table 4: Verification results for QTP, QKD and SDC protocols.

all protocols were verified very quickly. This is due to their small state space and the limited number of
entangled qubits involved.

However, the amount of required resources grows exponentially for a constant increase in the number
of entangled qubits. Additionally, measuring a quantum system using many different measurement angles
results in many unique quantum states, which in turn requires a large number of enumeration values and
an extensive evolution function. This affects the verification of a quantum protocol by MCMAS. We
analysed several experimental protocols to test the limits of the tool. The results showed that protocols
with up to 107 reachable classical states and 20 entangled qubits can be realistically verified.

5 Conclusion

In this paper we presented a methodology for the automated verification of quantum distributed systems
via model checking. We defined a translation from DMC to IS, so that MCMAS can be used to verify
protocols specified in DMC, and we implemented it in a source-to-source compiler. The DMC formalism
was adapted to be used as an input language for the compiler. Several quantum protocols were translated
and their temporal epistemic properties were successfully checked with MCMAS. Given the universality of
the underlying Measurement Calculus [8], the expressive power of DMC in terms of available quantum
operations is complete. However, DMC does not support any control flow statement for the classical part
of protocols. This is one of the two major limitations of the technique, although it can be solved by a
suitable extension of the language. Another limitation results from the state space explosion and cannot be
easily overcome since the quantum simulator requires exponential time and space on a classical computer.

References

[1] A. Baltag & S. Smets (2005): Complete Axiomatizations for Quantum Actions. International Journal of
Theoretical Physics 44(12), doi:10.1007/s10773-005-8022-2.

http://dx.doi.org/10.1007/s10773-005-8022-2

F. Belardinelli, P. Gonzalez and A. Lomuscio 61

[2] A. Baltag & S. Smets (2006): LQP: the dynamic logic of quantum information. Mathematical Structures in
Computer Science 16(3), doi:10.1017/S0960129506005299.

[3] A. Baltag & S. Smets (2008): A Dynamic-Logical Perspective on Quantum Behavior. Studia Logica 89(2),
doi:10.1007/s11225-008-9126-5.

[4] C. H. Bennett & S. J. Wiesner (1992): Communication via one- and two-particle operators on Einstein-
Podolsky-Rosen states. Physical Review Letters 69(20), doi:10.1103/PhysRevLett.69.2881.

[5] C. H. Bennett et al. (1993): Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Physical Review Letters 70(13), doi:10.1103/PhysRevLett.70.1895.

[6] E. M. Clarke, Jr., O. Grumberg & D. A. Peled (1999): Model Checking. MIT Press.
[7] V. Danos & E. D’Hondt (2008): Classical Knowledge for Quantum Cryptographic Reasoning. Electronic

Notes in Theoretical Computer Science 192(3), doi:10.1016/j.entcs.2008.10.026.
[8] V. Danos, E. Kashefi & P. Panangaden (2007): The Measurement Calculus. J. ACM 54(2),

doi:10.1145/1219092.1219096.
[9] V. Danos et al. (2007): Distributed Measurement-based Quantum Computation. Electronic Notes in Theoretical

Computer Science 170, doi:10.1016/j.entcs.2006.12.012.
[10] E. D’Hondt & P. Panangaden (2005): Reasoning about quantum knowledge. In: Proceedings of FSTTCS ’05,

doi:10.1007/11590156 45.
[11] E. D’Hondt & M. Sadrzadeh (2011): Classical Knowledge for Quantum Security. Electronic Notes in

Theoretical Computer Science 270(1), doi:10.1016/j.entcs.2011.01.014.
[12] A. K. Ekert (1991): Quantum cryptography based on Bell’s theorem. Physical Review Letters 67(6),

doi:10.1103/PhysRevLett.67.661.
[13] M. Elboukhari, M. Azizi & A. Azizi (2010): Analysis of the Security of BB84 by Model Checking. IJNSA

2(2), doi:10.5121/ijnsa.2010.2207.
[14] R. Fagin et al. (2003): Reasoning About Knowledge. MIT Press.
[15] S. J. Gay, R. Nagarajan & N. Papanikolaou (2008): QMC: A Model Checker for Quantum Systems. In:

Proceedings of CAV 2008, doi:10.1007/978-3-540-70545-1 51.
[16] M. Kwiatkowska, G. Norman & D. Parker (2004): Probabilistic symbolic model checking with PRISM: a

hybrid approach. Int. J. Softw. Tools Technol. Transf. 6(2), doi:10.1007/s10009-004-0140-2.
[17] A. Lomuscio, H. Qu & F. Raimondi (2009): MCMAS: a model checker for the verification of multi-agent

systems. In: Proceedings of CAV ’09, doi:10.1007/11691372 31.
[18] R. van der Meyden & M. Patra (2003): Knowledge in Quantum Systems. In: Proc. of TARK ’03,

doi:10.1145/846241.846257.
[19] M. A. Nielsen & I. L. Chuang (2000): Quantum Computation and Quantum Information. Cambridge

University Press.
[20] M. Ying, Y. Li, N. Yu & Y. Feng (2010): Model-Checking Linear-Time Properties of Quantum Systems.

http://arxiv.org/abs/1101.0303.

http://dx.doi.org/10.1017/S0960129506005299
http://dx.doi.org/10.1007/s11225-008-9126-5
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1016/j.entcs.2008.10.026
http://dx.doi.org/10.1145/1219092.1219096
http://dx.doi.org/10.1016/j.entcs.2006.12.012
http://dx.doi.org/10.1007/11590156_45
http://dx.doi.org/10.1016/j.entcs.2011.01.014
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.5121/ijnsa.2010.2207
http://dx.doi.org/10.1007/978-3-540-70545-1_51
http://dx.doi.org/10.1007/s10009-004-0140-2
http://dx.doi.org/10.1007/11691372_31
http://dx.doi.org/10.1145/846241.846257
http://arxiv.org/abs/1101.0303

Preliminary Report. Final version to appear in:
QAPL 2012

c© J.T. Bradley
This work is licensed under the
Creative Commons Attribution License.

Mean field and fluid approaches to Markov chain analysis

Jeremy T. Bradley ∗

jb@doc.ic.ac.uk

Department of Computing, Imperial College London, UK

Representing the explicit state space of performance models has inherent difficulties. Just as the
state-space explosion effects functional correctness evaluation, so it can also be easily a problem in
performance models. In particular, classical Markov chain analysis of any variety requires explo-
ration of the global state space and, even for a simple system, this quickly becomes computationally
infeasible. Fluid and mean-field analysis techniques attempt to side-step the state-space explosion
and provide a computationally cheap way of analysing certain features of Markov chains.

1 Introduction

In recent years, there has been a substantial interest in the fluid or mean-field approach to analysing
stochastic problems in computing [1, 2, 3, 4, 5, 6, 7] and stochastic process algebra models in particu-
lar [8, 9, 10, 11, 12]. This style of analysis of the underlying Markov process offers an attractive com-
putational alternative to traditional explicit state space analysis techniques. However, there are certain
limitations which need to be kept in mind. Often fluid and mean-field analysis require the construction
of an aggregate state space that means that specific model features are abstracted away. Additionally, in
constructing a fluid model of a large Markov chain which incorporates synchronisation features, approx-
imations may need to be made and it is important that a modeller is made aware of those approximations
when analysing their model. If we are prepared to live with these aspects of the analysis, then the com-
putational benefits are such that huge analysis tasks can be carried out in a relatively short period of
time.

Quantitative analysis of Markov processes by means of the fluid or mean-field approach exploits sub-
stantial parallelism in the original model to construct a series of ordinary differential equations (ODEs)
which capture the transient evolution of the system. Analysis of substantial Markov models using va-
riety of fluid techniques [1, 13, 10, 8] is made possible and analyses of state spaces of 10100 states and
beyond are not uncommon. Explicit state-space performance techniques which analyse the underlying
continuous-time Markov chain directly (for example, [14, 15]) are typically limited to 1011 states for a
steady-state style of analysis. It is perhaps, slightly unfair to make this comparison directly, as fluid and
mean-field analyses do not scale with the number of global states in a model, but instead with the local
state space of the constituent Markov processes.

In discrete time, mean-field techniques have been well documented by Benaı̈m and Le Boudec [2].
McCaig et al. [12] developed a discrete-time mean-field framework around the synchronous process al-
gebra WSCCS, based on original work by Sumpter [16]. While Bakhshi et al. [4, 7] have developed some
discrete-time model-specific analysis techniques for gossip protocols using the mean-field technique. In
the continuous-time domain, Hillston developed fluid-flow analysis [1] to make first-order approxima-
tions of massively parallel PEPA models. Bortolussi [8] has presented a formulation for the stochastic
constraint programming language, sCCP and Cardelli has a first-order fluid analysis translation to ordi-
nary differential equations (ODEs) for the π-calculus [9].

∗The author is funded in part by the EPSRC on the AMPS project (reference EP/G011737/1).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

J.T. Bradley 63

2 Fluid passage-time analysis

The key impact of fluid and mean-field analysis techniques has been that it allows the modeller to trial
many different system configurations and parameterisations easily whereas, as has been noted, a single
system instance might take many hours or days to analyse using classical techniques. Latterly, fluid
techniques have been used to extract useful passage-time measures [17, 18, 19] from Markov processes
specified using stochastic process algebra. This allows a modeller to focus on the duration of key trans-
actions in the higher-level system. With the rapid computation of fluid analysis, parameter sweeping
can be efficiently performed to find which model variables (exponential rates or scale parameters) have
greatest effect on a key passage-time measure. Often these passage times will take the form of require-
ments or service level objectives (SLOs) for the system, for example, 97.8% of search queries should be
responded to within 0.5 seconds. Understanding how a key passage time is sensitive to changes in model
parameters can help improve the design of the system. In particular how a passage time reacts to changes
in the scale of component deployment within the system, so-called scalability analysis, is critical to the
system engineering process.

References

[1] J. Hillston, “Fluid flow approximation of PEPA models,” in QEST’05, Proceedings of the 2nd Inter-
national Conference on Quantitative Evaluation of Systems, (Torino), pp. 33–42, IEEE Computer
Society Press, September 2005.

[2] M. Benaı̈m and J.-Y. Le Boudec, “A class of mean field interaction models for computer and com-
munication systems,” Performance Evaluation, vol. 65, no. 11-12, pp. 823–838, 2008.

[3] L. Massoulié and M. Vojnovic, “Coupon replication systems,” IEEE/ACM Transactions on Net-
working, vol. 16, pp. 603–616, June 2008.

[4] R. Bakhshi, L. Cloth, W. Fokkink, and B. Haverkort, “Mean-field analysis for the evaluation of
gossip protocols,” in QEST’09, Proceedings of the 5th IEEE Conference on the Quantitative Eval-
uation of Systems, pp. 247–256, IEEE Computer Society, September 2009.

[5] A. Ganesh, S. Lilienthal, D. Manjunath, A. Proutiere, and F. Simatos, “Load balancing via random
local search in closed and open systems,” ACM SIGMETRICS Performance Evaluation Review,
vol. 38, p. 287, June 2010.

[6] S. Shakkottai and R. Johari, “Demand-aware content distribution on the Internet,” IEEE/ACM
Transactions on Networking, vol. 18, pp. 476–489, Apr. 2010.

[7] R. Bakhshi, L. Cloth, W. Fokkink, and B. R. Haverkort, “Mean-field framework for performance
evaluation of push-pull gossip protocols,” Performance Evaluation, vol. 68, no. 2, pp. 157–179,
2011.

[8] L. Bortolussi and A. Policriti, “Stochastic concurrent constraint programming and differential equa-
tions,” in QAPL’07, 5th Workshop on Quantitative Aspects of Programming Languages, vol. 190 of
Electronic Notes in Theoretical Computer Science, pp. 27–42, Elsevier, September 2007.

[9] L. Cardelli, “On process rate semantics,” Theoretical Computer Science, vol. 391, pp. 190–215,
February 2008.

[10] R. Hayden and J. T. Bradley, “A fluid analysis framework for a Markovian process algebra,” Theo-
retical Computer Science, vol. 411, pp. 2260–2297, May 2010.

64 Mean field and fluid approaches to Markov chain analysis

[11] M. Tribastone, S. T. Gilmore, and J. Hillston, “Scalable differential analysis of process algebra
models,” IEEE Transactions on Software Engineering, vol. 38, pp. 205–219, Jan–Feb 2012.

[12] C. McCaig, R. Norman, and C. Shankland, “From individuals to populations: A mean field seman-
tics for process algebra,” Theoretical Computer Science, vol. 412, no. 17, pp. 1557–1580, 2011.

[13] L. Cardelli, “On process rate semantics,” Theoretical Computer Science, vol. 391, pp. 190–215,
February 2008.

[14] W. J. Knottenbelt, P. G. Harrison, M. S. Mestern, and P. S. Kritzinger, “A probabilistic dy-
namic technique for the distributed generation of very large state spaces,” Performance Evaluation,
vol. 39, pp. 127–148, February 2000.

[15] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic symbolic model checker,”
in TOOLS’02, Proceedings of the 12th International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation (A. J. Field et al., ed.), vol. 2324 of Lecture Notes in
Computer Science, (London), pp. 200–204, Springer-Verlag, 2002.

[16] D. J. T. Sumpter and D. S. Broomhead, “Relating individual behaviour to population dynamics,”
Proceedings of the Royal Society: Series B, vol. 268, pp. 925–932, 2001.

[17] A. Clark, A. Duguid, S. T. Gilmore, and M. Tribastone, “Partial evaluation of PEPA models for
fluid-flow analysis,” in Proceedings of the 5th European Performance Engineering Workshop on
Computer Performance Engineering (EPEW) (N. Thomas and C. Juiz, eds.), vol. 5261 of Lecture
Notes in Computer Science, pp. 2–16, Springer Berlin Heidelberg, Aug. 2008.

[18] R. Hayden, A. Stefanek, and J. T. Bradley, “Fluid computation of passage time distributions in large
Markov models,” Theoretical Computer Science, vol. 413, pp. 106–141, January 2012.

[19] R. Hayden, J. T. Bradley, and A. Clark, “Performance specification and evaluation with Unified
Stochastic Probes and fluid analysis,” IEEE Transactions on Software Engineering, 2012. (In press).

Submitted to:
QAPL 2012

c© Boris Köpf
This work is licensed under the
Creative Commons Attribution License.

Quantifying Side-Channels in RSA and AES

Boris Köpf
IMDEA Software Institute

Madrid, Spain
boris.koepf@imdea.org

Quantitative information-flow analysis (QIF) offers methods for reasoning about information-theoretic
confidentiality properties of programs. The measures used by QIF are associated with operational secu-
rity guarantees such as lower bounds for the effort required to determine a secret by exhaustive search.
Moreover, they can be concisely expressed in terms of programming language semantics, which enables
one to leverage existing program analysis techniques for their computation.

This talk reports on a line of work on techniques for the QIF analysis of cache and timing side-
channels in implementations of cryptographic algorithms. Attacks exploiting these side-channels are
highly effective [2, 3, 7], and most countermeasures against them are only heuristic (i.e. they defeat
particular attacks, but are not backed up by a formal security guarantee). The talk will show how QIF
techniques can be used for establishing upper bounds for the side-channel leakage of implementations of
the RSA and AES cryptosystems, based on formal models of the underlying platforms.

For RSA, I will present work [4, 6] on the QIF analysis of input blinding, the state-of-the-art coun-
termeasure against timing attacks. The analysis reveals that blinding offers strong guarantees whenever
the range of possible timing measurements is small. Based on this insight, we propose the combina-
tion of blinding and discretization of execution times as the first countermeasure (beyond constant-time
implementations) against RSA timing attacks that is backed up by a formal security guarantee. Our
experiments on a 1024-bit RSA implementation demonstrate the cost-efficiency of this countermeasure.

For AES, I will report on ongoing work [5] on a method for the automatic QIF analysis of side-
channels due to observable cache behavior. At the heart of this method is a novel technique for efficient
counting of concretizations of abstract cache-states that enables connecting techniques for static cache-
analysis and QIF. We implement this counting procedure on top of the AbsInt TimingExplorer [1], the
most advanced engine for static cache-analysis and perform a study where we derive upper bounds on
the cache leakage of a 128-bit AES executable. Our results demonstrate the feasibility of automating
QIF analyses for cache side-channels of real systems.

References
[1] AbsInt aiT Worst-Case Execution Time Analyzers. http://www.absint.com/a3/.
[2] Daniel J. Bernstein (2005): Cache-timing attacks on AES. Technical Report.
[3] Paul Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Proc.

CRYPTO 2006.
[4] Boris Köpf & Markus Dürmuth: In: Proc IEEE CSF 2009.
[5] Boris Köpf, Laurent Mauborgne & Martin Ochoa: Automatic Quantification of Cache Side-Channels. Cryp-

tology ePrint Archive, Report 2012/034. http://eprint.iacr.org/.
[6] Boris Köpf & Geoffrey Smith: In: Proc. IEEE CSF 2010.
[7] Dag Arne Osvik, Adi Shamir & Eran Tromer: Cache Attacks and Countermeasures: the Case of AES. In:

Proc. CT-RSA 2006.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.absint.com/a3/
http://eprint.iacr.org/

Preliminary Report. Final version to appear in:
QAPL 2012

c© I. Gazeau, D. Miller and C. Palamidessi
This work is licensed under the
Creative Commons Attribution License.

A non-local method for robustness analysis of
floating point programs ∗

Ivan Gazeau, Dale Miller and Catuscia Palamidessi
INRIA and LIX, Ecole Polytechnique

Robustness is a standard correctness property which intuitively means that if the input to the program
changes less than a fixed small amount then the output changes only slightly. This notion is useful in
the analysis of rounding error for floating point programs because it helps to establish bounds on out-
put errors introduced by both measurement errors and by floating point computation. Compositional
methods often do not work since key constructs—like the conditional and the while-loop—are not
robust. We propose a method for proving the robustness of a while-loop. This method is non-local in
the sense that instead of breaking the analysis down to single lines of code, it checks certain global
properties of its structure. We show the applicability of our method on two standard algorithms: the
CORDIC computation of the cosine and Dijkstra’s shortest path algorithm.

Keywords: Program analysis, floating-point arithmetic, robustness to errors.

1 Introduction

Programs using floating point arithmetic are often used for critical applications and it is therefore funda-
mental to develop methods to establish the correctness of such programs. A central problem in dealing
with floating point programs is the propagation of errors due to the digitization of analog quantities and
the introduction of floating point errors during computation. As is well known, floating point arithmetic
on these representations is quite different from real number arithmetic: for example, addition is neither
commutative nor associative [5].

The developers of floating point programs would like to think in terms of real number semantics
instead of the more ad hoc and complicated semantics given by some specific definition of floating point
arithmetic, such as the IEEE standard 754 [8]. A central problem in trying to reason about floating point
programs is that in dealing with non-continuous operators such as the conditional and the while-loop,
floating point errors can result in what appears to be erratic behavior. The problem is that these constructs
are non-robust: small variations in the data can cause large variations in the results.

When the program contains non-robust operators, traditional compositional methods do not work
well. Decomposing the correctness of a looping program using Hoare triples, for example, usually
requires either introducing abstractions (eg, approximations) which can then make conclusions too im-
precise, or to undergo a very complex and intricate proof.

In this paper, we will take a different approach: we shall describe some programs where such erratic
behavior is recognized and find a way to reason and bound all of that behavior. By moving away from
the reasoning using Hoare’s style emphasis on local and compositional analysis of a looping program,
we are able to avoid reasoning about individual erratic behaviors: instead, we will treat such behaviors
as an aggregate and try to bound the behavior of that aggregate.

∗This work has been partially supported by the project ANR-09-BLAN-0345-02 CPP.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

I. Gazeau, D. Miller and C. Palamidessi 67

To illustrate such a possibility in reasoning, consider Dijkstra’s minimal path algorithm [3]. This
greedy algorithm moves from a source node to its neighbors, always picking the node with the least
accumulated path from the source. If one makes small changes to the distances labeling edges, then the
least path distance will change also by a small amount: that is, this algorithm is continuous. However,
the actual behavior of the loop and the marking of subsequent nodes can vary greatly with small changes
to edge lengths. Our approach to reasoning will allow us to view all of these apparently erratic choices
of intermediate paths as an aggregate on which we are able to establish the robustness of the entire
algorithm.

Plan of the paper In the next section we introduce the concept of robustness and we relate it to the
notions of continuity and k-Lipschitz. Section 3 contains our main contribution: a schema for reasoning
about robustness in programs and its correctness. We then show the applicability of our proposal in two
main examples: The CORDIC algorithm for computing cosine, presented in Section 4, and Dijkstra’s
shortest-path algorithm, presented in Section 5. In Section 6 we discuss some related work. Section 7
concludes and discusses some future lines of research.

2 Robustness of floating-point programs

Robustness is a standard concept from control theory [12, 11]. In the case of programming languages,
there are two definitions of robustness that have been considered. One definition used by Chaudhuri et
al [1] considered robustness to be based on continuity. Later Chaudhuri et al [2] considered a stronger
notion of robustness, namely the k-Lipschitz property: that is, changes to the input to a program lead to
only proportionally bounded changes to the output. Another approach was used by Majumdar et al in
[9, 10] where robustness is formulated as “if the input of the program changes by an amount less than
ε , where ε is a fixed constant, then the output changes only slightly." In our paper, we propose a more
flexible and general notion of robustness that generalizes both of these concepts. We now motivate and
explain our notion of robustness in more detail.

The notions of robustness considered in [1, 2] are mainly useful for exact semantics, namely when
we do not take into account the errors introduced by the representation and/or the computation. In this
case, the only deviation comes from the error of the input. The continuity property, that for a function f
on reals is defined as:

∀ε > 0 ∃δ ∀i, i′ ∈ R |i− i′|< δ ⇒ | f (i)− f (i′)|< ε

ensures that the correct output can be approximated when we can approximate the input closely enough.
This notion of robustness, however, is too weak in many settings, because a small variation in the input
can cause an unbounded change in the output. The k-Lipschitz property, defined as

∀i, i′ ∈ R | f (i)− f (i′)| ≤ k|i− i′|

amends this problem because it bounds the variation in the output linearly by the variation in the input.
In our setting, however, the k-Lipschitz property is too strong. This is due to the following reasons

1. If we consider a finite precision semantics, like floating point implementations, the constant factor
k can become much bigger than the one optimal for the exact semantics. For instance, assume that
the available representations are the numbers in the set {k 2−32|k ∈ Z} and rounding is done by
taking the lower value, and observe that a function like f : x 7→ 2−4x, which is 2−4-Lipschitz in

68 A non-local method for robustness analysis of floating point programs

the exact semantics, is only 1-Lipschitz in this approximate semantics. Indeed, there exists two
values that differ by just 2−32 and return a result that differ by 2−32. For example, take 1 and
1− 2−32: we have that f (1) = 2−4 and f (1− 2−32) = 2−4− 2−36, but the second result will be
rounded down to 2−4−2−32.

2. There are algorithms that have a desired precision e as a parameter and are considered correct as
long as the result differs by at most e from the results of the mathematical function they are meant
to implement. A program of this kind may be discontinuous (and therefore not k-Lipschitz) even
if it is considered to be a correct implementation of a k-Lipschitz function. The phenomenon is il-
lustrated by the following program f which is meant to compute the inverse of a strictly increasing
function g : R+→ R+ whose inverse is k-Lipschitz for some k.

f(i){ y=0;
while(g(y) < i){

y= y+e; }
return y; }

The program f approximates g−1 with precision e in the sense that

∀x ∈ R+ f (x)− e≤ g−1(x)≤ f (x)

Given the above inequality, we would like to consider the program f as robust, even though the
function it computes is discontinuous (and hence not k-Lipschitz, for any k).

These two observations lead us to define another property, P1
k,ε , to capture robustness:

∀i, i′ ∈ R, | f (i)− f (i′)| ≤ k|i− i′|+ ε

This property amends the two previous problems by setting ε to 2−32 in the first example and to e in the
second example. It also extends the usual definition of the k-Lipschitz property, which can be expressed
as P1

k,0.
Now, we want to extend this definition to allow for several variables and for other metric spaces

besides R: e.g., probability distributions, intervals arithmetic etc. Thus, we consider, instead, two metric
spaces: one for input (I, dI) and the other for the return value (R,dR). Hence, our robustness property P2

k,ε
becomes

∀i, i′ ∈ I,dR(f (i), f (i′))≤ kdI(i, i′)+ ε

Finally, since we are studying small deviation, it is not useful to get this property for any i and i′

in I but rather when they are close: ie, dI(i, i′) ≤ δ , for suitable values δ ∈ R+. In convex spaces, this
property can be easily extended to pairs of inputs having distance more than δ by using intermediate
values. So, finally, in this paper we propose the property Pk,ε,δ , described in the following definition.

Definition 2.1. Let I and R metric spaces with distance dI and dR respectively, f : I → R a function,
k,ε ∈ R+, and let δ ∈ R+∪{+∞}. We define the property Pk,ε,δ for the function f as follows:

∀i, i′ ∈ I, dI(i, i′)≤ δ =⇒ dR(f (i), f (i′))≤ kdI(i, i′)+ ε

I. Gazeau, D. Miller and C. Palamidessi 69

3 A schema and its correctness

The main characteristic of our schema is to subdivide the code into several parts instead of analyzing it
line by line.

Our template, which we show in a moment, divides the data structures in an algorithm into two
parts, called A and B. Here, A is the witness to the progress of the algorithm: in particular, the stopping
condition will only depend on A (and the input). The structure B is used to accumulate results that provide
the answer when the stopping condition is satisfied.

3.1 The schema structure definition

Instead of presenting a formal definition of program schema and matching of code, we illustrate these
with the schema in Figure 1.

foo(i){
a = a0;
b = b0;
while(S(i,a)){

c = O(a,b,c,i);
a = M(a,c);
b = N(i,b,c);

}
return b; }

Figure 1: The main template

Here, the schema variables a, b, c, etc, denote tuples of
program variables such that no program variable occurs twice
among these schema variables. Program expressions such as

c = O(a,b,c,i);

denotes a program phrase that computes new values for the
variables denoted by c from values of variables in the tuples
a, b, c, and i. The actual computation here will be denoted
by O. This looping program initializes the variables in a and
b with the values in the tuples a0 and b0, respectively. The
stopping condition for the loop is given by the boolean valued
expression S(i,a) and the result of the program is the tuple
of values denoted by the variables in b.

We shall assume that all program variables are typed in the
usual way: variables may range over the values in their asso-
ciated type. Our analysis of the metric properties of a looping

program will, however, consider that tuples of variables, for example, a and b in Figure 1, range over
some metric space on the Cartesian product of the variables in the tuple.

3.2 A sufficient condition for robustness

ListFoo(i){
a = a0;
b = b0;
j = 0;
while(! S(i,a)){

c = O(a,b,c,i);
j = j+1;
l[j] = c;
a = M(a,c);
b = N(i,b,c); }

return l; }

Figure 2: Collecting c values in a list

We shall now prove that a program having the generic struc-
ture of foo given in Figure 1 has, under certain conditions, the
property Pk,ε,δ for some k,ε,δ .

The aim of our method is to postpone the analysis of the ex-
act semantics of commands as far as possible. In order to begin
the analysis without specific knowledge of this semantics, we
need to manipulate other programs made from the functions O,
M, and N that have been identified. For example, the program
listFoo in Figure 2 will be used to extracts the list of values of
c obtained for a particular execution of foo with input i. The
new lines added to listFoo will assume the usual semantics for
natural numbers.

70 A non-local method for robustness analysis of floating point programs

We now define two new programs. The first is the foob
program given below: it has the same shape as foo but instead
of setting c by the computation of O(a,b,c,i), it sets cwith
the values of a list given in input. Naturally, the stop condition
for the loop is now that all element of the list have been accessed. Note that since a was just used in the
computation of O, the commands affecting a are now useless and can be removed.

foo_b(l,i){
// a = a0;

b = b0;
for(int j = 0; j < l.length; j++){

c = l[j];
// a = M(a,c);

b = N(i,b,c); }
return b; }

We have used Java-style instructions such as l.length for the length of the list l and l[j] for the jth

element of the list l. (The // syntax is used to form a comment.) We define the new function fooB(i, i′) =
foob(listFoo(i), i′). Notice that fooB(i, i) = foo(i).

The second program fooa(l) is the same program as foob except that a is returned instead of b. In
this program, the lines where b is set are now useless.

foo_a(l){
a = a0;

// b = b0;
for(int j = 0; j < l.length; j++){

c = l[j];
a = M(a,c);

// b = N(i,b,c);
}
return a; }

Finally, we define fooA(i) = fooa(listFoo(i)). The two function fooA and fooB and relations between
them will be used to indirectly analyze the program foo.

In what follows, we use the following conventions: the domain of the variables a, b, c, and i are A,
B, C and I, respectively, and a0 and b0 are some determined constants of type A and B respectively. For
every type X , the expression X∗ denote the type of lists of type X .

We now introduce four conditions that need to hold to prove that the foo program satisfies Pk,ε,δ for
appropriate values of k, ε , and δ . The condition C1 expresses the property PkN∗ ,εN∗ ,δ for the transformed
program fooB, C2 expresses the fact that there is a relationship between the values stored in A and the
values stored in B, and C3 and C4 address the stability of the stop condition S(i,a).

Condition 3.1 (C1). ∀l ∈C∗.PkN∗ ,εN∗ ,δ (λ z.foob(l,z)).

The next condition states that whenever two inputs i and i′ are within a δ of each other then it is the
case that if their images in A (under fooa) are close, then their images in B (under foob) are close.

Condition 3.2 (C2).

∀i1, i ∈ I,dI(i, i1)≤ δ =⇒ dB(fooB(i, i), fooB(i1, i))≤ kAdA(fooA(i1)), fooA(i))+ ε2

I. Gazeau, D. Miller and C. Palamidessi 71

The stopping condition S should satisfy the following two conditions. The first expresses that the
boundary of the region {a | S(i,a)} cannot vary too much.
Condition 3.3 (C3).

∀a ∈ A,∀i, i′ ∈ I,dI(i, i′)≤ δ ∧ S(i′,a) =⇒ ∃a′ ∈ I,dA(a,a′)≤ ksdI(i′, i)+ εs ∧ S(i,a′)

The following condition on S states that the diameter of the region {a | S(i,a)} is as small as the
desired precision.
Condition 3.4 (C4). ∃εt ,∀a,a′ ∈ A,∀i ∈ I,S(i,a) ∧ S(i,a′) =⇒ dA(a,a′)≤ εt

Finally, our main theorem is the following.
Theorem 3.1. If the program foo terminates and the conditions C1, C2, C3, and C4 hold, then Pk0,ε0,δ

holds for the function computed by foo with k0 = kN∗+ kAks and ε0 = εN∗+ kA(εs + εt)+ ε2.
Proof In the proof, we will use these two observations:

1. Since listFoo(i) is obtained from the computation of foo(i), and since fooB(i, i′) replaces the result
of O by this list, if we compute fooB(i, i) we are replacing each value for c by itself. Therefore we
have that foo(i) = fooB(i, i).

2. In the execution of foo(i), the final value of a that satisfies the stopping condition S(i,a) is fooA(i).
By the observation 1, proving the theorem is equivalent to proving

∀i, i0 ∈ I,dI(i, i0)≤ δ =⇒ dB(fooB(i, i), fooB(i0, i0))≤ k0dI(i, i0)+ ε0.

By condition C1, choosing l = listFoo(i0), we have

∀i, i0 ∈ I,dI(i, i0)≤ δ =⇒ dB(foob(listFoo(i0), i0), foob(listFoo(i0), i))≤ kN∗dI(i, i0)+ εN∗ .

By definition of fooB, we have

∀i, i0 ∈ I,dI(i, i0)≤ δ =⇒ dB(fooB(i0, i0), fooB(i0, i))≤ kN∗dI(i, i0)+ εN∗ . (1)

From observation 2, S(i0, fooA(i0)) holds. By condition C3 (instantiating i′ with i0) we derive that:

∀i, i0 ∈ I,dI(i, i0)≤ δ =⇒ ∃a′ ∈ A,dA(fooA(i0),a′)≤ ksdI(i, i0)+ εs ∧ S(i,a′). (2)

Hence, by observations 2 and 1, S(i, fooA(i)) also holds. From inequality (2) and condition C4, we
derive

dA(a′, fooA(i))≤ εt . (3)

From the last inequality and from inequality (2), we derive, using the triangle inequality

dA(fooA(i0), fooA(i))≤ ksdI(i, i0)+ εs + εt . (4)

From condition C2 and inequality (4), we have

∀i, i0 ∈ I,dI(i, i0)≤ δ =⇒ dB(fooB(i0, i), fooB(i, i))≤ kA(ksdI(i, i0)+ εs + εt)+ ε2. (5)

From inequalities (1) and (5), using the triangle inequality, we derive

∀i, i0 ∈ I,dI(i, i0)≤ δ

=⇒
dB(fooB(i, i), fooB(i0, i0))≤ kN∗dI(i, i0)+ εN∗+ kA(ksdI(i, i0)+ εs + εt)+ ε2.

Finally, we define ε0 = εN∗+ kA(εs + εt)+ ε2 and k0 = kN∗+ kAks.

72 A non-local method for robustness analysis of floating point programs

4 Example: the CORDIC algorithm for computing cosine

In this section we apply our method to a program implementing the CORDIC algorithm [13], and we
prove that it is Pk,ε,∞.

CORDIC (COordinate Rotation DIgital Computer) is a class of simple and efficient algorithms to
compute hyperbolic and trigonometric functions using only basic arithmetic (addition, subtraction and
shifts), plus table lookup. The notions behind this computing machinery were motivated by the need to
calculate the trigonometric functions and their inverses in real time navigation systems. Still now-a-days,
since the CORDIC algorithms require only simple integer math, CORDIC is the preferred implementa-
tion of math functions on small hand calculators.

CORDIC is a successive approximation algorithm: A sequence of successively smaller rotations
based on binary decisions hone in on the value we want to find. The CORDIC version illustrated in the
program below computes the cosine of any angle in [0,π/2].
double cos(double beta)
{

double x = 1, y = 0, x_new, theta = 0, sigma, e = 1E-10;
int Pow2=1;
while(|theta - beta| > e) {

Pow2 *= 2;
if(beta > theta)
sigma=1;

else
sigma=-1;

sigma=sigma/Pow2;
fact= cos(atan(sigma)); // Value stored
x_new = x + y*sigma;
y = fact (y - x*sigma);
theta += atan(sigma); // Value stored
x = fact * x_new; }

return x; }

Note that this program makes call to trigonometric functions like cosine itself. But in the actual
implementation, as it is explained in the comments, these calls (that are done on values divided by
successive powers of two) are stored in a database so that no computation of these functions is actually
done.

4.1 Scheme instantiation

To apply our method, we have first of all to instantiate the schema variables A, B, C (cf. Section 3.1)
with a suitable partition of the variables of the program. The variables I are determined: they must be
instantiated with the variables which represent the input.

In this example the partition for the variables will be the following.
A := double theta;
B := double x,y;
C := double sigma;
I := double beta;

We now must define a suitable metric on the types of the variables in A and B. We choose the
following:

• dA is the usual distance on R.

• dB is the L2 norm on R2.

Now we need to identify the stopping condition S(i,a). This is given by:

I. Gazeau, D. Miller and C. Palamidessi 73

S(beta,theta) := | theta - beta | <= e

Finally, we need to instantiate the functions M(a,c), N(i,b,c), O(a,b,c, i) of the schema with suitable
regions of code. We choose these as follows:
O(theta,<x,y>,sigma,beta) {

Pow2 *= 2;
if(beta > theta)

sigma=1;
else

sigma=-1;
sigma=sigma/Pow2;
return sigma; }

M(theta,sigma) {
theta += atan(sigma);
return theta; }

N(beta,<x,y>,sigma) {
fact = cos(atan(sigma));
x_new = x + y*sigma;
y = fact * (y - x*Pow2);
x = fact * x_new;
return <x,y>; }

Finally, we need to prove that the conditions C1, C2, C3, and C4 (cf. Section 3.2) are satisfied.

4.2 Proof of C1

C1 can be proved by classical analysis of the following program.
double cos(double beta, int[] listFoo)
{

double x = 1, y = 0, x_new, theta = 0, sigma = 0,e = 1E-10;
int Pow2=1;
for(int j=O;j<listFoo.length;j++) {

sigma=listFoo[j];
fact = cos(sigma);
x_new = x + y*sigma;
y = fact * (y - x*sigma);
x = fact * x_new;

}
return x*K;

}

4.3 Proof of C2

This part of the proof is rather technical. The interested reader can find it in the appendix. The proof of
C2 is the most difficult part of this example. We have proved it “by hand”, and we do not claim that there
is an easy way to automate it. However, this proof points out that we can prove the intended property
without considering the whole semantics of the program, but just the relevant properties.

4.4 Proof of C3

Once we instantiate S(i,a), C3 is given by the condition:

∀a ∈ A,∀i, i′ ∈ I, |i−a| ≤ e,∃a′ ∈ I, |a−a′| ≤ ks|i− i′|+ εs ∧ |i′−a′| ≤ e

We can satisfy this property by setting a′ = a+ i′− i, ks = 1, and εs = 0.

74 A non-local method for robustness analysis of floating point programs

4.5 Proof of C4

C4 can be rewritten, once we instantiate S(i,a) to

∃εt ,∀a,a′ ∈ A,∀i ∈ I, |i−a| ≤ e ∧ |i−a′| ≤ e =⇒ |a−a′| ≤ εt

Which is true for εt = 2e.

5 Example: Dijkstra’s shortest path algorithm

In this section we apply our method to Dijkstra’s shortest path algorithm. This is an algorithm that,
given a graph, computes the shortest path between a source and any vertex of the graph. We will prove,
by instantiating our schema, that the following program implementing the Dijkstra’s algorithm can be
proved P1,0,0 in the semantic of real numbers using our theorem.

In the following program we use some conventions: the number of vertices is fixed to w, all vertices
are connected, and the maximum value for a path 999 (some stand-in of infinity).

int[] dijkstra(int graph[w][w]){
int pathestimate[w],mark[w];
int source,i,j,u,predecessor[w],count=0;
int minimum(int a[],int m[],int k);

for(j=1;j<=w;j++){
mark[j]=0;
pathestimate[j]=999;
predecessor[j]=0;

}
source=0;
pathestimate[source]=0;
while(count<w){

u=minimum(pathestimate,mark,w);
mark[u]=1;
count=count+1;
for(i=1;i<=w;i++){

if(pathestimate[i]>pathestimate[u]+graph[u][i]){
pathestimate[i]=pathestimate[u]+graph[u][i];
predecessor[i]=u;

}
}

}
return pathestimate;

}

int minimum(int a[],int m[],int k){
int mi=999;
int i,t;
for(i=1;i<=k;i++){

if(m[i]!=1){
if(mi>=a[i]){

mi=a[i];
t=i;

}
}

}
return t;

}

I. Gazeau, D. Miller and C. Palamidessi 75

5.1 Scheme instantiation

To apply our theorem, we have to instantiate the scheme variables A, B, C with some variables of the
program. The variables of I are instantiated with the variables that represent the input. We chose the
following instantiation: A contains the variables count and mark, B the array of double pathestimate and
C the variable u which identify the current vertex to propagate.
A := int count;int mark[w];
B := pathestimate[w];
C := int u;
I := graph[w][w];

We now have to choose a suitable metric on the types of the variables, and we choose the following:
dI is the L1 norm on an array of real numbers, dB is the L∞ norm on array of real numbers and dA is the
identity metric: that is, the distance between two elements of A is 0 if they are the same elements and it
is ∞ otherwise.

Next, we identify the stopping condition:

S(graph,<count,mark>) := count >= w

Finally, we identify the functions M(a,c), N(i,b,c), O(a,b,c, i) with the following regions of code:
O (count, mark, pathestimate, u, graph) {

u=minimum(pathestimate,mark,w);
int minimum(int a[],int m[],int k){

int mi=999;
int i,t;
for(i=1;i<=k;i++){

if(m[i]!=1){
if(mi>=a[i]){

mi=a[i];
t=i;

}
}

}
return t;

}
return u;

}

M (<mark, count>, u) {
mark[u]=1;
count=count+1;
return <mark,count>;

}

N (graph, pathestimate, u) {
for(i=1;i<=w;i++){

if(pathestimate[i]>pathestimate[u]+graph[u][i]){
pathestimate[i]=pathestimate[u]+graph[u][i];

}
}
return pathestimate;

}

We now have to prove that the conditions C1, C2, C3 and C4 hold for the given instantiations.

5.2 Proof of C1
For all i0 ∈ I, fooa(i0, i) is k-Lipschitz and k does not depend on i0. The proof proceeds by a standard
analysis of the following program.

76 A non-local method for robustness analysis of floating point programs

int[] dijkstra(int graph[w][w], int[] listFoo)
{

int pathestimate[w],mark[w];
int source,i,j,u,predecessor[w],count=0;
int minimum(int a[],int m[],int k);
for(j=1;j<=w;j++){

mark[j]=0;
pathestimate[j]=999;
predecessor[j]=0;

}
source=0;
pathestimate[source]=0;
for(j=0;j<listFoo.length;j++){

u=listFoo[j];
for(i=1;i<=w;i++) {

if(pathestimate[i]>pathestimate[u]+graph[u][i]){
pathestimate[i]=pathestimate[u]+graph[u][i];
predecessor[i]=u;

}
}

}
return pathestimate;

}

In an exact semantics (with real numbers), this program is 1-Lipschitz as any element of pathestimate
is the sum of some element of graph. If the analysis is done with an exact semantics (with real numbers),
we are able to prove that this program is 1-Lipschitz.

5.3 Proof of C2

The proof for C2 is rather technical. The basic idea is however quite simple. Indeed, the A structure
is a set in a discrete space on which elements are added. So we prove that whatever the order of the
element is B is constant. This is done by showing that local transpositions do not change the result. So
the principle should apply in other algorithms with the same A structure. The complete proof can be
found in the appendix.

5.4 Proof of C3

We have to prove

∀a ∈ A,∀i, i′ ∈ I,S(i,a),∃a′ ∈ I,dA(a,a′)≤ ksdI(i, i′)+ εs ∧ S(i′,a′)

Since the stopping condition S(i,a) does not depend on i in this case, we take a′ = a. Thus, we can take
ks = 1 and εs = 0.

5.5 Proof of C4

We have to prove

∃εt ∈ R,∀a,a′ ∈ A,∀i ∈ I,S(i,a) ∧ S(i,a′) =⇒ dA(a,a′)≤ εt .

Since {a|S(i,a)} is a singleton for every i, the property holds for εt = 0.

I. Gazeau, D. Miller and C. Palamidessi 77

6 Related Work

Static analysis via abstract interpretation can be an effective method for deriving precise bounds on
deviations [6, 7]. Since such static analysis is generally limited to analyzing code line-by-line, significant
over approximations might be necessary. For example, when encountering an “if” instruction (or a
looping construct), a static analyzer will have to assume that either the control flow is not perturbed by
the finite-precision errors (often unrealistic) or the results from the two branches of the conditional must
be merged (often causing significant over-approximation). In our examples here, control flow can be
perturbed a great deal by precision errors and merging both branches is not a solution as the program is
not locally continuous. Our method is useful for solving this problem since it avoids narrowly analyzing
the semantics of the conditional.

In the two papers [2, 1], robustness analysis is done for the Dijkstra’s algorithm. The authors split
their analysis into two parts: first they prove the continuity of the algorithm and second they prove
it is piecewise robust. The problem of discontinuity that can occur at some point of the execution is
solved through an abstract language syntax for loops. Like in our theorem, this syntax need additional
conditions (mainly the commutativity for two observable equivalent commands). However, their abstract
language is more specific than our theorem: CORDIC is not in the scope of these papers which also
means their conditions are simpler and their proofs are more directed than ours. The other distinction is
in the semantics of the language. Their paper aims at furnishing the whole semantics which is an exact
one and computational errors are treated qualitatively with the argument that a robust program is not
sensitive to small variations. With our analysis, we give a quantitative definition of what small enough
means. The last difference is our design for analyzing non-local-robustness. We prefer to consider non-
local behaviors as happening and solving them by a program transformation using pattern than to rewrite
the program in a syntax that hide the non-local behavior.

7 Future work and conclusion

We have presented a theorem that allow us to prove the robustness of some floating point programs. This
theorem is abstract enough to be applicable in a number of rather different programs: here, we illustrate
its use with programs to compute cosine using the CORDIC method and to compute the shortest path in
a graph.

For future work, we would like to address a key possible weakness of our method: it is currently tied
to a particular template. Although that template is presented abstractly, there should certainly be ways to
improve the generality beyond the matching of a template. Also, since the property Pk,ε,δ (Definition 2.1)
is more general than both k-Lipschitz and the other definitions of robustness [9, 10], we would like to
explore applications of this property to cases where neither of the other definitions work.

Condition C2 is, at least in the examples considered in this paper, the most difficult condition to
verify. This suggests that we might consider more restrictive conditions that would entail C2.

Acknowledgments: We would like to thank Eric Goubault and Jean Goubault-Larrecq for many useful
discussions on the topic of this paper.

78 A non-local method for robustness analysis of floating point programs

References
[1] Swarat Chaudhuri, Sumit Gulwani & Roberto Lublinerman (2010): Continuity analysis of programs. In

Manuel V. Hermenegildo & Jens Palsberg, editors: POPL, ACM, pp. 57–70. Available at http://doi.
acm.org/10.1145/1706299.1706308.

[2] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman & Sara NavidPour (2011): Proving programs ro-
bust. In Tibor Gyimóthy & Andreas Zeller, editors: SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13rd European Software Engineer-
ing Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011, ACM, pp. 102–112. Available at
http://doi.acm.org/10.1145/2025113.2025131.

[3] E. W. Dijkstra (1959): A Note on Two Problems in Connexion with Graphs. Numer. Math. 1, pp. 269–271.
[4] Ivan Gazeau, Dale Miller & Catuscia Palamidessi (2012): A non-local method for robustness analysis of

floating point programs. Technical Report, INRIA, Tallinn, Estonie. Available at http://hal.inria.
fr/hal-00665995.

[5] D. Goldberg (1991): What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys 23(1), pp. 5–47.

[6] Eric Goubault (2001): Static Analyses of the Precision of Floating-Point Operations. In Patrick Cousot, ed-
itor: Static Analysis, 8th International Symposiumsium, Lecture Notes in Computer Science 2126, Springer
Verlag, pp. 234–259.

[7] Eric Goubault & Sylvie Putot (2011): Static Analysis of Finite Precision Computations. In Ranjit Jhala
& David A. Schmidt, editors: Verification, Model Checking, and Abstract Interpretation - 12th Interna-
tional Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings, Lecture Notes
in Computer Science 6538, Springer, pp. 232–247. Available at http://dx.doi.org/10.1007/
978-3-642-18275-4.

[8] IEEE Task P754 (2008): IEEE 754-2008, Standard for Floating-Point Arithmetic. IEEE, pub-IEEE-
STD:adr, doi:http://dx.doi.org/10.1109/IEEESTD.2008.4610935. Available at http://en.wikipedia.
org/wiki/IEEE_754-2008;http://ieeexplore.ieee.org/servlet/opac?punumber=
4610933.

[9] Rupak Majumdar & Indranil Saha (2009): Symbolic Robustness Analysis. In Theodore P. Baker, editor:
IEEE Real-Time Systems Symposium, IEEE Computer Society, pp. 355–363. Available at http://doi.
ieeecomputersociety.org/10.1109/RTSS.2009.17.

[10] Rupak Majumdar, Indranil Saha & Zilong Wang (2010): Systematic testing for control applications. In:
MEMOCODE, pp. 1–10.

[11] The Parsec benchmark suite. Available at http://parsec.cs.princeton.edu/.
[12] Stefan Pettersson & Bengt Lennartson (1996): Stability And Robustness For Hybrid Systems. In: Proceedings

of the 35th edition of Decision and Control, pp. 1202–1207.
[13] Jack E. Volder (1959): The CORDIC Trigonometric Computing Technique. IRE Transactions on Electronic

Computers EC-8, pp. 330–334.

A Appendix

Please consult the technical report version of this paper [4].

http://doi.acm.org/10.1145/1706299.1706308
http://doi.acm.org/10.1145/1706299.1706308
http://doi.acm.org/10.1145/2025113.2025131
http://hal.inria.fr/hal-00665995
http://hal.inria.fr/hal-00665995
http://dx.doi.org/10.1007/978-3-642-18275-4
http://dx.doi.org/10.1007/978-3-642-18275-4
http://dx.doi.org/http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://en.wikipedia.org/wiki/IEEE_754-2008; http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://en.wikipedia.org/wiki/IEEE_754-2008; http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://en.wikipedia.org/wiki/IEEE_754-2008; http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://doi.ieeecomputersociety.org/10.1109/RTSS.2009.17
http://doi.ieeecomputersociety.org/10.1109/RTSS.2009.17
http://parsec.cs.princeton.edu/

Preliminary Report. Final version to appear in:
QAPL 2012

Quantitative Information Flow as Safety and Liveness
Hyperproperties∗

Hirotoshi Yasuoka
Tohoku University

Sendai, Japan
yasuoka@kb.ecei.tohoku.ac.jp

Tachio Terauchi
Nagoya University

Nagoya, Japan
terauchi@is.nagoya-u.ac.jp

We employ Clarkson and Schneider’s “hyperproperties” to classify various verification problems
of quantitative information flow. The results of this paper unify and extend the previous results
on the hardness of checking and inferring quantitative information flow. In particular, we identify
a subclass of liveness hyperproperties, which we call “k-observable hyperproperties”, that can be
checked relative to a reachability oracle via self composition.

1 Introduction

We consider programs containing high security inputs and low security outputs. Informally, the quan-
titative information flow problem concerns the amount of information that an attacker can learn about
the high security input by executing the program and observing the low security output. The problem
is motivated by applications in information security. We refer to the classic by Denning [14] for an
overview.

In essence, quantitative information flow measures how secure, or insecure, a program (or a part of a
program –e.g., a variable–) is. Thus, unlike non-interference [12, 16], that only tells whether a program
is completely secure or not completely secure, a definition of quantitative information flow must be able
to distinguish two programs that are both interfering but have different levels of security.

For example, consider the programs M1 ≡ if H = g then O := 0 else O := 1 and M2 ≡ O := H.
In both programs, H is a high security input and O is a low security output. Viewing H as a password,
M1 is a prototypical login program that checks if the guess g matches the password. By executing M1,
an attacker only learns whether H is equal to g, whereas she would be able to learn the entire content
of H by executing M2. Hence, a reasonable definition of quantitative information flow should assign a
higher quantity to M2 than to M1, whereas non-interference would merely say that M1 and M2 are both
interfering, assuming that there are more than one possible value of H.

Researchers have attempted to formalize the definition of quantitative information flow by appealing
to information theory. This has resulted in definitions based on the Shannon entropy [14, 9, 22], the min
entropy [29], and the guessing entropy [18, 4]. All of these definitions map a program (or a part of a
program) onto a non-negative real number, that is, they define a function X such that given a program M,
X (M) is a non-negative real number. (Concretely, X is SE[µ] for the Shannon-entropy-based definition
with the distribution µ , ME[µ] for the min-entropy-based definition with the distribution µ , and GE[µ]
for the guessing-entropy-based definition with the distribution µ .)

In a previous work [33, 32], we have proved a number of hardness results on checking and infer-
ring quantitative information flow (QIF) according to these definitions. A key concept used to connect
the hardness results to QIF verification problems was the notion of k-safety, which is an instance in a

∗This work was supported by MEXT KAKENHI 23700026, 22300005, 23220001, and Global COE Program “CERIES.”

80 Quantitative Information Flow as Safety and Liveness Hyperproperties

SE[U] ME[U] GE[U]
LBP Liveness Liveness Liveness
UBP Safety Safety Safety

LBP constant bound Liveness k-observable k-observable
UBP constant bound Safety k-safety [32] k-safety [32]

Table 1: A summary of hyperproperty classifications

collection of the class of program properties called hyperproperties [11]. In this paper, we make the
connection explicit by providing a fine-grained classification of QIF problems, utilizing the full range of
hyperproperties. This has a number of benefits, summarized below.

1.) A unified view on the hardness results of QIF problems.

2.) New insights into hyperproperties themselves.

3.) A straightforward derivation of some complexity theoretic results.

Regarding 1.), we focus on two types of QIF problems, an upper-bounding problem that checks if QIF
of a program is bounded above by the given number, and a lower-bounding problem that checks if QIF is
bounded below by the given number. Then, for each QIF definitions SE, GE, ME, we classify whether or
not they are safety hyperproperty, k-safety hyperproperty, liveness hyperproperty, or k-observable hyper-
property (and give a bound on k for k-safe/k-observable). Safety hyperproperty, k-safety hyperproperty,
liveness hyperproperty, and observable hyperproperty are classes of hyperproperties defined by Clarkson
and Schneider [11]. In this paper, we identify new classes of hyperproperties, k-observable hyperprop-
erty, that is useful for classifying QIF problems. k-observable hyperproperty is a subclass of observable
hyperproperties, and observable hyperproperty is a subclass of liveness hyperproperties.1 We focus on
the case the input distribution is uniform, that is, µ = U , as showing the hardness for a specific case
amounts to showing the hardness for the general case. Also, checking and inferring QIF under the uni-
formly distributed inputs has received much attention [17, 4, 19, 8, 22, 9], and so, the hardness for the
uniform case is itself of research interest.2

Regarding 2.), we show that the k-observable subset of the observable hyperproperties is amenable
to verification via self composition [5, 13, 30, 26, 31], much like k-safety hyperproperties, and identify
which QIF problems belong to that family. We also show that the hardest of the QIF problems (but nev-
ertheless one of the most popular) can only be classified as a general liveness hyperproperty, suggesting
that liveness hyperproperty is a quite permissive class of hyperproperties.

Regarding 3.), we show that many complexity theoretic results for QIF problems of loop-free boolean
programs can be derived from their hyperproperties classifications [33, 32]. We also prove new com-
plexity theoretic results, including the (implicit state) complexity results for loop-ful boolean programs,
complementing the recently proved explicit state complexity results [7].

Table 1 and Table 2 summarize the hyperproperties classifications and computational complexities
of upper/lower-bounding problems. We abbreviate lower-bounding problem, upper-bounding problem,
and boolean programs to LBP, UBP, and BP, respectively. The “constant bound” rows correspond to
bounding problems with a constant bound (whereas the plain bounding problems take the bound as an
input).

The proofs omitted from the paper appear in the extended report [35].
1Technically, only non-empty observable hyperproperties are liveness hyperproperties.
2In fact, computing QIF under other input distributions can sometimes be reduced to this case [3]. See also Section 5.3.

H. Yasuoka & T. Terauchi 81

SE[U] ME[U] GE[U]
LBP for BP PSPACE-hard PSPACE-complete PSPACE-complete
UBP for BP PSPACE-hard PSPACE-complete PSPACE-complete

LBP for loop-free BP PP-hard PP-hard PP-hard
UBP for loop-free BP PP-hard [32] PP-hard [32] PP-hard [32]

LBP for loop-free BP, constant bound Unknown NP-complete NP-complete
UBP for loop-free BP, constant bound Unknown coNP-complete coNP-complete

Table 2: A summary of computational complexities

2 Preliminaries

2.1 Quantitative Information Flow

We introduce the information theoretic definitions of QIF that have been proposed in literature. First,
we review the notion of the Shannon entropy [28], H [µ](X), which is the average of the information
content, and intuitively, denotes the uncertainty of the random variable X . And, we review the notion of
the conditional entropy, H [µ](Y |Z), which denotes the uncertainty of Y after knowing Z.

Definition 2.1 (Shannon Entropy and Conditional Entropy) Let X be a random variable with sample
space X and µ be a probability distribution associated with X (we write µ explicitly for clarity). The
Shannon entropy of X is defined as

H [µ](X) = ∑
x∈X

µ(X = x) log
1

µ(X = x)

Let Y and Z be random variables with sample space Y and Z, respectively, and µ ′ be a probability
distribution associated with Y and Z. Then, the conditional entropy of Y given Z is defined as

H [µ](Y |Z) = ∑
z∈Z

µ(Z = z)H [µ](Y |Z = z)

where
H [µ](Y |Z = z) = ∑y∈Y µ(Y = y|Z = Z) log 1

µ(Y=y|Z=z)

µ(Y = y|Z = z) = µ(Y=y,Z=z)
µ(Z=z)

(The logarithm is in base 2.)

Let M be a program that takes a high security input H, and gives the low security output trace O.
For simplicity, we restrict to programs with just one variable of each kind, but it is trivial to extend the
formalism to multiple variables (e.g., by letting the variables range over tuples or lists). Also, for the
purpose of the paper, unobservable (i.e., high security) output traces are irrelevant, and so we assume
that the only program output is the low security output trace. Let µ be a probability distribution over the
values of H. Then, the semantics of M can be defined by the following probability equation. (We restrict
to deterministic programs in this paper.)

µ(O = o) = ∑
h ∈H
M(h) = o

µ(H = h)

82 Quantitative Information Flow as Safety and Liveness Hyperproperties

Here, M(h) denotes the infinite low security output trace of the program M given a input h, and M(h) = o
denotes the output trace of M given h that is equivalent to o. In this paper, we adopt the termination-
insensitive security observation model, and let the outputs o and o′ be equivalent iff ∀i ∈ω.oi =⊥∨o′i =
⊥∨oi = o′i where o and oi denotes the ith element of o, and⊥ is the special symbol denoting termination.3

In this paper, programs are represented by sets of traces, and traces are represented by lists of stores
of programs. More formally,

M(h) is equal to o iff σ0;σ1; . . . ;σi; . . . ∈M
where σ0(H) = h and ∀i ≥ 1.σi(O) = oi (oi denotes the ith element of o)

Here, σ denotes a store that maps variables to values. Because we restrict all programs to determin-
istic programs, every program M satisfies the following condition: For any trace −→σ ,−→σ ′ ∈ M, we have
σ0(H) = σ ′

0(H)⇒−→
σ =−→

σ ′ where σ0 and σ ′
0 denote the first elements of −→σ and −→σ ′, respectively. Now,

we are ready to define Shannon-entropy-based quantitative information flow.

Definition 2.2 (Shannon-Entropy-based QIF [14, 9, 22]) Let M be a program with a high security in-
put H, and a low security output trace O. Let µ be a distribution over H. Then, the Shannon-entropy-
based quantitative information flow is defined

SE[µ](M) = H [µ](H)−H [µ](H|O)

Intuitively, H [µ](H) denotes the initial uncertainty and H [µ](H|O) denotes the remaining uncertainty
after knowing the low security output trace. (For space, the paper focuses on the low-security-input free
definitions of QIF.)

As an example, consider the programs M1 and M2 from Section 1. For concreteness, assume that
g is the value 01 and H ranges over the space {00,01,10,11}. Let U be the uniform distribution over
{00,01,10,11}, that is, U(h) = 1/4 for all h ∈ {00,01,10,11}. The results are as follows.

SE[U](M1) = H [U](H)−H [U](H|O) = log4− 3
4 log3 ≈ .81128

SE[U](M2) = H [U](H)−H [U](H|O) = log4− log1 = 2

Consequently, we have that SE[U](M1)≤ SE[U](M2), but SE[U](M2) 6≤ SE[U](M1). That is, M1 is more
secure than M2 (according to the Shannon-entropy based definition with uniformly distributed inputs),
which agrees with our intuition.

Next, we introduce the min entropy, which has recently been suggested as an alternative measure for
quantitative information flow [29].

Definition 2.3 (Min Entropy) Let X and Y be random variables, and µ be an associated probability
distribution. Then, the min entropy of X is defined

H∞[µ](X) = log
1

V [µ](X)

and the conditional min entropy of X given Y is defined

H∞[µ](X |Y) = log
1

V [µ](X |Y)

3Here, we adopt the trace based QIF formalization of [23].

H. Yasuoka & T. Terauchi 83

where
V [µ](X) = maxx∈X µ(X = x)

V [µ](X |Y = y) = maxx∈X µ(X = x|Y = y)
V [µ](X |Y) = ∑y∈Y µ(Y = y)V [µ](X |Y = y)

Intuitively, V [µ](X) represents the highest probability that an attacker guesses X in a single try. We
now define the min-entropy-based definition of QIF.
Definition 2.4 (Min-Entropy-based QIF [29]) Let M be a program with a high security input H, and
a low security output trace O. Let µ be a distribution over H. Then, the min-entropy-based quantitative
information flow is defined

ME[µ](M) = H∞[µ](H)−H∞[µ](H|O)

Computing the min-entropy based quantitative information flow for our running example programs
M1 and M2 from Section 1 with the uniform distribution, we obtain,

ME[U](M1) = H∞[U](H)−H∞[U](H|O) = log4− log2 = 1

ME[U](M2) = H∞[U](H)−H∞[U](H|O) = log4− log1 = 2

Again, we have that ME[U](M1) ≤ ME[U](M2) and ME[U](M2) 6≤ ME[U](M1), and so M2 is deemed
less secure than M1.

The third definition of quantitative information flow treated in this paper is the one based on the
guessing entropy [24], that has also recently been proposed in literature [18, 4].
Definition 2.5 (Guessing Entropy) Let X and Y be random variables, and µ be an associated proba-
bility distribution. Then, the guessing entropy of X is defined

G [µ](X) = ∑
1≤i≤m

i×µ(X = xi)

where {x1,x2, . . . ,xm}= X and ∀i, j.i ≤ j ⇒ µ(X = xi)≥ µ(X = x j).
The conditional guessing entropy of X given Y is defined

G [µ](X |Y) = ∑
y∈Y

µ(Y = y) ∑
1≤i≤m

i×µ(X = xi|Y = y)

where {x1,x2, . . . ,xm}= X and ∀i, j.i ≤ j ⇒ µ(X = xi|Y = y)≥ µ(X = x j|Y = y).
Intuitively, G [µ](X) represents the average number of times required for the attacker to guess the

value of X . We now define the guessing-entropy-based quantitative information flow.
Definition 2.6 (Guessing-Entropy-based QIF [18, 4]) Let M be a program with a high security input
H, and a low security output trace O. Let µ be a distribution over H. Then, the guessing-entropy-based
quantitative information flow is defined

GE[µ](M) = G [µ](H)−G [µ](H|O)

We test GE on the running example from Section 1 by calculating the quantities for the programs M1
and M2 with the uniform distribution.

GE[U](M1) = G [U](H)−G [U](H|O) = 5
2 −

7
4 = 0.75

GE[U](M2) = G [U](H)−G [U](H|O) = 5
2 −1 = 1.5

Therefore, we again have that GE[U](M1) ≤ GE[U](M2) and GE[U](M2) 6≤ GE[U](M1), and so M2
is considered less secure than M1, even with the guessing-entropy based definition with the uniform
distribution.

84 Quantitative Information Flow as Safety and Liveness Hyperproperties

2.2 Bounding Problems

We introduce the bounding problems of quantitative information flow that we classify. First, we define
the QIF upper-bounding problems. Upper-bounding problems are defined as follows: Given a program
M and a rational number q, decide if the information flow of M is less than or equal to q.

USE = {(M,q) | SE[U](M)≤ q}
UME = {(M,q) |ME[U](M)≤ q}
UGE = {(M,q) | GE[U](M)≤ q}

Recall that U denotes the uniform distribution.
Next, we define lower-bounding problems. Lower-bounding problems are defined as follows: Given

a program M and a rational number q, decide if the information flow of M is greater than q.

LSE = {(M,q) | SE[U](M) > q}
LME = {(M,q) |ME[U](M) > q}
LGE = {(M,q) | GE[U](M) > q}

2.3 Non Interference

We recall the notion of non-interference, which, intuitively, says that the program leaks no information.
Definition 2.7 (Non-intereference [12, 16]) A program M is said to be non-interfering iff for any h,h′ ∈
H, M(h) = M(h′).

Non-interference is known to be a special case of bounding problems that tests against 0.
Theorem 2.8 ([8, 32]) 1.) M is non-interfering iff (M,0) ∈ USE. 2.) M is non-interfering iff (M,0) ∈
UME. 3.) M is non-interfering iff (M,0) ∈UGE.

3 Liveness Hyperproperties

Clarkson and Schneider have proposed the notion of hyperproperties [11].
Definition 3.1 (Hyperproperties [11]) We say that P is a hyperproperty if P⊆P(Ψinf) where Ψinf is
the set of all infinite traces, and P(X) denote the powerset of X.
Note that hyperproperties are sets of trace sets. As such, they are more suitable for classifying informa-
tion properties than the classical trace properties which are sets of traces. For example, non-interference
is not a trace property but a hyperproperty.

Clarkson and Schneider have identified a subclass of hyperproperties, called liveness hyperproperties,
as a generalization of liveness properties. Intuitively, a liveness hyperproperty is a property that can not
be refuted by a finite set of finite traces. That is, if P is a liveness hyperproperty, then for any finite set of
finite traces T , there exists a set of traces that contains T and satisfies P. Formally, let Obs be the set of
finite sets of finite traces, and Prop be the set of sets of infinite traces (i.e., hyperproperties), that is,

Obs = Pfin(Ψfin)
Prop = P(Ψinf)

(Here, Pfin(X) denotes the finite subsets of X , Ψfin denotes the set of finite traces.) Let ≤ be the
relation over Obs×Prop such that

S ≤ T iff ∀t ∈ S.∃t ′.t ◦ t ′ ∈ T

where t ◦ t ′ is the sequential composition of t and t ′. Then,

H. Yasuoka & T. Terauchi 85

Definition 3.2 (Liveness Hyperproperties [11]) We say that a hyperproperty P is a liveness hyperprop-
erty if for any set of traces S ∈ Obs, there exists a set of traces S′ ∈ Prop such that S ≤ S′ and S′ ∈ P.

Now, we state the first main result of the paper: the lower-bounding problems are liveness hyper-
properties.4

Theorem 3.3 LSE, LME, and LGE are liveness hyperproperties.5

The proof follows from the fact that, for any program M, there exists a program M′ containing all the
observations of M and has an arbitrary large information flow.6

We show that the upper-bounding problem for Shannon-entropy based quantitative information flow
is also a liveness hyperproperty.

Theorem 3.4 USE is a liveness hyperproperty.

The theorem follows from the fact that we can lower the amount of the information flow by adding traces
that have the same output trace. Therefore, for any program M, there exists M′ having more observation
than M such that SE[U](M′)≤ q.

3.1 Observable Hyperproperties

Clarkson and Schneider [11] have identified a class of hyperproperties, called observable hyperproper-
ties, to generalize the notion of observable properties [2] to sets of traces.7

Definition 3.5 (Observable Hyperproperties [11]) We say that P is a observable hyperproperty if for
any set of traces S ∈ P, there exists a set of traces T ∈ Obs such that T ≤ S, and for any set of traces
S′ ∈ Prop, T ≤ S′⇒ S′ ∈ P.

We call T in the above definition an evidence.
Intuitively, observable hyperproperty is a property that can be verified by observing a finite set of

finite traces. We prove a relationship between observable hyperproperties and liveness hyperproperties.

Theorem 3.6 Every non-empty observable hyperproperty is a liveness hyperproperty.

Proof: Let P be a non-empty observable hyperproperty. It must be the case that there exists a set of
traces M ∈ P. Then, there exists T ∈ Obs such that T ≤ M and ∀M′ ∈ Prop.T ≤ M′ ⇒ M′ ∈ P. For
any set of traces S ∈ Obs, there exists M′ ∈ Prop such that S ≤ M′. Then, we have M∪M′ ∈ P, because
T ≤M∪M′. Therefore, P is a liveness hyperproperty. 2

We note that the empty set is not a liveness hyperproperty but an observable hyperproperty.
We show that lower-bounding problems for min-entropy and guessing-entropy are observable hyper-

properties.

Theorem 3.7 LME is an observable hyperproperty.

Theorem 3.8 LGE is an observable hyperproperty.

4We implicitly extend the notion of hyperproperties to classify hyperproperties that take programs and rational numbers.
See [32].

5More precisely, we prove that they are liveness hyperproperties for deterministic systems [11], because we restrict all
programs to deterministic programs. For sake of simplicity, we omit such annotations.

6Here, we assume that the input domains are not bounded. Therefore, we can construct a program that leaks more high-
security inputs by enlarging the input domain. Hyperproperty classifications of bounding problems with bounded domains
appear in Section 5.1.

7Roughly, an observable property is a set of traces having a finite evidence prefix such that any trace having the prefix is
also in the set.

86 Quantitative Information Flow as Safety and Liveness Hyperproperties

Theorem 3.7 follows from the fact that, if (M,q) ∈ LME, then M contains an evidence of LME. This
follows from the fact that when a program M′ contains at least as much observation as M, ME[U](M)≤
ME[U](M′) (cf. Lemma 3.15). Theorem 3.8 is proven in a similar manner.

We show that neither of the bounding problems for Shannon-entropy are observable hyperproperties.

Theorem 3.9 Neither USE nor LSE is an observable hyperproperty.
We give the intuition of the proof for USE. Suppose SE[U](M) ≤ q. M does not provide an evidence of
SE[U](M) ≤ q, because for any potential evidence, we can raise the amount of the information flow by
adding traces that have disjoint output traces. The result for LSE is shown in a similar manner.

It is interesting to note that the bounding problems of SE can only be classified as general liveness
hyperproperties (cf. Theorem 3.3 and 3.4) even though SE is often the preferred definition of QIF in
practice [14, 9, 22]. This suggests that approximation techniques may be necessary for checking and
inferring Shannon-entropy-based QIF.

3.2 K-Observable Hyperproperties

We define k-observable hyperproperty that refines the notion of observable hyperproperties. Informally,
a k-observable hyperproperty is a hyperproperty that can be verified by observing k finite traces.
Definition 3.10 (K-Observable Hyperproperties) We say that a hyperproperty P is a k-observable hy-
perproperty if for any set of traces S ∈ P, there exists T ∈ Obs such that T ≤ S, |T | ≤ k, and for any set
of traces S′ ∈ Prop, T ≤ S′⇒ S′ ∈ P.
Clearly, any k-observable hyperproperty is an observable hyperproperty.

We note that k-observable hyperproperties can be reduced to 1-observable hyperproperties by a sim-
ple program transformation called self composition [5, 13].
Definition 3.11 (Parallel Self Composition [11]) Parallel self composition of S is defined as follows.

S×S = {(s[0],s′[0]);(s[1],s′[1]);(s[2],s′[2]); · · · | s,s′ ∈ S}

where s[i] denotes the ith element of s.
Then, a k-product parallel self composition (simply self composition henceforth) is defined as Sk.
Theorem 3.12 Every k-observable hyperproperty can be reduced to a 1-observable hyperproperty via a
k-product self composition.
As an example, consider the following hyperproperty. The hyperproperty is the set of programs that re-
turn 1 and 2 for some inputs. Intuitively, the hyperproperty expresses two good things happen (programs
return 1 and 2) for programs.

{M | ∃h,h′.M(h) = 1∧M(h′) = 2}
This is a 2-observable hyperproperty as any program containing two traces, one having 1 as the output
and the other having 2 as the output, satisfies it.

We can check the above property by self composition. (Here, || denotes a parallel composition.)

M′(H,H ′) ≡ O := M(H) || O′ := M(H ′) || assert(¬(O = 1∧O′ = 2))

Clearly, M satisfies the property iff the assertion failure is reachable in the above program, that is, iff the
predicate O = 1∧O′ = 2 holds for some inputs H,H ′. (Note that, for convenience, we take an assertion
failure to be a “good thing”.)

We show that neither the lower-bounding problem for min-entropy nor the lower-bounding problem
for guessing-entropy is a k-observable hyperproperty for any k.

H. Yasuoka & T. Terauchi 87

Theorem 3.13 Neither LME nor LGE is a k-observable property for any k.

However, if we let q be a constant, then we obtain different results. First, we show that the lower-
bounding problem for min-entropy-based quantitative information flow under a constant bound q, is a
b2qc+1-observable hyperproperty.

Theorem 3.14 Let q be a constant. Then, LME is a b2qc+1-observable hyperproperty.

The theorem follows from Lemma 3.15 below which states that min-entropy based quantitative infor-
mation flow under the uniform distribution coincides with the logarithm of the number of output traces.
That is, (M,q) ∈LME iff there is an evidence in M containing b2qc+1 disjoint outputs.

Lemma 3.15 ([29]) ME[U](M) = log |{o | ∃h.M(h) = o}|

Next, we show that the lower-bounding problem for guessing-entropy-based quantitative information
flow under a constant bound q is a b (bqc+1)2

bqc+1−qc+1-observable hyperproperty.

Theorem 3.16 Let q be a constant. Then, LGE is a b (bqc+1)2

bqc+1−qc+1-observable hyperproperty.

The proof of the theorem is similar to that of Theorem 3.14, in that the size of the evidence set can be
computed from the bound q.

3.3 Computational Complexities

We prove computational complexities of LME and LGE by utilizing their hyperproperty classifications.
Following previous work [33, 32, 7], we focus on boolean programs.

First, we introduce the syntax of boolean programs. The semantics of boolean programs is standard.
We call boolean programs without while statements loop-free boolean programs.

M ::= x := ψ |M0;M1 | if ψ then M0 else M1 | while ψ do M | skip
φ ,ψ ::= true | x | φ ∧ψ | ¬φ

Figure 1: The syntax of boolean programs

In this paper, we are interested in the computational complexity with respect to the syntactic size
of the input program (i.e., “implicit state complexity”, as opposed to [7] which studies complexity over
programs represented as explicit states).

We show that the lower-bounding problems for min-entropy and guessing-entropy are PP-hard.

Theorem 3.17 LME and LGE for loop-free boolean programs are PP-hard.

The theorem is proven by a reduction from MAJSAT, which is a PP-hard problem. PP is the set of
decision problems solvable by a polynomial-time nondeterministic Turing machine which accepts the
input iff more than half of the computation paths accept. MAJSAT is the problem of deciding, given a
boolean formula φ over variables −→x , if there are more than 2|

−→x |−1 satisfying assignments to φ .
Next, we show that if q be a constant, the upper-bounding problems for min-entropy and guessing-

entropy become NP-complete.

Theorem 3.18 Let q be a constant. Then, LME and LGE are NP-complete for loop-free boolean pro-
grams.

88 Quantitative Information Flow as Safety and Liveness Hyperproperties

NP-hardness is proven by a reduction from SAT , which is a NP-complete problem. The proof that LME

and LGE for a constant q are in NP follows from the fact that LME and LGE are k-observable hyper-
properties for some k. We give the proof intuition for LME. Recall that k-observable hyperproperties can
be reduced to 1-observable hyperproperties via self composition. Consequently, it is possible to decide
if the information flow of a given program M is greater than q by checking if the predicate of the assert
statement is violated for some inputs in the following program.

M′(H1,H2, . . . ,Hn)≡
O1 := M(H1);O2 := M(H2); . . . ;On := M(Hn);
assert(

∨
i, j∈{1,...,n}(Oi = O j ∧ i 6= j))

where n = b2qc+1. Let φ be the weakest precondition of O1 := M(H1);O2 := M(H2); . . . ;On := M(Hn)
with respect to the post condition

∨
i, j∈{1,...,n}(Oi = O j∧ i 6= j). Then, ME[U](M) > q iff ¬φ is satisfiable.

Because a weakest precondition of a loop-free boolean program is a polynomial size boolean formula
over the boolean variables representing the inputs8, deciding ME[U](M) > q is reducible to SAT.

For boolean programs (with loops), LME and LGE are PSPACE-complete, and LSE is PSPACE-hard
(the tight upper-bound is open for LSE).

Theorem 3.19 LME and LGE are PSPACE-complete for boolean programs.

Theorem 3.20 LSE is PSPACE-hard for boolean programs.

4 Safety Hyperproperties

Clarkson and Schneider [11] have proposed safety hyperproperties, a subclass of hyperproperties, as a
generalization of safety properties. Intuitively, a safety hyperproperty is a hyperproperty that can be
refuted by observing a finite set of finite traces.

Definition 4.1 (Safety Hyperproperties [11]) We say that a hyperproperty P is a safety hyperproperty
if for any set of traces S 6∈ P, there exists a set of traces T ∈ Obs such that T ≤ S, and ∀S′ ∈ Prop.T ≤
S′⇒ S′ 6∈ P.

We classify some upper-bounding problems as safety hyperproperties.

Theorem 4.2 UME and UGE are safety hyperproperties.

Next, we review the definition of k-safety hyperproperties [11], which refines the notion of safety hy-
perproperties. Informally, a k-safety hyperproperty is a hyperproperty which can be refuted by observing
k number of finite traces.

Definition 4.3 (K-Safety Hyperproperties [11]) We say that a hyperproperty P is a k-safety property
if for any set of traces S 6∈ P, there exists a set of traces T ∈ Obs such that T ≤ S, |T | ≤ k, and ∀S′ ∈
Prop.T ≤ S′⇒ S′ 6∈ P.

Note that 1-safety hyperproperty is just the standard safety property, that is, a property that can be refuted
by observing a finite execution trace. The notion of k-safety hyperproperties first came into limelight
when it was noticed that non-interference is a 2-safety hyperproperty, but not a 1-safety hyperprop-
erty [30].

A k-safety hyperproperty can be reduced to a 1-safety hyperproperty by self composition [5, 13].

8For loop-free boolean programs, a weakest precondition can be constructed in polynomial time [15, 21].

H. Yasuoka & T. Terauchi 89

Theorem 4.4 ([11]) k-safety hyperproperty can be reduced to 1-safety hyperproperty by self composi-
tion.

We have shown in our previous work that UME and UGE are k-safety hyperproperties when the bound
q is fixed to a constant.

Theorem 4.5 ([32]) Let q be a constant. UME is a b2qc+1-safety property.

Theorem 4.6 ([32]) Let q be a constant. UGE is a b (bqc+1)2

bqc+1−qc+1-safety property.

The only hyperproperty that is both a safety hyperproperty and a liveness hyperproperty is P(Ψinf),
that is, the set of all traces [11]. Consequently, neither UME nor UGE is a liveness hyperproperty.

We have also shown in the previous work that the upper-bounding problem for Shannon-entropy
based quantitative information flow is not a k-safety hyperproperty, even when q is a constant.

Theorem 4.7 ([32]) Let q be a constant. USE is not a k-safety property for any k > 0.

4.1 Computational Complexities

We prove computational complexities of upper-bounding problems by utilizing their hyperproperty clas-
sifications. As in Section 3.3, we focus on boolean programs.

First, we show that when q is a constant, UME and UGE are coNP-complete.

Theorem 4.8 Let q be a constant. Then, UME and UGE are coNP-complete for loop-free boolean pro-
grams.

coNP-hardness follows from the fact that non-interference is coNP-hard [32]. The coNP part of the
proof is similar to the NP part of Theorem 3.18, and uses the fact that UME is k-safety for a fixed q and
uses self composition. By self composition, the upper-bounding problem can be reduced to a reachability
problem (i.e., an assertion failure is unreachable for any input). To decide if ME[U](M)≤ q, we construct
the following self-composed program M′ from the given program M.

M′(H1,H2, . . . ,Hn)≡
O1 := M(H1);O2 := M(H2); . . . ;On := M(Hn);
assert(

∨
i, j∈{1,...,n}(Oi = O j ∧ i 6= j))

where n = b2qc+ 1. Then, the weakest precondition of O1 := M(H1);O2 := M(H2); . . . ;On := M(Hn)
with respect to the post condition

∨
i, j∈{1,...,n}(Oi = O j ∧ i 6= j) is valid iff ME[U](M) ≤ q. Because

a weakest precondition of a loop-free boolean program is a polynomial size boolean formula, and the
problem of deciding a given boolean formula is valid is a coNP-complete problem, UME is in coNP.

Like the lower-bounding problems UME and UGE for boolean programs (with loops) are PSPACE-
complete, and USE is PSPACE-hard.

Theorem 4.9 UME and UGE are PSPACE-complete for boolean programs.

Theorem 4.10 USE is PSPACE-hard for boolean programs.

90 Quantitative Information Flow as Safety and Liveness Hyperproperties

5 Discussion

5.1 Bounding Domains

The notion of hyperproperty is defined over all programs regardless of their size. (For example, non-
interference is a 2-safety property for all programs and reachability is a safety property for all programs.)
But, it is easy to show that the lower bounding problems would become “k-observable” hyperproperties
if we constrained and bounded the input domains because then the size of the semantics (i.e., the number
of traces) of such programs would be bounded by |H| (and upper bounding problems would become
“k-safety” hyperproperties [32]). In this case, the problems are trivially |H|-observable hyperproperties.
However, these bounds are high for all but very small domains, and are unlikely to lead to a practical
verification method.

5.2 Observable Hyperproperties and Observable Properties

As remarked in [11], observable hyperproperties generalize the notion of observable properties [2]. It
can be shown that there exists a non-empty observable property that is not a liveness property (e.g., the
set of all traces that starts with σ). In contrast, Theorem 3.6 states that every non-empty observable
hyperproperty is also a liveness hyperproperty. Intuitively, this follows because the hyperproperty ex-
tension relation ≤ allows the right-hand side to contain traces that does not appear in the left-hand side.
Therefore, for any T ∈ Obs, there exists T ′ ∈ Prop that contains T and an evidence of the observable
hyperproperty.

5.3 Maximum of QIF over Distribution

Researchers have studied the maximum of QIF over the distribution. For example, channel capacity [25,
23, 27] is the maximum of the Shannon-entropy based quantitative information flow over the distribution
(i.e., maxµ SE[µ]). Smith [29] showed that for any program without low-security inputs, the channel
capacity is equal to the min-entropy-based quantitative information flow, that is, maxµ SE[µ] = ME[U].
Therefore, we obtain the same hyperproperty classifications and complexity results for channel capacity
as ME[U].

Min-entropy channel capacity and guessing-entropy channel capacity are respectively the maxi-
mums of min-entropy based and guessing-entropy based QIF over distributions (i.e., maxµ ME[µ] and
maxµ GE[µ]). It has been shown that maxµ ME[µ] = ME[U] [6, 20] and maxµ GE[µ] = GE[U] [34],
that is, they attain their maximums when the distributions are uniform. Therefore, they have the same
hyperproperty classifications and complexities as ME[U] and GE[U], which we have already analyzed in
this paper.

6 Related Work

Černý et al. [7] have investigated the computational complexity of Shannon-entropy based QIF. For-
mally, they have defined a Shannon-entropy based QIF for interactive boolean programs, and showed
that the explicit-state computational complexity of their lower-bounding problem is PSPACE-complete.
In contrast, this paper’s complexity results are “implicit” complexity results of bounding problems of
boolean programs (i.e., complexity relative to the syntactic size of the input) some of which are obtained
by utilizing their hyperproperties classifications.

H. Yasuoka & T. Terauchi 91

Clarkson and Schneider [11] have classified quantitative information flow problems via hyperprop-
erties. Namely, they have shown that the problem of deciding if the channel capacity of a given program
is q, is a liveness hyperproperty. And, they have shown that an upper-bounding problem for the belief-
based QIF [10] is a safety hyperproperty. (It is possible to refine their result to show that their problem
for deterministic programs is actually equivalent to non-interference, and therefore, is a 2-safety hyper-
property [34].)

7 Conclusion

We have related the upper and lower bounding problems of quantitative information flow, for various
information theoretic definitions proposed in literature, to Clarkson and Schneider’s hyperproperties.
Hyperproperties generalize the classical trace properties, and are thought to be more suitable for classi-
fying information flow properties as they are relations over sets of program traces. Our results confirm
this by giving a fine-grained classification and showing that it gives insights into the complexity of
the QIF bounding problems. One of the contributions is a new class of hyperproperties: k-observable
hyperproperty. We have shown that k-observable hyperproperties are amenable to verification via self
composition.

References

[1] (2010): Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF 2010, Edinburgh,
United Kingdom, July 17-19, 2010. IEEE Computer Society.

[2] Samson Abramsky (1991): Domain Theory in Logical Form. Ann. Pure Appl. Logic 51(1-2), pp. 1–77.
Available at http://dx.doi.org/10.1016/0168-0072(91)90065-T.

[3] Michael Backes, Matthias Berg & Boris Köpf (2011): Non-uniform distributions in quantitative information-
flow. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’11, ACM, New York, NY, USA, pp. 367–375. Available at http://doi.acm.org/10.1145/
1966913.1966960.

[4] Michael Backes, Boris Köpf & Andrey Rybalchenko (2009): Automatic Discovery and Quantification of
Information Leaks. In: IEEE Symposium on Security and Privacy, IEEE Computer Society, pp. 141–153.
Available at http://dx.doi.org/10.1109/SP.2009.18.

[5] Gilles Barthe, Pedro R. D’Argenio & Tamara Rezk (2004): Secure Information Flow by Self-Composition.
In: CSFW, IEEE Computer Society, pp. 100–114. Available at http://doi.ieeecomputersociety.org/
10.1109/CSFW.2004.17.

[6] Christelle Braun, Konstantinos Chatzikokolakis & Catuscia Palamidessi (2009): Quantitative Notions of
Leakage for One-try Attacks. Electr. Notes Theor. Comput. Sci. 249, pp. 75–91. Available at http://dx.
doi.org/10.1016/j.entcs.2009.07.085.

[7] Pavol Černý, Krishnendu Chatterjee & Thomas A. Henzinger (2011): The Complexity of Quantitative In-
formation Flow Problems. In: CSF, IEEE Computer Society, pp. 205–217. Available at http://doi.
ieeecomputersociety.org/10.1109/CSF.2011.21.

[8] David Clark, Sebastian Hunt & Pasquale Malacaria (2005): Quantified Interference for a While Language.
Electr. Notes Theor. Comput. Sci. 112, pp. 149–166. Available at http://dx.doi.org/10.1016/j.
entcs.2004.01.018.

[9] David Clark, Sebastian Hunt & Pasquale Malacaria (2007): A static analysis for quantifying information flow
in a simple imperative language. J. Comput. Secur. 15, pp. 321–371. Available at http://dl.acm.org/
citation.cfm?id=1370628.1370629.

http://dx.doi.org/10.1016/0168-0072(91)90065-T
http://doi.acm.org/10.1145/1966913.1966960
http://doi.acm.org/10.1145/1966913.1966960
http://dx.doi.org/10.1109/SP.2009.18
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.17
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://doi.ieeecomputersociety.org/10.1109/CSF.2011.21
http://doi.ieeecomputersociety.org/10.1109/CSF.2011.21
http://dx.doi.org/10.1016/j.entcs.2004.01.018
http://dx.doi.org/10.1016/j.entcs.2004.01.018
http://dl.acm.org/citation.cfm?id=1370628.1370629
http://dl.acm.org/citation.cfm?id=1370628.1370629

92 Quantitative Information Flow as Safety and Liveness Hyperproperties

[10] Michael R. Clarkson, Andrew C. Myers & Fred B. Schneider (2005): Belief in Information Flow. In: CSFW,
IEEE Computer Society, pp. 31–45. Available at http://dx.doi.org/10.1109/CSFW.2005.10.

[11] Michael R. Clarkson & Fred B. Schneider (2010): Hyperproperties. Journal of Computer Security 18(6), pp.
1157–1210. Available at http://dx.doi.org/10.3233/JCS-2009-0393.

[12] Ellis S. Cohen (1977): Information Transmission in Computational Systems. In: SOSP, pp. 133–139. Avail-
able at http://doi.acm.org/10.1145/800214.806556.

[13] Ádám Darvas, Reiner Hähnle & David Sands (2005): A Theorem Proving Approach to Analysis of Secure
Information Flow. In: Dieter Hutter & Markus Ullmann, editors: SPC, Lecture Notes in Computer Science
3450, Springer, pp. 193–209. Available at http://dx.doi.org/10.1007/978-3-540-32004-3 20.

[14] Dorothy Elizabeth Robling Denning (1982): Cryptography and data security. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[15] Cormac Flanagan & James B. Saxe (2001): Avoiding exponential explosion: generating compact verification
conditions. In: POPL, pp. 193–205. Available at http://doi.acm.org/10.1145/360204.360220.

[16] Joseph A. Goguen & José Meseguer (1982): Security Policies and Security Models. In: IEEE Symposium
on Security and Privacy, pp. 11–20.

[17] Jonathan Heusser & Pasquale Malacaria (2009): Applied Quantitative Information Flow and Statistical
Databases. In: Pierpaolo Degano & Joshua D. Guttman, editors: Formal Aspects in Security and Trust,
Lecture Notes in Computer Science 5983, Springer, pp. 96–110. Available at http://dx.doi.org/10.
1007/978-3-642-12459-4 8.

[18] Boris Köpf & David A. Basin (2007): An information-theoretic model for adaptive side-channel attacks. In:
Peng Ning, Sabrina De Capitani di Vimercati & Paul F. Syverson, editors: ACM Conference on Computer and
Communications Security, ACM, pp. 286–296. Available at http://doi.acm.org/10.1145/1315245.
1315282.

[19] Boris Köpf & Andrey Rybalchenko (2010): Approximation and Randomization for Quantitative Information-
Flow Analysis. In CSF [1], pp. 3–14. Available at http://doi.ieeecomputersociety.org/10.1109/
CSF.2010.8.

[20] Boris Köpf & Geoffrey Smith (2010): Vulnerability Bounds and Leakage Resilience of Blinded Cryptography
under Timing Attacks. In CSF [1], pp. 44–56. Available at http://doi.ieeecomputersociety.org/10.
1109/CSF.2010.11.

[21] K. Rustan M. Leino (2005): Efficient weakest preconditions. Inf. Process. Lett. 93(6), pp. 281–288. Available
at http://dx.doi.org/10.1016/j.ipl.2004.10.015.

[22] Pasquale Malacaria (2007): Assessing security threats of looping constructs. In: Martin Hofmann & Matthias
Felleisen, editors: POPL, ACM, pp. 225–235. Available at http://doi.acm.org/10.1145/1190216.
1190251.

[23] Pasquale Malacaria & Han Chen (2008): Lagrange multipliers and maximum information leakage in different
observational models. In: Úlfar Erlingsson & Marco Pistoia, editors: PLAS, ACM, pp. 135–146. Available
at http://doi.acm.org/10.1145/1375696.1375713.

[24] James L. Massey (1994): Guessing and Entropy. In: ISIT ’94: Proceedings of the 1994 IEEE Interna-
tional Symposium on Information Theory, p. 204. Available at http://dx.doi.org/10.1109/ISIT.
1994.394764.

[25] Stephen McCamant & Michael D. Ernst (2008): Quantitative information flow as network flow capacity. In:
Rajiv Gupta & Saman P. Amarasinghe, editors: PLDI, ACM, pp. 193–205. Available at http://doi.acm.
org/10.1145/1375581.1375606.

[26] David A. Naumann (2006): From Coupling Relations to Mated Invariants for Checking Information Flow.
In: Dieter Gollmann, Jan Meier & Andrei Sabelfeld, editors: ESORICS, Lecture Notes in Computer Science
4189, Springer, pp. 279–296. Available at http://dx.doi.org/10.1007/11863908 18.

http://dx.doi.org/10.1109/CSFW.2005.10
http://dx.doi.org/10.3233/JCS-2009-0393
http://doi.acm.org/10.1145/800214.806556
http://dx.doi.org/10.1007/978-3-540-32004-3_20
http://doi.acm.org/10.1145/360204.360220
http://dx.doi.org/10.1007/978-3-642-12459-4_8
http://dx.doi.org/10.1007/978-3-642-12459-4_8
http://doi.acm.org/10.1145/1315245.1315282
http://doi.acm.org/10.1145/1315245.1315282
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.8
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.8
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.11
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.11
http://dx.doi.org/10.1016/j.ipl.2004.10.015
http://doi.acm.org/10.1145/1190216.1190251
http://doi.acm.org/10.1145/1190216.1190251
http://doi.acm.org/10.1145/1375696.1375713
http://dx.doi.org/10.1109/ISIT.1994.394764
http://dx.doi.org/10.1109/ISIT.1994.394764
http://doi.acm.org/10.1145/1375581.1375606
http://doi.acm.org/10.1145/1375581.1375606
http://dx.doi.org/10.1007/11863908_18

H. Yasuoka & T. Terauchi 93

[27] James Newsome, Stephen McCamant & Dawn Song (2009): Measuring channel capacity to distinguish
undue influence. In: Stephen Chong & David A. Naumann, editors: PLAS, ACM, pp. 73–85. Available at
http://doi.acm.org/10.1145/1554339.1554349.

[28] Claude Shannon (1948): A Mathematical Theory of Communication. Bell System Technical Journal 27, pp.
379–423, 623–656. Available at http://doi.acm.org/10.1145/584091.584093.

[29] Geoffrey Smith (2009): On the Foundations of Quantitative Information Flow. In: Luca de Alfaro, editor:
FOSSACS, Lecture Notes in Computer Science 5504, Springer, pp. 288–302. Available at http://dx.doi.
org/10.1007/978-3-642-00596-1 21.

[30] Tachio Terauchi & Alexander Aiken (2005): Secure Information Flow as a Safety Problem. In: Chris Hankin
& Igor Siveroni, editors: SAS, Lecture Notes in Computer Science 3672, Springer, pp. 352–367. Available
at http://dx.doi.org/10.1007/11547662 24.

[31] Hiroshi Unno, Naoki Kobayashi & Akinori Yonezawa (2006): Combining type-based analysis and model
checking for finding counterexamples against non-interference. In: Vugranam C. Sreedhar & Steve
Zdancewic, editors: PLAS, ACM, pp. 17–26. Available at http://doi.acm.org/10.1145/1134744.
1134750.

[32] Hirotoshi Yasuoka & Tachio Terauchi (2010): On Bounding Problems of Quantitative Information Flow. In:
Dimitris Gritzalis, Bart Preneel & Marianthi Theoharidou, editors: ESORICS, Lecture Notes in Computer
Science 6345, Springer, pp. 357–372. Available at http://dx.doi.org/10.1007/978-3-642-15497-3
22.

[33] Hirotoshi Yasuoka & Tachio Terauchi (2010): Quantitative Information Flow - Verification Hardness and
Possibilities. In CSF [1], pp. 15–27. Available at http://doi.ieeecomputersociety.org/10.1109/
CSF.2010.9.

[34] Hirotoshi Yasuoka & Tachio Terauchi (2011): On Bounding Problems of Quantitative Information Flow
(Extended version). Journal of Computer Security 19(6), pp. 1029–1082. Available at http://dx.doi.
org/10.3233/JCS-2011-0437.

[35] Hirotoshi Yasuoka & Tachio Terauchi (2011). Quantitative Information Flow as Safety and Liveness Hyper-
properties. Available at http://www.kb.ecei.tohoku.ac.jp/∼yasuoka.

http://doi.acm.org/10.1145/1554339.1554349
http://doi.acm.org/10.1145/584091.584093
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/11547662_24
http://doi.acm.org/10.1145/1134744.1134750
http://doi.acm.org/10.1145/1134744.1134750
http://dx.doi.org/10.1007/978-3-642-15497-3_22
http://dx.doi.org/10.1007/978-3-642-15497-3_22
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.9
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.9
http://dx.doi.org/10.3233/JCS-2011-0437
http://dx.doi.org/10.3233/JCS-2011-0437
http://www.kb.ecei.tohoku.ac.jp/~yasuoka

Preliminary Report. Final version to appear in:
QAPL 2012

c© C. Palamidessi & M. Stronati
This work is licensed under the
Creative Commons Attribution License.

Differential privacy for relational algebra: improving the
sensitivity bounds via constraint systems∗

Catuscia Palamidessi
INRIA and LIX, Ecole Polytechnique, France

catuscia@lix.polytechnique.fr

Marco Stronati
Università di Pisa, Italy

marco.stronati@gmail.com

Abstract. Differential privacy is a modern approach in privacy-preserving data analysis to control
the amount of information that can be inferred about an individual by querying a database. The most
common techniques are based on the introduction of probabilistic noise, often defined as a Laplacian
parametric on the sensitivity of the query. In order to maximize the utility of the query, it is crucial
to estimate the sensitivity as precisely as possible.
In this paper we consider relational algebra, the classical language for queries in relational databases,
and we propose a method for computing a bound on the sensitivity of queries in an intuitive and
compositional way. We use constraint-based techniques to accumulate the information on the possi-
ble values for attributes provided by the various components of the query, thus making it possible to
compute tight bounds on the sensitivity.

1 Introduction

Differential privacy [6, 7, 8, 9] is a recent approach addressing the privacy of individuals in data analysis
on statistical databases. In general, statistical databases are designed to collect global information in
some domain of interest, while the information about the particular entries is supposed to be kept con-
fidential. Unfortunately, querying a database might leak information about an individual, because the
presence of her record may induce the query to return a different result.
To illustrate the problem, consider for instance a database of people affected by a certain disease, con-
taining data such as age, height, etc. Usually the identity of the people present in the database is supposed
to be secret, but if we are allowed to query the database for the number of records which are contained
in it, and for – say – the average value of the data (height, age, etc.), then one can infer the precise data
of the last person entry in the database, which poses a serious threat to the disclosure of her identity as
well.
To avoid this problem, one of the most commonly used methods consists in introducing some noise on
the answer. In other words, instead of giving the exact answer the curator gives an approximated answer,
chosen randomly according to some probability distribution.
Differential privacy measures the level of privacy provided by such a randomized mechanism by a pa-
rameter ε: a mechanism K is ε-differentially private if for every pair of adjacent databases R and R′ (i.e.
databases which which differ for only one entry), and for every property P , the probabilities that K (R)
and K (R′) satisfy P differ at most by the multiplicative constant eε .
The amount of noise that the mechanism must introduce in order to achieve ε differential privacy depends
on the so-called sensitivity of the query, namely the maximum distance between the answers on two
adjacent databases. For instance, one of the most commonly used mechanisms, the Laplacian, adds noise

∗This work has been partially supported by the project ANR-09-BLAN-0169-01 PANDA

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

C. Palamidessi & M. Stronati 95

to the correct answer y by reporting an approximated answer z according to the following probability
density function:

Py(z) = ce−
|y−z|
∆ f ε

where ∆ f is the sensitivity of the query f , and c is a normalization factor. Clearly, the higher is the
sensitivity, the greater the noise, in the sense that the above function is more “flat”, i.e. we get a higher
probability of reporting an answer very different from the exact one.
Of course, there is a trade off between the privacy and the utility of a mechanism: the more noise a
mechanism adds, the less precise the reported answer, which usually means that the result of querying
the database becomes less useful – whatever the purpose.
For this reason, it is important to avoid adding excessive noise: one should add only the noise strictly
necessary to achieve the desired level of differential privacy. This means that the sensitivity of the query
should be computed as precisely as possible. At the same time, for the sake of efficiency it is desirable
that the computation of the sensitivity is done statically. Usually this implies that we cannot compute the
precise sensitivity, but only approximate it from above. The goal of this paper is to explore a constraint-
based methodology in order to compute strict upper bounds on the sensitivity.
The language we chose to conduct our analysis is relational algebra [4, 5], a formal and well defined
model for relational databases, that is the basis for the popular Structured Query Language (SQL, [2]).
It consists in a collection of few operators that take relations as input and return relations as output,
manipulating rows or columns and computing aggregation of values.
Sensitivity on aggregations often depends on attribute ranges, and these restrictions can be exploited
to provide better bounds. To this purpose, we extend mechanisms already in place in modern database
systems: In RDBMS (Relational Data Bases Management Systems) implementations, during the creation
of a relation, it is possible to define a set of constraints over the attributes of the relation, to further restrict
the type information. For instance:

Persons{(Name, String)(Age, Integer)} {Age > 0 ∧ Age < 120)}

refines the type integer used to express the age of a person in the database, by establishing that it must
be a positive value smaller than 120.
Constraints in RDBMS can be defined on single attributes (column constraints), or on several attributes
(table constraints), and help define the structure of the relation, for example by stating whether an at-
tribute is a primary key or a reference to an external key. In addition, so called check constraints can be
defined, to verify the insertion of correct values. In the example above, for instance, the constraint would
avoid inserting an age of, say, 200. Check constraints are particularly useful for our purposes because
they restrict the possible values of the attributes, thus allowing a finer analysis of the sensitivity.

Contribution Our contribution is twofold:

1. we propose a method to compute a bound on the sensitivity of a query in relational algebra in a
compositional way, and

2. we propose the use of constraints and constraint solvers to refine the method and obtain strict
bounds on queries which have aggregation functions at the top level.

Plan of the paper Next section recalls some preliminary notions about relational databases and differ-
ential privacy. Section 3 introduces a constraint system and the idea of carrying along the information
provided by the constraints as we analyze the query. Section 4 proposes a generalization of differential

96 Differential privacy for relational algebra

privacy and sensitivity to generic metric spaces. This generalization will be useful in order to compute
the sensitivity of a query in a compositional way. Sections 6, 7 and 8 analyze the sensitivity and the prop-
agation of constraints for the various operators of relational algebra. Finally Section 9 proposes a method
to compute a sensitivity bound on the global query, and shows its correctness and the improvement pro-
vided by the use of constraints. Section 10 discusses some related work, and Section 11 concludes. Due
to space limitations, in this version we have omitted several proof. The interested reader can find them
in the full online version of the paper [3].

2 Preliminaries

We recall here some basic notions about relational databases and relational algebra, differential privacy,
and sensitivity.

2.1 Relational Databases and Relational Algebra

Relational algebra [4, 5] can be considered as the theoretic foundation of database query languages and
in particular of SQL [2]. It is based on the concept of relation, which is the mathematical essence of
a (relational) database, and of certain operators on relations like union, intersection, projections, filters,
etc.. Here we recall the basic terminology used for relational databases, while the operators will be
illustrated in detail in the technical body of the paper.
A relation (or database) based on a certain schema is a collection of tuples (or records) of values. The
schema defines the types (domain) and the names (attributes) of these values.

Definition 1 (Relation Schema). A relation schema r(a1 : D1,a2 : D2, . . . ,an : Dn) is composed of the
relation name r and a set of attributes a1,a2, . . . ,an associated with the domains D1,D2, . . . ,Dn, respec-
tively. We use the notation dom(ai) to refer to Di.

Definition 2 (Relation). A relation R on a relation schema r(a1 : D1,a2 : D2, . . . ,an : Dn) is a subset of
the Cartesian product D1×D2× . . .×Dn.

A relation is thus composed by a set of n-tuples, where each n-tuple τ has the form (d1,d2, . . . ,dn) with
di ∈Di. Note that τ can also be seen as a partial function from attributes to atomic values, i.e. τ(ai) = di.
Given a schema, we will denote the universe of possible tuples by T , and the set of all possible relations
by R = 2T .
Relational algebra is a language that operates from relations to relations. Differentially private queries,
however, can only return a value, and for this reason they must end with an aggregation (operator γ).
Nevertheless it is possible to show that the full power of relational algebra aggregation can be retrieved.

2.2 Differential Privacy

Differential privacy is a property meant to guarantee that the participation in a database does not con-
stitute a threat for the privacy of an individual. More precisely, the idea is that a (randomized) query
satisfies differential privacy if two relations that differ only for the addition of one record are almost
indistinguishable with respect to the results of the query.
Two relations R,R′ ∈ R that differ only for the addition of one record are called adjacent, denoted by
R∼ R′. Formally, R∼ R′ iff R\R′ = {τ} or viceversa R′ \R = {τ}, where τ is a tuple.

C. Palamidessi & M. Stronati 97

Definition 3 (Differential privacy [6]). A randomized function K : R → Z satisfies ε-differential pri-
vacy if for all pairs R,R′ ∈ R , with R∼ R′, and all Y ⊆ Z, we have that:

Pr[K (R) ∈ Y]≤ Pr[K (R′) ∈ Y] · eε

where Pr[E] represents the probability of the event E.

Differentially private mechanisms are usually obtained by adding some random noise to the result of
the query. The best results are obtained by calibrating the noise distribution according to the so-called
sensitivity of the query. When the answers to the query are real numbers (R), its sensitivity is defined as
follows. (We represent a query as a function from databases to the domain of answers.)

Definition 4 (Sensitivity [6]). Given a query Q : R → R, the sensitivity of Q, denoted by ∆Q, is defined
as:

∆Q = sup
R∼R′
|Q(R)−Q(R′) |.

The above definition can be extended to queries with answers on generic domains, provided that they are
equipped with a notion of distance.

3 Databases with constraints

As explained in the introduction, one of the contributions of our paper is to provide strict bounds on the
sensitivity of queries by using constraints. For an introduction to the notions of constraint, constraint
solver, and constraint system we refer to [1].
In this section we define the constraint system that we will use, and we extend the notion of database
schema so to accommodate the additional information provided by the constrains during the analysis of
a query.

Definition 5 (Constraint system). Our constraint system is defined as follows:

• Terms are constructed from:
– variables, ranging over the attribute names of the schemas,
– constants, ranging over the domains of the schemas,
– applications of n-ary functions (e.g. +,×) to n terms.

• Atoms are applications of n-ary predicates to n terms. Possible predicates are ≥,≤,=,∈.
• Constraints are constructed from:

– atoms, and
– applications of logical operators (¬,∧,∨,≡) to constraints.

We denote the composition of constraint by ⊗. The solutions of a set of constraints C is the set of tuples
that satisfy C, denoted Sol(C). The relations that can be build from sol(C) are denoted by R (C) =
P (sol(C)). The solutions with respect to an attribute a is denoted sol(C,a). Namely, sol(C,a) is the
projection on a of sol(C). When the domain is equipped with an ordering relation, we also use inf (C,a)
and sup(C,a) to denote the infimum and the supremum values, respectively, of sol(C,a). Typically the
solutions and the inf and sup values can be computed automatically using constraint solvers. Finally we
define the diameter of a constraint C as the maximum distance between the solutions of C.

Definition 6 (Diameter). The diameter of a constraint C, denoted diam(C), is the graph diameter of the
adjacency graph (R (C),∼) of all possible relations composed by tuples that satisfy C.

98 Differential privacy for relational algebra

We now extend the classical definition of schema to contain also the set of constraints.

Definition 7 (Constrained schema). A constrained schema r(A,C) is composed of the relation name r,
a set of attributes A, and a set of constraints C. A relation on a constrained schema is a subset of sol(C).
We will use schema(R) to represent the constrained relation schema of a relation R.

The above definition extends the notion of relation schema (Definition 1): In fact here each ai can be
seen as associated with sol(C,ai). Definition 1 can then be retrieved by imposing as only constraints
those of the form ai ∈ Di.

Example 1. Consider the constrained schema Items(A,C), where A = {Item,Price,Cost}, and C =
{(Cost ≤ Price ≤ 1000,0 < Cost ≤ 1000)}. The following R is a possible relation over this schema.
R:

Items {Item, Price, Cost}
{(Cost ≤ Price ≤ 1000, 0<Cost≤1000)}

Items(A,C)

Item Price Cost

Oil 100 10

Salt 50 11

R

4 Differential privacy on arbitrary metrics

The classic notions of differential privacy and sensitivity are meant for queries defined on R , the set of all
relations on a given schema. The adjacency relation induces a graph structure (where the arcs correspond
to the adjacency relation), and a metric structure (where the distance is defined as the distance on the
graph).
In order to compute the sensitivity bounds in a compositional way, we need to cope with different struc-
tures at the intermediate steps, and with different notions of distance. Consequently, we need to extend
the notions of differential privacy and sensitivity to general metric domains.
We start by defining the notions of distance that we will need.

Definition 8 (Hamming distance dH). The distance between two relations R,R′ ∈ R is the Hamming
distance dH(R,R′) = |R 	 R′|, the cardinality of the symmetric difference between R and R′. The sym-
metric difference is defined as R 	 R′ = (R\R′)∪ (R′ \R).

Note that dH coincides with the graph-theoretic distance on the graph induced by the adjacency relation
∼, and that dH(R,R′) = 1⇔ R∼ R′. We now extend the Hamming distance to tuples of relations, to deal
with n-ary operators.

Definition 9 (Distance dnH). The distance dnH between two tuples of n relations (R1, . . . ,Rn),(R′1, . . . ,R
′
n)∈

R n is defined as: dnH((R1, . . . ,Rn),(R′1, . . . ,R
′
n)) = max(dH(R1,R′1), . . . ,dH(Rn,R′n))

Note that dnH coincides with the Hamming distance for n = 1. We chose this maximum metric instead of
other distances because it allows us to compute the sensitivity compositionally, while this is not the case
for other notions of distance. We can show counterexamples, for instance, for both the Euclidian and the
Manhattan distances.

Definition 10 (Distance dE). The distance between two real numbers x,x′ ∈ R is the usual euclidean
distance dE(x,x′) = |x− x′|.

In summary, we have two metric spaces over which the relational algebra operators work, namely
(R n,dnH), and (R,dE).

C. Palamidessi & M. Stronati 99

Example 2. Consider a relation R and two tuples τ,π such that τ 6∈ R and π ∈ R. We define its neighbors
R+ and R±, obtained by adding one record, and by changing one record, respectively:

R+ = R∪{τ} R± = R∪{τ}\{π}

Their distance from R is : dH(R,R+) = |R 	 R+| = 1, and dH(R,R±) = |R 	 R±| = 2. Note also that
R∼ R+.

Notation 1. In the following, we will use the notation R+ to denote R∪{τ} for a generic tuple τ , with
the assumption (unless otherwise specified) that τ 6∈ R.

We now adapt the definition of differential privacy to arbitrary metric spaces (X ,d) (where X is the
support set and d the distance function).

Definition 11 (Differential privacy extended). A randomized mechanism K : X → Z on a generic met-
ric space (X ,d) provides ε-differential privacy if for any x,x′ ∈ X, and any set of possible outputs Y ⊆ Z,

Pr[K (x) ∈ Y] ≤ Pr[K (x′) ∈ Y] · eε·d(x,x′)

It can easily be shown that Definitions 11 and 3 are equivalent if d = dH .
We now define the sensitivity of a function on a generic metric space.

Definition 12 (Sensitivity extended). Let (X ,dX) and (Y,dY) be metric spaces. The sensitivity ∆ f of a
function f : (X ,dX)→ (Y,dY) is defined as

∆ f = sup
x,x′∈X
x 6=x′

dY (f (x), f (x′))
dX(x,x′)

Again, we can show that Definitions 12 and 4 are equivalent if dX = dnH (proof in full version [3]).
This more general definition makes clear that the sensitivity of a function is a measure of how much it
increases distances from its inputs to its outputs.
As a refinement of the definition of sensitivity, we may notice that this attribute does not depend on the
function alone, but also on the domain, where the choice of x,x′ ranges to compute the supremum. In our
framework this is particularly useful because we have a very precise description of the restrictions on the
domain of an operator, thanks to its input constrained schema (Def 7).

Definition 13 (Sensitivity constrained). Given a function f : (X ,dX)→ (Y,dY), and a set of constraints
C on X, the sensitivity of f with respect to C is defined as

∆ f (C) = sup
x,x′∈sol(C)

x 6=x′

dY (f (x), f (x′))
dX(x,x′)

The introduction of constraints, in addition to an improved precision, allows us to define conveniently
function composition. It should be noted that when combining two functions f ◦g, where g : (Y,dY)→
(Z,dZ), the domain of g actually depends on the restrictions introduced by f and we can take this into
account maximizing over y,y′ ∈ sol(C⊗C f), that is the domain obtained combining the initial constraint
C and the constraint introduced by f .

100 Differential privacy for relational algebra

5 Operators

We now proceed to compute a bound on the sensitivity of each relational algebra operator through a static
analysis that depends only on the relation schema the operator is applied to, and not on its particular
instances.
From a static point of view each operator will be considered as a transformation from schema to schema
(instead of a transformation from relations to relations): they may add or remove attributes, and modify
constraints.
The following analysis is split in operators op : (R n,dnH)→ (R ,dH), with n equals 1 or 2, and aggrega-
tion γ f : (R ,dH)→ (R,dE). In the sensitivity analysis of the formers, given they work only on Hamming
metrics, we are only interested in their effect on the number of rows. In our particular case, these re-
lational algebra operators treats all rows equally, without considering their content. This simplification
grants us the following property:

Proposition 1. If op : (R ,dH)→ (R ,dH) and C is an arbitrary set of constraints

∆op(C) = sup
R,R′∈R (C)

R 6=R′

dH(op(R),op(R′))
dH(R,R′)

= min
(
∆op(/0),diam(C⊗Cop)

)

(The proposition holds analogously for the binary case). This property, that does not hold for general
functions, allows us in the case of relational algebra to decouple the computation of sensitivity from the
constraint system, and solve them separately. ∆op(/0) (from now on just ∆op) can be seen as the sensitivity
intrinsic to each operator, the maximum value of sensitivity the operator can cause, when the constraints
are loose enough 1 to be omitted. While diam(C⊗Cop), the diameter of the co-domain of the operator,
limits the maximum distance the operator can produce, that is the numerator in the distances ratio.

6 Row operators

In this section we consider a first group of operators of type (R n,dnH)→ (R ,dH) with n = 1,2, which
are characterized by the fact that they can only add or remove tuples, not modify their attributes. Indeed
the header of the resulting relation maintains the same set of attributes and only the relative constraints
may be modified.

6.1 Union ∪

The union of two relation is the set theoretic union of two set of tuples with the same attributes. The
example below illustrates this operation:

Name Age Height
John 30 180
Tim 10 100

⋃ Name Age Height
Alice 45 160
Tim 10 100

=

Name Age Height
John 30 180
Tim 10 100
Alice 45 160

The union of two relations may reduce their distance to zero or leave it unchanged.

Proposition 2. The union has sensitivity 2: ∆∪ = 2.

1for all possible domains the sensitivity can’t be greater.

C. Palamidessi & M. Stronati 101

Proof. If d2H((R1,R2),(R3,R4)) = 1 then we have two cases

a) R3 = R+
1 ,R4 = R2 or R3 = R1,R4 = R+

2 . For the symmetry of distance only one case needs to be
considered:

|(R1∪R2) 	 (R+
1 ∪R2)|=

{
0 τ ∈ R2
1 o.w.

The only difference is the tuple τ . If τ ∈ R2 then τ would be in both results, leading to identical
relations, thus reducing the distance to zero. If τ 6∈ R2 then τ will again be the only difference
between the results, thus resulting into distance 1.

b) R3 = R+
1 ,R4 = R+

2

|(R1∪R2) 	 (R+
1 ∪R+

2)|=


0 τ1 ∈ R2∧ τ2 ∈ R1
1 τ1 ∈ R2∨ τ2 ∈ R1
2 τ1 /∈ R2∧ τ2 /∈ R1

In this case we have two records differing, τ1 and τ2, and in the worst case they may remain different in
the results, giving a final sensitivity of 2 for the operator.

Definition 14 (Constraints for union). Let schema(R1)= (A,C1) and schema(R2)= (A,C2). Then schema(R1∪
R2) = (A,C1∨C2).

6.2 Intersection ∩

The intersection of two relation is the set theoretic intersection of two set of tuples with the same at-
tributes.
As for the union, the difference applied to argument at distance 1 may have an effect on the only tuple in
which the arguments differ, thus resulting into a distance 0 or 1.

Proposition 3. The intersection has sensitivity 2: ∆∩ = 2.

Proof. Similar to the case of Proposition 2.

Definition 15 (Constraints for intersection). Let schema(R1)= (A,C1) and schema(R2)= (A,C2). Then
schema(R1∩R2) = (a,C1∧C2).

6.3 Difference \

The difference of two relation is the set theoretic difference of two set of tuples with the same attributes.
As in the case of the union, the difference applied to argument at distance 1 may have an effect on the
only tuple in which the arguments differ, thus resulting into a distance 0 or 1.

Proposition 4. The set difference has sensitivity 2: ∆\ = 2.

Proof. Similar to the case of Proposition 2.

Definition 16 (Constraints for set difference). Let schema(R1) = (A,C1) and schema(R2) = (A,C2).
Then schema(R1 \R2) = (A,C1∧ (¬C2)).

102 Differential privacy for relational algebra

6.4 Restriction σ

The restriction operator σϕ(R) removes all rows not satisfying the condition ϕ (typically constructed
using the predicates =, 6=,<,> and the logical connectives ∨,∧,¬), over a subset of R attributes.
As an example, consider the following SQL program that removes all people whose age is smaller than 20
or whose height is greater than 180. The table illustrates an example of application of the corresponding
restriction σAge≥20∧Height<180.

SELECT *

FROM R

WHERE Age>=20 AND Height<=180

σAge≥20∧Height<180


Name Age Height
John 30 180
Tim 10 100
Alice 45 160
Natalie 20 175

 =
Name Age Height
Alice 45 160
Natalie 20 175

The restriction can be expressed in terms of set difference: σϕ(R) = R \ {τ | ¬ϕ(τ)}. However the
sensitivity is different because the operator is unary, the second argument is fixed by the condition ϕ

Proposition 5. The restriction has sensitivity 2: ∆σϕ
= 1.

Definition 17 (Constraints for restriction). Let schema(R)= (A,C) and A′⊆A. Then define schema(σϕ(A′)(R))=
(A,C∧ϕ(A′)).

7 Attribute operators

The following set of operators, unlike those analyzed so far, can affect the number of tuples of a relation,
as well as its attributes.

7.1 Projection π

The projection operator πa1,...,an(R) eliminates the columns of R with attributes other than a1, . . . ,an, and
then deletes possible duplicates, thus reducing distances or leaving them unchanged. It is the opposite of
the restricted Cartesian product ×1 which will be presented later.
The following example illustrates the use of the projection. Here, the attribute to preserve are Name and
Age.

SELECT Name,Age

FROM R

πName,Age


Name Age Car
John 30 Ford
John 30 Renault
Alice 45 Fiat

 =
Name Age
John 30
Alice 45

Proposition 6. The projection has sensitivity 1: ∆π = 1.

Proof. |πa1,...,an(R) 	 πa1,...,an(R
+)|=

{
0 ∃ρ ∈ R. ∀i ∈ {1, . . . ,n} ρ(ai) = τ(ai)
1 o.w.

Definition 18 (Constraints for projection). Let schema(R)= (A,C) and A′⊆A. Then schema(πA′(R))=
(A′,C).

C. Palamidessi & M. Stronati 103

7.2 Cartesian product

The Cartesian product of two relation is the set theoretic Cartesian product of two set of tuples with
different attributes, with the exception that in relations the order of attributes does not count, thus making
the operation commutative. The following example illustrate this operation.

Name Age Height
John 30 180
Alice 45 160

×
Car Owner
Fiat Alice
Ford Alice

=

Name Age Height Car Owner
John 30 180 Fiat Alice
John 30 180 Ford Alice
Alice 45 160 Fiat Alice
Alice 45 160 Ford Alice

This operator may seem odd in the context of a query language, but it is in fact the base of the join, the
operator to merge the information of two relations.

R ./
R.ai=T.ai

T = σR.ai=T.ai(R×T)

We analyze now the sensitivity of the Cartesian product.

One record ×1 We first consider a restricted version ×1, where on one side we have a single tuple.

Proposition 7. The operator ×1 has sensitivity 1: ∆×1 = 1.

N records × We consider now the full Cartesian product operator. It is immediate to see that a dif-
ference of a single row can be expanded to an arbitrary number of records, thus causing and unbounded
sensitivity.

Proposition 8. The (unrestricted) Cartesian product has unbounded sensitivity.

We now define how constraints propagate through Cartesian product:

Definition 19 (Constraints for product). Let schema(R1) = (A1,C1) and schema(R2) = (A2,C2). Then
schema(R1×R2) = (A1∪A2,C1∧C2).

7.3 Restricted ×

The effect of Cartesian product is to expand each record with a block of records, a behavior clearly against
our objective of distance-preserving computations. However we propose some restricted versions of the
operator in order to maintain its functionality to a certain extent:

• ×n: product with blocks of a fixed n size, to obtain n sensitivity. In this case n representative
elements can be chosen from the relation, the definition of policies to pick these elements is left to
future developments.

• ×γ : a new single record is built as an aggregation of the relation, through the operator /0γ f (pre-
sented later), thus falling in the case of ×1 sensitivity.

• a mix the two approaches could be considered, building n aggregations, possibly using the operator
{ai}γ f (presented later).

In both approaches the rest of the query can help to select the right records from the block, for example
an external restriction could be anticipated.

104 Differential privacy for relational algebra

8 Aggregation γ

The classical relational algebra operator for aggregation {a1,...,am} γ { f1,..., fk}(R) performs the following
steps:

• it partitions R, so that each group has all the tuples with the same values for each ai,
• it computes all fi for each group,
• it returns a single tuple for each group, with the values of ai and of fi.

The most common function founds on RDBMS are count,max,min,avg,sum and we will restrict our
analysis to these ones. The following example illustrates how we can use an aggregation operator to
know, for each type of Car, how many people own it and what is their average height.

SELECT Car, Count(*), Avg(Height)

FROM R

GROUPBY Car

{Car}γ{Count,Avg(Height)}


Name Age Height Car
Alice 45 160 Ford
John 30 180 Fiat
Frank 45 165 Renault
Natalie 20 170 Ford

=

Car Count Avg(Height)
Ford 2 165
Fiat 1 180
Renault 1 165

In the domain of differential privacy special care must be taken when dealing with this operator as it is
in fact the point of the query in which our analysis of sensitivity ends and the noise must be added to the
result of the function application.
A differentially private query should return a single value, in our case in R, and the only queries that
statically guarantee this property are those ending with the operator /0γ f : (R ,dH)→ (R,dE) (from here
on abbreviated γ f), that apply only one function f to the whole relation without grouping. For this reason
we will ignore grouping for now, and focus on queries of the form /0γ f (Q) where Q is a sub-query without
aggregations. It is however possible to recover the original AγF behavior and use it in sub-queries.

8.1 Functions

In this section we analyze the sensitivity of the common mathematical functions count,sum, max,min

and avg. The application of functions coincide with the change of domain, in fact they take as input a
relation in (R ,dH) and return a single number in (R,dE), (not to be confused with a relation with a single
tuple, which also contains a single value).
Extending standard results [6], we can prove that, when f = count,sum,max,min,avg then ∆ f (C) can
be computed as follows:

Proposition 9.

∆count(C) = 1

∆sumai
(C) = max{|sup(C,ai)|, | inf(C,ai)|}

∆maxai
(C) = |sup(C,ai)− inf(C,ai)|

∆minai
(C) = |sup(C,ai)− inf(C,ai)|

∆avgai
(C) =

|sup(C,ai)− inf(C,ai)|
2

8.2 Exploiting the constraint system

The sensitivity of aggregation functions, as shown above, depends on the range of the values of an
attribute, so clearly it is important to compute the range as accurately as possible.

C. Palamidessi & M. Stronati 105

The usual approach is to consider the bounds given by the domain of each attribute. In terms of constraint
system, this corresponds to consider the solutions of the constraint CI = a1 ∈D1∧a2 ∈D2∧ . . .∧an ∈Dn.
I.e. the standard approach computes the sensitivity of aggregation functions for an attribute a on the basis
of sup(CI,a) and inf(CI,a).
In our proposal we also use CI: for us it is the initial constraint, at the beginning of the analysis of the
query. The difference is that our approach updates this constraints with information provided by the
various components of the query, and then exploits this information to compute more accurate ranges for
each attribute. The following example illustrates the idea.

Example 3. Assume that schema(R)= ({Weight,Height},CI), and that the domain for Weight is [0,150]
and for Height is [0,200]. The following query asks the average weight of all the individuals whose
weight is below the height minus 100.

γavg(Weight)(σWeight≤Height−100(R))

Below we show the initial constraint CI and the constraints CQ computed by taking into account the
condition of σ . Compare the sensitivity computed using CI with the one computed using CQ: They differ
because in CQ the max value of Weight is 100, while in CI is 150.

CI = {W ∈ [0,150] ∧ H ∈ [0,200]} ∆(CI ,γavg(W)) =
|max(CI ,W)−min(CI ,W)|

2 = 75

CQ = {W ∈ [0,150] ∧ H ∈ [0,200] ∧ W ≤ H−100} ∆(CQ,γavg(W)) =
|max(CQ,W)−min(CQ,W)|

2 = 50

Hence exploiting the constraints generated by the query can lead to a significant reduction of the sensi-
tivity.

8.3 Constraints generated by the functions

We now define how to add new constraints for the newly created attributes computed by the functions.

Definition 20 (Constraints for functions). Let schema(R)= (A,C), A′⊆A and F = { f1(a1), . . . , fn(an)},
where a1, . . . ,an ∈ A. Then schema(A′ γ F(R)) = (A′∪{a f1 . . .a fn}, C∧ c f1 ∧ . . .∧ c fn), where:

c fi =

{
min(C,ai)≤ a fi ≤ sup(C,ai) if fi = max/min/avg

0≤ a fi if fi = sum/count

9 Global sensitivity

We have concluded the analysis for all operators of relational algebra, and we now define the sensitivity
of the whole query in a compositional way.
For the computation of the sensitivity, we need to take into account the constraint generated by it. We
start by showing how to compute this constraint, in the obvious (compositional) way. Remember that we
have already defined the constraints generated by each relational algebra operator in Sections 6, 7 and 8.

Definition 21 (Constraint generated by an intermediate query). The global constraint generated by
an intermediate query Q on relations with relational schema r(a1 : D1,a2,D2, . . . ,an : Dn) is defined
statically as:

CQ = schema(Q(R))

where R is any relation such that schema(R) = ({a1,a2, . . . ,an},CI), with CI = a1 ∈D1∧a2 ∈D2∧ . . .∧
an ∈ Dn.

106 Differential privacy for relational algebra

We assume, the top-level operator in a query is an aggregation γ f , followed by a query composed freely
using the other operators. We now show how to compute the sensitivity of the latter. Since it is a recursive
definition, for the sake of elegance we will assume an identity query Id.

Definition 22 (Intermediate query sensitivity). Assume op : (R n,dnH) → (R ,dH) and Cop the con-
straint obtained after the application of op:

S(Id) = min(1,diam(CId)) base case
S(op◦Q) = min

(
∆op ·S(Q),diam(Cop◦Q)

)
if n = 1

S(op◦ (Q1,Q2)) = min
(
∆op ·max(S(Q1),S(Q2)),diam(Cop◦(Q1,Q2))

)
if n = 2

where op can be any of ∪,∩,\,σ ,π,×,×1 and the (classic) AγF .

We are now ready to define the global sensitivity of the query:

Definition 23 (global sensitivity). The global sensitivity GS of a query γ f (Q) is defined as:

GS(γ f (Q)) =

 ∆ f (CQ) ·S(Q) if f = count,sum,avg

∆ f (CQ) if f = max,min

The following theorem, (proof in full version [3]), expresses the soundness and the strictness of the
bound computed with our method.

Theorem 1 (Soundness and strictness). The sensitivity bound computed by GS(·) is sound and strict.
Namely:

GS(γ f (Q)) = ∆γ f (Q)

10 Related Work

The field of privacy in statistical databases has often been characterized by ad-hoc solutions or algorithms
to solve specific cases [7]. In recent years however there have been several efforts to develop a general
framework to define differentially private mechanisms. In the work [12] the authors have proposed
a functional query language equipped with a type system that guarantees differential privacy. Their
approach is very elegant, and based on deep logical principles. However, it may be a bit far from the
practices of the database community, addressing which is the aim of our paper.
The work that is closest to ours, is the PINQ framework [11], where McSherry extends the LINQ lan-
guage, with differential privacy functionalities developed by himself, Dwork and others in [10].
Despite this existing implementation we felt the need for a more universal language to explore our ideas,
and the mathematically-based framework of relational algebra seemed a natural choice. Furthermore the
use of a constraint system to increase the precision of the sensitivity bound was, to out knowledge, never
explored before.

11 Conclusions and future work

We showed how a classical language like relational algebra can be a suitable framework for differential
privacy and how technology already in place, like check constraints, can be exploited to improve the
precision of our sensitivity bounds.

C. Palamidessi & M. Stronati 107

Our analysis showed how the most common operation on databases, the join ./, poses great privacy prob-
lems and in future we hope to develop solutions to this issue, possibly along the lines already presented
in Section 7.3.
In this paper we have considered only the sensitivity, that is the effect on distances of operators, while
another interesting aspect would be to compute the effect on the ε exponent as explored in [11], and
possibly propose convenient strategies to query as much as possible over disjoint data sets.

References
[1] Krzysztof R. Apt (2003): Principles of constraint programming. Cambridge University Press.
[2] Alan Beaulieu (2009): Learning SQL - Master SQL Fundamentals (2. ed.). O’Reilly.
[3] Marco Stronati Catuscia Palamidessi (2012): Differential Privacy for Relational Algebra: improving the sen-

sitivity bound via constraints systems. Available at http://www.lix.polytechnique.fr/~stronati/
papers/qapl12.pdf. Full Version.

[4] E. F. Codd (1970): A Relational Model of Data for Large Shared Data Banks. Communications of the ACM
13(6), pp. 377–387.

[5] E. F. Codd (1972): Relational Completeness of Database Sublanguages. In R. Rustin, editor: Data Base
Systems, Prentice-Hall, New Jersey.

[6] Cynthia Dwork (2006): Differential Privacy. In: Proc. of ICALP, LNCS, 4052, Springer, pp. 1–12.
[7] Cynthia Dwork (2008): Differential Privacy: A Survey of Results. In: TAMC, pp. 1–19.
[8] Cynthia Dwork (2011): A Firm Foundation for Private Data Analysis. Communications of the ACM 54(1),

pp. 86–96.
[9] Cynthia Dwork & Jing Lei (2009): Differential Privacy and Robust Statistics. In: Proc. of STOC, ACM, pp.

371–380.
[10] Cynthia Dwork, Frank McSherry, Kobbi Nissim & Adam Smith (2006): Calibrating Noise to Sensitivity in

Private Data Analysis. In: TCC, pp. 265–284.
[11] Frank McSherry (2009): Privacy integrated queries: an extensible platform for privacy-preserving data

analysis. In: SIGMOD Conference, pp. 19–30.
[12] Jason Reed & Benjamin C. Pierce (2010): Distance makes the types grow stronger: a calculus for differential

privacy. In: ICFP, pp. 157–168.

http://www.lix.polytechnique.fr/~stronati/papers/qapl12.pdf
http://www.lix.polytechnique.fr/~stronati/papers/qapl12.pdf

Preliminary Report. Final version to appear in:
QAPL 2012

c© L. Bortolussi, V. Galpin & J. Hillston
This work is licensed under the
Creative Commons Attribution License.

Hybrid performance modelling of opportunistic networks

Luca Bortolussi1 Vashti Galpin2 Jane Hillston2

1 Department of Mathematics and Computer Science, University of Trieste
2 Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh

luca@dmi.units.it, Vashti.Galpin@ed.ac.uk, Jane.Hillston@ed.ac.uk

We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE.
Network traffic is modelled as continuous flows, contact between nodes in the network is modelled
stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a
network of stationary video sensors with a mobile ferry which collects data from the sensors and
delivers it to the base station. We consider different mobility models and different buffer sizes for the
ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also
discuss the software that enables us to describe stochastic HYPE models and simulate them.

1 Introduction

Hybrid behaviour can arise in widely varying different contexts, both engineered and natural, pure and
abstracted. Such systems have elements which are subject to continuous change, interleaved with discrete
events which may change the elements themselves as well as their mode of evolution. The continuous
aspect of the behaviour may be pure in that it is a physical entity which has continuous values, such as
temperature or pressure, or may be abstracted as an approximation of a discrete quantity such as concen-
trations of biochemical species within a cell. Thus examples of hybrid systems include thermostatically
controlled heating systems and genetic regulatory networks, such as the repressilator [13, 18].

In this paper we consider an engineered system with abstract continuity: an opportunistic network
[22, 32]. In such a network, nodes experience periods of disconnectedness, during which they never-
theless may accumulate traffic in the form of packets. Sporadic connectivity is provided by occasional
proximity of other nodes. Such connectivity is then exploited to further the progress of packets towards
their destination (hence the term opportunistic). There are many interesting questions about performance
and capacity planning for such networks, but a detailed discrete state representation in which all packets
are treated individually can rapidly exceed feasible analysis and can also be expensive in terms of time.
Instead, here, we abstract the traffic to be a fluid quantity rather than discrete packets and model the
system as a stochastic hybrid system.

Process algebras have a long-established history of use for compositional modelling and analysis
of systems with concurrent behaviour. Moreover, when extended with stochastic variables to represent
duration and relative probability of events, they have been successfully applied to performance modelling
and other forms of quantified analysis. HYPE is one of several recently defined process algebras which
extend this capability to the modelling of hybrid systems [28, 17]. In HYPE the focus is on a fine-
grained compositionality, in which all the influences or flows which impact the continuous variables in
the system are modelled explicitly. Importantly, addressing the modelling in this style removes the need
to include ordinary differential equations (ODEs) governing the continuous evolution of such variables
in the syntax of the model. Instead the dynamic behaviour emerges, via the semantics of the language,
when the components are composed. Moreover, this fine-grained approach gives the language more
expressiveness, than say, hybrid automata, as recently demonstrated in [16]. Furthermore, the use of

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

L. Bortolussi, V. Galpin & J. Hillston 109

flows as the basic elements of model construction has advantages such as ease and simplification of
modelling. This approach assists the modeller by allowing them to identify smaller or local descriptions
of the model and then to combine these descriptions to obtain the larger system.

In the original definition of HYPE, discrete actions were termed events and these were always consid-
ered to be instantaneous although they could be subject to an activation condition determining just when
the instantaneous jump would occur. A distinction was made between urgent and non-urgent events.
Most activation conditions are expressed in terms of conditions on the evolving values of continuous
variables and urgent events are triggered immediately when such conditions become true. In contrast,
non-urgent events were not tied to the continuous state of the system (denoted by the undefined activation
condition ⊥) and could occur randomly at some unspecified time in the future. A recent extension of
HYPE [7] refined this notion of non-urgent events, by introducing stochastic events. These events have
an activation condition that is a random variable, capturing the probability distribution of the time until
the event occurs. Thus these events still occur non-deterministically, but they are now quantified and so
the models admit quantitative analysis. In order to carried out this type of analysis, a novel software tool
has been developed which can simulate stochastic HYPE models.

This extended HYPE is ideal for modelling opportunistic networks in which we wish to study the
emergent properties when nodes establish contact intermittently, but according to some probability dis-
tribution. In other words, we have some expectation of the frequency with which connections are formed,
rather than admitting the possibility that this can be indefinitely postponed, as would be the case with
non-urgent events. This is more realistic since the intermittent connectivity is usually provided by nodes
embedded in vehicles which make regular visits.

The case study presented in this paper consists of stationary nodes that record multimedia data,
specifically video, and a mobile node on a vehicle that collects the data and delivers it to a stationary
base station. Since a characteristic of multimedia is very high data volume, this scenario is particularly
appropriate for the fluid approach that we take here. We are specifically interested in two parameters
of the model: how much data storage is required for the ferry and how often should it interact with the
video sensors.

The rest of this paper is organised as follows. In Section 2 we briefly recall the basic notions of
stochastic HYPE by means of a running example. This includes an account of the novel software tool
which has been developed to simulate stochastic HYPE models. Next, in Section 2.1 we give a more
detailed description of opportunistic networks, and the particular system we are considering. Section 4
presents a general framework for describing opportunistic networks, presents the stochastic HYPE model
of the case study and the results of its analysis. Finally, Sections 5 and 6 discuss related work, future
research and draw final conclusions.

2 Stochastic HYPE

In this section we present the definition of stochastic HYPE [7] and introduce a small example to illustrate
the definition. More details about the language can be found in [7, 17, 16]. We consider a basic model
of a network node with a buffer, which can receive packets from an input channel and send packets to an
output channel. We assume that the number of packets that travel through the node and that are stored
in the buffer is large, hence we describe them as a fluid quantity. Received packets are stored in the
buffer, waiting to be sent. We allow reception and sending of packets to happen concurrently, but it is
equally simple to enforce a mutually exclusive send/receive policy. We also assume that uplinks and
downlinks are not always working, but they are activated and deactivated depending on the availability

110 Hybrid performance modelling of opportunistic networks

Buffer def
= Sys BC

M
init.Con with M = {init,onin,offin,onout ,offout ,empty, full}.

Sys def
= Input BC

{init}
Output

Input def
= onin:(in,rin,const).Input+offin:(in,0,const).Input+

full:(in,0,const).Input+ init:(in,0,const).Input
Output def

= onout :(out,−rout ,const).Output+offout :(out,0,const).Output+
empty:(out,0,const).Output+ init:(out,0,const).Output

Con def
= Conin BC/0 Conout

Conin
def
= onin.Con′in Con′in

def
= offin.Conin + full.Conin

Conout
def
= onout .Con′out Con′out

def
= offout .Conout + empty.Conout

iv(in) = B iv(out) = B

ec(init) = (true,B′ = b0)

ec(onin) = (kon
in , true) ec(offin) = (koff

in , true)
ec(onout) = (kon

out , true) ec(offout) = (koff
out , true)

ec(full) = (B = maxB, true) ec(empty) = (B = 0, true)

Figure 1: Simple network node model in stochastic HYPE.

of a connection. These events are described as stochastic, with firing times governed by exponential
distributions. Finally, incoming traffic has to be stopped if the buffer becomes full and outgoing traffic
has to be stopped when the buffer is empty.

HYPE modelling is centred around the notion of flow, which is intended here as some sort of in-
fluence continuously modifying one variable. Both the strength and form of a flow can be changed by
events. In our example, there are two flows modifying the buffer level, modelled by the continuous
variable B, namely reception and sending of packets. Flows are described by the uncontrolled system,
a composition of several sequential subcomponents, each modelling how a specific flow is changed by
events. For instance, in Figure 1, the subcomponent Input describes the inflow of packets in the buffer.
This subcomponent reacts to four events: onin and offin, modelling the activation and deactivation of the
uplink; full, modelling the suspension of incoming traffic due to the buffer becoming full; and init, the
first event that sets the initial value of the influence. The tuple (in,rin,const) following event onin, is
called an activity or an influence and describes how the input affects the buffer level when it is in effect:
in is the name of the influence, which provides a link to the target variable of the flow (B in our example),
rin is the strength of the influence and const is the influence type, identifying the functional form of the
flow (which is specified separately by the interpretation JconstK = 1). When the input is switched off,
the influence (in,rin,const) is replaced by (in,0,const) i.e. the influence strength of the input becomes
zero. The other subcomponent affecting buffer level is the output component, modelling the sending of
packets. States of a HYPE model are collections of influences, one for each influence name, defining
a set of ordinary differential equations describing the continuous evolution of the system. For instance,
(in,rin,const) contributes to the ODE of B with the summand rinJconstK = rin.

L. Bortolussi, V. Galpin & J. Hillston 111

The controller Con, instead, is used to impose causality on events, reflecting natural constraints or
design choices. For instance, Conin models the fact that the reception of packets can be turned off only
after being turned on. Furthemore, it describes termination of the input if the buffer becomes full, but
only if the uplink is active.

Events in stochastic HYPE are of two kinds, either stochastic or deterministic. Deterministic events
a ∈ Ed happen when certain conditions are met by the system. These event conditions are specified by a
function ec, assigning to each event a guard or activation condition (a boolean predicate depending on
system variable, stating when a transition can fire) and a reset (specifying how variables are modified
by the event). For example, ec(full) = (B = maxB, true) states that the uplink is shut down when the
buffer reaches its maximum capacity maxB, and no variable is modified. If we wanted to model a policy
throwing away a fraction ρ of the packets when the buffer becomes full, then we could have defined
ec(full) = (B = maxB,B′ = (1−ρ)B). Deterministic events in HYPE are urgent, meaning that they fire
as soon as their guard becomes true.

Stochastic events a∈ Es have an event condition composed of a stochastic rate (replacing the guard of
deterministic events) and a reset. For instance, ec(onin) = (kon

in , true) states that the reception of packets
is a stochastic event happening at times exponentially distributed with constant rate kon

in . In general, rates
define exponential distributions and can be functions of the variables of the system.

For completeness, we provide the formal definition of the syntax of stochastic HYPE.

Definition 1 A stochastic HYPE model is a tuple (ConSys,V , IN, IT,Ed ,Es,A ,ec, iv,EC, ID) where

• ConSys is a controlled system as defined below.

• V is a finite set of variables.

• IN is a set of influence names and IT is a set of influence type names.

• Ed is the set of instantaneous events of the form a and ai.

• Es is the set of stochastic events of the form a and ai.

• A is a set of activities of the form α(W) = (ι ,r, I(W)) ∈ (IN×R× IT) where W ⊆ V .

• ec : E → EC maps events to event conditions. Event conditions are pairs of activation conditions
and resets. Resets are formulae with free variables in V ∪V ′. Activation conditions for instanta-
neous events Ed are formulas with free variables in V and the second, while for stochastic events
of Es, they are functions f : R|V |→ R+.

• iv : IN→ V maps influence names to variable names.

• EC is a set of event conditions.

• ID is a collection of definitions consisting of a real-valued function for each influence type name
JI(W)K = f (W) where the variables in W are from V .

• E , A , IN and IT are pairwise disjoint.

Definition 2 A controlled system is constructed as follows.

• Subcomponents are defined by Cs(W) = S, where Cs is the subcomponent name and S satisfies the
grammar S′ ::= a : α.Cs | S′+S′ (a ∈ E = Ed ∪Es, α ∈A), with the free variables of S in W .

• Components are defined by C(W) = P, where C is the component name and P satisfies the gram-
mar P′ ::=Cs(W) |C(W) | P′ BC

L
P′, with the free variables of P in W and L⊆ E .

112 Hybrid performance modelling of opportunistic networks

• An uncontrolled system Σ is defined according to the grammar Σ′ ::= Cs(W) | C(W) | Σ′ BC
L

Σ′,
where L⊆ E and W ⊆ V .

• Controllers only have events: M ::= a.M | 0 | M + M with a ∈ E and L ⊆ E and Con ::=
M | Con BC

L
Con.

• A controlled system is ConSys ::= Σ BC
L

init.Con where L ⊆ E . The set of controlled systems is
CSys.

The semantics of HYPE has been defined in [17, 16], where a mapping to Hybrid Automata [20] is
also discussed. The semantics of stochastic HYPE [7], instead, is given in terms of TDSHA (Transition-
Driven Stochastic Hybrid Automata, [8]), which are a high level representation of PDMPs (Piecewise
Deterministic Markov Processes, [11]). PDMPs are stochastic hybrid processes which interleave a deter-
ministic evolution, described by a set of differential equations (depending on the current discrete mode
of the system), with discrete jumps, which can be of two types: spontaneous, happening at exponentially
distributed random times, and forced, happening when specific conditions on system variables are met.
Both kind of events can reset the state of the system according to a specified reset policy. Intuitively,
the dynamics of a stochastic HYPE model is as follows: the system variables will evolve following the
solution of a set of ODE, defined by the influences active in the system, one for each influence name. The
events that can happen, instead, are determined by the current state of the controller. Active stochastic
events happen at random times, while deterministic events happen when their guard becomes true. In
both cases, the reset policy of the event is applied. Moreover, the state of the controller and the set of
active influences is updated according to model structure. In particular, all influences preceded in sub-
components by the event that occurred will replace the ones with the corresponding name, so that the
continuous dynamics can have different modes of operation.

All HYPE models that will be considered in the paper comply with the definition of well-defined
HYPE models, given in [16]. Essentially, each subcomponent must be a self-looping agent of the form
S = ∑

k
i=1 ai:αi.S+ init:α.S, with each αi of the form (iS,ri, Ii), where iS is an influence name appearing

only in subcomponent S. Furthermore, synchronization must involve all shared events.

2.1 Simulation software

In this section, we provide some details about the implementation of stochastic HYPE that we used to
analyse the model of an opportunistic network presented in the paper. This software tool supports an
automatic extraction of basic statistics from a set of stochastic runs, and has plotting facilities (including
3D plots and distribution histograms) and data export facilities. Furthermore, it supports automatic
exploration of the parameter space. The user interface is command-line-based, and uses a simple script
language to instruct the software.

The basic idea behind the implementation, done in Java and available on request from the authors,
is to flatten a HYPE model into a representation in which additional discrete variables (i.e., variables
that can take only a finite set of values) are introduced to keep track of the current active influences
and the current states of the controller. The number of variables required for this encoding is easily
seen to be linear in the size of the system, as it requires an additional number of variables equal to the
number of different subcomponents plus the number of different states of the controller. Furthermore,
this approach has the advantage of avoiding an explicit construction of all the modes of the (stochastic)
hybrid automaton associated with a HYPE model. This is possible since modes of such an automaton
are uniquely identified by the values of the discrete variables introduced.

L. Bortolussi, V. Galpin & J. Hillston 113

hype model network_node

#definitions

var B = 0; //buffer size

param maxB = 100; //buffer capacity

param r_in = 1; //input rate

param r_out = -2; //output rate

param kon_in = 0.5; //uplink activation rate

param koff_in = 0.05; //uplink deactivation rate

param kon_out = 0.02; //downlink activation rate

param koff_out = 0.01; //downlink deactivation rate

function const() = 1; //constant function

guard above(X,K) = X >= K; //X >= K

guard below(X,K) = X <= K; //X <= K

#mappings

infl in :-> B; //input influence

infl out :-> B; //output influence

event on_in = :-> @ kon_in; //input activation

event off_in = :-> @ koff_in; //input deactivation

event on_out = :-> @ kon_out; //ouput activation

event off_out = :-> @ koff_out; //output deactivation

event full = above(B,maxB) :-> ; //buffer full

event empty = below(B,0) :-> ; //buffer empty

#subcomponents

//template to define a switch between two states

switch(on,off,block,r) := off,block,init:[0,const()] + on:[r,const()];

#components

input := switch(on_in,off_in,full,r_in):in; //input component

output := switch(on_out,off_out,empty,r_out):out; //output component

sys := input <*> output; //uncontrolled system

#controller

con_in := on_in.con_in_1; con_in_1 := off_in.con_in + full.con_in; //input controller

con_out := on_out.con_out_1; con_out_1 := off_out.con_out + empty.con_out; //output controller

con := con_in || con_out; //system controller

#system

sys <*> con; //system

Figure 2: Code for the example given in Figure 1.

To illustrate how the encoding works in terms of the generated ODEs, consider the Input component
of Section 2. To model which influence is active between α1 = (in,rin,const) and α0 = (in,0,const),
we need a new variable, IInput, taking values in {0,1}. If IInput equals zero, the active influence is α0,
otherwise the active influence is α1. This means that the component of the ODEs associated with variable
B generated by Input is of the form rinJconstK〈IInput = 1〉+0JconstK〈IInput = 0〉 = rin〈IInput = 1〉, where
〈·〉 denotes the logical value of a boolean predicate expressed as 0 or 1. Resets and guards of events are
modified in order to correctly update the discrete variables introduced. For instance, the reset of event
full resets IInput to 0.

The tool provides simulation of stochastic and non-stochastic HYPE models, and uses the Java math-
ematical library MathCommons [1] to numerically integrate the ODEs, exploiting its embedded event
detection system to manage the firing of events. In particular, stochastic simulation is dealt with in the
following way [40, 8]. Consider a stochastic event with rate λ (t), depending on time via the continu-
ously evolving variables of the system. We compute its cumulative rate Λ(t0, t) =

∫ t
t0 λ (s)ds by coupling

114 Hybrid performance modelling of opportunistic networks

with the ODE system, the following equation for Λ: dΛ(t0,t)
dt = λ (t), with Λ(t0, t0) = 0. Then, we fire

the stochastic transition as soon as Λ(t0, t) = − ln(U), where U ∼ Unif (0,1) is a uniformly distributed
random number in [0,1], sampled using the pseudo-number generator of MathCommons library. Notice
that if the rate λ (t) = λ is constant, then the firing time is − 1

λ
ln(U), and hence we have the standard

Monte Carlo inversion method to simulate exponentially distributed random variables [40].
We conclude this section with some details of the language supported by the tool to model with

HYPE. Each HYPE model consists of 6 sections. The #definitions section contains the definition
of system variables, parameters, expressions shorthands, user-defined functions (which replace influence
types in the tool) and boolean predicates. The #mappings section is devoted to the definition of influ-
ences (mapping them to variables) and events (specifying their name, guard, reset, and, for stochastic
events, rate). In the tool, stochastic events can be guarded. This is rendered in HYPE using suitable
discontinuous rate functions. The #subcomponent section contains the description of subcomponents,
which can be parameterised (with respect to variables and events) in order to reuse the same defini-
tion more than once. In particular, the user can assign more than one event to the same influence and
the influence name is assigned to the whole subcomponent, in order to comply to the restrictions of
well-defined HYPE models. The #component section, instead, contains the (parametric) description of
system components, including the uncontrolled system. The #controller section contains the defini-
tion of sequential and compound controllers. Finally, the #system section specifies the complete system
by combining a controller and an uncontrolled system. The code for the example of Figure 1 is given in
Figure 2. We would like to add additional parameterisation abilities to the software to support systems
where we define many similar components. We address this point further in Section 6.

3 Opportunistic networks

Since stochastic HYPE allows for the modelling of discrete quantities in a fluid manner, it is suitable for
network modelling. Furthermore, it has stochastic aspects that model randomness, making it appropriate
to model the disconnectedness that can happen in opportunistic networks. Networks are opportunistic
when nodes can communicate even though there may never be a direct path between them. They use
a store-carry-forward approach and decisions about routing are determined dynamically with policies
based on the notion of getting a packet closer to its final destination [32]. Delays may occur but networks
of this type can be deployed in environments where disconnectedness is possible but increased time for
packet delivery is acceptable. The major challenges in such networks [32, 22, 35] include the following.

Disconnectedness: A direct path may occur very infrequently or never between any two nodes in the
network.

High latency and low data rate: Due to disconnectedness, there can be significant delays for an indi-
vidual packet, including those caused by queueing at an intermediate node. This obviously can
result in low throughput.

Limited resources: Nodes are often battery-driven and hence need to conserve energy to lengthen their
lifetimes. This means that the amount of storage space or strength and length of radio usage for
communication are limited. Additionally, nodes may become permanently disabled due to a hostile
environment.

Various protocols have been designed to mitigate the problems caused by these challenges and these
protocols have specific objectives [35]. The main objective is to maximise the probability of a packet
reaching its destination. Ideally, at the same time, both the delivery delay and the resource usage should

L. Bortolussi, V. Galpin & J. Hillston 115

be minimised. Storage capacity at nodes should be sufficient, both to cope with the inherent latency and
in certain cases, to store copies of messages that could be lost.

There are different ways to categorise routing/forwarding protocols: deterministic versus stochastic
[42], with or without infrastructure [32] or most commonly, flooding versus forwarding [22, 35]. In
flooding protocols, packets are forwarded to many nodes. Variations include epidemic routing which is
based on a model of disease transmission, where nodes that have “recovered” do not forward packets
they have already seen [39]. Additional conditions can be added to epidemic routing to reduce resource
usage. Other flooding approaches involve the estimation of the probability of delivery by a node, and
this is used in deciding which nodes packets should be forwarded to. An example is PROPHET [30].

In forwarding protocols, a single copy of a packet moves through the network. Decisions about
which node is the best node to move to can be done by location (how close the node is to the destination
node), knowledge about the network provided by oracles [23] or other characteristics of the network that
can be obtained by a node through interaction with other nodes. For example, the MaxProp protocol is
based on historical data of path likelihood [9].

In the context of our case study, two wildlife monitoring projects are of interest: ZebraNet [25]
and SWIM [36]. In the first case, zebra are fitted with collars and the data is collected by a mobile
node on a vehicle that moves around the area. In second case, whales are tagged with sensors. In both
cases, flooding can be used as the protocol. In flooding, whenever two animals are in sufficiently close
proximity, they exchange data. In this way, assuming one animal comes close enough to the mobile
nodes or base stations, there is sufficient proximity between animals, and no data buffers become full,
all data will arrive at the base station. In the case of ZebraNet, the history-based protocol is also used.
Here, each sensor keeps a value which gives an indication of when it last interacted with the mobile node.
When deciding which neighbour sensor to send data to, the one with the highest value is chosen. This
protocol has been shown to outperform the flooding protocol.

ZebraNet has similarities with carrier-based routing (which is classified by [32] as routing with mo-
bile infrastructure). In these protocols [24, 43], particular mobile nodes which can be called carriers,
supports, forwarders, mules or ferries, collect data from other, possibly stationary, nodes. In some pro-
tocols, only the ferries collect data and in others, non-ferry nodes exchange data as well. Our case study
is based on the former.

3.1 Our case study

As an initial test for our modelling of opportunistic networks, we have chosen a relatively simple sce-
nario. Since our fluid packet approach is most useful in cases where there are large amounts of data, we
consider an example where video data is captured by stationary sensors. The idea is that they are motion
activated with a low number of activations expected each day. Because these sensors are required to run
off battery, it is not desirable for them to have powerful enough radio to share data over distance. Hence,
a vehicular ferry moves around the area in which the video sensors are located and returns to a base
station where the ferry delivers the data. This scenario could occur in a wildlife reserve or any scenario
where video data is to be collected, but is not required in real-time. We do not assume that the primary
purpose of the vehicle involved is to collect data from the nodes. It could be involved in supply delivery
or game viewing, but we do assume some flexibility in routing as we consider later.

If we assume a fixed disk size for the video sensors, and no restriction on the amount of data that can
be delivered to the base station, then the parameters of interest relate to the ferry and include buffer size,
route taken and speed of movement. In the next section, we discuss how this can be modelled.

116 Hybrid performance modelling of opportunistic networks

4 A framework for modelling opportunistic networks

The basic element of our model is the network node. To be able to model opportunistic networks in the
most general way, we assume that each node has a fixed buffer capacity, and that it can keep track of
multiple streams of data. These streams could represent data with different priorities, data with different
destinations or different types of data; or combinations of priority, destination and type.

A node should be able to accept input; offer output; discard data from the buffer, either to free up
space by dropping current data or to remove stale data, and generate data. Moreover, it should be able to
keep track of the total data it has dropped, input or generated. It should also be able to make decisions
about what data to input (how much, which and from whom), output (how much, which and to whom)
and drop (how much and which). In certain instances, it may also need to make decisions about what
data to generate.

To model this node in stochastic HYPE, we require variables to capture the current buffer level for
each stream, together with the lifetime input and generated data for each stream, and lifetime dropped
data for each stream. This gives us variables Leveli,v, TotalIGi,v and TotalDi,v for node i and stream v.
Clearly, the value of the variables for everything except buffer levels will not decrease.

Each node has subcomponents for input, output, generation, drop and removal (where the second last
term refers to discarding current data and the last term to discarding stale data). It also has two further
subcomponents to keep track of data input and data generated. We have the following HYPE components
for each node i and each stream v. Here, the symbol BC∗ indicates synchronisation on all shared events.

Nodei,v
def
= Inputi,v BC∗ Outputi,v BC∗ Generatei,v BC∗ Removei,v BC∗ Dropi,v BC∗ KeepIi,v BC∗ KeepGi,v

The influences that appear in Inputi,v, Outputi,v, Generatei,v and Removei,v are mapped to the variable
Leveli, j, those in KeepIi,v and KeepGi,v are mapped to the variable TotalIGi, j and that in Dropi,v to the
variable TotalDi, j.

Each node has a controller for the first five subcomponents. Controllers are not required for the
last two subcomponents since the events for these subcomponents appear in the controllers for input
and generation. Controllers are required for each stream as they may need to be treated separately, for
example in the case of one stream being prioritised over another.

ConNodei,v
def
= ConIi,v BC∗ ConOi,v BC∗ ConGi,v BC∗ ConRi,v BC∗ ConDi,v

The example in Section 2 provides a very simple version of such a node which only has input and
output capability. The controllers must deal with aspects such as full and empty buffers, as well as
switching between different functions, for example switching between input on and input off.

The next important aspect to model is the interaction between nodes in the network. Each possible
connection between two nodes (some nodes may never have the ability to connect) has a controller that
synchronises on proximity and brings up the link, takes down the link at the end of proximity or due to
any other condition that could cause the link to end, and then does some housekeeping. Hence, we define
ConLi, j the controller for the link between nodes i and j.

Then for each stream of data, there is a controller that involves events that determine whether data
exchange should happen for that stream and whether the link should be uni- or bidirectional. The direc-
tionality of the link depends both on the characteristics of the modelled system and the policies used.
This controller also includes a housekeeping subcontroller that synchronises with the housekeeping of
the controller of the link between the two nodes.

ConStreami, j,v
def
= ConUnii, j,v BC∗ ConUni j,i,v BC∗ CBii, j,v BC∗ ConTidyi, j,v

L. Bortolussi, V. Galpin & J. Hillston 117

Finally, there are controllers which model the proximity of nodes. This is currently done abstractly,
using a random variable to capture delays between connectedness. A recent paper describes the expected
meeting time between nodes for various mobility models such as random direction, random waypoint
and community-based (both for homogeneous and heterogeneous nodes) and suggest that these expected
values can be used as rates to describe exponential distributions [37]. This allows us to model these
specific types of mobility in this abstract fashion. However, as future work, we plan to develop more
concrete models that describe movement in two-dimensional space, since HYPE can model this type of
continuous behaviour in a straightforward way.

Hence, to construct an opportunistic network model in stochastic HYPE, we need to define a number
of nodes based on our template, the appropriate connection controllers and proximity controllers, and
most importantly, the policies and protocols that will be used in the network. Our longer-term goal is
to develop a front end that will allow a user to specify nodes, connections, policies and protocols from
which a HYPE model will be generated. This will provide a simulation tool for networks that should be
faster than simulators that trace every packet, when the number of packets is large.

4.1 Our case study

For our specific case study, we used the basic node we have developed. Video sensor nodes require
generation, discard and output capabilities; the ferry requires input and output, and the base station,
input only. Possible links between nodes cover upload from sensors to the ferry and upload from the
ferry to the base station. There are also two different proximity controllers: one allows the ferry to have
a random route between nodes, and the other imposes a fixed route that is cyclically repeated.

In our case study, the policies are straightforward – unidirectional communication between a sensor
and the ferry is set up only if the ferry is not currently communicating with another sensor. However,
in a scenario with more than one ferry, it would be possible to implement a policy allowing a sensor
node to choose which ferry to upload data to, making a decision based on certain ferry characteristics.
Since we are dealing with a system where large amounts of data are generated, it makes sense to use this
protocol rather than any other. In this scenario, it would be problematic to use flooding as the system is
data bound, and hence an excessive transmission and storage of data cannot be recommended.

4.2 Results

The specifics of our case study are as follows: we assume that there are 10 video sensors and that the
ferry only collects data during an 8 hour period, and we are interested both it what buffer size the ferry
requires and how often there is contact between the ferry and a sensor (described by the mean-time-to-
contact variable MTC), which is effectively the speed of the ferry.

Each video sensor has 250MB of disk space, and on average will record video three times a day for
an average of 3 minutes each time; the video will require 10Mb for each minute. The upload speed from
sensor to ferry is 1MB/s and the upload speed from ferry to base station is 30MB/s.

We consider 4 different scenarios. For raer, the ferry only returns to base at the end of the 8 hour
period and has a random route. In the case of raef, the return to base is also at the end but there is a fixed
route. For rtbr and rtbf, the ferry returns to base whenever it is full (incurring a penalty of extra distance
to travel) and there are random and fixed routes, respectively. In the experiments to explore different
values for mean time to contact, the ferry buffer size was set to 1000MB. In the experiments to consider
different ferry buffer size the mean time to contact was set to 15 minutes. Each simulation took around
6.5 seconds on a standard laptop.

118 Hybrid performance modelling of opportunistic networks

●

●

●

●

●

●

5 10 15 20 25 30

0
10

20
30

40
50

MTC (min)

To
ta

l d
at

a
dr

op
pe

d
(M

B
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

raef
raer
rtbf
rtbr

Figure 3: Average (200 simulation runs) data dropped for different mean time to contact (MTC) values.
The bars delimit the 95% confidence interval. See the text for the description of the four different
scenarios.

When we consider data dropped versus mean time to contact (see Figure 3), as mean time to contact
increases (which means visits are less frequent) the amount of data dropped increases, which is what
we would expect. In general, it can be seen that the fixed routes (raef amd rtbf) result in less data drop,
which can be ascribed to fairness, in that each node get its turn whereas in the random case, it may not get
a turn at all. Similarly, Figure 4 show that as frequency of visits decreases, the amount of data collected
by the ferry decreases, and the fixed routes (raef amd rtbf) perform better in collecting more data.

For the ferry buffer size, we found that there appeared to be limited correlation between the different
protocols and amount of data dropped, shown in Figure 5. By contrast, in Figure 6, the amount of data
collected by the ferry, is understandably reduced for low buffer capacities in the case where the ferry
does not return to base when full (raer and raef). At the higher buffer capacities, again the fixed routes
out perform the random routes.

This case study illustrates how stochastic HYPE can be used to model these networks. It is relatively
straightforward to add further nodes of all types, and hence model a larger system of the same type.

5 Related work

Other hybrid process algebras to describe hybrid systems include ACPsrt
hs [6], hybrid χ [4], φ -calculus

[34] and HyPA [10]. The aspect of HYPE that distinguishes it from these process algebra, is that in HYPE
the ODEs emerge from the semantics and are not required to be specified monolithically in the syntax
because of the use of individual flows in HYPE. Additionally, unlike the process algebras mentioned and
hybrid automata, it is possible to combine two HYPE models where a variable can be shared between
models since it is possible to combine all the influences that apply to this shared variable. A more detailed
comparison between HYPE and other hybrid modelling formalisms can be found in [17, 16]. To the best

L. Bortolussi, V. Galpin & J. Hillston 119

●
●

●

●

●

●

5 10 15 20 25 30

0
20

0
40

0
60

0
80

0
10

00

MTC (min)

To
ta

l d
at

a
co

lle
ct

ed
 (

M
B

)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

raef
raer
rtbf
rtbr

Figure 4: Average (200 simulation runs) data collected by ferry for different mean time to contact (MTC)
values. The bars delimit the 95% confidence interval.

of our knowledge, no hybrid process algebra has previously been used to model networks using a fluid
packet approach. Recently, an approach based on rewriting logic, Hybrid Interacting Maude, has been
developed [14] but to date this research has focussed on thermal systems.

Other formal approaches to performance modelling of opportunistic networks have appeared in the
literature in recent years. Much work has focussed on modelling the mobility patterns of nodes within the
network, a feature that clearly has a strong impact on the performance that can be achieved. Examples
include [41] and [37] in which the authors analyse the expected meeting time for various mobility mod-
els and bounds on delays. Other papers focus on the performance measures such as message delay and
compare, as we do, the routing policies which may be applied. For example, Picu and Spyropoulos [33]
use expensive Markov Chain Monte Carlo simulation to assess optimal relay selection for multicast com-
munication in opportunistic networks, while [27] presents analytic bounds on message delivery capacity.
In another example [31] considers the provisioning of a network in order to minimize the delay using
an analytical model based on queueing theory. Their framework is more general than ours in the sense
that services, rather than simply messages, are exchanged opportunistically between nodes and results
as well as service requests are also exchanged. However, it should be possible to extend our modelling
framework to encompass this richer scenario. Closest to our work in terms of formality is the work of
Garetto and Gribaudo, but this presents a purely discrete model in terms of a state-labelled Markov chain
which is subjected to probabilistic model checking [19] and is therefore limited in the size of system
which can be considered.

Other simulators for opportunistic networks have been proposed, for example the ONE [26] and a
virtual test platform [12]. These simulators work at the packet and message level and do not introduce a
fluidisation of data flow. Additionally, examples studied quite often consider generation rates as low as a
message an hour or a day. By using a fluid approach, we can model much higher generation rates.

Lastly, we mention other fluid approaches to modelling networks (necessarily incomplete due to

120 Hybrid performance modelling of opportunistic networks

●

●

●

●

●

600 800 1000 1200 1400

0
10

20
30

40
50

60

Ferry buffer capacity (MB)

To
ta

l d
at

a
dr

op
pe

d
(M

B
)

●

●

●

●

●

●

●

raef
raer
rtbf
rtbr

Figure 5: Average (100 simulation runs) data dropped for different ferry buffer sizes

space constraints). These include simulation [29], fluid stochastic Petri nets (FSPNs) [21, 38, 2, 15]
and mean field approximations [5, 3]. These approaches, as far as we know, have not been applied to
opportunistic networks and they do not offer the compositionality that a process algebra provides.

Petri net approaches include modelling a single cell of a wireless internet access system as a deter-
ministic and stochastic Petri net; a generalised stochastic Petri net; and a FSPN [2]. The FSPN model is
much faster to solve than the other two, and has good accuracy apart from a few specific scenarios. The
FSPN model has a single fluid place to represent the buffer of the system. Another Petri net approach
presents a FSPN model of client-server interaction in a peer-to-peer network [15] which is used to obtain
distributions describing file transfer times. The single fluid place represents the download of a file. In
both these examples, there is no flow between continuous places, and it is not clear how these models
could be extended to model systems of multiple cells, or multiple clients and servers where continuous
flows occur betweeen different elements of the system, in contrast to our approach.

6 Further research and conclusions

In terms of future work, we plan to improve the software tool in at least two directions. First, we want
to improve the modularisation of the input language, allowing the modeler to write parametric templates
corresponding to generic system components like ferries, data stations, and connections. Secondly, we
plan to implement in the hybrid simulation more clever management of the discrete variables denoting
modes of the automaton, using data structures such as dependency graphs to reduce the amount of times
each guard of a discrete transition is tested. Preliminary work on this (together with bytecode on-the-
fly compilation of mathematical expressions) has shown a thirty-fold increase in performance over the
execution time given in Section 4.2. In addition, we plan to implement a multithread support to exploit
multi-core processors to reduce simulation time.

As for the opportunistic networks, exploiting modularisation of HYPE code, we plan to define a

L. Bortolussi, V. Galpin & J. Hillston 121

●

●

●
●

●

600 800 1000 1200 1400

40
0

60
0

80
0

10
00

12
00

Ferry buffer capacity (MB)

To
ta

l d
at

a
co

lle
ct

ed
 (

M
B

)

●

●

●

●

●

●

●

raef
raer
rtbf
rtbr

Figure 6: Average (100 simulation runs) data collected by ferry for different ferry buffer sizes

library of components and an higher level graphical interface to construct a model. As mentioned in
Section 4, we wish to investigate the use of two-dimensional models of node movement. Furthermore,
we plan to explore the use of HYPE bisimulations to reduce model size when possible. In certain cases,
it may also be possible to reduce a sequence of events to one event while retaining the same behaviour
with respect to simulation. As mentioned in Section 4.2, it should be easy to increase the size of the
networks to be modelled, and hence we will investigate how our approach scales and what limitations
there might be.

As a general principle, hybrid simulation can be more efficient than discrete event simulation (without
continuous flows) as long as the computation time for solving the ODEs is shorter than the computation
time for simulating the events that the fluid approach removes. We wish to establish whether this principle
holds in modelling opportunistic networks and what the trade-off is between efficiency and accuracy of
the modelling. Currently, we have focussed on providing averages and standard deviations over a number
of simulation runs. An alternative approach is to formally specify the properties we are interested in using
a stochastic logic and then to apply statistical model checking.

To conclude, we have presented a general framework for constructing models of opportunistic net-
works using stochastic HYPE. We have illustrated this through a case study of a ferry that collects data
from video nodes and delivers it to a base station. The results of our simulations of the model show,
as we would expect, that fixed routes are likely to be more fair and have less data dropped and more
data collected. Additionally, at low buffer sizes, the penalty of returning to the base is justified to avoid
dropping data unnecessarily.

Acknowledgements: This research is supported by Royal Society International Joint Project JP090562.

References
[1] Apache Commons Math Java Library. Available at http://commons.apache.org/math/.

http://commons.apache.org/math/

122 Hybrid performance modelling of opportunistic networks

[2] M. Ajmone Marsan, M. Gribaudo, M. Meo & M. Sereno (2001): On Petri Net-based modeling paradigms
for the performance analysis of wireless Internet accesses. In: 9th International Workshop on Petri Nets and
Performance Models, pp. 19–28, doi:10.1109/PNPM.2001.953352.

[3] R. Bakhshi, L. Cloth, W. Fokkink & B.R. Haverkort (2011): Mean-field framework for performance evalua-
tion of push-pull gossip protocols. Performance Evaluation 68, pp. 157–179, doi:10.1016/j.peva.2010.08.025.

[4] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda & R.R.H. Schiffelers (2006): Syntax and consis-
tent equation semantics of hybrid χ . Journal of Logic and Algebraic Programming 68, pp. 129–210,
doi:10.1016/j.jlap.2005.10.005.

[5] M. Benaı̈m & J.-Y. Le Boudec (2008): A class of mean field interaction models for computer and communi-
cation systems. Performance Evaluation 65, pp. 823–838, doi:10.1016/j.peva.2008.03.005.

[6] J.A. Bergstra & C.A. Middelburg (2005): Process algebra for hybrid systems. Theoretical Computer Science
335, pp. 215–280, doi:10.1016/j.tcs.2004.04.019.

[7] L. Bortolussi, V. Galpin & J. Hillston (2011): HYPE with stochastic events. In: QAPL 2011, EPTCS 57, pp.
120–133, doi:10.4204/EPTCS.57.9.

[8] L. Bortolussi & A. Policriti (2009): Hybrid semantics of stochastic programs with dynamic reconfiguration.
In: COMPMOD 2009, EPTCS 6, pp. 63–76, doi:10.4204/EPTCS.6.5.

[9] J. Burgess, B. Gallagher, D. Jensen & B.N. Levine (2006): MaxProp: Routing for vehicle-based disruption-
tolerant networks. In: INFOCOM 2006, pp. 1–11, doi:10.1109/INFOCOM.2006.228.

[10] P.J.L. Cuijpers & M.A. Reniers (2005): Hybrid process algebra. Journal of Logic and Algebraic Program-
ming 62, pp. 191–245, doi:10.1016/j.jlap.2004.02.001.

[11] M.H.A. Davis (1993): Markov Models and Optimization. Chapman & Hall.
[12] N.A. Deepak, R. Thareja & N.A. Nikhil (2008): Performance analysis and evaluation of delay-tolerant

network bundling protocol on a scalable virtual network test platform. In: IET International Conference on
Wireless, Mobile and Multimedia Networks, 2008, pp. 52 –55, doi:10.1049/cp:20080143.

[13] M.B. Elowitz & S. Leibler (2000): A synthetic oscillatory network of transcriptional regulators. Nature 403,
pp. 335–338, doi:10.1038/35002125.

[14] M. Fadlisyah, P.C. Ölveczky & E. Ábrahám (2011): Object-oriented formal modeling and analysis of inter-
acting hybrid systems in HI-Maude. In: SEFM 2011, LNCS 7041, pp. 415–430, doi:10.1007/978-3-642-
24690-6 29.

[15] R. Gaeta, M. Gribaudo, D. Manini & M. Sereno (2005): Fluid stochastic Petri nets for comput-
ing transfer time distributions in peer-to-peer file sharing applications. ENTCS 128, pp. 79–99,
doi:10.1016/j.entcs.2005.01.014.

[16] V. Galpin, L. Bortolussi & J. Hillston: HYPE: Hybrid modelling by composition of flows,
doi:10.1007/s00165-011-0189-0. Formal Aspects of Computing, to appear.

[17] V. Galpin, L. Bortolussi & J. Hillston (2009): HYPE: a process algebra for compositional flows and emergent
behaviour. In: CONCUR 2009, LNCS 5710, pp. 305–320, doi:10.1007/978-3-642-04081-8 21.

[18] V. Galpin, J. Hillston & L. Bortolussi (2008): HYPE applied to the modelling of hybrid biological systems.
ENTCS 218, pp. 33–51, doi:10.1016/j.entcs.2008.10.004.

[19] M. Garetto & M. Gribaudo (2006): Performance analysis of delay tolerant networks with model checking
techniques. In: QEST 2006, pp. 73–82, doi:10.1109/QEST.2006.42.

[20] T.A. Henzinger & P.-H. Ho (1995): HYTECH: The Cornell HYbrid TECHnology Tool. In: Hybrid Systems
II, LNCS 999, pp. 265–293, doi:10.1007/3-540-60472-3 14.

[21] G. Horton, V.G. Kulkarni, D.M. Nicol & K.S. Trivedi (1998): Fluid stochastic Petri nets: Theory, ap-
plications, and solution techniques. European Journal of Operational Research 105, pp. 184 – 201,
doi:10.1016/S0377-2217(97)00028-3.

[22] C.-M. Huang, K.-C. Lan & C.-Z. Tsai (2008): A survey of opportunistic networks. In: AINA 2008, pp.
1672–1677, doi:10.1109/WAINA.2008.292.

http://dx.doi.org/10.1109/PNPM.2001.953352
http://dx.doi.org/10.1016/j.peva.2010.08.025
http://dx.doi.org/10.1016/j.jlap.2005.10.005
http://dx.doi.org/10.1016/j.peva.2008.03.005
http://dx.doi.org/10.1016/j.tcs.2004.04.019
http://dx.doi.org/10.4204/EPTCS.57.9
http://dx.doi.org/10.4204/EPTCS.6.5
http://dx.doi.org/10.1109/INFOCOM.2006.228
http://dx.doi.org/10.1016/j.jlap.2004.02.001
http://dx.doi.org/10.1049/cp:20080143
http://dx.doi.org/10.1038/35002125
http://dx.doi.org/10.1007/978-3-642-24690-6_29
http://dx.doi.org/10.1007/978-3-642-24690-6_29
http://dx.doi.org/10.1016/j.entcs.2005.01.014
http://dx.doi.org/10.1007/s00165-011-0189-0
http://dx.doi.org/10.1007/978-3-642-04081-8_21
http://dx.doi.org/10.1016/j.entcs.2008.10.004
http://dx.doi.org/10.1109/QEST.2006.42
http://dx.doi.org/10.1007/3-540-60472-3_14
http://dx.doi.org/10.1016/S0377-2217(97)00028-3
http://dx.doi.org/10.1109/WAINA.2008.292

L. Bortolussi, V. Galpin & J. Hillston 123

[23] S. Jain, K.R. Fall & R.K. Patra (2004): Routing in a delay tolerant network. In: ACM SIGCOMM 2004, pp.
145–158, doi:10.1145/1015467.1015484.

[24] S. Jain, R. Shah, W. Brunette, G. Borriello & S. Roy (2006): Exploiting mobility for energy efficient data
collection in wireless sensor networks. MONET 11, pp. 327–339, doi:10.1007/s11036-006-5186-9.

[25] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh & Daniel Rubenstein (2002): Energy-efficient computing
for wildlife tracking: design tradeoffs and early experiences with ZebraNet. ACM SIGPLAN Notices 37, pp.
96–107, doi:10.1145/605397.605408.

[26] A. Keränen, T. Kärkkäinen & J. Ott (2010): Simulating mobility and DTNs with the ONE. Journal of Com-
munications 5, pp. 92–105, doi:10.4304/jcm.5.2.92-105.

[27] G.Y. Keung, B. Li & Q. Zhang (2011): Message delivery capacity in delay-constrained mobile sensor
networks: Bounds and realization. IEEE Transactions on Wireless Communications 10, pp. 1552–1559,
doi:10.1109/TWC.2011.030911.100827.

[28] U. Khadim (2006): A comparative study of process algebras for hybrid systems. Report CSR 06-23, Technis-
che Universiteit Eindhoven. http://alexandria.tue.nl/extra1/wskrap/publichtml/200623.pdf.

[29] C. Kiddle, R. Simmonds, C. Williamson & B. Unger (2003): Hybrid packet/fluid flow network simulation.
In: PADS 2003, pp. 143 – 152, doi:10.1109/PADS.2003.1207430.

[30] A. Lindgren, A. Doria & O. Schelén (2003): Probabilistic routing in intermittently connected networks.
Mobile Computing and Communications Review 7, pp. 19–20, doi:10.1145/961268.961272.

[31] A. Passarella, M. Kumar, M. Conti & E. Borgia (2011): Minimum-delay service provisioning in op-
portunistic networks. IEEE Transactions on Parallel and Distributed Systems 22, pp. 1267–1275,
doi:10.1109/TPDS.2010.153.

[32] L. Pelusi, A. Passarella & M. Conti (2006): Opportunistic networking: data forwarding in disconnected mo-
bile ad hoc networks. IEEE Communications Magazine 44, pp. 134–141, doi:10.1109/MCOM.2006.248176.

[33] A. Picu & T. Spyropoulos (2010): Distributed stochastic optimization in opportunistic networks: the case of
optimal relay selection. In: CHANTS ’10, pp. 21–28, doi:10.1145/1859934.1859939.

[34] W.C. Rounds & H. Song (2003): The Φ-Calculus: A language for distributed control of reconfigurable
embedded systems. In: HSCC 2003, LNCS 2623, pp. 435–449, doi:10.1007/3-540-36580-X 32.

[35] J. Shen, S. Moh & I. Chen (2008): Routing protocols in delay tolerant networks: A comparative survey. In:
23rd International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC
2008), pp. 1577–1580.

[36] T. Small & Z.J. Haas (2003): The shared wireless infostation model: a new ad hoc networking paradigm (or
where there is a whale, there is a way). In: MobiHoc 2003, pp. 233–244, doi:10.1145/778415.778443.

[37] T. Spyropoulos, K. Psounis & C.S. Raghavendra (2006): Performance analysis of mobility-assisted routing.
In: MobiHoc 2006, pp. 49–60, doi:10.1145/1132905.1132912.

[38] B. Tuffin, D.S. Chen & K.S. Trivedi (2001): Comparison of hybrid systems and fluid stochastic Petri nets.
Discrete Event Dynamic Systems: Theory and Applications 11, pp. 77–95, doi:10.1023/A:1008387132533.

[39] A. Vahdat & D. Becker (2000): Epidemic routing for partially connected ad hoc networks. Technical Report
CS-2000-06, Duke University. Available at issg.cs.duke.edu/epidemic/epidemic.pdf.

[40] D. Wilkinson (2011): Stochastic Modelling for Systems Biology. Chapman & Hall/CRC.
[41] K. Xu, P. Hui, V.O.K. Li, J. Crowcroft, V. Latora & P. Lio (2009): Impact of altruism on opportunistic

communications. In: First International Conference on Ubiquitous and Future Networks, ICUFN’09, pp.
153–158, doi:10.1109/ICUFN.2009.5174303.

[42] Z. Zhang (2006): Routing in intermittently connected mobile ad hoc networks and delay tolerant
networks: Overview and challenges. IEEE Communications Surveys and Tutorials 8, pp. 24–37,
doi:10.1109/COMST.2006.323440.

[43] W. Zhao, M.H. Ammar & E.W. Zegura (2004): A message ferrying approach for data delivery in sparse
mobile ad hoc networks. In: MobiHoc 2004, pp. 187–198, doi:10.1145/989459.989483.

http://dx.doi.org/10.1145/1015467.1015484
http://dx.doi.org/10.1007/s11036-006-5186-9
http://dx.doi.org/10.1145/605397.605408
http://dx.doi.org/10.4304/jcm.5.2.92-105
http://dx.doi.org/10.1109/TWC.2011.030911.100827
http://alexandria.tue.nl/extra1/wskrap/publichtml/200623.pdf
http://dx.doi.org/10.1109/PADS.2003.1207430
http://dx.doi.org/10.1145/961268.961272
http://dx.doi.org/10.1109/TPDS.2010.153
http://dx.doi.org/10.1109/MCOM.2006.248176
http://dx.doi.org/10.1145/1859934.1859939
http://dx.doi.org/10.1007/3-540-36580-X_32
http://dx.doi.org/10.1145/778415.778443
http://dx.doi.org/10.1145/1132905.1132912
http://dx.doi.org/10.1023/A:1008387132533
issg.cs.duke.edu/epidemic/epidemic.pdf
http://dx.doi.org/10.1109/ICUFN.2009.5174303
http://dx.doi.org/10.1109/COMST.2006.323440
http://dx.doi.org/10.1145/989459.989483

Preliminary Report. Final version to appear in:
QAPL 2012

c© M. Bernardo

Weak Markovian Bisimulation Congruences and Exact
CTMC-Level Aggregations for Concurrent Processes

Marco Bernardo
Dipartimento di Scienze di Base e Fondamenti – Università di Urbino – Italy

We have recently defined a weak Markovian bisimulation equivalence in an integrated-time setting,
which reduces sequences of exponentially timed internal actions to individual exponentially timed
internal actions having the same average duration and execution probability as the corresponding
sequences. This weak Markovian bisimulation equivalence is a congruence for sequential processes
with abstraction and turns out to induce an exact CTMC-levelaggregation at steady state for all
the considered processes. However, it is not a congruence with respect to parallel composition. In
this paper, we show how to generalize the equivalence in a waythat a reasonable tradeoff among
abstraction, compositionality, and exactness is achievedfor concurrent processes. We will see that,
by enhancing the abstraction capability in the presence of concurrent computations, it is possible to
retrieve the congruence property with respect to parallel composition, with the resulting CTMC-level
aggregation being exact at steady state only for a certain subset of the considered processes.

1 Introduction

Several Markovian behavioral equivalences (see [1] and the references therein) have been proposed in
the literature for relating and manipulating system models with an underlying continuous-time Markov
chain (CTMC) [15] semantics. However, only a few of them are providedwith the useful capability
of abstracting from internal actions. In particular, [3] has recently addressed the case in which internal
actions are exponentially timed – rather than immediate like in [9] – by defining a weak Markovian
bisimulation equivalence inspired by the weak (Markovian) isomorphism of [11]. The idea is to reduce
to individual exponentially timed internal transitions all thesequencesof exponentially timed internal
transitions that traverse states enablingonly exponentially timed internal actions, with the reduction
preserving the average duration and the execution probability of the original sequences.

From a stochastic viewpoint, this reduction amounts to replacing hypoexponentially distributed du-
rations with exponentially distributed durations having the same expected value. As a consequence,
processes related by the weak Markovian bisimulation equivalence of [3]may not possess the same
transient performance measures, unless they refer to properties of theform mean time to certain events.
However, those processes certainly possess the same steady-state performance measures, because the ag-
gregation induced by the considered equivalence on the CTMC underlying each process has been shown
to be exact at steady state.

The weak Markovian bisimulation equivalence of [3] is not a congruencewith respect to parallel
composition, a fact that limits its usefulness for compositional state space reduction purposes. The con-
tribution of this paper is to show that compositionality can be retrieved by enhancing the abstraction
capability of the considered equivalence in the presence of parallel composition. The basic idea is al-
lowing a sequence of exponentially timed internal transitions originated from asequential process to be
reduced also in the case in which that process is composed in parallel with other processes enabling
observableactions. Unfortunately, there is a price to pay for achieving compositionality:exactness at

M. Bernardo 125

steady state will no longer hold for all processes, but only for processes with no synchronization at all
and processes whose synchronizations do not take place right before the sequences to be reduced.

This paper is organized as follows. After introducing a Markovian process calculus in Sect. 2 and
recalling strong and weak Markovian bisimilarity in Sect. 3, in Sect. 4 we develop a variant of weak
Markovian bisimilarity that deals with parallel composition and we investigate its congruence and exact-
ness properties. Finally, in Sect. 5 we provide some concluding remarks.

2 Concurrent Markovian Processes

In order to study properties such as congruence of the variant (to be defined) of the weak Markovian
bisimilarity of [3], we introduce typical behavioral operators through a Markovian process calculus
(MPC for short). In [3], we have considered sequential processeswith abstraction built from opera-
tors like the inactive process, exponentially timed action prefix, alternative composition, recursion, and
hiding. Here, we include parallel composition too, so as to be able to represent concurrent processes.

As usual, we denote the internal action byτ and we assume that the resulting concurrent processes
are governed by the race policy: if several exponentially timed actions aresimultaneously enabled, the
action that is executed is the one sampling the least duration. We also assume that the duration of an
action deriving from the synchronization of two exponentially timed actions is exponentially distributed
with a rate obtained by applying (like, e.g., in [10]) some commutative and associative operation denoted
by⊗ to the rates of the two original actions.

Definition 2.1 Let ActM =Name×R>0 be a set of actions, whereName=Namev∪{τ} is a set of action
names – ranged over bya,b – andR>0 is a set of action rates – ranged over byλ ,µ ,γ. Let Var be a set
of process variables ranged over byX,Y. The process languagePL M is generated by the following
syntax:

P ::= 0 inactive process
| <a,λ>.P exponentially timed action prefix
| P+P alternative composition
| X process variable
| recX : P recursion
| P/H hiding
| P‖SP parallel composition

wherea∈ Name, λ ∈ R>0, X ∈ Var, andH,S⊆ Namev. We denote byPM the set of closed and guarded
process terms ofPL M – ranged over byP,Q.

In order to distinguish between process terms such as<a,λ>.0+<a,λ>.0 and<a,λ>.0, like in [3]
the semantic model[[P]]M for a process termP ∈ PM is a labeled multitransition system that takes into
account the multiplicity of each transition, intended as the number of differentproofs for the transition
derivation. The multitransition relation of[[P]]M is contained in the smallest multiset of elements ofPM ×
ActM ×PM that satisfies the operational semantic rules in Table 1 – where{ →֒ } denotes syntactical
replacement – and keeps track of all the possible ways of deriving eachof its transitions.

3 Strong and Weak Markovian Bisimulation Equivalences

The notion of strong bisimilarity for MPC is based on the comparison of exit rates [11, 10]. The exit rate
of a process termP ∈ PM with respect to action namea ∈ Nameand destinationD ⊆ PM is the rate at

126 Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Conc. Proc.

(PREM)
<a,λ>.P

a,λ
−−−→M P

(RECM)
P{recX : P →֒ X}

a,λ
−−−→M P′

recX : P
a,λ

−−−→M P′

(ALTM,1)
P1

a,λ
−−−→M P′

P1+P2
a,λ

−−−→M P′
(ALTM,2)

P2
a,λ

−−−→M P′

P1+P2
a,λ

−−−→M P′

(HIDM,1)
P

a,λ
−−−→M P′ a /∈ H

P/H
a,λ

−−−→M P′/H
(HIDM,2)

P
a,λ

−−−→M P′ a∈ H

P/H
τ,λ

−−−→M P′/H

(PARM,1)
P1

a,λ
−−−→M P′

1 a /∈ S

P1‖SP2
a,λ

−−−→M P′
1‖SP2

(PARM,2)
P2

a,λ
−−−→M P′

2 a /∈ S

P1‖SP2
a,λ

−−−→M P1‖SP′
2

(SYNM)
P1

a,λ1
−−−→M P′

1 P2
a,λ2

−−−→M P′
2 a∈ S

P1‖SP2
a,λ1⊗λ2
−−−→M P′

1‖SP′
2

Table 1: Structured operational semantic rules for MPC

whichP can execute actions of namea that lead toD:

rate(P,a,D) = ∑{|λ ∈ R>0 | ∃P′ ∈ D.P
a,λ

−−−→M P′ |}
where{| and |} are multiset delimiters and the summation is taken to be zero if its multiset is empty.
By summing up the rates of all the actions ofP, we obtain the total exit rate ofP, i.e., ratet(P) =
∑a∈Namerate(P,a,PM), which is the reciprocal of the average sojourn time associated withP.

Definition 3.1 An equivalence relationB overPM is a Markovian bisimulation iff, whenever(P1,P2) ∈
B, then for all action namesa∈ Nameand equivalence classesD ∈ PM/B:

rate(P1,a,D) = rate(P2,a,D)
Markovian bisimilarity∼MB is the largest Markovian bisimulation.

As shown in [11, 10, 6, 7], the relation∼MB possesses the following properties:

• ∼MB is a congruence with respect to all the operators of MPC as well as recursion.

• ∼MB has a sound and complete axiomatization whose basic laws are shown below:

(AMB,1) P1+P2 = P2+P1

(AMB,2) (P1+P2)+P3 = P1+(P2+P3)
(AMB,3) P+0 = P
(AMB,4) <a,λ1>.P+<a,λ2>.P = <a,λ1+λ2>.P

The last one encodes the race policy and hence replaces the idempotencylaw P+P= P valid for
nondeterministic processes. The other laws are the usual distribution laws for the hiding operator
and the expansion law for the parallel composition operator.

M. Bernardo 127

• ∼MB induces a CTMC-level aggregation known as ordinary lumpability, which is exact both at
steady state and at transient state.

• ∼MB can be decided in polynomial time for all finite-state processes.

In [3], we have weakened the distinguishing power of∼MB by relating sequences of exponentially
timedτ-actions to single exponentially timedτ-actions having the same average duration and execution

probability as the sequences. GivenP ∈ PM , we say thatP is stable ifP 6
τ,λ

−−−→M P′ for all λ andP′,
otherwise we say that it is unstable. In the latter case, we say thatP is fully unstable iff, whenever

P
a,λ

−−−→M P′, thena= τ. We denote byPM,fu andPM,nfu the sets of process terms ofPM that are fully
unstable and not fully unstable, respectively.

The most natural candidates as sequences of exponentially timedτ-actions to abstract are those
labeling computations that traverse fully unstable states.

Definition 3.2 Let n ∈ N>0 andP1,P2, . . . ,Pn+1 ∈ PM . A computationc of lengthn from P1 to Pn+1

having the formP1
τ,λ1

−−−→M P2
τ,λ2

−−−→M . . .
τ,λn

−−−→M Pn+1 is reducible iffPi ∈ PM,fu for all i = 1, . . . ,n.

If reducible, the computationc above can be reduced to a single exponentially timedτ-transition whose
rate is obtained from the positive real value below:

probtime(c) =

(
n
∏
i=1

λi
rate(Pi ,τ,PM)

)
·

(
n
∑

i=1

1
rate(Pi ,τ,PM)

)

by leaving its first factor unchanged and taking the reciprocal of the second one. The valueprobtime(c)
is a measure of the execution probability ofc (first factor: product of the execution probabilities of the
transitions ofc) and the average duration ofc (second factor: sum of the average sojourn times in the
states traversed byc).

The weak variant of∼MB defined in [3] is such that (i) processes inPM,nfu are dealt with as in∼MB

and (ii) the length of reducible computations from processes inPM,fu to processes inPM,nfu is abstracted
away while preserving the execution probability and the average duration of those computations. In
the latter case, we need to lift measureprobtimefrom individual reducible computations to multisets
of reducible computations. Denoting byreducomp(P,D, t) the multiset of reducible computations from
P∈ PM,fu to someP′ in D ⊆ PM whose average duration ist ∈R>0, we consider the followingt-indexed
multiset of sums ofprobtimemeasures:

pbtm(P,D) =
⋃

t∈R>0 s.t. reducomp(P,D,t) 6= /0
{| ∑

c∈reducomp(P,D,t)
probtime(c) |}

Definition 3.3 An equivalence relationB ⊆ (PM,nfu ×PM,nfu)∪ (PM,fu ×PM,fu) is a weak Markovian
bisimulation iff for all (P1,P2) ∈ B:

• If P1,P2 ∈ PM,nfu, then for alla∈ Nameand equivalence classesD ∈ PM/B:
rate(P1,a,D) = rate(P2,a,D)

• If P1,P2 ∈ PM,fu, then for all equivalence classesD ∈ PM,nfu/B:
pbtm(P1,D) = pbtm(P2,D)

Weak Markovian bisimilarity≈MB is the largest weak Markovian bisimulation.

Example 3.4 Typical cases of weakly Markovian bisimilar process terms are:
<τ ,µ>.<τ ,γ>.Q <τ ,γ>.<τ ,µ>.Q <τ , µ·γ

µ+γ>.Q
and:

128 Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Conc. Proc.

<τ ,µ>.(<τ ,γ1>.Q1+<τ ,γ2>.Q2)

<τ , γ1
γ1+γ2

·
(

1
µ + 1

γ1+γ2

)−1
>.Q1+<τ , γ2

γ1+γ2
·
(

1
µ + 1

γ1+γ2

)−1
>.Q2

and:
<τ ,µ1>.<τ ,γ>.Q1+<τ ,µ2>.<τ ,γ>.Q2

<τ , µ1
µ1+µ2

·
(

1
µ1+µ2

+ 1
γ

)−1
>.Q1+<τ , µ2

µ1+µ2
·
(

1
µ1+µ2

+ 1
γ

)−1
>.Q2

whereQ,Q1,Q2 ∈ PM,nfu (see [3] for the details).

Similar to weak bisimilarity for nondeterministic processes,≈MB is not a congruence with respect to
the alternative composition operator. This problem, which has to do with fully unstable process terms,
can be prevented by adopting a construction analogous to the one used in [13] for weak bisimilarity over
nondeterministic process terms. In other words, we have to apply the exit rate equality check also to fully
unstable process terms, with the equivalence classes to consider being theones with respect to≈MB .

Definition 3.5 Let P1,P2 ∈ PM . We say thatP1 is weakly Markovian bisimulation congruent toP2,
writtenP1 ≃MB P2, iff for all action namesa∈ Nameand equivalence classesD ∈ PM/≈MB :

rate(P1,a,D) = rate(P2,a,D)

As shown in [3], the relation≃MB possesses the following properties:

• ≃MB is the coarsest congruence – with respect to all the operators of MPC other than parallel
composition, as well as recursion – contained in≈MB .

• ≃MB has a sound and complete axiomatization over the set of sequential processterms (i.e., pro-
cess terms with no occurrences of the parallel composition operator), whose basic laws are those
of ∼MB plus the following one (which includes the various cases shown in Ex. 3.4):

(AMB,5) <a,λ>. ∑
i∈I

<τ ,µi>. ∑
j∈Ji

<τ ,γi, j>.Pi, j =

<a,λ>. ∑
i∈I

∑
j∈Ji

<τ , µi
µ ·

γi, j

γ ·
(

1
µ + 1

γ

)−1
>.Pi, j

whereI 6= /0 is a finite index set,Ji 6= /0 is a finite index set for alli ∈ I , µ =∑i∈I µi , andγ =∑ j∈Ji
γi, j

for all i ∈ I .

• ≃MB induces a CTMC-level aggregation called W-lumpability, which is exact only at steady state
and performs reductions consistent withAMB,5. Moreover,≃MB preserves transient properties
expressed in terms of the mean time to certain events.

• ≃MB can be decided in polynomial time only for those finite-state processes that are not divergent,
i.e., that have no cycles of exponentially timedτ-transitions.

4 Compositionality for Concurrent Processes

The relation≃MB is not a congruence with respect to the parallel composition operator, thusrestricting
the usefulness for compositional state space reduction purposes of the framework developed in [3].

Example 4.1 Assuming parallel composition to have lower priority than any other operator,it holds that:
<a,λ>.<τ ,µ>.<τ ,γ>.0 ≃MB <a,λ>.<τ , µ·γ

µ+γ>.0
while:

<a,λ>.<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0 6≃MB <a,λ>.<τ , µ·γ
µ+γ>.0‖ /0<a′,λ ′>.0

M. Bernardo 129

First of all, we note that:
<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0 6≈MB <τ , µ·γ

µ+γ>.0‖ /0<a′,λ ′>.0
In fact, fora′ 6= τ the two process terms are not fully unstable with:

rate(<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0,τ , [<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB) = µ
rate(<τ , µ·γ

µ+γ>.0‖ /0<a′,λ ′>.0,τ , [<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB) = 0
On the other hand, fora′ = τ the two process terms are fully unstable with:

pbtm(<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0, [0‖ /00]≈MB) = {|(µ
µ+λ ′ ·

γ
γ+λ ′) · (

1
µ+λ ′ +

1
γ+λ ′ +

1
λ ′),

(µ
µ+λ ′ ·

λ ′

γ+λ ′) · (
1

µ+λ ′ +
1

γ+λ ′ +
1
γ),

(λ ′

µ+λ ′) · (
1

µ+λ ′ +
1
µ + 1

γ) |}

pbtm(<τ , µ·γ
µ+γ>.0‖ /0<a′,λ ′>.0, [0‖ /00]≈MB) = {|(

µ ·γ
µ+γ

µ ·γ
µ+γ +λ ′) · (

1
µ ·γ
µ+γ +λ ′ +

1
λ ′),

(λ ′

µ ·γ
µ+γ +λ ′) · (

1
µ ·γ
µ+γ +λ ′ +

1
µ ·γ
µ+γ

) |}

Thus:
[<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB ∩ [<τ , µ·γ

µ+γ>.0‖ /0<a′,λ ′>.0]≈MB = /0
and hence:

rate(<a,λ>.<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0,a, [<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB) = λ
whereas:

rate(<a,λ>.<τ , µ·γ
µ+γ>.0‖ /0<a′,λ ′>.0,a, [<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB) = 0

Also the two divergent process terms recX : <τ ,µ>.<τ ,γ1>.X and recX : <τ ,µ>.<τ ,γ2>.X, γ1 6= γ2,
are related by≃MB but this no longer holds when placing them in the context‖ /0<a′,λ ′>.0, a′ 6= τ.

Taking inspiration from the weak isomorphism of [11], in this section we showhow to retrieve full
compositionality by enhancing the abstraction capability of≃MB in the case of concurrent computations.
The price to pay is that exactness will hold at steady state only for a certain class of processes.

4.1 Revising Weak Markovian Bisimilarity

As we have seen,≈MB and≃MB abstract from sequences of exponentially timedτ-actions while preserv-
ing (at the computation level) their execution probability and average durationand (at the system level)
transient properties expressed in terms of the mean time to certain events as well as steady-state perfor-
mance measures. This kind of abstraction has been done in the simplest possible case: sequences of
exponentially timedτ-actions labeling computations that traversefully unstable states.

In order to achieve compositionality when dealing with concurrent processes, a revision of the notion
of reducible computation is unavoidable. More precisely, we need to address the case of sequences
of exponentially timedτ-actions labeling computations that traverseunstable states satisfying certain
conditions. The reason is that, if we view a system description as the parallel compositionof several
sequential processes, any of those processes may have local computations traversingfully unstable local
states, but in the overall system those local states may bepart of global states that are not fully unstable.

For instance, this is the case with the process<τ ,µ>.<τ ,γ>.0‖ /0<a,λ>.0, whose underlying la-
beled multitransition system is depicted below on the left:

a,λ

s1,2

s1,5

a,λ

s1,3

s1,6

a,λ

s1,1

1,4s µτ,

µτ, τ γ,

τ γ,

τ, .γµ /(µ+γ)

τ, .γµ /(µ+γ)

a,λ

s2,2

s2,4

a,λ

s2,1

s2,3

As can be noted, the fully unstable local states traversed by the only local computation of the sequential
process<τ ,µ>.<τ ,γ>.0 may become part of unstable global states that are not fully unstable ifa 6= τ.

130 Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Conc. Proc.

Our objective is to change the notion of reducible computation in such a way that the labeled multitransi-
tion system on the left can be regarded as being weakly Markovian bisimilar tothe labeled multitransition
system on the right. As can be noted, this implies that execution probabilities andaverage durations can
only be preservedat the level of local computations, hence transient properties expressed in terms of the
mean time to certain events can no longer be preserved at the system level.

In a concurrent setting, a sequence of exponentially timedτ-actions may be replicated due to inter-
leaving, in the sense that it may label several computations that share no transition. The revision of the
notion of reducible computation is thus based on the idea that, for each computation that traverses fully
unstable local states and is labeled with exponentially timedτ-actions, we have to recognize – and take
into account at once –all the replicasof that computation and pinpoint their initial and final states. In
our example, there are two replicas with initial statess1,1 ands1,4 and final statess1,3 ands1,6.

In general, a one-to-one correspondence can be established between the states traversed by any two
replicas by following the direction of the transitions. In our example, the pairsof corresponding states are
the two initial states(s1,1,s1,4), the two intermediate states(s1,2,s1,5), and the two final states(s1,3,s1,6).
We can say thatwhen moving vertically the current stage of the replicas is preserved.

In addition to the exponentially timedτ-transition belonging to the replica, any two states traversed
by the same replica can only possess transitions that are pairwise identically labeled. Those transitions
are originated from (the local states of) sequential processes that arein parallel with (the local state of)
the sequential process originating the considered reducible computation. The set of those transitions not
belonging to the replica can thus be viewed as thecontextof the replica. In our example, the context of
the top replica has a single transition labeled with<a,λ>, whereas the context of the bottom replica is
empty. Thus,when moving horizontally the context of each replica is preserved, i.e., the context does
not change along a replica. On the other hand,different replicas may have different contexts.

With regard to the identification of the boundary of the replicas of a reduciblecomputation, there are
two possibilities. One is that the final states have no exponentially timedτ-transition, as in our example.
The other is that, at a certain point, each replica has an exponentially timedτ-transition back to one of
the preceding states of the replica itself, as shown below with a variant of our example:

a,λ a,λ

µτ,

µτ,

τ γ,

τ γ,

a,λ

τ, .γµ /(µ+γ)

τ, .γµ /(µ+γ)

In this case, for each replica we view its return state as being its final state. In the figure above, for both
replicas the final state coincides with the initial state.

The new notion of replicated reducible computation must be accompanied by anadjustment of the
way measureprobtime and multisetpbtm are calculated. Given a computationc of the form

P1
τ,λ1

−−−→M P2
τ,λ2

−−−→M . . .
τ,λn

−−−→M Pn+1 that is reducible in the sense of Def. 3.2, the denominator of
the i-th fraction occurring in each of the two factors ofprobtime(c) can indifferently berate(Pi ,τ ,PM)
or ratet(Pi): those two values coincide becausePi ∈ PM,fu for all i = 1, . . . ,n. In contrast, if the reducible
computationc is replicated, each of its replicas has a possibly different context and it isfundamental
that rate(Pi ,τ ,PM) values are taken as denominators, so as to focus onτ-transitions. Since there can be
τ-transitions also in the context, each destination of those exit rates needs to be a specific setP con-
taining only the states traversed by the replicas rather than the generic setPM . Taking into account only
τ-transitions leading to states inP ensurescontext independencein this concurrent setting, which opens

M. Bernardo 131

the way to the achievement of the sameprobtimevalue for all the replicas of a reducible computation.
We are by now ready to provide the definition of replicated reducible computation together with the

revision of bothprobtimeandpbtm. Since several reducible computations can depart from the same
state (see the second and the third pair of process terms of Ex. 3.4), in general we will have to handle
replicated trees of reducible computationsrather than replicated individual reducible computations.

In the sequel, we considerm∈ N>0 process termsP1,P2, . . . ,Pm ∈ PM different from each other. We

suppose thatPk
ak,λk

−−−→M Pk+1 for all k = 1, . . . ,m−1, with Pk having a nonempty tree of computations
that are locally reducible for allk= 1, . . . ,m (sees1,1 ands1,4 in our example). This tree is formalized as
the setCτ

k of all the finite-length computations starting fromPk such that each of them (i) is labeled with a
sequence of exponentially timedτ-actions, (ii) traverses states that are all different with the possible ex-
ception of the final state and one of its preceding states, and (iii) shares notransitions with computations
in Cτ

k′ for all k′ 6= k.
We further suppose that the union ofCτ

1,C
τ
2, . . . ,C

τ
m can be partitioned inton∈N>0 groups of replicas

each consisting ofm computations from all them sets, such that all the computations in the same group
have the same length and are labeled with the same sequence of exponentially timed τ-actions. As a
consequence, for allk= 1, . . . ,mwe can write:

Cτ
k = {ck,i ≡ Pk,i,1

τ,λi,1

−−−→M Pk,i,2

τ,λi,2

−−−→M . . .
τ,λi,li

−−−→M Pk,i,l i+1 | 1≤ i ≤ n}
wherePk,i,1 ≡ Pk is the initial state andl i ∈ N>0 is the length of the computation for alli = 1, . . . ,n.

Definition 4.2 The family of computationsC τ = {Cτ
1,C

τ
2, . . . ,C

τ
m} is said to be generally reducible, or

g-reducible for short, iff eitherm= 1 and for alli = 1, . . . ,n:

• P1,i, j ∈ PM,fu for all j = 1, . . . , l i ;

• P1,i,l i+1 ∈ PM,nfu or P1,i,l i+1 ≡ P1,i, j for somej = 1, . . . , l i ;

or m≥ 1, with P1,i, j ∈ PM,nfu for all i = 1, . . . ,n and j = 1, . . . , l i whenm= 1, and for alli = 1, . . . ,n:

• For allk= 1, . . . ,m, j = 1, . . . , l i , and<a,λ> ∈ ActM :

1. [Deviation from the replica] IfPk,i, j
a,λ

−−−→M P′ with P′ 6≡ Pk,i, j+1, then:

a. [change of replica via context] eitherP′ ≡ Pk′,i, j for somek′ = 1, . . . ,m;
b. [change of computation] orP′ ≡ Pk,i′, j ′ with a= τ andλ = λi′, j ′−1 for somei′ = 1, . . . ,n

other thani and somej ′ = 2, . . . , l i′+1.

2. [Context preservation along the replica] For allk′ = 1, . . . ,m, it holds thatPk,i, j
a,λ

−−−→M Pk′,i, j

iff Pk,i, j ′
a,λ

−−−→M Pk′,i, j ′ for all j ′ = 1, . . . , l i .

3. [Stage preservation across replicas] For alli′ = 1, . . . ,n other thani and j ′ = 2, . . . , l i′+1,

it holds thatPk,i, j
a,λ

−−−→M Pk,i′, j ′ iff Pk′,i, j
a,λ

−−−→M Pk′,i′, j ′ for all k′ = 1, . . . ,m.

• [Termination] One of the following holds:

4. Whenever there existsλi,l i+1 ∈R>0 such thatPk,i,l i+1

τ,λi,li+1

−−−→M Pk,i,l i+2 for all k= 1, . . . ,m, then
at least one of conditions 1, 2, and 3 above is not satisfied byPk′,i,l i+1 for somek′ = 1, . . . ,m.

4̃. There is noλi,l i+1 ∈ R>0 such thatPk,i,l i+1

τ,λi,li+1

−−−→M Pk,i,l i+2 for all k= 1, . . . ,m.

4̂. Pk,i,l i+1 ≡ Pk,i, j for all k= 1, . . . ,mand somej = 1, . . . , l i .

132 Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Conc. Proc.

Some comments are now in order:

• In the case thatm= 1 and all the traversed states are fully unstable (see the “either” option),
Def. 4.2 coincides with Def. 3.2 except for the fact that the former considers a tree of computations
whilst the latter considers a single computation.

• The casem= 1 with P1,i, j ∈ PM,nfu for every i = 1, . . . ,n and j = 1, . . . , l i happens when all the
sequential process terms in parallel with the one originating the tree of locally reducible computa-
tions repeatedly execute a single action (selfloop transition), thus causing no replica of the tree to
be formed. Both this case and the casem≥ 2 are subject to conditions 1, 2, 3, and 4.

• Condition 1 establishes that each transition deviating (seeP′ 6≡ Pk,i, j+1) from the replica of the
considered computation ofC τ :

– either is a vertical transition of the context that preserves the current stage of the replicas and
hence causes the passage to the corresponding state of another replica(k′ 6= k) or to the same
state of the same replica (k′ = k, meaning that one of the sequential process terms in parallel
with the one originating the considered computation repeatedly executes a single action);

– or is a transition belonging to some other computation inC τ starting from the same process
termPk as the considered computation.

These two facts together imply the maximality ofC τ , because taking into account deviating transi-
tions causes all replicas to be included. In addition, they prevent process terms like
<τ ,µ>.(<τ ,γ>.0+<a,λ>.0) +<a,λ>.0 and<τ , µ·γ

µ+γ>.0+<a,λ>.0 – which do not con-
tain occurrences of parallel composition (m= 1) and have no fully unstable states whena 6= τ –
from being deemed to be equivalent.

• Condition 2 is related to condition 1.a and ensures that the context of a replicais preserved along
each state traversed by the replica.

• Condition 3 is related to condition 1.b and ensures that any transition belongingneither to the
considered computation nor to its context (i.e., belonging to some other computation in C τ) is
present at the same stage of each replica of the considered computation.

• The three variants of condition 4 establish the boundary of the replicas of the considered com-
putation in a way that guarantees the maximality of the length of the replicas themselves under
(i) conditions 1, 2, and 3, (ii) the constraint that all of their transitions are labeled with exponen-
tially timed τ-actions, (iii) and the constraint that all the traversed states are different with the
possible exception of the final state and one of its preceding states.

Let initial(C τ) = {Pk | 1 ≤ k ≤ m} andfinal(C τ) = {Pk,i,l i+1 | 1 ≤ k ≤ m,1 ≤ i ≤ n} be the sets
of initial states and final states of the computations inC τ . In order to avoid interferences between the
computations inCτ

1,C
τ
2, . . . ,C

τ
m and the transitions belonging to the context of those computations, for

any computationck,i in C τ we consider the following context-free measure:

probtimecf(ck,i) =

(
l i
∏
j=1

λi, j

rate(Pk,i, j ,τ,Pk)

)
·

(
l i
∑
j=1

1
rate(Pk,i, j ,τ,Pk)

)

wherePk = {Pk,i′, j ′ | 1≤ i′ ≤ n,2≤ j ′ ≤ l i′+1}. In this way, all replicas of the same computation will
have the sameprobtimecf measure, as shown below.

Proposition 4.3 WheneverC τ is g-reducible, then for allk,k′ = 1, . . . ,mandi = 1, . . . ,n:
probtimecf(ck,i) = probtimecf(ck′,i)

M. Bernardo 133

Moreover, we replace the generic multisetpbtm(P,D) with the more specific multisetspbtmcf(Pk,D∩
final(C τ)) for all Pk ∈ initial(C τ). The latter multisets are based onprobtimecf instead ofprobtime
as well as onreducompcf instead ofreducomp, where reducompcf(Pk,D ∩ final(C τ), t) is the multi-
set of computations identical to those inCτ

k that go fromPk to D∩ final(C τ) and have average dura-
tion t. We point out that computations of length zero are not considered ast ∈ R>0, so that whenever
Pk ∈ initial(C τ)∩D∩final(C τ), then the calculation ofpbtmcf(Pk,D∩final(C τ)) does take into account
computations identical to those inCτ

k going fromPk to itself.

Proposition 4.4 WheneverC τ is g-reducible, then for allk,k′ = 1, . . . ,m:
pbtmcf(Pk,final(C τ)) = pbtmcf(Pk′ ,final(C τ))

We are finally ready to introduce the revised definition of weak Markovian bisimilarity.

Definition 4.5 An equivalence relationB overPM is a g-weak Markovian bisimulation iff, whenever
(P1,P2) ∈ B, then:

• For all visible action namesa∈ Namev and equivalence classesD ∈ PM/B:
rate(P1,a,D) = rate(P2,a,D)

• If P1 is not an initial state of any g-reducible family of computations, thenP2 is not an initial state
of any g-reducible family of computations either, and for all equivalence classesD ∈ PM/B:

rate(P1,τ ,D) = rate(P2,τ ,D)

• If P1 is an initial state of some g-reducible family of computations, thenP2 is an initial state of
some g-reducible family of computations too, and for all g-reducible families ofcomputationsC τ

1
with P1 ∈ initial(C τ

1) there exists a g-reducible family of computationsC τ
2 with P2 ∈ initial(C τ

2)
such that for all equivalence classesD ∈ PM/B:

pbtmcf(P1,D∩final(C τ
1)) = pbtmcf(P2,D∩final(C τ

2))

G-weak Markovian bisimilarity≈MB,g is the largest g-weak Markovian bisimulation.

Example 4.6 The process terms mentioned in each of the three cases of Ex. 3.4 are still related by≈MB,g.
Note that each of those process terms is the only initial state of a g-reducible family of computations
composed by a single computation (first case) or a single tree of computations(second and third case)
traversing only fully unstable states, thusm= 1 and the “either” option of Def. 4.2 applies.

Example 4.7 Let us reconsider the two process terms at the beginning of Ex. 4.1. Now we have:
<a,λ>.<τ ,µ>.<τ ,γ>.0 ≈MB,g <a,λ>.<τ , µ·γ

µ+γ>.0
and:

<a,λ>.<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0 ≈MB,g <a,λ>.<τ , µ·γ
µ+γ>.0‖ /0<a′,λ ′>.0

because it holds that:
<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0 ≈MB,g <τ , µ·γ

µ+γ>.0‖ /0<a′,λ ′>.0
In fact, fora′ 6= τ the two process terms are the initial states of two g-reducible families of computations
C τ

1 andC τ
2 , respectively, each composed of two replicas – the first one having context {<a′,λ ′>} and

final state 0‖ /0<a′,λ ′>.0 and the second one having empty context and final state 0‖ /00 – with:
pbtmcf(<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0,D∩final(C τ

1)) = {| 1
µ + 1

γ |}

pbtmcf(<τ , µ·γ
µ+γ >.0‖ /0<a′,λ ′>.0,D∩final(C τ

2)) = {| µ+γ
µ·γ |}

wheneverD contains the final state 0‖ /0<a′,λ ′>.0, as the way of calculatingprobtimecf andpbtmcf does
not take the context into account.

134 Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Conc. Proc.

Fora′ = τ, in addition toC τ
1 andC τ

2 , the two process terms are the initial states of two further g-reducible
families of computationsC ′τ

1 andC ′τ
2 , respectively, each composed of two replicas of length 1 labeled

with <a′,λ ′>. In this case:
pbtmcf(<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0,D∩final(C ′τ

1)) = {| 1
λ ′ |}

pbtmcf(<τ , µ·γ
µ+γ >.0‖ /0<a′,λ ′>.0,D∩final(C ′τ

2)) = {| 1
λ ′ |}

wheneverD contains the two≈MB,g-equivalent final states<τ ,µ>.<τ ,γ>.0‖ /00 and<τ , µ·γ
µ+γ>.0‖ /00.

The two divergent process terms at the end of Ex. 4.1 are not related by≈MB,g becauseγ1 6= γ2; hence,
they no longer result in a disruption of compositionality when placed in the context ‖ /0<a′,λ ′>.0.

We conclude by showing that there exists a relationship between≈MB,g and≈MB only for process
terms that have no cycles of exponentially timedτ-actions. The reason of this limitation is that≈MB,g

imposes checks on those cycles that are not always performed by≈MB , like, e.g., in the case of the two
divergent process terms recX : <τ ,γ1>.X and recX : <τ ,γ2>.X whereγ1 6= γ2.

Proposition 4.8 Let P1,P2 ∈ PM be not divergent. Then:
P1 ≈MB P2 =⇒ P1 ≈MB,g P2

4.2 Congruence Property

The investigation of the compositionality of≈MB,g with respect to MPC operators leads to results analo-
gous to those for≈MB [3], plus the achievement of congruence with respect to parallel composition.

Proposition 4.9 Let P1,P2 ∈ PM . WheneverP1 ≈MB,g P2, then:

1. <a,λ>.P1 ≈MB,g <a,λ>.P2 for all <a,λ> ∈ ActM .

2. P1/H ≈MB,g P2/H for all H ⊆ Namev.

3. P1‖SP≈MB,g P2‖SP andP‖SP1 ≈MB,g P‖SP2 for all S⊆ Namev andP∈ PM .

The relation≈MB,g is not a congruence with respect to the alternative composition operator due to
fully unstable process terms: for instance, it holds that<τ ,µ>.<τ ,γ>.0 ≈MB,g <τ , µ·γ

µ+γ>.0 whereas

<τ ,µ>.<τ ,γ>.0+<a,λ>.0 6≈MB,g <τ , µ·γ
µ+γ>.0+<a,λ>.0. In fact, if it werea 6= τ, then we would

have:
rate(<τ ,µ>.<τ ,γ>.0+<a,λ>.0,τ , [0]≈MB,g) = 0

rate(<τ , µ·γ
µ+γ>.0+<a,λ>.0,τ , [0]≈MB,g) = µ·γ

µ+γ
otherwise fora= τ the two process terms would be the initial states of two g-reducible families of com-
putations, respectively, each composed of a single tree of computations withfinal state 0and we would
have:

pbtmcf(<τ ,µ>.<τ ,γ>.0+<a,λ>.0,{0}) = {| µ
µ+λ ·

(
1

µ+λ + 1
γ

)
, λ

µ+λ · 1
µ+λ |}

pbtmcf(<τ , µ·γ
µ+γ>.0+<a,λ>.0,{0}) = {| 1

µ ·γ
µ+γ +λ |}

The congruence violation with respect to the alternative composition operator can be prevented by
adopting a construction analogous to the one used in [13] for weak bisimilarityover nondeterministic
process terms and adapted in [3] to≈MB . Therefore, we have to apply the exit rate equality check for
τ-actions also to process terms that are initial states of g-reducible families of computations, with the
equivalence classes to consider being the ones with respect to≈MB,g.

Definition 4.10 Let P1,P2 ∈ PM . We say thatP1 is g-weakly Markovian bisimulation congruent toP2,
writtenP1 ≃MB,g P2, iff for all action namesa∈ Nameand equivalence classesD ∈ PM/≈MB,g:

rate(P1,a,D) = rate(P2,a,D)

M. Bernardo 135

Proposition 4.11 ∼MB ⊂≃MB,g⊂≈MB,g, with ≃MB,g=≈MB,g over the set of process terms ofPM that
are not initial states of any g-reducible family of computations.

Proposition 4.12 Let P1,P2 ∈ PM and<a,λ> ∈ ActM . Then:
<a,λ>.P1 ≃MB,g <a,λ>.P2 ⇐⇒ P1 ≈MB,g P2

The relation≃MB,g turns out to be the coarsest congruence – with respect to all the operators of MPC
as well as recursion – contained in≈MB,g, as shown below.

Theorem 4.13 Let P1,P2 ∈ PM . WheneverP1 ≃MB,g P2, then:

1. <a,λ>.P1 ≃MB,g <a,λ>.P2 for all <a,λ> ∈ ActM .

2. P1+P≃MB,g P2+P andP+P1 ≃MB,g P+P2 for all P∈ PM .

3. P1/H ≃MB,g P2/H for all H ⊆ Namev.

4. P1‖SP≃MB,g P2‖SP andP‖SP1 ≃MB,g P‖SP2 for all S⊆ Namev andP∈ PM .

Theorem 4.14 Let P1,P2 ∈ PM . ThenP1 ≃MB,g P2 iff P1+P≈MB,g P2+P for all P∈ PM .

With regard to recursion, we need to extend≃MB,g to open process terms in the usual way. Similar to
other congruence proofs for bisimulation equivalence with respect to recursion, here we rely on a notion
of g-weak Markovian bisimulation up to≈MB,g inspired by the notion of Markovian bisimulation up to
∼MB of [5]. This notion differs from its nondeterministic counterpart used in [13] due to the necessity of
working with equivalence classes in this Markovian setting.

Definition 4.15 Let P1,P2 ∈ PL M be process terms containing free occurrences ofk∈ N process vari-
ablesX1, . . . ,Xk ∈ Var at most. We defineP1 ≃MB,g P2 iff P1{Qi →֒ Xi | 1≤ i ≤ k} ≃MB,g P2{Qi →֒ Xi |
1≤ i ≤ k} for all Q1, . . . ,Qk ∈ PL M containing no free occurrences of process variables.

Definition 4.16 Let + denote the operation of transitive closure for relations. A binary relationB

overPM is a g-weak Markovian bisimulation up to≈MB,g iff, whenever(P1,P2) ∈ B, then:

• For all visible action namesa∈ Namev and equivalence classesD ∈ PM/(B∪B−1∪ ≈MB,g)
+:

rate(P1,a,D) = rate(P2,a,D)

• If P1 is not an initial state of any g-reducible family of computations, thenP2 is not
an initial state of any g-reducible family of computations either, and for all equivalence classes
D ∈ PM/(B∪B−1∪ ≈MB,g)

+:
rate(P1,τ ,D) = rate(P2,τ ,D)

• If P1 is an initial state of some g-reducible family of computations, thenP2 is an initial state of
some g-reducible family of computations too, and for all g-reducible families ofcomputationsC τ

1
with P1 ∈ initial(C τ

1) there exists a g-reducible family of computationsC τ
2 with P2 ∈ initial(C τ

2)
such that for all equivalence classesD ∈ PM/(B∪B−1∪ ≈MB,g)

+:
pbtmcf(P1,D∩final(C τ

1)) = pbtmcf(P2,D∩final(C τ
2))

Proposition 4.17 Let B be a relation overPM . If B is a g-weak Markovian bisimulation up to≈MB,g,
then(P1,P2) ∈ B impliesP1 ≈MB,g P2 for all P1,P2 ∈ PM . Moreover(B∪B−1∪ ≈MB,g)

+ =≈MB,g.

Theorem 4.18 Let P1,P2 ∈ PL M be process terms containing free occurrences ofk ∈ N process vari-
ablesX1, . . . ,Xk ∈ Var at most. WheneverP1 ≃MB,g P2, then:

recX1 : . . . : recXk : P1 ≃MB,g recX1 : . . . : recXk : P2

136 Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Conc. Proc.

4.3 Exactness at Steady State

We conclude by examining the exactness of the CTMC-level aggregation induced by≈MB,g and≃MB,g.
In general, a CTMC aggregation is said to be exact at steady state (resp.transient state) iff the steady-state
(resp. transient) probability of being in a macrostate of an aggregated CTMC is the sum of the steady-
state (resp. transient) probabilities of being in each of the constituent microstates of the original CTMC
from which the aggregated one has been obtained. This property implies thepreservation of steady-state
(resp. transient) reward-based performance measures across CTMC models.

The aggregation to examine – which we call GW-lumpability – shares with the one induced by≈MB

and≃MB – called W-lumpability in [3] – the characteristic of viewing certain sequences of exponentially
timedτ-actions to be equivalent to individual exponentially timedτ-actions having the same average du-
ration and the same execution probability as the corresponding sequenceswhen the latter are considered
locally to the processes originating them.1 On the other hand, due to the idea of context embodied in the
notion of g-reducible family of computations and the consequent capability ofdistinguishing between ac-
tion disabling and action interruption, a notable difference between GW-lumpability and W-lumpability
is that the former may aggregate states also in the case of concurrent processes, while the latter cannot.

Reducing a computation formed by at least two exponentially timedτ-transitions to a single expo-
nentially timedτ-transition with the same average duration amounts to approximating a hypoexponen-
tially (or Erlang) distributed random variable with an exponentially distributed random variable having
the same expected value. This implies that, in general, GW-lumpability cannot preserve transient per-
formance measures, as was the case with W-lumpability [3]. However, while W-lumpability at least
preserves transient properties expressed in terms of the mean time to certainevents, this is no longer the
case with GW-lumpability as we have seen at the beginning of Sect. 4.1.

What turns out for GW-lumpability is that, similar to W-lumpability, it preserves steady-state per-
formance measures, provided that the states traversed by any replica ofa reducible computation have
the same rewards and the transitions – belonging to the replica or to the context– departing from any
two traversed states have pairwise identical rewards. However, unlike W-lumpability, we have to confine
ourselves to processes in which synchronizations (if any) do not take place right before the beginning of
computations that are reducible according to the “or” option of Def. 4.2. This constraint comes from the
insensitivity conditions for generalized semi-Markov processes mentionedin [12, 8, 11].

Theorem 4.19 GW-lumpability is exact at steady state over every process termP∈ PM such that, for all
g-reducible families of computationsC τ in [[P]]M with sizem≥ 2, or sizem= 1 and all the traversed
states being not fully unstable, no state ininitial(C τ) is the target state of a transition in[[P]]M arising
from the synchronization of two or more actions.

Example 4.20 In order to illustrate the need for the constraint on synchronizations in Thm.4.19, con-
sider the following two process terms:

P1 ≡ recX : <τ ,µ>.<τ ,γ>.<b,δ>.X‖{b} recY : <a,λ>.<b,δ>.Y
P2 ≡ recX : <τ , µ·γ

µ+γ>.<b,δ>.X‖{b} recY : <a,λ>.<b,δ>.Y
Observe thatP1 ≈MB,g P2 and that[[P1]]M and[[P2]]M are given by the two labeled multitransition systems
depicted at the beginning of Sect. 4.1, respectively, with an additional transition labeled with<b,δ>
from the final state to the initial one. In the case thatµ = γ = λ = δ = 1 andδ ⊗δ = δ , it turns out that
the steady-state probability distribution for[[P1]]M is as follows:

1To be precise, since the Markov property of the original CTMC is not preserved but the aggregated stochastic process is
still assumed to be a CTMC, it would be more appropriate to call those aggregations pseudo-aggregations [14].

M. Bernardo 137

π[s1,1] = 2
13 π[s1,2] = 1

13 π[s1,3] = 1
13

π[s1,4] = 2
13 π[s1,5] = 3

13 π[s1,6] = 4
13

whereas the steady-state probability distribution for[[P2]]M is as follows:
π[s2,1] = 2

10 π[s2,2] = 1
10

π[s2,3] = 4
10 π[s2,4] = 3

10

Thus, the CTMC underlying[[P2]]M is not an exact aggregation of the CTMC underlying[[P1]]M because:
π[s1,1]+π[s1,2] 6= π[s2,1] π[s1,3] 6= π[s2,2]

π[s1,4]+π[s1,5] 6= π[s2,3] π[s1,6] 6= π[s2,4]

As can be noted, the transition in[[P1]]M labeled with<b,δ> arises from the synchronization of two
b-actions and its target state is the initial state of a computation belonging to a g-reducible family with
sizem= 2; hence, Thm. 4.19 does not apply.

In contrast, if we consider a synchronization-free variant of the two process terms above like for
instance:

P3 ≡ recX : <τ ,µ>.<τ ,γ>.<b1,δ1>.X‖ /0 recY : <a,λ>.<b2,δ2>.Y
P4 ≡ recX : <τ , µ·γ

µ+γ>.<b1,δ1>.X‖ /0 recY : <a,λ>.<b2,δ2>.Y
we have that forµ = γ = λ = δ1 = δ2 = 1 the steady-state probability distribution for[[P3]]M is:

π[s3,1] = 1
6 π[s3,2] = 1

6 π[s3,3] = 1
6

π[s3,4] = 1
6 π[s3,5] = 1

6 π[s3,6] = 1
6

and the steady-state probability distribution for[[P4]]M is:
π[s4,1] = 2

6 π[s4,2] = 1
6

π[s4,3] = 2
6 π[s4,4] = 1

6

hence the CTMC underlying[[P4]]M is an exact aggregation of the CTMC underlying[[P3]]M because:
π[s3,1]+π[s3,2] = π[s4,1] π[s3,3] = π[s4,2]

π[s3,4]+π[s3,5] = π[s4,3] π[s3,6] = π[s4,4]

5 Conclusion

In this paper, we have introduced≈MB,g and≃MB,g as variants of the weak Markovian bisimulation
equivalences≈MB and≃MB proposed in [3], which suffer from a limited usefulness for state space re-
duction purposes as they are not congruences with respect to the parallel composition operator. The
motivation behind≈MB,g and≃MB,g is thus that of retrieving full compositionality. Taking inspiration
from the idea of preserving the context of [11], this has been achievedby enhancing the abstraction ca-
pability – with respect to≈MB and≃MB – when dealing with concurrent computations. The price to pay
for the resulting compositional abstraction capability is that the exactness at steady state of the induced
CTMC-level aggregation does not hold for all the considered processes – as it was for≈MB and≃MB –
but only for sequential processes with abstraction and concurrent processes whose synchronizations do
not take place right before the beginning of computations to be reduced. Additionally, not even transient
properties expressed in terms of the mean time to certain events are preserved in general.

With regard to [11], where weak isomorphism has been studied, our equivalences≈MB,g and≃MB,g

have been developed in the more liberal bisimulation framework. A more important novelty with respect
to weak isomorphism is that we have considered not only individual sequences of exponentially timed
τ-actions. In fact, we have addressed trees of exponentially timedτ-actions and we have established the
conditions under which such trees can be reduced – also in the presenceof parallel composition – by

138 Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Conc. Proc.

locally preserving both the average duration and the execution probability of their branches.
Another approach to abstracting fromτ-actions in an exponentially timed setting comes from [4],

where a variant of Markovian bisimilarity was defined that checks for exitrate equality with respect to
all equivalence classes apart from the one including the processes under examination. Congruence and
axiomatization results were provided for the proposed equivalence, anda logical characterization based
on CSL was illustrated in [2]. However, unlike≈MB,g and≃MB,g, nothing was said about exactness.

As far as future work is concerned, we would like to investigate equationaland logical characteri-
zations of≃MB,g as well as conduct case studies for assessing its usefulness in practice(especially with
respect to the constraint on synchronizations that guarantees steady-state exactness). With regard to
verification issues, since≃MB ⊂≃MB,g for non-divergent process terms, we have that the equivalence
checking algorithm developed for≃MB in [3] can be exploited for compositional state space reduction
with respect to≃MB,g, by applying it to each of the sequential processes composed in parallel.

Acknowledgment: This work has been funded by MIUR-PRIN projectPaCo – Performability-Aware
Computing: Logics, Models, and Languages.

References

[1] A. Aldini, M. Bernardo, and F. Corradini,“A Process Algebraic Approach to Software Architecture De-
sign”, Springer, 2010.

[2] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf,“Comparative Branching-Time Semantics for Markov
Chains”, in Information and Computation 200:149–214, 2005.

[3] M. Bernardo,“Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Se-
quential Processes”, to appear in Proc. of TGC 2011.

[4] M. Bravetti, “Revisiting Interactive Markov Chains”, in Proc. of MTCS 2002, ENTCS 68(5):1–20.

[5] M. Bravetti, M. Bernardo, and R. Gorrieri,“A Note on the Congruence Proof for Recursion in Markovian
Bisimulation Equivalence”, in Proc. of PAPM 1998, pp. 153–164.

[6] P. Buchholz,“Exact and Ordinary Lumpability in Finite Markov Chains”, in Journal of Applied Probabil-
ity 31:59–75, 1994.

[7] S. Derisavi, H. Hermanns, and W.H. Sanders,“Optimal State-Space Lumping in Markov Chains”, in In-
formation Processing Letters 87:309–315, 2003.

[8] W. Henderson and D. Lucic,“Aggregation and Disaggregation Through Insensitivity inStochastic Petri
Nets”, in Performance Evaluation 17:91–114, 1993.

[9] H. Hermanns,“Interactive Markov Chains”, LNCS 2428, 2002.

[10] H. Hermanns and M. Rettelbach,“Syntax, Semantics, Equivalences, and Axioms for MTIPP”, in Proc. of
PAPM 1994, pp. 71–87.

[11] J. Hillston,“A Compositional Approach to Performance Modelling”, Cambridge University Press, 1996.

[12] K. Matthes,“Zur Theorie der Bedienungsprozesse”, in Proc. of the3rd Prague Conf. on Information
Theory, Statistical Decision Functions and Random Processes, pp. 513–528, 1962.

[13] R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.

[14] G. Rubino and B. Sericola,“Sojourn Times in Finite Markov Processes”, in Journal of Applied Probabil-
ity 27:744–756, 1989.

[15] W.J. Stewart,“Introduction to the Numerical Solution of Markov Chains”, Princeton University Press,
1994.

