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Outline

1 Background: (Bi)simulations for Modal Logics
▸ Key notion to assess the expressivity of a modal language [vB76]
▸ Abstraction-based techniques for system verification [CGJ+00, FV99] (Michael’s talk)

2 The Problem: (Bi)simulations for Logics of Strategies
▸ Relatively well-understood in the perfect information setting [AHKV98, ÅGJ07]
▸ . . . less so under imperfect information
▸ but imperfect information is crucial as well as difficult (Bastien’s talk)

3 Today:
[BCD+17]: (Bi)simulations for ATLir ⇒ Verification of the ThreeBallot voting protocol
[BL17]: Agent-based (bi)simulations and three-valued abstractions

4 Future Work:
▸ More expressive languages (Strategy Logics, . . . )
▸ Decidability of finding (bi)simulations
▸ Abstraction refinement
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ATL with Imperfect Information and Imperfect Recall
Syntax and Semantics

Definition (ATL)

Formulas φ in ATL are defined by the following BNF:

φ ∶∶= p ∣ ¬φ ∣ φ→ φ ∣ ⟪A⟫Xφ ∣ ⟪A⟫φUφ ∣ ⟪A⟫φRφ

ATL is interpreted on Concurrent Game Structure with imperfect information:

Definition (iCGS)

An iCGS is a CGS G = ⟨Ag ,AP,S , s0,{∼i}i∈Ag ,Act,d ,→, π⟩ such that

� for every agent i ∈ Ag , ∼i is an equivalence relation on S
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ATL with Imperfect Information and Imperfect Recall
Syntax and Semantics

Semantical setup:

� we consider uniform, memoryless strategies σ ∶ S → Act
▸ in particular, s ∼i s′ ⇒ σi(s) = σi(s′)

� imperfect recall ⇒ state-based semantics
� we consider both the objective and subjective interpretation of ATL

Definition (Semantics)

Given an iCGS G, the subjective (resp. objective) interpretation ⊧x of an ATL formula φ at state
s (for x = subj (resp. x = obj)) is defined as

(G, s) ⊧x p iff p ∈ π(s)
(G, s) ⊧x ¬φ iff (G, s) /⊧x φ
(G, s) ⊧x φ ∧ φ

′ iff (G, s) ⊧x φ and (G, s) ⊧x φ
′

(G, s) ⊧x ⟪A⟫Xφ iff ∃σA ∀λ ∈ outGx (s, σA), (G, λ[1]) ⊧x φ

(G, s) ⊧x ⟪A⟫φUφ′ iff ∃σA ∀λ ∈ outGx (s, σA),∃j ≥ 0 with (G, λ[j]) ⊧x φ
′ and ∀0 ≤ k < j, (G, λ[k]) ⊧x φ

(G, s) ⊧x ⟪A⟫φRφ′ iff ∃σA ∀λ ∈ outGx (s, σA), either ∀j ≥ 0, (G, λ[j]) ⊧x φ, or
∃k ≥ 0 with (G, λ[k]) ⊧x φ

′ and ∀0 ≤ l ≤ k, (G, λ[l]) ⊧x φ

The epistemic operator Ki is definable in the subjective interpretation of ATL:

� Kiφ ∶∶= ⟪i⟫φUφ
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(Bi)simulations for ATLir

� Partial strategies are defined on subsets of S.

� CA(q) = {q′ ∈ S ∣ q′ ∼C
A q} is the common knowledge neighbourhood of q.

Definition (Simulation)

Consider two iCGS G and G′ (on the same sets Ag and AP), and a group A ⊆ Ag of agents.
A relation ⇀A⊆ S × S ′ is a simulation for A iff q ⇀A q′ implies that

1 π(q) = π′(q′)
2 for every i ∈ A and r ′ ∈ S ′, if q′ ∼′i r ′ then for some r ∈ S, q ∼i r and r ⇀A r ′

3 there exists a mapping ST = STCA(q),CA(q′) with ST ∶ PStrA(CA(q)) → PStrA(CA(q′)) such

that for any two states r ∈ CA(q), r ′ ∈ CA(q′), if r ⇀A r ′ then

1 for every partial strategy σA ∈ PStrA(CA(q)) and state s′ ∈ S ′, if r ′
ST(σA)(r′)
ÐÐÐÐÐÐ→ s′ then there exists

some state s such that r
σA(r)
ÐÐÐ→ s and s ⇀A s′

2 STCA(q),CA(q′) = STCA(r),CA(r′)

Bisimulations are defined in the standard way.

Remark

Checking the existence of a (bi)simulation between iCGS is in PSPACE.

5



Preservation Result

Theorem

Consider iCGS G and G′ and A-bisimilar states q ∈ S, q′ ∈ S ′. Then, for every A-formula ϕ,

(G,q) ⊧ ϕ if and only if (G′,q′) ⊧ ϕ

The proof makes use of the following lemma:

Lemma

If q ⇀A q′ then for every uniform strategy σA, there exists a uniform strategy σ′A such that

� for every run λ′ ∈ outG
′

x (q′, σ′A), for x ∈ {subj ,obj}, there exists a run λ ∈ outGx (q, σA) such
that λ(i) ⇀A λ

′(i) for every i ≥ 0.
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Applications: the Three-Ballot Voting Protocol

ThreeBallot is a voting protocol without cryptography [RR07].

1 Each voter gets a paper “multi-ballot” to vote with.

2 The voter fills in the multi-ballot, separates the three parts and casts them in the ballot box.
▸ to vote for a candidate, one must mark exactly two (arbitrary) bubbles on her row;
▸ to not vote for a candidate, one must mark exactly one of the bubbles on her row;
▸ in all the other cases the vote is invalid.

3 The voter also receives a copy of one of her three ballots.

4 The ballots are tallied by counting the number of bubbles marked for each candidate, and
then subtracting the number of voters from the count.

5 All ballots are scanned and published on the web bulletin board (BB).

6 The voter can check if her receipt matches a ballot listed on the BB.

7 If no ballot matches the receipt, the voter can file a complaint.
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iCGS for the Three-Ballot Voting Protocol

� The ThreeBallot voting protocol can be represented as iCGS

. . . but these are large

Several possible formalisations:

� Gtot : for each agent, any configuration of the three ribbons (compatible with the agent’s
choice) is allowed.

� Glex : for each agent, a single representative of her choice is produced.

� Gcount : the environment no longer copies ribbons on the ballot board, but rather counts the
votes for each candidate by “peeping” at the ballot of each voter.

Proposition

All Gtot , Glex , Gcount are bisimilar (for the attacker), but with increasingly smaller state spaces.
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Verification of ThreeBallot

The attacker has a strategy whereby she knows how some of the agents have voted (for i ≠ att):

ϕi = ⟪att⟫F(pub ∧ (vi → ⋁
1≤j≤nc

Katt pchi=j))

� statistics for Gtot :
# voters

2v 3v 4v

#
ca

n
d

id
.

2c
0.93 s 7.765 s

NA∣S ∣ = 3.49091e+06 ∣S ∣ = 1.46625e+10

3c
23.61 s

NA NA∣S ∣ = 2.44048e+08

� statistics for Glex :
# voters

2v 3v 4v

#
ca

n
d

id
.

2c
0.38 s 3.42 s 823.12 s

∣S ∣ = 196388 ∣S ∣ = 1.92068e+08 ∣S ∣= 2.26211e+11

3c
15.32 s 4807.79 s

NA∣S ∣ = 8.09895e+06 ∣S ∣ = 1.03982e+11

� statistics for Gcount :
# voters

2v 3v 4v 5v

#
ca

n
d

id
.

2c
0.15 s 0.72 s 2.39 s 17.03 s

∣S ∣ = 4406 ∣S ∣ = 39201 ∣S ∣= 3.08043e+06 ∣S ∣ = 6.57133e+07

3c
0.44 s 4.29 s 44.18 s

NA∣S ∣ = 101993 ∣S ∣ = 3.81446e+06 ∣S ∣ = 2.17425e+09

Smaller state space ⇒ Faster verification
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Summary of [BCD+17]

Results:

� A novel notion of (bi)simulation on iCGS that preserves the interpretation of ATLir

� A (rather preliminary) application to the verification of the ThreeBallot voting protocol

Future work:

� Bisimulations for iCGS with perfect and bounded recall: in many applications agents do have
some memory of past states and actions.

� For the verification of voting protocols, it is key to extend ATL with epistemic modalities to
express properties of secrecy, anonymity and confidentiality.

� Automating and implementing the procedure in a model checking tool for the formal
verification of (electronic) voting protocols.
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Three-value Simulations and Abstractions

� Three-value abstractions for temporal logics:
▸ understood in terms of over- and under-approximations of the system’s transitions [BG99]
▸ ∃∃-transitions as may -transitions
▸ ∀∃-transitions as must-transitions

� Extended to ATL (with perfect information) [SG04, BK06]

� Here we consider the imperfect information case

� Even more interestingly, we consider agent-based simulations and abstractions (kind of . . . )
▸ compact representation of multi-agent systems (Hector’s talk)
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Three-value Semantics

We assume the notion of agent as primitive [FHMV95]

Definition (Generalised Agent)

A (generalised) agent is a tuple i = ⟨L,Act,Pmay ,Pmust , tmay , tmust⟩ such that

� L is the (possibly infinite) set of local states

� Act is the (finite) set of individual actions

� Pmay and Pmust are protocol functions from L to 2Act .
▸ for every l ∈ L, Pmust

(l) ⊆ Pmay
(l)

� tmay and tmust are local transition relations defined on L ×ACT × L.

1 for x ∈ {may ,must}, transition tx
(l, a, l ′) holds for some l ′ ∈ L iff ai ∈ Px

(l)
2 tmust

⊆ tmay

� Definition motivated by abstractions

� Standard agents [FHMV95] have
▸ Pmust

(l) = Pmay
(l)

▸ tmust
= tmay
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Three-value Semantics

Agents interact, thus generating Interpreted Systems (iCGS in disguise).

Definition (Generalised IS)

A (generalised ) interpreted system is a tuple M = ⟨Ag , I ,T ,Π⟩ such that

� every i ∈ Ag is an agent

� I ⊆ G is the set of (global) initial states

� T ∶ G ×ACT → G is the global transition function
▸ s′ = T(s, a) iff for all i ∈ Ag , s′i = tx

i (si , a) for x ∈ {may ,must}

� Π ∶ G ×AP → {tt,ff,uu} is the labelling function

In standard IS [FHMV95] we have

� all agents are standard

� the value of atoms is always defined (≠ uu)
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Three-value Semantics

We have must and may strategies.

Definition (Uniform x-Strategy)

For x ∈ {may , must}, a (uniform, memoryless) x-strategy for i ∈ Ag is a function σx
i ∶ Li → Acti .

In particular, for every local state l ∈ Li , σ
x
i (l) ∈ Px

i (l).

Strategies are uniform.

Definition (Satisfaction)

The 3-valued satisfaction relation ⊧3 for an IS M, state s ∈ S, and ATL formula φ is defined as

((M, s) ⊧3 q) = τ iff Π(s,q) = τ , for τ ∈ {tt,ff}

((M, s) ⊧3
¬ϕ) = tt iff ((M, s) ⊧3 ϕ) = ff

((M, s) ⊧3
¬ϕ) = ff iff ((M, s) ⊧3 ϕ) = tt

((M, s) ⊧3 ϕ ∧ϕ′) = tt iff ((M, s) ⊧3 ϕ) = tt and ((M, s) ⊧3 ϕ′) = tt

((M, s) ⊧3 ϕ ∧ϕ′) = ff iff ((M, s) ⊧3 ϕ) = ff or ((M, s) ⊧3 ϕ′) = ff

((M, s) ⊧3
⟨⟨A⟩⟩Xϕ) = tt iff for some σmust

A , for all λ ∈ out(s, σmust
A ), ((M, λ[1]) ⊧3 ϕ) = tt

((M, s) ⊧3
⟨⟨A⟩⟩Xϕ) = ff iff for every σmay

A
, for some λ ∈ out(s, σmay

A
), ((M, λ[1]) ⊧3 ϕ) = ff

⋮

In all other cases the value of φ is undefined (uu).
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Three-value Semantics

The three-value semantics is a conservative extension of the standard two-value semantics:

Proposition

In every standard IS M, for every state s ∈ S and ATL formula φ,

((M, s) ⊧3 φ) = tt iff (M, s) ⊧ φ
((M, s) ⊧3 φ) = ff iff (M, s) /⊧ φ

In particular, the truth value ((M, s) ⊧3 φ) is always defined.
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Agent-based Simulations

First, we define simulation on local states.

� hereafter we assume the same actions for simulation and simulator

� no such limitation in the paper

Definition (Local Simulation)

A local simulation for agent i is a relation Σi ⊆ Li × L′i such that Σi(l1, l ′1) implies

1 Pmust
i (l1) ⊆ P ′must

i (l ′1)
2 P ′may

i (l ′1) ⊆ Pmay
i (l1)

Moreover,

3 for all l2 ∈ Li , if tmust
i (l1, a, l2) then for some l ′2 ∈ L′i , t′must

i (l ′1, a, l ′2) and Σi(l2, l ′2)
4 for all l ′2 ∈ L′i , if t′may

i (l ′1, a, l ′2) then for some l2 ∈ Li , tmay
i (l1, a, l2) and Σi(l2, l ′2)

Intuition: If l ⪯ l ′ then

� l ′ ‘simulates’ must-transitions from l

� l ‘simulates’ may -transitions from l ′
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Agent-based Simulations

Second, we define simulation on agents.

Definition (Agent Simulation)

The primed agent i ′ must-simulates agent i ∈ Ag , or i ⪯must i ′, iff

� for every l ∈ L, l ⪯ l ′ for some l ′ ∈ L′.

Agent i ′ may-simulates i , or i ⪯may i ′, iff

� for every l ∈ L, l ′ ⪯ l for some l ′ ∈ L′.

Intuition: agent i ′ must-simulates agent i iff

� i ′ has ‘more’ must-transitions than i
� i ′ has ‘less’ may -transitions than i .

Symmetrically for may -simulations.

Given a set A ⊆ Ag of agents, Ag ′A = {i ′ ∣ i ⪯must i ′, i ∈ A} ∪ {j ′ ∣ j ⪯may j ′, j ∈ A}

Definition (State Simulation)

A global state s′ defined on Ag ′A simulates s on Ag , or s ⪯A s′, iff

1 for every i ∈ A, si ⪯ s′i

2 for every i ∈ A, s′i ⪯ si
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Agent-based Simulations

Finally, we define simulation on IS.

Definition (IS Simulation)

Given a set A ⊆ Ag of agents, an IS M′ A-simulates an IS M, or M ⪯A M′ , iff

1 Ag ′A is the set of simulations for agents in Ag

2 for every s ∈ I , s ⪯A s′ for some s′ ∈ I ′

3 for every s ∈ S, s′ ∈ S′, if s ⪯A s′ and Π′(s′,p) = t, for t ∈ {tt,ff}, then Π(s,p) = t.

Theorem (Preservation Result)

If M ⪯A M′, s ⪯A s′ and τ ∈ {tt,ff}, then for every A-formula φ,

((M′, s′) ⊧3 φ) = τ implies ((M, s) ⊧3 φ) = τ
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Agent-based Abstractions

We can introduce suitable abstractions for local states, agents, and IS:

� local states are partitioned in equivalence classes

� ∃∃-transitions as may -transitions

� ∀∃-transitions as must-transitions

Theorem

The abstraction MA A-simulates the IS M.

Corollary

If MA is the abstraction of IS M, s ∈ s′, and τ ∈ {tt,ff}, then for every A-formula φ,

((MAbs , s′) ⊧3 φ) = τ implies ((M, s) ⊧3 φ) = τ

In the paper we discuss an instance of the Train-Gate-Controller scenario with counters.
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Summary of [BL17]

Results:

� Three-value simulations for ATL under imperfect information.

� Three-value abstractions that are similar.

� Both are based on a notion of agent ⇒ allows for modular abstraction

Future Work:

� Counterexample-guided refinement?

� Strategy Logic?

� Tool?
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Questions?
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