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Abstract
Binders in data-structures representing code or proofs can be rep-
resented in a variety of ways, from low-level first-order represen-
tations such as de Bruijn indices to higher-order abstract syntax
(HOAS), with nominal logic somewhere in-between.

HOAS is arguably the cleanest and highest-level representation
but comes with significant problems in expressiveness and effi-
ciency. The Beluga language addresses this expressiveness problem
by providing a powerful pattern matching facility as well as explicit
control over contexts.

This work aims to solve one important efficiency concern by
showing how to compile Beluga down to lower-level primitives.
It does so by compiling Beluga’s binders into an intermediate
first-order representation that abstracts over the eventual low-level
representation, and by adapting ML-style pattern compilation to the
more general case of Beluga’s patterns.

As an important side benefit, our work clarifies the connection
between programming with HOAS in Beluga and programming
with first-order approaches based on names.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Contextual objects, compilation, pattern matching

1. Introduction
A key aspect when implementing compilers, code generators, in-
terpreters, type inference engines, or theorem provers is the repre-
sentation of data structures with names and binders. Historically,
binders in data-structures such as abstract syntax trees have been
represented in a variety of ways, mostly governed by software en-
gineering concerns: is the representation efficient, reasonably sim-
ple to understand, and sufficiently easy to manipulate without in-
troducing bugs by accident. Depending on the particular domain,
different representations were used: e.g., de Bruijn indices when
fast α-equivalence checking is important or unique small integers
when the flexibility of moving code freely is a key concern.

Besides supporting clear and easy to maintain code, the growing
interest in formal methods has added a new concern: how can
we establish and track properties of binders and the code that
manipulates them without obfuscating the development.
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To this end, several systems have been developed with spe-
cialized support for binders, either via libraries or as first-class
notions, to try and encapsulate as much as possible the common
functionality of binders and prove their properties ideally once and
for all, or at least more easily. Currently, there are two main the-
oretical approaches: supporting nominals, that is names as first-
class notions, in the language ([Pitts 2003], [Pouillard and Pottier
2010]) and Higher-Order Abstract Syntax (HOAS) [Pfenning and
Elliott 1988], which represents binders in the object level by re-
using binders of the meta-language, implemented by systems like
Twelf [Pfenning and Schürmann 1999], Delphin[Poswolsky and
Schürmann 2009], and Beluga [Pientka and Dunfield 2010].

Over the past decade, we have made substantial progress in us-
ing sophisticated binder support and manipulating HOAS represen-
tations to effectively model proofs. However, in programming lan-
guages such support for binders is at best spotty. In the case of lan-
guages and libraries, techniques such as FreshML [Shinwell et al.
2003], folds or catamorphisms [Washburn and Weirich 2008], and
Hobbits [Westbrook et al. 2011] all address the problem, but they
either lack the formal guarantees, are complicated and inconvenient
to use, or do not scale to dependent types.

Beluga [Pientka 2008; Pientka and Dunfield 2010] is a novel
language specifically designed to manipulate data-structures with
binders, providing all the usual operations we know and love, such
as seamless α-renaming and capture-avoiding substitution, cleanly
integrating them with dependent types. It starts with the logical
framework LF [Harper et al. 1993] which allows for HOAS rep-
resentations and from where it gets its high-level and clean seman-
tics. LF objects together with their surrounding context in which
they are meaningful are then embedded into computations thereby
lifting the usual limitations of HOAS which typically prevent us
from accessing and comparing variables. We call LF objects with
their surrounding context contextual objects [Nanevski et al. 2008].
On the level of computations, Beluga provides recursion and a pow-
erful pattern matching construct to analyze contextual objects. This
makes it feasible to elegantly write code transformations such as
for example closure conversion and hoisting.

While the theory behind Beluga is well developed, it remains
unclear how to implement it efficiently and make its technology
available in a realistic programming language. The current Beluga
implementation uses an interpreter that largely follows the theoret-
ical presentation. This allows us to explore the power of the lan-
guage in small scale examples. In order to make it into a practical
programming language however, it is important to be able to com-
pile it into efficient code. Efficiency of the compiled code depends
mostly on two different aspects:

• How to represent binders and contexts: Experience in compilers
indicates that the best representation to use can depend on
the particular binders. For example, SML/NJ’s [Shao 1997]
internal representation uses names for variables bound in the
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computation code, but de Bruijn indices for variables bound
within types.
• How to implement pattern matching: Beluga’s patterns are pow-

erful, and we use a specialization of higher-order pattern unifi-
cation [Abel and Pientka 2011; Dowek et al. 1996], a decid-
able fragment of higher-order unification, for pattern matching.
But of course, we do not want to compile Beluga’s case to a
sequence of calls to a generic higher-order pattern unification
function.

In this paper, we describe how to compile contextual objects and
contexts. The compilation is split into 3 parts:

1. We give a translation of code into an internal first-order rep-
resentation that we call Fresh-Style , inspired by [Pouillard
and Pottier 2010]. The Fresh-Style representation abstracts over
the actual final representation and provides an abstract inter-
face from which we can derive a concrete representation us-
ing names or de Bruijn indices. This constitutes our intermedi-
ate representation. Our translation between contextual objects
and their corresponding Fresh-Style representation connects for
the first time formally the gap between programming using the
nominal approach and programming using contextual objects.

2. We describe pattern-matching compilation that turns the case
statements in Beluga programs into a decision tree as is usu-
ally done with ML patterns. In particular, we extend ML-style
pattern matching compilation to the more general case of Bel-
uga’s patterns, that can match on contexts, open terms, and λ-
abstractions.

3. We show how to instantiate the abstract Fresh-Style represen-
tation to obtain a concrete representation of the binders using
names and de Bruijn indices.

Our compiler framework is implemented in OCaml. The internal
representation of the program in the prototype makes it easy to
target a generic simply typed functional language. At this point,
the prototype generates JavaScript code.

2. Overview
Beluga [Pientka 2008; Pientka and Dunfield 2010] is a dependently-
typed programming and proof environment which consists of two
levels: 1) We can specify formal systems such as intrinsically typed
lambda-terms, type systems, or operational semantics in the logical
framework LF [Harper et al. 1993]. This allows us to exploit the
function space of LF (i.e. the meta-language) to model bindings
in our object language and our object language encodings can be
described using higher-order abstract syntax representations. As
a consequence, the user inherits from LF (i.e. the meta-language)
substitution and α-renaming. 2) On top of the logical framework
LF, Beluga provides a dependently typed computational language
which supports recursion and pattern matching. An LF objectM of
type A can be embedded into the computation language by pack-
aging M with the context Ψ in which it is meaningful, to describe
a contextual LF object [Ψ̂.M ] of type A[Ψ] [Nanevski et al. 2008]
where Ψ̂ can be obtained by dropping the type declarations in the
typing context Ψ. To put it differently, Ψ̂ describes the free vari-
ables occurring in M . What distinguishes Beluga’s computation
language from other functional languages is its supports for an-
alyzing and manipulating contexts and contextual objects using
pattern matching. The question we investigate in this paper is how
to compile contexts and contextual objects. This is a key step in
bringing the power of HOAS representation techniques to the ordi-
nary programmer.

In our compiler, we use a technique derived from Pouillard and
Pottier [2010] for the internal representation which we call the

Fresh-Style representation. In this approach, we consider abstract
names that inhabit worlds related by links. We interpret worlds as
introducing scope and links as binders while keeping the notion
of name abstract. This provides us with a common intermediate
language to generate in the target language, binders with de Bruijn
indices and names.

2.1 Example and challenges
Beluga is well adapted to reasoning about the meta-theory of pro-
gramming languages. An inductive proof such as subject reduction
corresponds to a recursive program about typing and evaluation
derivations. More generally, Beluga is suitable for programs that
manipulate data-structures with binders. Problems which require
dealing with binders not only arise when we are modelling typ-
ing derivations and the reasoning about them, but already come up
when we are implementing interpreters, type checkers, code gener-
ators, compilers, or decision procedures.

To illustrate the power of Beluga, we discuss translating intrinsi-
cally typed lambda-terms into typed de Bruijn representations. We
begin by defining a type tp which has two constants: the type for
individuals, i : tp, and function types arr: tp →tp →tp. Next,
we define intrinsically typed lambda-terms by defining a type fam-
ily exp which is indexed by tp:

datatype exp : tp → type =
| app : exp (arr A B) → exp A → exp B
| lam : (exp A → exp B) → exp (arr A B);

We represent the variable binding in the lambda-expression using
the LF function (exp A→exp B). For a thorough introduction to
representing formal systems in LF we refer the reader to Pfenning
[2000]. The definition for de Bruijn terms is straightforward.

datatype db : tp → type =
| one : db A
| shift: db A → db A
| lam’ : db B → db (arr A B)
| app’ : db (arr A B) → db A → db B;

While we do not enforce that all de Bruijn terms are well-typed, our
definition is sufficiently strong to allow us to establish that the pro-
gram hoas2db which translates a given object into its corresponding
object preserves types. As we traverse an expression and translate
the body of a lambda-expression, the object we are translating is
not closed anymore. We hence translate an object of contextual
type [g.exp T] where g is a context to a closed de Bruijn object
[.dB T] of the same type. We use . to separate the context from
the object. hoas2db hence has type (g:ctx)[g.exp T]→[.db T].
Implicit context quantification over the context g is modelled via
(g:ctx) in our concrete syntax. Beluga overloads →: if → occurs
in the type of a computation, then it denotes a function which can
be defined via recursion and pattern matching. If it occurs in the LF
type, it is a weak function space which purely models bindings.

Just as types classify terms, contexts are classified by schemas.
In the example the schema ctx which is associated with the context
g is declared as follows:

schema ctx = exp S;

It says that all declarations in a context of schema ctx must contain
declarations exp S for some S. For example, x:exp i,y:exp (arr

i i) is a valid context of schema ctx, but a:tp,x:exp i would not
be a valid context of schema ctx.

The program hoas2db is written recursively by pattern matching
on contextual object e of type [g. exp T], i.e. e is an object of type
exp T in the context g. There are several cases to consider: it could
be an application, a lambda-expression or it could be a variable.
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rec hoas2db : (g:ctx) [g. exp T] → [. db T] =
fn e ⇒ case e of
| [g, x:exp T . x] ⇒ [. one]
| [g, x:exp T . #p ..] ⇒

let [. F] = hoas2db [g. #p ..] in
[. shift F]

| [g. lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp _. E .. x] in

[. lam’ F]
| [g. app (E1 .. ) (E2 .. )] ⇒

let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in

[. app’ F1 F2];

If e is [g. app (E1 ..)(E2 ..)], then we recursively translate
[g. E1 ..] and [g.E2 ..]. Since E1 describes an object which
may contain variables from the context g, we associate E1 with
the identity substitution written as ... We call E1 and E2 meta-
variables. They can be instantiated with an expression containing
variables from g.

If e is [g, lam λx. E .. x], we recursively translate the body
[g, x:exp _ . E .. x] where we extend the context with a new
declaration x:exp _. We write here an underscore for the type of
x, since we do not have access to its concrete type, and let type
reconstruction infer it.

Finally, we consider the case where e is a variable. Its corre-
sponding de Bruijn index is determined by its position in the con-
text g. Hence, we pattern patch on g and e simultanously. If e de-
notes the first variable in the context (i.e. [g,x:exp T. x]) then we
return the de Bruijn index [. one]. If e denotes another variable
from the context g (i.e. [g,x: exp T. #p ..]) then we recursively
translate [g.#p ..] and shift its result. #p describes a parameter
variable which can only be instantiated with a variable from g.

The following table summarizes the different kinds of patterns.

Matching on Pattern Matches
g An arbitrary context.

The shape of
contexts g,x:exp T

A context with at least one vari-
able in it.

(i.e. nothing) The empty context as in [.F].

Constructors app
lam

Variables in
the context x

The variable of that name in the
context pattern g, x:exp T.

Parameter
variables #p..

Any variable from the context g.
The .. means it can depend only
on variables from g.

Meta-
variables E..x

Any term that depends on the con-
text variable plus the variable x.

λ-patterns λx. A term that begins with an ab-
straction.

To summarize the key aspect of Beluga: we can pattern match
on contexts and contextual objects, i.e. objects which are mean-
ingful within a context. In general, pattern matching may require
higher-order pattern matching.

2.2 Compiler Pipeline
The compiler is structured in the usual pipeline of transformation
phases. The part of the pipeline relevant here is as follows:

Front end Dependency
erasure

Fresh-
Style

Pattern
matching

...

de Bruijn
indices

Names

The front end consists of the parser, the type reconstruction and
type checking, and the coverage checker. The output is a fully
annotated program [Cave and Pientka 2012].

For a language like Beluga, type-checking and reconstruction
are important tasks, so much indeed that many programs are not

executed but just type-checked. This is often the case when Bel-
uga is used as a proof assistant. Nonetheless, many case studies in
Beluga are interpreters, compilers, code generators and optimizers,
and decision procedures. Such programs are where execution mat-
ters and in consequence are the focus of the compiler.

When we translate Beluga programs to their Fresh-Style repre-
sentation, we also erase type dependencies at the same time. Eras-
ing dependencies simplifies the type annotations by replacing the
dependent types with a simple typing discipline. Since the pro-
gram has already been fully type-checked, we could completely
drop types. However, we decided to keep simple types, to be able
to type check our translated code and detect compiler bugs early
on. The choice of dropping the dependent types at this particular
stage is largely arbitrary, since we could probably do it later, but
likely no later than closure conversion.

The Fresh-Style conversion turns the bound variables in con-
textual LF objects into a first-order representation that abstracts
over the particular concrete representation of those variables. We
call this representation the Fresh-Style representation to relate it
with Pouillard and Pottier [2010]. This representation is sufficiently
high-level to allow various concrete representations, yet it is suffi-
ciently low-level that we can express the decomposition of Bel-
uga’s higher-order pattern matching into a decision tree, as done in
the next phase. The ellipsis in the above picture represents various
classical optimization phases which can then be applied to clean up
and simplify the code, although our prototype does not yet include
any of those phases.

The treatment of binders ends finally with the last depicted
phase which makes the variable representation concrete. We cur-
rently have implemented two concrete representations, one which
uses de Bruijn indices for bound variables, and another that uses
simple names for them.

3. Beluga’s Theory
Beluga is a dependently-typed functional language which supports
contexts and contextual objects as basic objects. It is designed to
be parametric in the base domain. As Beluga’s computation lan-
guage is similar to functional languages such as ML and poses no
particular challenges to compilation, we concentrate on compiling
contexts and contextual LF objects.

3.1 Contextual LF
Contextual LF extends the logical framework LF [Harper et al.
1993] with the power of contextual objects Ψ̂.M of type A[Ψ]. M
denotes an object which may refer to the bound variables listed in
Ψ̂ and has typeA in the context Ψ (see also [Nanevski et al. 2008]).
As usual, we assume that type constants a and term constants c are
specified together with their kinds and types in a signature Σ.

Atomic types P ::= a ~M
Types A,B ::= P | ΠA.B
Heads H ::= x | c | p[σ]
Neutral Terms R ::= H | RN | u[σ]
Normal Terms M,N ::= R | λ.M
Context Shifts c ::= 0 | ψ | −ψ
Substitutions σ ::= ↑c,k| σ,M | σ;H
Contexts Ψ ::= · | ψ | Ψ, A

We consider here a variant where we model bound variables via
de Bruijn indices and explicit substitutions [Abadi et al. 1990]. We
concentrate on normal forms in β-η-long form since these are the
only meaningful objects in the logical framework. Furthermore, we
concentrate here on characterizing well-typed terms(Figure 1), but
omit kinds and kinding rules for types.
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Normal objects may contain ordinary bound variables which
are used to represent object-level binders and are bound by λ-
abstraction or in a context Ψ. Such bound variables are modelled
via de Bruijn indices and hence we omit their name in the λ-
abstraction. Normal objects may also contain meta-variables u[σ]
and parameter variables p[σ] which we call contextual variables.
Contextual variables are associated with a postponed substitution
σ. The meta-variable u stands for a contextual object Ψ̂.R where
Ψ̂ describes the ordinary bound variables which may occur in R.
When concentrating on a de Bruijn representation, Ψ̂ can be simply
modelled by a context variable together with a number k which
denotes the upper bound to the indices occurring in R. To put
it differently, k describes the number of concrete declarations in
the context Ψ. Without loss of generality we require that meta-
variables have base type. The parameter variable p stands for a
contextual object Ψ̂.R where R must be either an ordinary bound
variable from Ψ̂ or another parameter variable.

As is common, we rely on hereditary substitutions, written as
[N/x]A(B) (or [σ]Ψ(B)) to guarantee that when we substitute a
term N which has type A for the variable x in the type B, we
obtain a type B′ which is in normal form. Hereditary substitutions
continue to substitute, if a redex is created; for example, when
replacing naively x by λy.c y in the object x z, we would obtain
(λy.c y) z which is not in normal form and hence not a valid term
in our grammar. Hereditary substitutions continue to substitute z
for y in c y to obtain c z as a final result [Nanevski et al. 2008].

In the simultaneous substitutions σ, we do not make its domain
explicit. Rather we think of a substitution together with its domain
Ψ and the i-th element in σ corresponds to the i-th declaration in
Ψ. We have two different ways of building a substitution: either by
using a normal term M or a variable x. Note that a variable x is
only a normal term M if it is of base type. However, as we push
a substitution σ through a λ-abstraction λ.M , we need to extend
σ with x whose index is 1. The resulting substitution σ, x may
not be well-typed, since x may not be of base type and in fact
we do not know its type. Hence, we allow substitutions not only
to be extended with normal terms M but also with variables x.
The presence of context variables, gives rise to a shift (denoted by
↑) which is annotated with two superscripts:a number k denoting
by how many concrete declarations the result needs to be shifted
and by flag c denoting the shift by a context ψ. We summarize the
different variations needed below.

Range Substitution Domain
x1:A1, . . . , xn:An ↑0,n ·

ψ, x1:A1, . . . , xn:An ↑0,n ψ

ψ, x1:A1, . . . , xn:An ↑ψ,n ·
x1:A1, . . . , xn:An ↑−ψ,n ψ

A bound variable context Ψ contains bound variable declarations in
addition to context variables. A context may only contain at most
one context variable and it must occur at the left.

3.2 Meta-terms and Meta-types
We lift contextual LF objects to meta-types and meta-objects to
treat meta-objects uniformly. Meta-objects are either contextual ob-
jects written as Ψ̂.R or contexts Ψ. These are the index objects
which can be used to index computation-level types. There are three
different meta-types: P [Ψ] denotes the type of a meta-variable u
and stands for a general contextual object Ψ̂.R. #A[Ψ] denotes the
type of a parameter variable p and it stands for a variable object, i.e.
either Ψ̂.x or Ψ̂.p[π] where π is a variable substitution. A variable
substitution π is a special case for general substitutions σ; however
unlike p[σ] which can produce a general LF object, p[π] guarantees
we are producing a variable. G describes the schema (i.e. type) of

Neutral Terms ∆; Ψ ` R⇒ A

Σ(c) = A

∆; Ψ ` c⇒ A

∆(p) = #A[Φ] ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` p[σ]⇒ [σ]ΦA

Ψ(x) = A

∆; Ψ ` x⇒ A

∆(u) = P [Φ] ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` u[σ]⇒ [σ]ΦP

∆; Ψ ` R⇒ ΠA.B ∆; Ψ `M ⇐ A

∆; Ψ ` RM ⇒ [M/x]AB

Normal Terms ∆; Ψ `M ⇐ A

∆; Ψ ` R⇒ P ∆; Ψ ` P = Q

∆; Ψ ` R⇐ Q

∆; Ψ, A `M ⇐ B

∆; Ψ ` λ.M ⇐ ΠA.B

Substitutions ∆; Ψ ` σ ⇐ Ψ′

∆; · `↑0,0⇐ · ∆;ψ `↑ψ,0⇐ · ∆; · `↑−ψ,0⇐ ψ

∆; Ψ `↑c,k⇐ ·
∆; Ψ, A `↑c,k+1⇐ ·

∆; Ψ `↑c,k⇐ ψ

∆; Ψ, A `↑c,k+1⇐ ψ

∆; Ψ ` σ ⇐ Ψ′ ∆; Ψ `M ⇐ [σ]Ψ′A

∆; Ψ ` σ,M ⇐ Ψ′, A

∆; Ψ ` σ ⇐ Ψ′ ∆; Ψ ` H ⇒ B ∆; Ψ ` [σ]Ψ′A = B

∆; Ψ ` σ;H ⇐ Ψ′, A

Figure 1. Typing Rules for Contextual LF

a context. The tag # on the type of parameter variables is a simple
syntactic device to distinguish between the type of meta-variables
and parameter variables. The meta-context in which an LF object
appears uniquely determines ifX denotes a meta-variable, parame-
ter variable or context variable. We use the following convention: if
X denotes a meta-variable we usually write u or v; for a parameter-
variable, we write p and for context variables we use ψ.

Context schemas G ::= ∃
−−−→
(x :A).B | G+ ∃

−−−→
(x :A).B

Meta Terms C ::= Ψ̂.R | Ψ
Meta Types U ::= P [Ψ] | #A[Ψ] | G
Meta substitutions θ ::= · | θ, C
Meta-context ∆ ::= · | ∆, X :U

Context schemas consist of different schema elements ∃
−−−→
(x:A).B

which are built using +. Intuitively, this means a concrete declara-
tion in a context must be an instance of one of the elements spec-
ified in the schema. For example, a context x:exp nat, y:exp bool
will check against the schema ∃T :tp.exp T .

The uniform treatment of meta-terms, called C, and meta-
types, called U , allows us to give a compact definition of meta-
substitutions θ and meta-contexts ∆. This achieves a modular de-
sign of the computation language. We omit here the rules stating
when meta-types and meta-contexts are well-formed and show only
the typing rules for meta-terms and meta-substitutions in Figure 2.

3.3 Computation Language
We present in this section a dependently typed programming lan-
guage Beluga along the lines of Mini-ML. Our language of compu-
tations includes recursion (written as rec f.E), nameless functions
(written as fn x.E) and dependent functions (written as λX.E).
We have two different kinds of function applications, one for ap-
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Meta Terms ∆ ` C ⇐ U
∆ ` · ⇐ G

∆(ψ) = G

∆ ` ψ ⇐ G
∆ ` Ψ⇐ G

∃
−−−−−→
(x : B′).B ∈ G ∆; Ψ ` σ ⇐

−−−−→
(x:B′) A = [σ]−−−−→

(x:B′)
B

∆ ` Ψ, x:A⇐ G

∆; Ψ ` σ ⇐ Φ

∆ ` Ψ̂.σ ⇐ Φ[Ψ]

∆; Ψ ` R⇐ P

∆ ` Ψ̂.R⇐ P [Ψ]

Ψ(x) = A

∆ ` Ψ̂.x⇐ #A[Ψ]

∆(p) = #A[Φ] ∆; Ψ ` π ⇐ Φ [π]Φ(A) = B

∆ ` Ψ̂.p[π]⇐ #B[Ψ]

Meta-Substitutions ∆ ` θ ⇐ ∆′

∆ ` · ⇐ ·
∆ ` θ ⇐ ∆′ ∆ ` C ⇐ [[θ]]∆′(U)

∆ ` θ, C/X ⇐ ∆′, X:U

Figure 2. Typing for meta-terms

plying computation-level functions to an expression and the other
to apply a dependent function to a meta-object C.

The type index objects are drawn from the domain of meta-
objects presented in the previous section, but we emphasize that
this language is parametric over the index domain, requiring only
decidable equality to be able to compare two types.

The type language supports function types (written as T1 →
T2), dependent function types (written as ΠX:U.T ), and meta-
types U . We only allow dependencies on meta-terms not on arbi-
trary computation-level expressions.

Our language is split into expressions for which we synthesize
types and expressions which are checked against a type. This min-
imizes the necessary type annotations and provides a syntax di-
rected recipe for a type checker. Intuitively, the expressions which
introduce a type are expressions which are checked and expressions
which eliminate a type are in the synthesis category.

Types T ::= U | T1 → T2 | ΠX:U.T

Expressions (synth.) I ::= y | I E | I C | (E :T )
Expressions (checked) E ::= I | C | fn y.E | λX.E |

rec f.E | case I of ~B
Branch B ::= Π∆.C :θ 7→ E

Branches ~B ::= · | (B | ~B)

Contexts Γ ::= · | Γ, y:T

We note that we can directly refer to meta-types and embed them
in our computation-level types. Hence meta-objects can be directly
analyzed and manipulated by our computation language.

Branches are modelled by Π∆.C : θ 7→ E where ∆ describes
the meta-variables occurring in the pattern which are often left
implicit in the surface language. The refinement substitution θ
describes how the type of the scrutinee is instantiated so the given
branch is applicable.

Next, we summarize the bi-directional typing rules for computa-
tions in Figure 3. We distinguish between typing of expressions and
branches. In the typing judgment, we will distinguish between the
context ∆ for contextual variables from our index domain and the
context Γ which includes declarations of computation-level vari-
ables. Contextual variables will be introduced via λX.E. The con-
textual variables in ∆ are also introduced in the branch of a case-
expression. Computation-level variables in Γ are introduced by re-

∆; Γ ` I ⇒ T Expression I synthesizes type T

y:T ∈ Γ

∆; Γ ` y ⇒ T

∆; Γ ` I ⇒ T2 → T ∆; Γ ` E ⇐ T2

∆; Γ ` I E ⇒ T

∆; Γ ` I ⇒ ΠX:U.T ∆ ` C ⇐ U

∆; Γ ` I C ⇒ [[C/X]]T

∆; Γ ` E ⇐ T

∆; Γ ` (E : T )⇒ T

∆; Γ ` E ⇐ T Expression E checks against type T

∆; Γ, f : T ` E ⇐ T

∆; Γ ` rec f.E ⇐ T

∆; Γ ` I ⇒ T T = T ′

∆; Γ ` I ⇐ T ′

∆; Γ, y:T1 ` E ⇐ T2

∆; Γ ` fn y.E ⇐ T1 → T2

∆, X:U ; Γ ` E ⇐ T

∆; Γ ` λX.E ⇐ ΠX:U.T

∆ ` C ⇐ U
∆; Γ ` C ⇐ U

∆; Γ ` I ⇒ S for all i ∆; Γ ` Bi ⇐ S → T

∆; Γ ` case I of ~B ⇐ T

∆; Γ ` B ⇐ S → T Branch B with pattern of S checks against T

∆i ` θi ⇐ ∆ ∆i ` C ⇐ [[θi]]U ∆i; [[θi]]Γ ` E ⇐ [[θi]]T

∆; Γ ` Π∆i. C : θi 7→ E ⇐ U → T

Figure 3. Typing for computations

cursion or functions. We use the following judgments:

∆; Γ`E⇐T Expression E checks against type T
∆; Γ`I ⇒T Expression I synthesizes type T
∆; Γ`B⇐S → T BranchB with pattern of type S checks

against T

We will tacitly rename bound variables, and maintain that con-
texts declare no variable more than once. Moreover, we require
the usual conditions on bound variables. For example in the rule
for λ-abstraction the contextual variable X must be new and can-
not already occur in the context ∆. This can be always achieved
via α-renaming. Similarly, in the rule for recursion and function
abstraction, the variable x must be new.

4. Translation to Fresh-Style
In this section, we describe how to translate Beluga expressions
into their corresponding simply typed Fresh-Style representation.
The key challenge is to represent contextual objects and contexts.
We begin with a review of the “Fresh-Look ” approach by Pouillard
and Pottier [2010] upon which our approach is based.

4.1 Fresh Binders
“Fresh-Style ”. The main objective of the Fresh-Look approach is
to be able to represent names in a sound way. We can informally
describe “soundness” of names by the following three informal
slogans:

• “name abstractions cannot be violated”; or: “the representa-
tions of two α-equivalent terms cannot be distinguished”;
• “names do not escape their scope”;
• “names with different scopes cannot be mixed”

It is important to note, that low-level representations offer no in-
trinsic protection from most forms of misuse of binders, such as
binders escaping their scopes or name capture. In contrast, high
level representations like HOAS and Fresh-Look satisfy at least
some of these requirements. In this paper, we translate contextual
LF objects which use HOAS encodings to a generic representation
which uses the Fresh-Look idea. We call this intermediate represen-
tation “Fresh-Style ”. The Fresh-Style representation makes it easy
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to convert to names or de Bruijn indices. Moreover, it allows us to
relate contextual object to Fresh-Look encodings thereby clarifying
the relationship between HOAS and nominal encodings.

The Fresh-Look representation’s central idea is that variables
are represented by names. Names are abstract entities that we can
compare for equality, and each name inhabits a world. Terms and
variables using this technique are indexed by a world to indicate in
which world they are meaningful. The key is that each term cannot
mix in the same scope sub-terms or variables from different worlds.
The last concept we need is the notion of a link. Links relate one
world to another, and each link introduces a name in the destination
world. Our work differs in two important aspects: First we support
an abstract world (in addition to just an empty world) to support
the idea of contextual variables. Second, the Fresh-Look approach
features two kinds of links: hard-links that introduce a new name
in the destination world and soft-links that introduce a name that
may shadow an existing name. In our compiler (i.e., Fresh-Style )
we only use hard-links and drop the idea of soft-links, since this is
enough for our purposes. Links are used to introduce new binders,
by creating a new world which supports all the names from the
bigger scope plus the name introduced by the link. Inner worlds are
bigger because names can be imported from the outer world to the
inner world. Before referring to a name, it must be imported to the
bigger inner world, because we cannot mix names from different
worlds in the same scope. Let us summarize the key concepts:

• Names are the abstract representation of variables. There is an
infinite amount of them, and each name inhabits a world.
• Worlds contain names, and are to be related to other worlds by

a link. In fact, all the worlds are related to an empty world by a
chain of links.
• A link α ↼ β relates two worlds α and β and introduces a new

name β. This is the key concept of the model because a new
bigger world contains one extra name that represents a newly
bound variables.

In its original presentation [Pouillard and Pottier 2010], the Fresh-
Look representation focuses on presenting an implementation in
the dependently-typed language Agda and proving its soundness.
We will focus on using the representation as an intermediate lan-
guage for relating contextual LF to nominal and de Bruijn represen-
tations. A key advantage of using the Fresh-Style representation is
that it allows us to delay the choice of concrete implementation of
binders, but it is also sufficiently low-level to be a good target for
contextual objects and allows us to describe important phases such
as pattern matching compilation and other optimizations generi-
cally, i.e. independent of the concrete representation chosen for
variables.

We implemented the Fresh-Style binders in Ocaml. The main
module shown below uses three abstract types world, name and
link and defines appropriate functions to manipulate them.

val empty : world
val fresh : world → link
val name_of : link → name
val import : link → name → name

val name_to_db : name → int
val name_to_name : name → int option

empty returns a world with no names in it; fresh returns the link
to a bigger world when given a world; name_of returns the name it
introduces to the bigger world when given a link. import allows us
to bring all names from the outer world to the inner world.

The final two functions name_to_db and name_to_name allow us
to extract de Bruijn indices and plain-old names from the abstract
names in the Fresh-Style .

Neutral Terms δ; Ψα ` Rα ⇒ a

Σ(c) = a

δ; Ψα ` c⇒ a

δ; Ψα ` Rα ⇒ a→ b δ; Ψα `Mα ⇐ a

δ; Ψα ` RαMα ⇒ b

Ψα(nα) = a

δ; Ψα ` nα ⇒ a

δ(p) = #a[Φγ ] δ; Ψα `
γ�α
σ ⇐ Φγ

δ; Ψα ` p[
γ�α
σ ]⇒ a

δ(p) = a[Φγ ] δ; Ψα `
γ�α
σ ⇐ Φγ

δ; Ψα ` u[
γ�α
σ ]⇒ a

Normal Terms δ; Ψα `Mα ⇐ a

δ; Ψα ` Rα ⇒ a
δ; Ψα ` Rα ⇐ a

δ; Ψα, α ↼ β:a `Mβ ⇐ b

δ; Ψα ` λα ↼ β.Mβ ⇐ a→ b

Substitutions δ; Ψγ `
α�γ
σ ⇐ Ψ′α

δ; · `↑0,0⇐ · δ;ψ[·] `↑ψ[·],0⇐ · δ; · `↑−ψ[·],0⇐ ψ[·]

δ; Ψβ `↑c,k⇐ ψ[·]

δ; Ψβ , β ↼ α : a `↑c,k+1⇐ ψ[·]

δ; Ψβ `↑c,k⇐ ·
δ; Ψβ , β ↼ α : a `↑c,k+1⇐ ·

δ; Ψ′γ `
β�γ
σ ⇐ Ψβ δ; Ψ′γ `Mγ ⇐ a

δ; Ψ′γ `
β�γ
σ ,Mγ︸ ︷︷ ︸
α�γ
σ

⇐ Ψβ , β ↼ α :a

δ; Ψ′γ `
β�γ
σ ⇐ Ψβ δ; Ψ′γ ` Hγ ⇒ a

δ; Ψ′γ `
β�γ
σ ;Hγ︸ ︷︷ ︸
α�γ
σ

⇐ Ψβ , β ↼ α :a

Figure 4. Typing rules for Fresh-Style contextual LF

4.2 Beluga using the Fresh-Style representation
The compilation process starts with erasing dependencies and
translating a simply typed Beluga program. Since we know that the
original Beluga program type checks, it would be possible to erase
all type information, and not only dependencies, but the compiler
keeps the simple types to allow us to type check each transforma-
tion of the program.

In the intermediate representation we use Fresh-Style variables
for bound variables occurring in contextual objects. The resulting
object is simply typed, i.e. if the original object has type A in the
context Ψ, then the Fresh-Style object has the same type A in the
Fresh-Style context Ψα where Ψα is obtained by translating the
context Ψ. Below is the grammar for Fresh-Style contextual LF.

Types a, b ::= a | a→ b

Heads Hα ::= nα | c | p[α�β
σ ]

Neutral Terms Rα ::= Hα | R αNα | u[
α�β
σ ]

Normal Terms Mα, Nα ::= Rα | λα ↼ β.Mβ

Context Shifts c ::= 0 | ψ[·] | −ψ[·]

Substitutions
α�β
σ ::= ↑c,k| γ�β

σ ,Mβ |
γ�β
σ ;Hβ

Contexts Ψα ::= · | ψα | Ψγ , γ ↼ α:a

The most important aspect of this representation is that terms are
annotated with the world in which they are meaningful. Terms must
be “well-worlded”, i.e. applications must involve terms of the same
world, and abstractions living in world α must include a link from
that world to an inner bigger world (e.g., α ↼ β) and the body of
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Meta Terms δ ` κ⇐ υ

δ; Ψα ` Rα ⇐ p

δ ` Ψ̂α.Rα ⇐ p[Ψα]

Ψα(nα) = a

δ ` Ψ̂α.nα ⇐ #a[Ψα]

δ(p) = #a[Φβ ]
β�α
π is a pattern subst. δ; Ψα `

β�α
π ⇐ Φβ

δ ` Ψ̂α.p[
β�α
π ]⇐ #a[Ψα]

a ∈ g δ ` Ψγ ⇐ g

δ ` Ψγ , γ ↼ α:a⇐ g

δ(ψ) = g

δ ` ψ[·] ⇐ g δ ` · ⇐ g

Figure 5. Typing rules for simple meta terms and types

the abstraction must live in the inner world (e.g., world β). The
typing rules (see Fig. 4) hence not only enforce that the given
objects are well-typed but in addition that they are “well-worlded”.

We again lift fresh-style LF objects to fresh-style meta-types
and meta-objects (see Fig. 5). For the subsequent description, it
is convenient to distinguish between meta types which stand for
contextual LF types, described by w, and context schemas g.

Context schemas g ::= a | a + g

Meta Terms κ ::= Ψ̂α.Rα | Ψα

Cont. LF Types w ::= a[Ψα] | #a[Ψα]
Meta Types υ ::= w | g
Meta substitutions ρ ::= · | ρ, κ
Meta-context δ ::= · | δ,X :υ

As only bound variables in contextual objects use the Fresh-Style
representation, the computational language is not very different
from before, except the language is now simply typed. While we
drop the dependencies on contextual LF objects, we retain the
dependency on contexts. The dependent function space ΠX:U.T

is hence split up into w �→ τ and Πφ[·]:g.τ (see also the translation
given in Sec. 4.3).

Types τ ::= τ1 → τ2 | w
�→ τ | Πφ[·]:g.τ | υ

Expr. (synth.) i ::= y | i e | i κ | (e :τ)
Expr. (checked) e ::= i | κ | fn y.e | λX. e |

rec f.e | case i of ~ζ
Branch ζ ::= Πδ.κ :ρ 7→ e

Branches ~ζ ::= · | (ζ | ~ζ)
Contexts γ ::= · | γ, y:τ

The resulting typing rules for computations (see Fig. 6) are similar
to the original rules for Beluga programs, however the rule for
checking branches needs some explanation. As before, ρi is a
refinement substitution which refines the type indices meta-types.
Since we only deal with simple LF types and we have erased all
indices, it may seem superflous to still keep ρi and even apply it to
the context γ and the simple computation type τ - all of which
are simply typed. The reason this is necessary is that ρ carries
instantiations for context variables - and dependencies on context
variables still persist. By matching on the shape of the context, we
may learn that the given context must be empty for example; this
knowledge must be propagated.

4.3 Translating Beluga to Fresh-Style Binders
As mentioned earlier, our intermediate representation is simply
typed. Thus, we drop type dependencies when translating Beluga
programs to their corresponding Fresh-Style representation. Eras-
ing dependencies is common when compiling dependently typed
programs as it is not clear how to scale existing type-preserving

δ; γ ` i⇒ τ Expression i synthesizes type τ

y:τ ∈ γ
δ; γ ` y ⇒ τ

δ; γ ` i⇒ τ2 → τ δ; γ ` e⇐ τ2

δ; γ ` i e⇒ τ

δ; γ ` e⇐ τ

δ; γ ` (e : τ)⇒ τ

δ; γ ` i⇒ w
�→ τ δ ` κ⇐ q

δ; γ ` i κ⇒ τ

δ; γ ` i⇒ Πφ[·]:g.τ δ ` Ψα ⇐ g

δ; γ ` i Ψα ⇒ [[Ψα/φ[·]]]τ

δ; γ ` e⇐ τ Expression e checks against type τ

δ; γ ` i⇒ τ

δ; γ ` i⇐ τ
δ ` κ⇐ υ
δ; γ ` κ⇐ υ

δ; γ, y:τ1 ` E ⇐ τ2

δ; γ ` fn y.e⇐ τ1 → τ2

δ,X:w; γ ` e⇐ τ

δ; γ ` λX. e⇐ w
�→ τ

δ,X:g; γ ` e⇐ τ

δ; γ ` λX. e⇐ Πφ:g.τ

δ; γ ` i⇒ w for all k, δ; γ ` ζk ⇐ w → τ

δ; γ ` case i of ζ1 | . . . | ζn ⇐ τ

δ; γ, f : τ ` e⇐ τ

δ; γ ` rec f.e⇐ τ

δ; γ ` ζ ⇐ w → τ Branch ζ with pattern of type w
checks against τ

δi ` κ⇐ [[ρi]]δ(w) δi ` ρi ⇐ δ δi; [[ρi]]δ(γ) ` e⇐ [[ρi]]δ(τ)

δ; γ ` Πδi.κ : ρi 7→ e⇐ w → τ

Figure 6. Typing rules for simple Fresh-Style computations

compilation techniques (such as Morrisett et al. [1999], Guillemette
and Monnier [2008], and Monnier and Haguenauer [2010]) to de-
pendent types. Dependency erasure is also commonly used in proof
assistants that extract functional programs from dependently typed
specifications. One salient example is extraction in Coq described
by Letouzey [2003] and Letouzey [2008] and used to implement
CompCert a certified C compiler as described by Leroy [2009].

Translating LF types We begin by translating contextual LF ob-
jects and contextual LF types. The dependency erasure, written as
()−, follows the LF literature [Harper and Pfenning 2005].

Types Erasure (ΠA1. A2)− = (A1)− → (A2)−

(a · S)− = a

Translating LF contexts Translating a context Ψ to its corre-
sponding representation Ψα in Fresh-Style is slightly more compli-
cated, since we need to recursively add links for each declaration
starting from the empty world.

transCtx · = ·
transCtx ψ = ψ[·]
transCtx (Ψ, A) = let Ψ′β = transCtx Ψ in

(Ψ′β , fresh β : (A)−)

Translating LF objects The translation of LF terms to their
Fresh-Style representation is done using two mutual recursive func-
tions, trans and transSub, that respectively translate contextual
LF terms and LF substitutions. We rely on two auxiliary functions:
fresh generates a new world β and a link α ↼ β when given a
world α and function name of(α ↼ β) returns the fresh name
introduced in world β. Furthermore, Ψα(x) retrieves the name of
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the x-th declaration in Ψα.
trans Ψα λ.M = λ(fresh α).

trans (Ψα, fresh α)(M)−

trans Ψα (R N) = (trans Ψα R) (trans Ψα N)
trans Ψα x = name of(Ψα(x))

trans Ψα u[σ] = u[
γ�α
σ1 ] where

transSub Ψα σ = (
γ�α
σ1 , )

trans Ψα p[σ] = p[
γ�α
σ1 ] where

transSub Ψα σ = (
γ�α
σ1 , )

The trans function is straight-forward and the only interesting
detail is how the body of a λ-abstraction is translated inside the
bigger context.

Translating substitutions are a bit more complex because they
move terms between two different worlds related by an arbitrary
long chain of links. Substitutions in the Fresh-Style (e.g.:

α�β
σ ) have

domain world α and range world β. The function transSub takes
the context Φα in the range world and a substitution σ and returns
the context Φβ in the domain world together with the translated
substitution σ′ s.t. Φβ ` σ′ ⇐ Φα.

transSub Ψα ↑0,0 = (↑0,0,Ψα)
transSub Ψα ↑0,k = (↑0,k,Ψδ) where

( ,Ψδ) =
transSub(Ψα, fresh α) ↑0,k−1

transSub ψ[·] ↑ψ,0 = (↑ψ[·],0, ·)

transSub · ↑−ψ,0 = (↑−ψ[·],0, ψ[·])

transSub ψ[·] ↑ψ,k = (↑ψ[·],k,Ψ0) where |Ψ0| = k

transSub · ↑−ψ,k = (↑−ψ[·],k, ψ[·],Ψ0) where
|Ψ0| = k

transSub Ψα (σ,M) = ((
γ�α

σ′ , trans ΨαM),
(Ψ′γ , fresh γ)) where

transSub Ψα σ = (
γ�α

σ′ ,Ψ′γ)

transSub Ψα (σ;H) = ((
γ�α

σ′ , trans ΨαH);
(Ψ′γ , fresh γ)) where

transSub Ψα σ = (
γ�α

σ′ ,Ψ′γ)

To translate a meta-object [Ψ.R] we simply translate each part:
transCtxΨ = Ψα and trans Ψα R = Rα. However, this
translation may lose information. Consider for example the objects
[g, x:exp i. #p ..] and [g, x:exp (arr i i).#p..]. After the
translation, both are mapped to [g, x:exp. #p ..]. This means
while the original program was unambiguous, it is now no longer.
Dependency erasure only works if type indices are irrelevant for
the execution.

We omit the erasure and translation to meta-types and computation-
level types which is a straightforward extension.

5. Pattern matching compilation
During pattern matching compilation we compute splitting trees
recursively [Fessant and Maranget 2001; Maranget 2008]. To sup-
port the rich pattern matching of contextual objects we separate
how the tree is generated at compile-time from what is left to de-
cide at runtime. At compile-time, as with ML-style languages, the
tree is generated by splitting on constructors and matching on vari-
ables. However, when dealing with contextual objects the situation
is more complex. The generation of the tree starts by splitting on the
shapes of the contexts, and then recursively splitting on construc-
tors, meta-variables and bound variables. During run-time terms are
compared to patterns. While for constructors the comparison is triv-
ial (as it is in the ML family of languages), comparing the shape of
the contexts, bound variables and meta-variables is not trivial and

depends on the chosen representation of contextual objects. Our
compilation schema supports using de Bruijn indices and unique
names. A key element of our algorithm is that compilation is per-
formed on contextual values using the Fresh-Style representation
(without committing yet on a concrete representation for contex-
tual objects), and the comparison of terms and patterns is deferred
to the runtime when the internal representation of contextual values
has already been made.

Pattern matching in Beluga can be seen as the regular ML-style
pattern matching extended with support for contextual objects, i.e.
support for matching against the shape of contexts, inside binders,
and against specific variables in the context.

In Beluga, pattern matching is performed by the case expression
of the computational language. case provides a term that is matched
against a list of branches which contain patterns and the branch
bodies. The naive way to compile this is to try to match the input
one pattern at a time until a match is found. This, in general, is
inefficient and better options have been available for a long time.
Many presentations of pattern compilation revolve around the idea
of compiling the patterns into a discrimination tree that can be
executed efficiently. However, depending on the expression and
the exact technique it may produce an exponential blowup of the
size of program. The algorithm for computing the discrimination
tree is also far from trivial, and different choices result in different
performance and memory consumption. For our compiler we derive
our technique from Maranget [2008] who uses a technique using
trees for high-performance and some heuristics to try to minimize
the size of the tree.

5.1 The Target Language for Pattern Matching Compilation
When computing the splitting tree, nested pattern matching is re-
placed by simple non-nested discrimination statements. In our case
we replace case expressions with switch and ctx_switch expres-
sions. These simpler expressions are lower level because they do
not contain recursive patterns.

We assume that the given source program type checks and
is covering (see [Dunfield and Pientka 2009; Schürmann and
Pfenning 2003]). From the patterns in the source program, we build
a splitting tree. We restrict patterns to be at most second-order, i.e.
we do not allow bound variable or parameter variable occurrences
of function type. This simplifies our description.

Expr. Checked e ::= . . . | switch i of ~S

| ctx switch i of ~ζ

Ctx. Switch Branches ~ζ ::= · | (ζ|~ζ)
Ctx. Switch Branch ζ ::= Πδ.JΨ̂α̂K :ρ 7→ e

Switch Branches ~S ::= · | (S|~S)

Switch Branch S ::= Πδ.JΨ̂α.QαK 7→ e

Simple Pattern Qα ::= λα ↼ β.Vβ | c ~Vα | nα |
u[

γ�α
σ ] | p[γ�α

π ]
Pattern Variable Vα ::= u[↑0,0] | p[↑0,0]

Pattern variables in our compiled splitting tree are denoted by Vα;
they are either meta-variables or parameter variables which are
fully applied, i.e. they can depend on every variable in the context.
Since we use explicit substitutions, we associate the identity sub-
stitution (i.e. ↑(0,0)) with a fully applied meta-variable or parame-
ter variable. This ensures that variable dependency checks are only
carried out at the leafs of the splitting tree. Pattern variables, unlike
meta-variables occurring in source level patterns, are not necessar-
ily of atomic type. We disentangle the match of an argument to a
constant and the further refinement that this argument stands for a
lambda-abstraction. For example, matching on lam λx. E .. x is
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Context Switch:

δ; γ ` i⇒ a[Ψα] for all k δ; γ ` ζk ⇐ τ

δ; γ ` ctx switch i of ζ1| . . . |ζn ⇐ τ

Ctx. Switch Branches:

δ′; [[ρ]]γ ` e⇐ [[ρ]]τ

δ; γ ` Πδ′.JΨ̂α̂K :ρ 7→ e⇐ τ

General Switch:

δ; γ ` i⇒ a[Ψα] for all k δ; γ ` Sk ⇐ a[Ψα]→ τ

δ; γ ` switch i of S1| . . . |Sn ⇐ τ

Switch Branches:

δ′; Ψα ` Qα ⇐ a δ, δ′; γ ` e⇐ τ

δ; γ ` Πδ′.JΨ̂α.QαK 7→ e⇐ a[Ψα]→ τ

Figure 7. Typing rules for switch expressions

done in two steps; first we consider the simple pattern lam Vα and
then we consider the simple pattern λα ↼ β.V ′β .

The pattern compilation language augments the computational
language with two new expressions ctx_switch and switch. The
former splits the tree by matching on the shape of the context and
thus its patterns are contexts Ψ̂α̂. These contexts used as patterns,
will often contain contextual variables ψ[·] and the contextual sub-
stitution ρ provides an instantiation for the context variable ψ. On
the other hand, the switch expression splits on all the other pat-
terns. To keep switch low-level it does not support nested patterns.

5.2 Typing rules for the expanded language
The typing rules for the extensions (switch and ctx_switch) are
given in Fig.7. The general switch rule is derived from the rule for
the case expression. We infer the type of the scrutinee and then ver-
ify for each branch that the pattern has the same type as the scru-
tinee and check that the body of the branch has the same overall
type as the case expression. We simply extend δ with the additional
meta-variables described by δ′ occurring in the pattern. Note that
we have no refinement substitution ρ associated to switch branches,
since we are working in the simply typed setting. Intuitively, the
only refinement allowed is the one on context variables; this refine-
ment is taken care of in the context switch rule. When type check-
ing a context switch statement against a type τ , we ensure that the
scrutinee is well-typed and check that each branch has type τ ; for
each branch we verify that the body has type [[ρi]]τ in the context
[[ρi]]γ where ρi is the refinement substitution in the i-th branch.

Our typing rules for simple patterns are special instances of the
typing rules for Fresh-Style LF where all pattern variables are fully
applied, i.e. they are associated with the identity substitution. As a
consequence, all bound variable checks are pushed to the leafs.

5.3 Compiling Beluga’s Patterns
5.3.1 Discriminating the shape of contexts
In Beluga each branch of a case statement starts with a context
we match on. It is possible to specify empty contexts, arbitrary
contexts, contexts with only one variable, contexts with at least one
variable, etc. One particularity of context patterns is that they are
always the first part of a pattern, and that they are not nested, so
when compiling patterns, the splitting tree begins by discriminating
on the contexts and then continues by recursively splitting on the
rest of the pattern. The contextual discrimination is done by adding
a ctx switch expression that groups the branches with patterns that

describe contexts of the same shape. Because there is no nesting
this is done first and only once.

After we split on the shape of contexts, each branch is not nec-
essarily mutually exclusive. For example, in the function hoas2db

from Section 2.1 we distinguish cases based on contexts with at
least one variable(i.e. [g, x:exp T]) and those with an arbitrary
context (i.e. [g]). Hence, ctx switch has two cases: [g,x:exp]

and [g]. When matching against a term [x:exp. lam λy. app y

x], we will first match the context [x:exp] against [g, x:exp].
However, pursuing this branch further will subsequently fail, be-
cause the only patterns with context [g,x:exp] were variable cases.
Since we assume that our patterns in the original program are cov-
ering, we know that we must continue to match [x:exp] against
the second branch of ctx switch where we have [g]. In general,
the ctx_switch expression handles the pattern matching failure and
continues the matching with the next ctx_switch branch.

5.3.2 Matching the terms of contextual objects
For the rest of the patterns the situation is similar to other lan-
guages [Maranget 2008]. The first step is building a clause matrix
with all the patterns and the bodies of the branches in the case ex-
pression.

~Q → E =


Q1,1 · · · Q1,n → e1

Q2,1 · · · Q2,n → e2

...
. . .

...
...

Qm,1 · · · Qm,n → em


We writeQ for the matrix containing patterns and E for the column
containing the bodies of the branches e1, . . . em. Initially ~Q → E
has only one pattern column, but as the splitting proceeds there
could be more than one. We define two decomposition operations
on a matrix using a tag q to facilitate the decomposition where
q ∈ {Const(c1), . . . ,Const(ck),Var(p),Var(u1), . . . ,Var(uk)}:
S(q, ~Q → E) specializes the matrix with respect to q by selecting
only those patterns relevant to q. The new matrix contains only
the rows whose first pattern (Qi,1) is compatible with the tag q.
Furthermore, it splits the first column according to the arity of the
tag q. D( ~Q) is a default matrix. It retains all the rows of ~Q whose
first pattern admits all values that do not match any pattern in the
first column. We then build the tree by branching on each of the
specialized matrices and the default matrix for the rest of the cases.

We define both operations following Maranget [2008]. We
define the compilation scheme CC( ~M, ~Q → E) where ~M are the
LF objects we pattern match on, and ~Q → E is the clause matrix.

1. If the matrix ~Q has no rows pattern matching fails.

CC( ~M, ∅ → E)
def
= fail

2. Otherwise, ~Q is not empty. If ~Q contains more than one col-
umn there is a significant choice to make, because splitting can
proceed in any column, different choices lead to different per-
formance and size of code, for simplicity in this description we
will always split on the first column.

(a) We calculate Σ1 as the set of tags of the first column of ~Q.

(b) We calculate:

Ek
def
= CC((V1, . . . , Vn), S(qk, ~Q → E))

where V1, . . . , Vn are obtained by splitting the term in the
first column according to qk. Intuitively, if qk is Const(c)
and c takes n arguments, then V1, . . . , Vn stand for those
arguments and are generated based on the type of c. We do
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this for all qk ∈ Σ1 and we calculate a default case:

Ed
def
= CC((M2 . . .Mn), D( ~Q → E))

(c) We create a switch expression in the decision tree by as-
sociating with each ci its corresponding action Ei and the
default case with the action Ed.

Pattern matching compilation continues recursively with the re-
maining patterns.

In pattern languages with only constructors and variables, the
specialization operation simply matches same constructors. To sup-
port contextual objects we define an extended specialization opera-
tion in the following way:

• Constructors: group together all the constructors of the same
name.
• Bound variables from the context: group bound variables when

they refer to the same element of the context, independent of
name. They will match when they refer to analogous elements
in the context (sometimes called pronominal variables [Licata
and Harper 2009]).
• Parameter variables: group parameter variables with the same

substitution.This is justified because different substitutions de-
scribe different behavior.
• Meta-variables: this case is similar to parameter variables. We

group meta-variables with the same substitution.
• Lambda patterns: all lambdas in the head of a pattern are equiv-

alent and grouped together in specialization. The name of the
bound variable is irrelevant because comparison of names is
pronominal [Licata and Harper 2009].

In conclusion, the pattern matching compilation contains three el-
ements: 1) the language extension containing the simple patterns
and ctx_switch, switch expressions, 2) the compilation algorithm
with the parameterized specialization and 3) the new type-checking
rules to be able to check the result of the compilation with the ex-
tended language.

5.4 Matching at Runtime
At runtime, there are two relevant matching operations: Context
matching, Ψα

ctx
≈ Φβ , tests whether Φβ is an instance of Ψα. Term

matching, Ψ̂α.Qα
M
≈ Φ̂β .Q

′
β , succeeds if Q′β is an instance of

Qα. We only define sucess and failure of matching operations; the
instantiations for pattern variables is straightforward from the given
rules, but not handled here to not clutter the presentation. We also
note that the context Ψ̂α on the left and the context Φ̂β on the right

hand side of
M
≈ are not syntactically the same. While we will have

matched Φβ against Ψα and this context match must have succeed
prior to calling term matching, the contexts may differ in the names
of the links and worlds employed.

Context Matching:

·
ctx
≈ · ψ[·]

ctx
≈ Ψβ

Ψα1

ctx
≈ Φβ1

Ψα1 , α1 ↼ α2 :a
ctx
≈ Φβ1 , β1 ↼ β2 :a

ctx
≈ is inductively defined on the structure of contexts. A context
variable matches any context. When we match Φβ1 , β1 ↼ β2 :A
against Ψα1 , α1 ↼ α2 :A, there is no requirement that the worlds
and links in each of the contexts are the same.

M
≈ is not inductively defined on the pattern because we are

dealing with simple patterns which do not allow nesting. This
operation compares simple patterns (Qα) to a contextual LF object

and is defined as follows

Term Matching:

Ψ̂α.λα ↼ β.Vβ
M
≈ Φ̂γ .λγ ↼ δ.Mδ

c = c′

Ψ̂α.c ~Vα
M
≈ Φ̂γ .c

′ · ~Mγ

[
α�γ
σ ]−1Mγ

Ψ̂α.u[
α�γ
σ ]

M
≈ Φ̂γ .Mγ

[
α�γ
π ]−1nγ

Ψ̂α.p[
α�γ
π ]

M
≈ Φ̂γ .nγ

name of α ↼ β = nα name of δ ↼ γ = n′γ

Ψ̂′β , β ↼ α.nα
M
≈ Φ̂′δ, δ ↼ γ.n′γ

name of α ↼ β 6= nα name of δ ↼ γ 6= n′γ Ψ̂′β .nβ
M
≈ Φ̂′δ.n

′
δ

Ψ̂′β , β ↼ α.nα
M
≈ Φ̂′δ, δ ↼ γ.n′γ

There are five different cases to consider. A pattern and a term
match when:

• The head of the term and the pattern are the same constructor.
The instantiation we return is V iα = M i

γ , i.e. the i-th variable in
~Vα is instantiated with the i-th term in ~Mγ .

• The head and the pattern are λ-expressions. In this case we
instantiate Vβ with Mδ .
• The pattern is a meta-variable. In this case we ensure that

applying the inverse substitution to the right hand side exists.
Applying the inverse substitution is an operation defined by
Dowek et al. [1996] and Abel and Pientka [2011]. It guarantees
that the right hand side does not contain more free variables
than allowed by the substitution associated with u. In this case,
we instantiate u with [

α�γ
σ ]−1(Mγ).

• The pattern is a parameter variable, the inverse substitution
is defined as in the meta-variable case, to ensure the variable
dependencies imposed by p[

α�γ
π ] are observed. In this case, we

instantiate p with [
α�γ
π ]−1(nγ).

• The pattern and the head of the term are LF variables declared
in the same position in their contexts.

5.5 Names and Indices from Fresh-Style Variables
We use Fresh-Style bound variables because it is easy to generate
the pattern matching tree and then convert to two representations
without having to recalculate the tree. Additionally, many optimiza-
tions can be written using this representation; this fact simplifies
supporting several back-ends each with a different binding strat-
egy, as it minimizes code duplication.

However, for code generation we need to choose at compile-
time a concrete representation of binders, in our case between
plain-old names and de Bruijn indices.

Function name_to_db uses the information stored in the name
abstract type to count how many times it has been imported since
it was extracted from the link that introduced the binder, and this is
exactly what the de Bruijn index representation is.

On the other hand, function name to name simply uses the fact
that each name is introduced by a unique link from the previous
world to the next, so if we have a α ↼ β which introduces a nβ the
functions returns β as the plain old name. In fact, instead of a Greek
letter the system uses a number. Calls to this function may fail for
names that depend on abstract worlds as we need to substitute the
abstract world by a concrete one to be able to figure out the unique
name of this variable. This is the reason why the return type for this
function is an optional type (it fails for abstract worlds and worlds
linked from them).
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5.6 Back-End and Code-Generation
In a nutshell, a Beluga program consists of computational level
functions that manipulate data represented using Contextual LF.
Our system compiles the computational level down to a simple λ-
calculus like language (with general recursion). This language is
a simple functional language without support for nested patterns
in pattern matching, making it very easy to generate code as the
resulting program is a form of the simply-typed λ-calculus.

In Section 5.4, we presented a general matching algorithm for
the Fresh-Style language after pattern matching compilation. How-
ever, using this general algorithm during run-time is not necessarily
efficient. We hence refine the matching algorithm subsequently for
Fresh-Style representation using names and de Bruijn .

5.6.1 Matching with de Bruijn Indices
In the de Bruijn representation, contexts can be represented as a
pair of a context variable and a number describing the number of
concrete declarations. We write (·, k) for a context containing k
declarations and (ψ, k) for a context which starts with a context
variable ψ and is followed by k declarations. We use c to stand
for either a context variable ψ or an empty context. For easier
readability we write Ψ for a context whose concrete representation
is (c, k). The matching operations are then defined as follows:

Context Matching:

(·, k)
ctx
≈ (·, k) (ψ, 0)

ctx
≈ (·, k)

(c, n− 1)
ctx
≈ (·, k − 1)

(c, n)
ctx
≈ (·, k)

Term Matching:

Ψ.λ.V
M
≈ Φ.λ.M

c = c′

Ψ.c ~V
M
≈ Φ.c′ ~M

[σ]−1M

Ψ.u[σ]
M
≈ Φ.M

[σ]−1x

Ψ.p[σ]
M
≈ Φ.x

x = y

Ψ.x
M
≈ Φ.y

Context matching succeeds as long as there are enough vari-
ables in the matched context. It is important to know that this def-
inition is just for clarity and not performance, in a more realistic
implementation only the lengths of the contexts are compared.

5.6.2 Matching with names
In the name representation, we model a context using a list of
concrete names. The matching operations with names are similar
to previous definitions of the function but account for the different
structure of contexts and variable binders.

Context Matching:

·
ctx
≈ · ψ

ctx
≈ φ

ctx
≈ ψ

Ψ
ctx
≈ Φ

Ψ, x
ctx
≈ Φ, y

Term Matching:

Ψ.λ x.V
M
≈ Φ.λ y.M

c
M
≈ c′

Ψ.c ~V
M
≈ Φ.c′ ~M

[σ]−1M

Ψ.u[σ]
M
≈ Φ.M

[σ]−1x

Ψ.p[σ]
M
≈ Φ.x Ψ′, x. x

M
≈ Φ′, y. y

Ψ′. x
M
≈ Φ′. y

Ψ′, x′. x
M
≈ Φ′, y′. y

6. Related Work
Pouillard and Pottier [2010] present a high-level, abstract repre-
sentation for names and contexts and then show how this abstract
interface can simply be instantiate with a choice of various concrete

representations. We reuse a lot of their work but start from an even
higher-level representation.

Urban [2008] presents an Isabelle package that lets the user
write proofs in terms of an abstract notion of names, which are
under the hood represented by plain first order data. Contrary to
our work he does not worry about efficiency and instead focuses
on proving that the lower-level representation actually provides the
expected semantic properties.

Along the same lines, Felty and Momigliano [2012] provide
a package that lets users use HOAS in their specifications and
proofs, and where the properties of those binders are proved by
relating them to some lower-level first-order representation. But
here as well, the focus is on writing proofs rather than programs, so
efficiency of the code manipulated is a secondary concern.

Shinwell et al. [2003]; Washburn and Weirich [2008]; West-
brook et al. [2011] present various ways to provide support for pro-
gramming with data-structures that contain binders within existing
languages making them more practical than our work, but at some
significant costs: they do not provide capture-avoiding substitution
and do not support dependent types, for example. As the interface
and the implementation are tightly integrated, it is more difficult to
change the implementation strategy.

Chlipala [2008] shows a similar, though more light-weight,
effort but within the context of a proof assistant. It can support
dependent types, but the concrete representation of binders cannot
be changed.

7. Conclusion
We have presented a generic framework for compiling contextual
objects which can be instantiated to yield compiled code using
names and code using de Bruijn indices. This opens up the possibil-
ity to choose the best representation depending on how binders are
used. A key aspect of our framework is the pattern matching com-
pilation for contextual objects which allows matching under the λ-
binder. Our framework also provides for the first time a connection
between programming with HOAS as done in Beluga and program-
ming with nominal techniques. We believe our work is the first step
in adding HOAS and contextual objects to existing programming
languages and making this sophisticated technology available to
the ordinary programmer.

In the future, we plan to prove that our compilation scheme is
faithful to the theory, so that the meta-theoretical results developed
for the theoretical foundation of Beluga carry over to the code
generated by our compiler. Furthermore, we plan to explore the
relation between the splitting trees used in pattern matching and
those generated during coverage checking [Dunfield and Pientka
2009; Schürmann and Pfenning 2003].

We also plan to explore alternative compilation schemes such as
targeting a functional language that supports pattern matching (e.g.
OCaml). This can be done by translating contextual objects to lin-
ear higher-order patterns [Pientka and Pfenning 2003] and reusing
the pattern matching algorithm of the target language together with
guards enforcing higher-order constraints. This would decouple the
aspects of compiling patterns with binders and efficiently compil-
ing simple patterns.

Finally, we aim to improve the concrete low-level representa-
tions with the optimizations used in typical hand-implementations,
such as explicit substitutions [Nadathur and Qi 2003] or hash-
consing [Shao et al. 1998]. Many optimizations can also be done
in the Fresh-Style representation, which makes them available to
all the back-ends. Last but not least, we plan to investigate how
to combine and choose various concrete representations, such that
some binders can use one representations while others can use an-
other depending on which operations are most often used on them.
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