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Abstract

Tampering with software by Man-At-The-End (MATE) attackers is an attack that can
lead to security circumvention, privacy violation, reputation damage and revenue loss. In
this model, adversaries are end users who have full control over software as well as its execu-
tion environment. This full control enables them to tamper with programs to their benefit
and to the detriment of software vendors or other end-users. Software integrity protection
research seeks for means to mitigate those attacks. Since the seminal work of Aucsmith,
a great deal of research effort has been devoted to fight MATE attacks, and many protec-
tion schemes were designed by both academia and industry. Advances in trusted hardware,
such as TPM and Intel SGX, have also enabled researchers to utilize such technologies for
additional protection. Despite the introduction of various protection schemes, there is no
comprehensive comparison study that points out advantages and disadvantages of different
schemes. Constraints of different schemes and their applicability in various industrial set-
tings have not been studied. More importantly, except for some partial classifications, to the
best of our knowledge, there is no taxonomy of integrity protection techniques. These limita-
tions have left practitioners in doubt about effectiveness and applicability of such schemes to
their infrastructure. In this work, we propose a taxonomy that captures protection processes
by encompassing system, defense and attack perspectives. Later, we carry out a survey and
map reviewed papers on our taxonomy. Finally, we correlate different dimensions of the
taxonomy and discuss observations along with research gaps in the field.

1 Introduction
A well-known attack in computer security is Man-in-the-Middle (MitM) in which adversaries
intercept network messages and potentially tamper with their content. In this model attackers
only have control over the communication channel and hence utilizing secure communication
protocols can (to a great extend) mitigate the risk.

Beside network attacks, there is another type of attacks that could potentially lead to violation
of safety and security of software systems. Given that end users have full control over the host
on which programs are being executed, they can manifest serious attacks on software systems
by inspecting a program’s execution or tampering with the host’s hardware/software [27]. These
attacks are known as Man-At-The-End (MATE) attackers. As the name suggests, in this model
the attacker resides at the end of line in which communication is secured and firewalls are
bypassed. This is where the protection offered by security protocols for communication ends.
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MATE attackers have direct access on the host on which the program is being executed. In
most cases, there is no limitation whatsoever on what they can control or manipulate on the
host. In effect, a user who installs an application on his or her machine has all controls over
the computation unit. In this setting, perpetrators can inspect programs’ execution flow and
tamper with anything in program binaries or during runtime, which in turn, enable them to
extract confidential data, subvert critical operations and tamper with the input and/or output
data. Cheating in games, defeating license checks, stealing proprietary data (musics and movies),
displaying extra ads in browsers are typical examples of MATE attacks.

Attacker goals and motives While there are different goals that MATE attackers may pur-
sue, we particularly focus on attacks violating software integrity; other attacker goals are out of
our scope.

Reputation, financial gains, sabotage and terrorism are non-exhaustive motivations for at-
tackers to target the integrity of software systems. Disabling a license check is a classical example
of MATE attacks in which perpetrator can potentially affect the revenue of the software vendor,
for instance, by publicly releasing a patch for a popular software. Adversaries may harm the
reputation of a company by manipulating program behavior, for instance, to show inappropriate
ads. Perpetrators may further target the safety and/or security of critical systems. Correspond-
ing consequences of attacks on a nuclear power plant system could be dire. Akhundzada et al.
[3] elaborate on MATE attacker motives in more details.

Local attacks Local attackers normally have the full privilege on the software system as well
as physical access to the hardware. Such attackers can readily tamper with softwares at any stage
(at rest, in-memory and in-execution). Moreover, they could potentially load a malicious kernel
driver to bypass security mechanisms employed by software. For instance, [89, 87] present two
attacks to defeat protection schemes on a modified Linux kernel. Physical access to the host has
the same effect. It enables attackers to tamper with systems’ hardware and/or configurations.
[35] shows that perpetrators can install a malicious hardware to disclose confidential data.

Remote attacks MATE attackers do not necessarily require physical access to the system of
interest. Many harmful attacks can be carried out remotely. This type of attacks is known as
Remote-Man-At-The-End (RMATE) [22]. In this model, attackers need to have either remote
access to the target system or deploy their attacks by tricking end users. For example, Banescu
et al. [8, 10] discuss two RMATE attacks on Google Chromium which are actually carried out
by deployed malicious payloads into the Google Chromium browser. These payloads (in form of
plugins) alter the original behavior of the browser to execute malicious activities, e.g. showing
extra adds or collecting user information.

Intruders are another type of attackers that are very similar to RMATE attackers. Intruders
penetrate software systems normally through their public interfaces (e.g. websites) in order to
find vulnerabilities. A successful exploit may enable them to tamper with the integrity of the
system, e.g. by materializing a buffer overflow or SQL injections. While RMATE attacks have
much in common with intruders the main difference lies in the access privilege that RMATE
attackers posses before and in order to manifest their attacks. Simply put, RMATE attacks
exclude exploiting vulnerabilities and hence starts by a granted access to the host or a program
that it contains. Nevertheless, an intruder (after successfully compromising the security) can
carry out RMATE attacks. Therefore, the borderline between the two is blurry.

Further attack types Another realization of MATE attacks is through repackaged software
[58]. In this attack, perpetrators obtain software bundles (normally popular ones) and modify
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them with malicious codes to create counterfeit versions. Later, these repackaged softwares are
shipped to software hubs to be installed by victims. Since malicious operations are normally
dormant, counterfeit softwares appear to be the same as the original ones to end users. That
is, they can remain on user devices for a period of time and eventually harm their assets, for
instance, by deleting user files after 3 hours of program usage. Nevertheless, attackers first need
to get users to install repackaged softwares. This, however, does not seem to be an obstacle for
attackers: a recent study has shown that 77% of the popular applications available on Google play
store, which is a trusted software repository for Android application, have repackaged versions
[59].

Targeted malware is another form of MATE attacks in which a sophisticated malware is de-
signed to violate the integrity of a particular system. Stuxnet [50] is a malware that manipulated
programmable logic controllers’ code causing severe damage to the Iranian nuclear program. Pro-
jectSauron [51] is another example of targeted malware where governmental sensitive information
were covertly collected and subsequently transmitted to the attacker’s server.

In the light of these threats, researching, developing and deploying protection mechanisms against
MATE attackers is of paramount importance. In particular, the integrity of software demands
protection.

Approaches to protect software integrity Generally, integrity protection refers to mecha-
nisms that protect the logic and/or data of particular software. Integrity protection is a part of
the Software Protection field, which is also known as tamperproofing. Collberg defines tamper-
proofing as “[a way] to ensure that [a program] executes as intended, even in the presence of an
adversary who tries to disrupt, monitor, or change the execution” [26].

At a high level, integrity protection mechanisms are comprised of two main components:
monitor and response. While the former detects inconsistencies by monitoring a system’s
representation, the latter acts upon the detection of such inconsistencies by punishing the attacker
[24]. In case of repackaged software and RMATE attacks, these reactions will be limited to
terminating the process, informing users about violation of integrity or notifying a home server
(phoning home).

Unlike cryptographic protocols, protection schemes against MATE fail to provide hard se-
curity guarantees, e.g., by difficulty of solving a computationally complex problem such as the
discrete logarithm in a secure multiplicative group [73]. In fact, Dedic et al. [29] argue that there
is no tamper resistant method that resists against polynomial time adversaries. This means all
the protection schemes, given enough time and resources, are eventually defeated by attackers.
However, protection schemes can raise the bar against perpetrators by increasing the cost and
effort needed to violate system integrity. The introduced cost and effort is often sufficient to
mitigate RMATE, repackaged software or targeted malwares. However, we are not aware of any
studies that measures the resilience thoroughly.

Tamperproofing is commonly used in combination with obfuscation [27] software protection
technique. Obfuscation aims to reduce the understandability of adversaries by complicating
programs. In contrast to tamperproofing, obfuscation remains unaware of the program modifi-
cations. Moreover, tamperproofing can detect the occurrence of tampering attacks and respond
to such attacks in some way punishing to actors [24].

Advances in hardware security has positively impacted integrity protection research. Trusted
Platform Module (TPM) (https://trustedcomputinggroup.org/) is an approach in which soft-
ware protection meets hardware security [68, 67]. TPM is a tamper-resilient micro-controller
designed to securely carry out sensitive operations, such as secure boot, encryption, attesta-
tion, random number generation, etc. Recently, Intel has also been working on secure hardware
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modules. Their Software Guard Extensions (SGX), introduced in 2015, are finding their way in
academic research [11].

Gap Despite the existence of a multitude protection schemes that mitigate certain attacks on
different system assets, we are not aware of a comprehensive study that compares advantages and
disadvantages of these schemes. No holistic study was done to measure completeness and effec-
tiveness of such schemes. How these schemes operate and what components they are comprised
of not identified nor plotted in context.

Current classifications lack the level of detail required to evaluate and select schemes by
practitioners. We are not aware of any classification beyond what was proposed by Collberg et
al. [24, Chapter 7]. In effect, classifications were done only at an abstract level, i.e. monitor
and response mechanisms. While integrity protection schemes comprise far more components
and impact various parts of the system, they introduce unique constraints which may turn them
completely inapplicable in certain application contexts. These limitations have left practitioners
in doubt about the effectiveness and applicability of such schemes to their infrastructure.

Contribution We propose a taxonomy encompassing system, defense and attack views and
extract relevant criteria in each view. These three views aim at capturing a holistic view of
protection mechanisms. The system view captures the components of interest of the system to
protect. The defense view elaborates on characteristics of defense mechanism. The attack view
draws the attacker model and resilience of the schemes to certain attacks.

We evaluate our taxonomy by mapping over 49 reviewed research papers and discuss their
advantages and disadvantages. We further correlate different dimensions of our taxonomy and
discuss insightful observations with regard to security, resilience, performance, applicability and
usage constraints in practice.

Structure This document is structured as follows. Section 2 presents a motivating data right
management example to introduce further integrity threat samples, which supports the under-
standability of the taxonomy. In Section 3 we propose our taxonomy and define all its elements.
In Section 4 we evaluate the taxonomy by applying it to the reviewed literature. To evaluate ad-
vantages and disadvantages of different schemes in Section 5 we correlate interesting dimensions
of the taxonomy and discuss our findings. In Section 6 we review the related work. Section 7
discusses the future of integrity protection research. Finally, in Section 8 we conclude our study.

2 Motivating Example
In this section, we present a simplified digital rights management (DRM) system as a motivating
example for our taxonomy. DRM enables authors to protect their digital proprietary data while
sharing them with other people. To do so, DRM enforces a set of usage policies at the user end
(client side) that limits what users can actually do with the protected content.

The goal of our sample DRM system is to enable secure lending of proprietary content to
end-users. For the sake of simplicity, we assume that two usage policies are employed in this
system: users can lease a protected media (digital content) a) for a certain period of time or b)
for a particular number of views.

The system as depicted in Figure 1 is comprised of two compartments: a server (which runs
on trusted commodity) and a client (which runs on untrusted commodity and hence is exposed
to MATE attacks). On the server side, three components, viz. license server, data provider
(encryption) and proprietary data, are collaborating to deliver the desired functionality. On
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Figure 1: Architecture of a example DRM system to lend proprietary content.

the client side, three components, viz. license checker, data provider (decryption) and
stream viewer, are handling user requests.

The license server is in charge of generating usage polices according to the purchased
license by the users. It sends usage polices to the client applications. The data provider
and proprietary database work closely together. The data provider retrieves the requested
protected content from the database and encrypts it with client keys.

On the client side, the license checker enforces the policies that are specified by the
license server. That is, the date of expiry and number of views are tracked by the license
checker. As soon as the limit is met, the restriction is applied, for instance, by removing the pro-
tected content. To add more resilience, the data provider avoids to decrypt the file completely,
instead it decrypts it in fragments and gradually feeds them to the stream viewer. In this way,
the entire content is never exposed as a whole on the client side.

The entire system is developed by the Sample DRM company, except for the stream viewer.
As stated in the figure, stream viewer is an external library, for which Sample DRM only has
access to the compiled binaries.

Threats. In this system the protected content is transmitted to the client machines on
which end-users have full control over program execution. This immediately gives rise to MATE
attacks. In Figure 2 we present a set of potential threats from MATE attackers in form of an
attack tree [55].

Starting from the root node, a perpetrator’s goal is to use the protected content without
the restriction which was specified in the usage policy. For this purpose, she has three options:
extract data from the stream viewer, exfiltrate the content or circumvent the license checker.

Extracting protected content from the viewer requires the attacker to dump memory frag-
ments and later reassemble them. She can (among other possible attacks) tamper with the viewer
to perform this malicious activity automatically. Consequently, an attack can manipulate the
viewer to dump and merge decrypted content behind the scene until the entire file is extracted.
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Figure 2: Attack tree capturing potential MATE attacks on the sample DRM system.

Exfilterating the content by decrypting requires the attacker to obtain the clientprivate key
as well as encrypted contents. Since the data provider (decryption) has access to this key, it can
be targeted by reverse engineering attacks to first locate the key and subsequently to extract it.

Circumventing the license checker is yet another way to illegitimately use the protected con-
tent. The license checker is effectively in charge of verifying the usage policies on access requests.
Attackers can manipulate the sensitive data, i.e. the usage variables for number of views and
expiry date. If this is done, then the DRM protection is defeated. Furthermore, they can tamper
with the license checking logic, for instance to accept any license as valid regardless of the actual
validity of the license.

The aforementioned threats are a representative set of MATE threats that requires integrity
protection in applications. Later in Section 4 we will map the elements of our taxonomy to
the aforementioned example and show how our taxonomy serves as a blueprint for integrity
protection practitioners. To avoid wordiness we refer to the aforementioned case study as the
sample DRM in the remainder of this paper.

3 Proposed Taxonomy
Current classifications of integrity protection techniques lack a level of detail that is required
by practitioners to evaluate and select schemes. To the best of our knowledge, the existing
classifications remain at an abstract level, i.e. describing monitor and response mechanisms.
However, integrity protection schemes comprise far more components and impact various parts of
the system. For example, they may introduce unique constraints which make them inapplicable
in certain application contexts. Such limitations have left practitioners in doubt about the
effectiveness and applicability of integrity protection schemes to their infrastructure.

In this section we propose a taxonomy for software integrity protection techniques that pro-
vides a holistic classification and subsequently facilitates the usage of protection schemes in
different contexts. We build the taxonomy on the basis of the protection process that a user
follows when aiming to protect the integrity of a program. This process starts with identifying
system assets and continues with the identification of possible attacks and defense mechanisms.

As a consequence, our taxonomy is comprised of three dimensions: (i) a system view, (ii) an
attack view and (iii) a defense view. The system view describes the system as a whole, as well as
the encapsulated assets, their granularity, and representations in different program life-cycles. It
is the integrity of the assets that ought to be protected. Examples include license checkers and, in
our DRM example scenario, data providers. The attack view captures actions that perpetrators
may carry out to undermine the integrity of aforementioned assets. For example, Figure 2 shows
that tampering with the logic of license checker could harm system assets. Finally, the defense
view encompasses mechanisms to prevent or detect attacks on different representations of the
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assets. For instance, we can utilize logic protection measures to mitigate the risk of tampering
attacks on the license checker. Unlike attacks, defense mechanisms may have implications on the
system life-cycle, since they may alter a system in various ways, e.g. in terms of performance,
integration and incident handling.

In the course of building the taxonomy we noticed strong dependencies between the elements
within and across the three dimensions. Because such relations are widely captured using class
diagrams [45, 14], we make use of UML class diagrams [76] to model and depict such relations.
Concretely, our model uses association, inheritance, aggregation and composition relations with
the same meaning as defined in the UML specification. Association indicates two elements are
related, simply put, one can access an attribute or a method of the other. Aggregation depicts
the part-of relationship between two elements. Inheritance expresses specialization of a particular
element, while composition expresses the set of elements that compose a particular element. In
the following, we first introduce the taxonomy along with a few examples. Then, we discuss
the dependencies between different views. Section 4 will later map related literature onto the
classified attack and defense mechanisms.

3.1 System
The system dimension captures the characteristics of the system to be protected. This dimension
is comprised of asset, lifecycle activity, representation and granularity main classes
along with some more specific subclasses for each class. In the following, we first describe these
main classes, their relation and then elaborate on each of them and their subclasses. Figure 3
presents the system view of the taxonomy.

Asset is the core class of this view as it captures the elements whose integrity need to be
protected against attacks. In our taxonomy, assets include behavior and data the tampering
of which may harm system users or software producers. Tampering with the license checking
behavior and manipulating usage count variables data (number of views and expiry date) in the
sample DRM are examples of behavior and data assets, respectively.

Lifecycle activities capture the different stages that a program undergoes in its lifecycle.
Depending on the stage of a program, assets have different representations. Simply put, assets
are exposed and presented in different representations from program source code all the way to
the program code pages in the main memory. Each of these stages have access to different
representation of the assets, however. That is, particular asset representations are only available
in particular lifecycle activities.

An asset can have various granularities. Granularities correspond to different abstraction
levels, e.g. a license check may correspond to a source code C function along with its set of
statements, or, more fine-grained, a basic block within one function.

1. Integrity assets include valuable data or sensitive behavior(s) of the system, tampering
with which renders the system’s security defeated.

(a) Data refers to any sensitive information that is produced or processed by the appli-
cation. Application input, configuration and database files are examples of such data
assets. For instance, in the sample DRM, usage count variables are data assets.

(b) Behavior is the effect of program execution. Similar to tampering with data, subvert-
ing an application’s behavior (logic) can have obnoxious consequences. For instance,
in the sample DRM, stream viewing decrypted fragments as well as license checking
are behavioral assets.

2. Representation. Assets can have multiple representations, viz. static, in-memory and
in-execution, depending on the program state from start to finish.
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Figure 3: System view dimension of the taxonomy depicting the system main classes as well as
subclasses and their relations.

(a) Static captures assets when they are at rest, i.e. stored on disk. These assets repre-
sentations are accessible via the file system.

(b) In-memory represents assets in memory, i.e. RAM or virtual memory. Process mem-
ory captures this representation which includes code and data invariants of processes.

(c) In-execution captures tangible effects of assets during execution. Trace and hardware
counters are subclasses of the in-execution representation. Meanwhile, trace has a
subclass that comes with timing data, i.e. timed trace.

3. Granularity. Assets have different scales and levels of detail that vary from an instruction
to the entire application. For example, a license check is usually represented as a func-
tion whereas control flow integrity depends on a large set of branching instructions in the
application.

(a) Instruction. A single instruction is evaluated as security critical.

(b) Basic block (BB). A set of consecutive instructions with exactly one entry point
and one exit point.

(c) Slice. A set of consequential instructions scattered in a program, e.g. the branching
instructions that dictate the control flow of a program.

(d) Function. A complete function, e.g. licenceCheck(), is the goal of protection.
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(e) Application. The entire application or library is supposed to be protected, i.e. the
entire program is security critical. For instance, a power plants controller application
is in its entirety sensitive.

4. Lifecycle. The lifecycle indicates a series of different states that each program undergoes
from development all the way to execution, viz. pre-compile, compile, post-compile, link,
load and run. Every program has to go through these activities strictly in the mentioned
order in order to eventually get executed. However, if a program is not developed in-house,
i.e. source codes are not at hand, the first two activities (pre-compile and compile) are out
of reach on the protector side, as these activities require access to source codes.

As depicted in the system view (Figure 3) by association links, the first four states (pre-
compile, compile, post-compile and link) deal with the static representation of the assets.
The last two states (load and run) are concerned with both the in-memory and in-execution
representations. In the following we describe these states:

(a) Pre-compile. This is the state in which a program’s artifact, which are represented
statically, e.g. in the form of application source code and other bindings such as testing,
database and setup scripts, etc, are delivered. Source-level transformations could be
triggered at this stage to add protection routines.

(b) Compile. In this stage, a compiler transforms the program’s (static) source code into
the targeted machine code. It runs several passes starting from lexical analysis and
finishing with binary generation. Additional protection passes can be integrated into
the compiler pipeline.

(c) Post-compile. After compilation, static program artifacts are transformed into exe-
cutable binaries or libraries. Since the source code is no longer available in this phase,
protection schemes operating at this level have to utilize disassembler tools to recover
a representation (normally in assembly language) of the application on which they
could carry out protection transformations.

(d) Link. Refers to the state in which a linker obtains a set of static compiler-generated
artifacts, combines them into a single binary and relocates address layout accordingly.
Protections in this phase not only could carry out transformation on the program and
all its (static) dependencies, but can also mediate (and potentially secure) the process
of binary combination and address space management.

(e) Load. This is the stage in which the loader (i.e. provided by OS) loads a previously
combined executable into the memory, resolves dynamic dependencies and finally car-
ries out the required address relocations. Unlike the previous states, this state deals
with both the in-memory and in-execution representations of assets. More impor-
tantly, it is visited every time a program is subject to execution. Therefore, load time
protection transformations can turn protection into a running target to render at-
tacker’s previous knowledge about the protection irrelevant. Loader transformations,
apart from being executed on every program start, can also verify (and potentially
protect) dynamically linked dependencies.

(f) Run. This stage begins as soon as the loader triggers the program’s entry point
instructions and lasts until the program is terminated. Run also operates at the in-
memory and in-execution representations of the assets. Moreover, the run state can
constantly mutate a program to alter off-board or on-board protections. Although at

0Except for dynamic dependencies.
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Figure 4: Attack view dimension of the taxonomy showing the attack main classes, subclasses
and relations.

runtime dynamic dependencies are already resolved, still a protection mechanism can
authenticate the loaded dependencies and decide upon unloading or reloading them.

The system view captures critical elements along with their various representation in the
system that attacker have interest in undermining their integrity. Both the attack and defense
views are applied on a system and hence the system view is the base of the taxonomy. In
the following, we first elaborate on the attack view aiming for identifying potential threats and
techniques to violate system integrity assets. Later on we discuss the defense view that provides
means to mitigate or raise the bar against identified threats (from the attack view) and common
attack tools.

3.2 Attack
The attack dimension expands over the attacker view, encompassing high-level attacks, tools
and their relation to other dimensions of the taxonomy, viz. system view and defense view.
As depicted in Figure 4, the attack view is comprised of the Attacker, Reverse engineering,
Tools, Discovery and Attack main classes. Attacker represent the perpetrator whose goal is
to harm system assets by violating system integrity. To do so, attackers use reverse engineering
techniques. Reverse engineering is a process in which an attacker utilizes (offensive) tools to dis-
cover assets and possibly protection mechanisms. The process normally ends with manifestation
of a concrete attack that harms system integrity after defeating protection measures (if any).

In the following, we discuss each main class of the attack view in more details along with
their subclasses.

1. Reverse engineering (RE). RE is located at the heart of the attack view. It encompasses
attack, attacker, discovery and tools. RE aims at harming system assets.

2. Attack. Tampering attacks themselves can have multiple forms (inheritance) based on
which representation of the assets they are applied to. Attacks are carried out on a repre-
sentation of the assets, thus there is a dependency between attacks and system representa-
tions. In the following, we elaborate on different attacks on different asset representations.

(a) Binary patching. A successful exploit at the file system level can tamper with the
static representation of the assets.
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(b) Process memory patching. An exploit at the program level or OS level may enable
attackers to directly tamper with the process memory.

(c) Runtime data manipulation. Similar to memory patching, program or OS level
compromises can enable an attacker to tamper with the program’s dynamic data that
includes the input to a program, the produced output by a program. The runtime
data is allocated in system stack and heap.

(d) Call interposition. Once a system is compromised, attackers may, for instance,
intercept system calls to inject malicious behavior. Call interpositions are out of the
scope of software protection, they rather fall under infrastructure security. For this
reason, we did not include them in our paper survey. But we still believe it is a
potential threat to software integrity and hence should be listed in the taxonomy.

(e) Control flow hijacking. Calls and branches define the execution flow of the pro-
gram. Attackers target the program control flow in a wide range of attacks (e.g.
return-oriented programming [80] and buffer overflows).

3. Discovery. In order for attackers to violate the integrity of a protected system they need
to identify assets or protection routines in a given representation of a program. We name
this phase the discovery phase. This implies a relation between the system representation
and discovery.
Banescu et. al [9] formulated attacks as search problems (e.g. identifying protection guards
in the application can be formulated as a search problem). To the best of our knowl-
edge, no study has addressed the difficulty of discovering protection techniques. In our
survey, however, we found four techniques that are commonly referred in the literature,
viz. pattern matching, taint analysis, graph based analysis and finally symbolic
execution. Therefore, we resort to these four common approaches in discovering protection
measures.

(a) Pattern matching. Manually analyzing a large and complex program is labor and
resource intensive. Therefore, normally attackers try to identify and defeat protection
mechanism by employing automated attacks based on pattern matching, using for
example grep. Pattern matching is not limited to search for strings, it also can search
for properties of an artifact (e.g., entropy). Such attacks are plausible if and when an
application commits to the usage of a recognizable pattern in their protection. Note
that pattern matching can be applied on all representations.

(b) Taint analysis. Tainting analysis is a technique in which the influence of a particular
input on program instructions can be examined. This tool can facilitate the detection
of protection routines for perpetrators. For instance, taint analysis can help attackers
to find the connection between check and response functions by following the influence
of check variables on response instructions [75].

(c) Graph based analysis. A protected program can be represented as a graph in which
basic blocks are the graph nodes and jumps express edges. Dedic et al. in [29] argue
that in most cases protection nodes are weakly connected as opposed to the other
nodes and hence easier to detect.

(d) Symbolic execution. Enables adversaries to see which inputs to the program trig-
gers the execution of which part of the program. Since the program is actually being
executed to discover execution paths, nothing can remain unseen for symbolic exe-
cution engines as long as the constrain solver is successful. This unique feature of sym-
bolic execution can enable attackers to visit all hidden (obfuscated/encrypted/dynamically
loaded or generated) instructions of the protection scheme.
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4. Tools. An attacker can utilize a set of tools to support reverse engineering activity, e.g.
to carry out attacks or to identify assets or defense measures in place. To the best of our
knowledge, the resilience of different schemes against reverse engineering tools has not been
studied. Therefore, in our taxonomy we made a set of assumptions to decide whether to
mark a scheme resilient against a particular tool or not. We will discuss these assumptions
with substantial details in Section 5.7. In the following we discuss some generic tools that
reverse engineers normally use.

(a) Disassembler. An attacker may utilizes dissembler to disassemble a binary poten-
tially to analyze the protection logic.

(b) Debugger. Another tool that enables the attacker to monitor the execution of a
program in a slow paced sequential manner. In this attack, debugger can access or
alter any runtime data.

(c) Tracer. Analyzing program’s execution traces could potentially reveal protection
mechanism. This becomes more useful when a program employs obfuscation/encryption
to hide its logic. However, the traces can reveal the executed instruction (after de-
cryption and de-obfuscation). In this event, attackers may employ more intelligent
analysis to defeat a stealthy protection.

(d) Emulator. Attackers can employ emulators to study program execution in a lab
manner. All system calls and executed instruction can be closely monitored and thus
deepen the knowledge of the program internals. With the help of snapshots, steps
could be reversed to recover from faulty states, which in turn facilitates the attack.

5. Attacker. The actor who carries out disrupting actions to violate the integrity of the
system is the attacker. When classifying attackers, distinguishing RMATE and MATE
attackers, although appealing, is out of reach. The reason being that the two have very
much in common, the main difference is the physical access that MATE attackers pos-
sess. Therefore, we classify our attackers to two groups: attackers with root privileges and
attackers without root privileges. This is indicated with no root title (corresponding to
attackers without root accesses) in our taxonomy in Table 2.

The attack view captures potential threats along with the tools and techniques that attackers
can use to violate system integrity. The same attacks could be used by adversaries to circumvent
or even defeat protection mechanisms as well. Therefore, in order for defense mechanisms to be
effective, it is crucial that they resist against attacks and tools.

3.3 Defense
This dimension can be seen as the bridge between the system and attack dimensions. It serves as
the core of the taxonomy by capturing the activities in which system assets are protected using
a set of measures against potential threats. As can be seen in Figure 5, the defense dimension is
comprised of four main classes: measure, protection level, trust anchor and overhead.

The measure refers to a method that is employed to mitigate integrity attacks on programs.
Protection level indicates the level of abstraction at which protection is employed. Trust anchor
specifies whether the measure relies on any root of trust, e.g. trusted hardware, or not. Finally,
the overhead reports on the performance impact of a measure on the system.

1. Measure. A protection measure is the foundation of the protection activity. It can be
done either completely locally (i.e. a program verifies its own integrity) or remotely (i.e.
a trusted party remotely attests integrity). The inheritance relation between the measure,
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Figure 5: Defense view capturing the main classes, subclasses and relations of the defense di-
mension.

local and remote verification stands for this matter. Each measure itself is composed
of five distinctive actions: transform, monitor, check, response and harden. These classes,
although pursuing different objectives, contribute in protection a program. In the following,
we describe the role of each action in the protection process.

(a) Transform. This action applies transformations on representations of assets. As
mentioned earlier, these transformations can be carried out at different program life-
cycle depending on the targeted representation and the artifact at hand. This indicates
a link between the transform and lifecycle activity.

(b) Monitor. This component can actively inspect different representations of the system
assets. Obviously, this component has to have a access to the system, otherwise
it cannot audit anything. Hence, there is a tight binding between monitoring and
representation. For monitoring system representations there are two approaches that
are widely used in the literature, viz. introspection and state inspection.

i. Introspection monitors a set of static invariant properties of a program, e.g.
code blocks, to detect tampering attacks.

ii. State inspection monitors the result/effect of the execution of a program, e.g.
function return values, to reason about its integrity.

(c) Check. This component provides a mean to reason about the collected data by the
monitor element, and decide whether assets are compromised or not. The output
of this component, based on the employed technique, could be a binary (Yes/No)
or accompanied with a confidence number. In the following we discuss the checking
mechanisms that are commonly used in protection schemes.

i. Checksum. We classify any mathematical operation that converts large block
of data into compact values, which is ideal for comparisons, as checksum based
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techniques. CRC32 and hash functions fall under this category of checking mech-
anism.

ii. Signature. This refers to a cryptographic protocol for integrity verification by
means of verifying the digital signature of artifacts.

iii. Equation. The result of a mathematical equation evaluation (with program
runtime features) defines whether program integrity was violated or not.

iv. Majority vote. A set of functionally equivalent components disjointly carry out
a computation and then collectively decide upon the integrity of the outcome.

v. Access control. A policy enforcement point beyond the control of the program
and (possibly) attacker mediates the access to the critical resources.

(d) Response. Based on the check component’s decision, the response component reacts
in a punishing way to attackers. This reaction could vary from process termination,
performance degradation, or even attempting to recover compromised assets. Techni-
cally speaking, there are two classes of response mechanism: proactive and reactive.
i. Proactive. Schemes utilizing this class of response act intrusively. That is, upon

the report of integrity violating, immediate actions are taken to prevent attacks.
ii. Reactive. In some cases less intrusive and stealthier responses are desirable.

In this model of schemes, the detection of integrity violation does not result in
obvious reactions such as program terminations. A reactive response may, for
instance, silently report on the violation without making the attacker or user
realize.

(e) Harden. Since the measure itself can be subject to attacks, a consolidation technique
is employed by the measure. For example a simple routine (say monitor()) that is
solely responsible for auditing program state can easily get manipulated by an attacker.
The same goes for response mechanisms. An open termination of the program as a
response to tampers only adds a weak security.
Thus, it is crucial to add strength to protection measure using hardening techniques.
Hardening aims to impede discovery process and thus raises the bar against attacks.
This directly relates to the discovery and attack activities in the attacker view.
The hardening can be seen as adding a hard problem for the attacker to solve. This
does not necessarily have to be a np−complete problem, in some cases even a quadratic
one will cause enough trouble for attackers and exhausts their resources, specially
when the attacker is forced to manually solve the problem. For instance when an
automated pattern matching fails to defeat the mechanism, attackers are doomed to
manually analyze a large portion of the code, which, in turn, presumably deteriorates
their success rates. In our literature review, we have identified six different hardening
techniques that are commonly used by integrity protection measures. We discuss these
techniques as follows.
i. Cyclic checks. In this model, protection is strengthened by using a network of

overlapping protection nodes. Therefore, a particular asset (representation) may
get inspected by more than one checker. In some variation of the cyclic checks,
the checkers themselves are also protected by the very same mean.

ii. Mutation. Defeating a protection technique normally is the result of a process
in which an attacker first has to acquire necessary knowledge about the scheme
and its hardening problem, and then, utilizing the knowledge to break the protec-
tion. To this end, mutation techniques try to render attacker’s prior knowledge
irrelevant by frequently evolving the protection scheme.
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iii. Code concealment. In the course of scheme analysis, attackers often refer to
the program code and base their studies on it. Code concealment tries to impede
this process by concealing a particular representation of the code. Nonetheless,
program instructions have to get translated into legitimate machine code right
before the execution. The later this translation occurs, the more an attacker is
troubled. Some approaches tend to flush translated instructions after execution
so at no point in time the attacker gets a chance to glance over to the entire
application code at once. Program obfuscation and encryption are examples of
this technique.

iv. Cloning. Multiple copies of sensitive parts are shipped in the application and at
runtime a random predicate defines which clone shall be executed. This enables
the protection scheme to remain partially functional even after successful attacks.
In Section 5.8 we will discuss this measure in the context of concrete attacks.

v. Layered Interpretation. To utilize layered protection a program have to be
run within an emulator or a virtual machine. Some schemes entirely virtualized
the target application, while others virtualize some parts of the application. This
technique enables employment of protection measures at a higher level of abstrac-
tion. Since programs has to be run by the host (hypervisor/emulator), they can
be verified before execution and executed only if they pass the verifications.

vi. Hash Chain. Evolving keys and hash chain assures past events cannot be forged
or forgotten. This technique is widely utilized to maintain an unforgeable evidence
of the system state.

2. Trust anchor. In an abstract sense, this criterion specifies whether the scheme is entirely
implemented in software or it is assisted by a trusted hardware module. Hardware based
approaches are generally assumed to be harder and more costly to circumvent, due to the
required equipments and knowledge at the attacker end. On the other hand, hardware
based schemes add more cost, to acquire the required modules, for each client. In the
following we discuss different trust anchors.

(a) Software. Indicates that the scheme security is purely based on software hardening
mechanisms without any trusted hardware whatsoever.

(b) Dongle. Refers to hardware keys that could be used to store small chunks of data
(e.g. keys) or program with more resilience against tampering attacks. None of the
reviewed schemes in our survey utilizes dongles. Thus, we exclude it from our further
classifications. However, according to [72] dongles are popular in practice.

(c) TPM. Trusted platform module is a quite mature hardware chip that is used by
plenty of hardware assisted integrity protection schemes.

(d) SGX. Intel Software guard extension (SGX) offers dynamic process isolation to mit-
igate runtime integrity attacks.

(e) Other. An indicator for reliance on hardware modules other than the explicitly stated
ones.

3. Protection level. Indicates the enforcement of a protection scheme. It can happen (stated
with inheritance relation) in three different abstraction levels:

(a) Self check. This level is also known as internal protection in which a protection
scheme is integrated into the program to be protected. Simply put, this process is in
charge of carrying out its own integrity verifications and further decisions about how
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to react to compromises. Applying this technique to a distributed architecture adds
more resilience. Mainly because the protection schemes react disjointly, a single point
of failure is prevented. On the negative side, however, all the decisions are solely based
on the state of the program-to-protect, thereby these decisions may lack contextual
information.

(b) External process. A dedicated process, Integrity Protection Process (IPP), moni-
tors protected programs and responds accordingly. Unlike self-check approaches, IPP
can combine multiple sources of contextual information to improve reasoning and thus
responses. Also, it enables a mean for high level policy enforcement. These features,
in turn, enhance both security and usability of a protection measure. However, there
are two drawbacks in this model: a) it is challenging to capture the actual state of
the programs via an external process, e.g. a malicious program can forge good states
for IPP, and b) granted the high permission level of IPP, it can become a critical
component to attack; single points of failure.

(c) Hypervisor. Protection is a part of a hypervisor logic. This entails that all processes
are being virtualized and executed on top of the security hypervisor. The current state
of the industry highly advocates this model. The hypervisor, in contrast to external
process, does not have the problem of state forgery, as it (in theory) can capture all
stealthy actions. Nevertheless, the problem of single point of failure remains as a
concern.

4. Overhead. Performance overhead is an important aspect of integrity protection schemes.
Practitioners indeed need an estimation of the overhead on their services. However, a great
deal of the protection schemes have not been throughly evaluated, so performance bounds
are unknown. We classified performance bounds into four classes as follows.

(a) Fair(0 < overhead < 100%).
(b) Medium(101% < overhead < 200%).
(c) High(overhead > 201%).
(d) N/A. This class represents schemes with lack of experiment results or unjustifiable

numbers due to limited experiments.

The defense view elaborates on techniques to protect integrity against attacks along with
implications of such protections on system. Hence defense acts as a bridge between system and
attack views. Moreover, defense view can be seen as a classification for integrity protection
techniques, which can facilitate scheme selection by users.

3.4 View dependencies
Previously, we discussed all the three views of the taxonomy, their classes and dependencies in
each view. In this section we provide an overview of the dependencies between the classes from
different views. The high-level overview of these dependencies is depicted in Figure 6.

In the system view (in the middle), an association between the representation and asset
("Contains") expresses the fact that system assets are exposed in different representations.

In the attacker view (on the right), the support of the tools in the whole process of reverse
engineering is expressed by the link between the tools and reverse engineering (the "Supports"
link). Attackers are the actor to execute an attack, this is also highlighted by an association
between attacker and attack. The asset identification, which is the first objective of attackers,
is depicted in form of the association between the discovery and representation classes (the
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Figure 6: The high-level overview of the taxonomy showing the main classes of the defense,
system and attack views along with their relations.

"Identifies assets" association). The second objective of attackers, after identifying assets, is to
tamper with the representation of interest. This is captured by the link between the attack and
representation (captioned with "Tampers with").

The defense view (on the left) abstractly captures the defense process. A protection measure
may rely on a trust anchor for additional strength, which is shown with the link captioned with
"Strengthens". In order to enable protection, a measure needs to transform a representation of the
system in one (or more) of the life cycle activities. This is illustrated by the association between
the measure and life cycle activity ("Transforms"). Once a protection measure is in place,
one (or multiple) representation of a system is actively or passively monitored, the "Monitors"
association between the measure and representation shows this relation. Protection measures
could potentially affect system performance and introduce overheads, which is shown with the
"affects" link between the overhead and life cycle activity. Protection measures based on their
hardening measure and response mechanism impede asset discovery and mitigate or raise the
bar against attacks. The "Impedes" link from the measure to discovery (in the attack view) and
"Mitigates or raises the bar" between the measure and attack depict these two interrelations.

However, protection measure is not the end of the game for attackers. They can target the
protection mechanism itself, discover its logic and disable its protection. The "Identifies" link
between the discovery and measure as well as "Tampers with" between the attack and measure
captures this matter.

At this point we have covered all the three views of the taxonomy and their interrelations. For
a complete view, Table 1 depicts the entire taxonomy. To support readability, for each element
of the taxonomy we give an example in the context of sample DRM system. All the examples
relate to the DRM system and thus we avoid repeating the context in each example.
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Table 1: Software integrity protection taxonomy along with examples in the context of the sample
DRM.

Sy
st
em

vi
ew

A
ss
et
s Behavior There are some sensitive logics that need to be integrity protected, e.g. license checker routine and stream viewer

Data Usage variables need to be protected against manipulation attacks. Otherwise, attackers can readily circumvent the usage
policies

D&B The usage variables and any routine that has deals with these variables, in this case content provider, need to be protected

R
ep

re
se
nt
at
io
n

Static Malware or attacker may tamper with the DRM binaries to carry out their attacks

M
em

. Code invar. The static shape of the license checker code blocks in the memory is a target to attack for attackers
Data invar. Usage count variables in memory are the targets of tampering attacks

E
xe
.

Trace Tampering attacks causes identifiable changes in the program traces. For instance, dumping decrypted fragments in the
stream viewer introduces additional calls in the trace

Timed trace Tampering with program routine will alter the program response time. For instance disabling license check routine by simply
returning true could introduce new timing bounds

HW counters Hardware performance counters capture some technical details about the executing routine, such as number of branches,
indirect calls and etc. Tampering with the license checker inevitably affects these numbers.

G
ra
nu

la
ri
ty

Instructions All the individual instructions that access clientprivate key need to be protected
BB The basic block in which license checking takes place need to be protected
Function The licenseChecker() and getExpiryDate() methods need to be protected
Slice The chain of instructions that read from or write to the usage count variables need to be protected
Application The entire stream viewer component (application) need to be protected

L
ife

cy
cl
e
a.

Pre-compile License checker and data provider can be protected at the source code level
Compile License checker and data provider can be protected at the compiler level
Post-compile Stream viewer can only be protected in a post-compile process, because it is an external library
Load Every time the license checker is loaded in the memory a (new) protection is applied
Run The license checker routine is updated on the fly (during execution)

A
tt
ac
k
vi
ew

R
ev
er
se

en
gi
ne

er
in
g

T
oo

ls

Disassembly Attackers may disassemble the DRM client to understand the logic
Debugger Attackers could inspect the license checking control flow using a debugger
Tracer Attackers could deepen their knowledge about the fragmented decryption in the stream viewer by dumping a trace of the

program
Emulator An emulator could be utilized to facilitate program analysis

D
is
co
ve
ry

Taint analysis Attacker can use tainting analysis to detect the checks that enforce usage policies
Sym. exec. Symbolic execution could be utilized to find instances of usage variables for which the program delivers the protected contents

Memory split Attackers could execute memory split attack to defeat self-checksumming based protections
Patt. Match. Attackers could use pattern matching to detect license checks, protection routines and usage policy enforcement points

A
tt
ac
k

Binary Attackers can tamper with the program executables at rest
Proc. mem. Attackers could leverge in-memory patching to carry out their attacks
Run. data Program input and output data is under control of the attackers.
Ctrl flow Attackers can subvert program control flow to for instance decrypt content without license check

D
ef
en

se
vi
ew

M
ea
s. Local The DRM client is fully in charge of the integrity protection

Remote Security state of the DRM client is to be reported to the main server

M
on

. State inspection Monitor and check the results of the program execution
Introspection Read code pages of the license checker compare it to a known value

R
es
p.

Proactive Any detected attack raises the alarm and a delayed or an immediate punishing response is triggered
Reactive All accesses to the protected content (genuine or forged) is permitted, however, the server is notified about the violation of

the usage policies in a postmortem verification. Server can add such users into a blacklist or file a lawsuit against them

T
ra
ns
. Manual Protectors have to execute manual tasks in the course of protecting a program, for instance, by developing non-trivial clones

for the license checker
Automatic The protection transformation requires a limited user intervention and hence it is to a great extent automatic

C
he

ck

Checksum A checksum is computed over the code blocks of the license check
Signature Signature of the components are verified at runtime
Equation eval Access data forms a set of verifiable equation, e.g. total number of accesses is less than total number of views specified in

the usage policy
Majority vote License checker is cloned and executed simultaneously by different threads/processes. Afterwards, a majority vote decides

whether the license is valid or not
Access control All access requests need to pass through a master node which securely enforces usage policies

H
ar
de

ni
ng

Cyclic checks A network of integrity checkers collectively prevent software manipulation
Mutation The license checker code blocks are constantly modified at runtime to mitigate passive attacks
Code conceal. The License checker code is encrypted and only decrypted at runtime
Cloning The license checker is duplicated and every time at runtime a randomly chosen clone is executed
Layered interp. The client application utilizes a random instruction set that can only be executed on a custom secure virtual machine
Hash chain Usage event logs are securely chained to maintain an unforgeable evidence of the system usage. Such information could be

used in postmortem verifications

O
ve
rh
ea
d Fair Target clients have limited computation resources and thus a low overhead is desired

Medium Target clients have fairly good computation resources
High Sensitive parts of the program shall be protected strictly, high overheads are tolerated
N/A No information about overhead constraints

T
.a

nc
ho

r TPM Client systems do have a TPM chip
SGX Client systems support Intel SGX
Other Other trusted modules are decided to be used, e.g. a custom-built hardware
Software The protection is completely software based

P
ro
t.

L
vl
. Internal The client application is in charge of verifying its own integrity

External A dedicated integrity protecting process frequently verifies the integrity of client applications
Hypervisor A secure hypervisor is shipped with the client installation bundle. The client application can only be executed using the

provided hypervisor
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4 Applying the proposed taxonomy
We conducted a survey on integrity protection and tamper resistant techniques for software
systems. This by no means is exhaustive, but we believe it serves as a representative of differ-
ent techniques in the literature. Table 2 demonstrates the mapped literature on the proposed
taxonomy.

Since there is no single research work that analyzes the resilience of protection schemes against
MATE tools and discovery methods, we were not able to directly map the reviewed works to
these criteria (in the attack dimension). To address this limitation, in the Sections 5.7 and 5.8
we reason about schemes’ resilience based on their hardening methods. This enables us to
first understand the role of hardening measures in the resilience of schemes and subsequently to
complete the mapping. The space limitation hinders detailed discussion of the reviewed schemes.
Instead, in the next section we correlate various aspects of the reviewed literature and discuss
our findings.

5 Observation and Analysis
As part of our analysis we correlate interesting elements in the taxonomy from different views
and discuss our findings. These correlations are those that we particularly find interesting for
practitioners.

However, there are far more possible correlations that one can carry out. To address this
concern, we published a web-based tool that enables end users to correlate any arbitrary pair
of elements from different dimensions. The tool is accessible at http://www22.in.tum.de/
tools/integrity-taxonomy/. In the following we report on the dependencies of the taxonomy
dimensions.

5.1 Asset protection in different representations
We defined integrity as a property of software that applies to both data and behavior. From the
user perspective, it is a daunting task to find protection schemes that protect data and/or logic
at a particular representation.

Signature verification is one of the techniques that users commonly utilize to protect integrity.
The static signature verification is natively supported by almost all operating systems. These
schemes are rather a non-preventive security measure to protect users, but not softwares. Clearly,
this does not match the MATE attacker model, where the user is also the attacker.

Besides, these techniques have two shortcomings: (i) their security relies on operating system
settings, which could be easily manipulated, and (ii) they suffer from the Time of Check–Time
of Use (ToCToU) limitation in which signatures are verified on the static representation of
programs upon execution, while many attacks (including in-memory patching) could potentially
occur after execution is started. [48] reported that over 60% of attacks published by CERT were
either buffer overflows or of ToCToU attacks.

Due to the aforementioned limitations, the static signature verification is not an optimal
technique as it fails to protect other asset representations during execution.

A natural question that may come to ones mind is why protection for a certain representation
instead of protecting assets in all the representations. The answer is threefold. First, attackers
might not have the right privileges on some representations, e.g. accessing in-execution represen-
tation of processes requires root privilege, except when attackers find a way to inject their attacks
into the program of interest. Reasonably, to avoid unnecessary overhead we aim to protect the
representations that are at risk. Second, some risks might be acceptable for a certain use case,
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Table 2: Applied taxonomy on the surveyed literature.
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e.g. in IoT programs naively protecting static representation of a program might be sufficient,
given that runtime protection imposes unacceptable overhead. Finally, 100% protection of as-
sets in all representations is technically infeasible. Therefore, to shed light on this concern, we
correlate software integrity assets to different representations in order to identify corresponding
protection schemes.

The desired correlation is depicted in Table 3. In the following we discuss the relevant schemes
according to their asset-to-protect.

Table 3: The correlation between the integrity asset protection and representation.
Integrity assets

Behavior Data Data and behavior

R
ep
re
se
nt
at
io
n

Static [30] [29] [71] [85] [23] [53] [18] [68] -
Code inv. [31] [39] [60] [13] [67] [8] [47] [37] [46] [19] [74]

[6] [81] [36] [54] [88] [91] [11]
[31] [13] [11] [31] [13] [11]

Data inv. [40] [49] [16] [83] [52] [34]
[17]

-

HWC [62] [81] - -
Timed trc. [63] [42] [79] [81] [43] - -
Trace [41] [1] [20] [44] [56] [12] [10] -

5.1.1 Behavior protection schemes

As the correlation suggests, a majority of behavior protection schemes with a total number of
18 [31, 39, 60, 13, 67, 8, 47, 37, 46, 19, 74, 6, 81, 36, 54, 88, 91, 11] target the code invariants
representation in their protection mechanism.

Meanwhile, [40] referred to the shape (invariants) of computed data to reason about the
behavior integrity. [62, 81] took hardware performance counters (e.g. the number of indirect
calls and elapsed times) into account to evaluate programs’ integrity.

Some efforts were found in the literature to raise the bar against program manipulation when
programs are at rest (binary). [30, 85, 18] are examples of hardening binaries by statically ana-
lyzing them and subsequently adding resilience against tampering attacks. [29] rather presented
a theoretical concept to design more resilient integrity protection schemes. [71, 53, 23] proposed
techniques to protect program binaries after distribution.

In order to manifest some tampering attacks, attackers inevitably need to change, inject or
reorder instructions. In this situation, the order in which program instructions are being executed
along with the data that they read from or write to, i.e. a program trace, is a source of knowledge
to detect such attacks. This information could be extracted form a program’s execution trace.
[20, 41] incorporated memory accesses and branching conditions in the program trace into a hash
variable to later match it against the expected trace hash. [44] passively verified the execution
traces that are reflected into log records. [56] duplicated sensitive regions in the program to add
more resilience to attacks by forcing perpetrators to tamper with all clones of sensitive codes.

The correlation also indicates that timing analysis (timed trace) is utilized in [63, 1, 62, 42, 79,
81, 43, 12] to verify integrity of the program behavior. The assumption in the mentioned schemes
is that a certain untampered routine expresses identifiable execution time characteristics.

5.1.2 Data protection schemes

Tampering with a program’s data can enable attackers to manifest integrity violating attacks.
The simplest way to do so is by attaching a debugger and subverting the program flow, for
instance, by flipping a register’s value. As the correlation suggests, several schemes protect the
program’s data integrity. [49] introduced a hash-chain alike concept for data integrity with the
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help of a semi trusted entity. [83] equipped system data flow analyzer nodes and routed the traffic
to them for integrity analysis. [34] proposed to duplicate sensitive processes and compared their
computed values based on a majority vote scheme. [17] used data flow graph to verify whether
the application conforms to the genuine data flow model at runtime. [52] collected data invariants
in a program and verified them at runtime. [20] computed a cumulative hash of memory accesses
at the instruction level to form a hash trace of the program execution.

5.1.3 Data and behavior protection schemes

Protecting data and behavior together might be a more appealing option when the program to
protect possesses both sensitive data and logic. In our survey, we found three schemes that aim
for data and logic protection. [31] proposed a technique in which a program’s logic as well as
data are isolated from external processes by a secure hypervisor. They also designed a process
to encrypt data before persistence, so that the data is never exposed to adversaries in plain text.
[13] in addition to logic and data isolation, introduced a secure inter-process data propagation in
a (nearly) real time manner. [11] designed a fully isolated execution environment for the process
as a whole on Intel SGX hardware commodity. All the three schemes rely on trusted hardware.

The presented correlation singles out relevant schemes for protecting different integrity assets
(behavior, data and data and behavior) in different representations. This facilitates the scheme
selection based on the assets and representations at the user end.

5.2 MATE attack mitigation on different asset representations
A program possesses different representations depending on its state, viz. static, in-memory and
in-execution. Each of theses representations are subject to tampering attacks. Protections on
representations closer to the time of use (i.e. execution) could prevent or detect a wider range
of tampering attacks. That is, the static representation of a program is implicitly protected, if
the very same program utilizes in-memory protections.

In this paper, we limit our adversary model, regardless of how attacks are executed, to four
generic attack goals: binary patching, process memory patching, runtime data modification and
control flow hijacking. Constrained by their permissions, attackers can choose different program
representations as their attack targets.

In this correlation we aim to identify protection techniques that mitigate the aforementioned
generic attacks on different representations. For this purpose, we relate representations in the
system view to attacks in the attack view. This is depicted in Table 4. We discuss our findings
classified by attacks, viz. binary, control flow and process memory as follows.

Table 4: Defense mechanisms against tampering attacks for different (asset) representations.
Representation

Code inv. Data inv. HWC Static Timed
trace

Trace

T
am

pe
ri
ng

at
ta
ck
s

Binary - - - [68] [30] [29] [85]
[23] [53] [18]

- -

Control flow - - [62] - - [10] [1] [41] [69] [20]
[44] [56] [70] [12]

Process memory [31] [39] [60] [13]
[67] [8] [47] [37] [46]
[19] [74] [6] [81] [36]
[54] [88] [91] [11]

- [81] [71] [42] [81]
[43]

-

Runtime data - [49] [16] [83]
[40] [52] [34]
[17]

- - - [10] [20]
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5.2.1 Binary

Static manipulation (aka static patching) targets a program while it is at rest (prior to execution).
To prevent these sort of attacks the surveyed literature suggests static representation verification
as well as a set of hardening measures to raise the bar against tampering attacks in the host.
Note that we do not include signature verifications supported by operating systems, as they
do not target MATE attackers. In the following we review the schemes that protect the static
representation of programs.

Static representation verification [53] and [30] proposed remote file integrity protection
using file system hashing. The main difference lies in the fact that the latter initiates the hash
with a remote challenge. However, this technique can easily be defeated if the attacker keeps a
copy of the genuine files just for the sake of hash computations.

Hardening measures Neisse et al. [68] suggested to plug (hardware-assisted) configuration
trackers in the system to monitor modifications on the file system. All modifications are then
signed by a TPM within the host and then reported to a third party verifier to judge about the
maliciousness of the actions.

[18] designed a protection scheme to defend against dependency injecting and tampers with
the update scripts in a system by utilizing dynamic signature verification and system call in-
terposition in the kernel. They argued these two can mitigate the persistence of a compromise
in the system. Meanwhile, [29] proposed to strongly connect integrity protection code with the
normal program control flow and discussed theoretical complexity using a graph based game.

To add resilience against dynamic attacks such as buffer overflows in the static representation,
[85] proposed an efficient means to detect potential integrity pitfalls in a distributed system by
first merging all network wired nodes into a unified control flow graph, so called Distributed
Control Flow Graph DCFG and then running a static analyzer to find all user-input reachable
buffer overflows. In their way, intuitively, pitfalls can be identified with less false positives as
opposed to analyzing each node individually.

Collberg et. al in [23] proposed to protect client programs’ integrity by forcing constant and
frequent updates. In their approach, a trusted server constantly uses software diversification
techniques to change a server’s method signatures, which in turn coerces the client to update all
the program artifacts right after each mutation.

5.2.2 Control flow

As the correlation suggests, there are two representations that were utilized to prevent a pro-
gram’s control flow manipulation, viz. HW counters and traces.

Hardware performance counters were used in [62] to reason about the program’s control flow
integrity based on performance factors such as the number of calls and the elapsed time on each
branch.

The trace representation was used by 9 protection schemes. These schemes are listed as fol-
lows. Banescu et al. in [10] proposed a technique to ensure only genuine internal calls can access
assets. This is done via a runtime integrity monitoring that traces stack’s return addresses and
compare them to a white list of call traces. Stack inspection works well for synchronous calls,
however, due to the incomplete trace information, trigger and forget calls cannot be handled in
this way. To cope with asynchronous calls, caller threads are verified using a Message Authenti-
cation Code (MAC mechanism).
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Abadi et al. in [1] proposed a scheme to protect the integrity of programs’ control flow by
injecting a set of caller reachability assertions in the beginning of program branches.

Chen et al. in [20] proposed to compute a checksum over a program’s execution trace by
hashing its assignment and branching instructions. These hashes are later verified at desired
locations in the protected program. Similarly, [41] proposed to compute a hash over a program’s
assignments and executed branches. These hashes later are used to dynamically jump to the
right memory locations. Mismatches in hashes crash a program as they potentially cause jumps
to illegitimate addresses. Dynamic jumps are created by the mean of interleaving multiple basic
blocks in super blocks with multiple entry and exit points. In effect, the hash values determine
which entry/exit points the program shall take at runtime.

To capture an unforgeable evidence of the traversed program’s control flow, Jin et al. in [44]
proposed a protection mechanism based on secure logging (forward integrity). Their scheme is
detective. That is, tampering attacks are detected in a postmortem analysis after they took place.
[56] mitigated call graph manipulation by utilizing opaque predicates to randomly switch between
a set of nontrivial clones of sensitive program logic (input by human experts). [70] designed a
mitigation for ROP attacks by monitoring branching behavior and size of fragments executed
before each branch. [12] proposed a mechanism in which a program-to-protect subscribes to an
external process which dictates the genuine control flow of the application. The external process
can be protected by other expensive integrity protections without introducing extensive overhead
on the main application.

5.2.3 Process memory

Protecting process memory based on code invariants is the most common approach in the liter-
ature. In the following, we briefly introduce different schemes based on this technique.

Self-encryption is a defense mechanism utilized by a number of protection schemes. Auc-
smith [6] proposed a scheme that utilizes code block encryption and signature matching to mit-
igate tampering attacks on process memory. The author refers to the integrity checking codes
as Integrity Verification Kernel (IVK). These IVKs, for better stealth, are interleaved with the
program functionality. Using this technique, the entire application code except for the starting
block is encrypted. From the memory layout of each executed block a key is derived which can
decrypt the next block. [88] is another encryption based protection in which the key to decrypt
the next basic block is derived from a chain of hashes of previous blocks. Thus, tampering with
blocks breaks the chain and results in an unrecoverable program. [74] applied the self-encryption
with re-encryption after each invocation to protect Android intermediate code. Protected pro-
grams using this scheme, however, cannot use reflection nor host service contracts (otherwise
unreachable) due to the code encryption.

Self-hashing is another mechanism that is employed by a number of process memory pro-
tection schemes. [81] used reflection to obtain program codes at runtime. Program codes are
subsequently verified using a hash function. In addition to hash verification, HW counters are
also utilized to increase the resilience. Chang and Atallah in [19] proposed a software protec-
tion technique that builds up a network of compact protection blocks (aka Guards) that along
with performing integrity checking of the application blocks (basic blocks) can also verify other
protection guards. These protection guards, provided that an untampered version of the code
is available, can potentially heal the tampered regions of the program. [8] proposed a tech-
nique that utilizes a network of cyclic checkers with multiple hash functions to prevent memory
tampering attacks. This scheme can cope with the relocation problem in binaries and hence it
protects instructions that contain absolute addresses. To the best of our knowledge, this scheme
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is the only self-checksumming protection measure whose source code is publicly available. [39]
proposed a check and fix protection scheme that utilizes a set of linear testers that compute a
hash over certain regions in the process memory. Upon mismatch detection correctors attempt
to heal the tampered program.

[37] proposed a technique combining cyclic checks and self-encryption. In this scheme, first
cyclic guards are injected and then the entire program is encrypted. An emulator is shipped with
the program which can decrypt and eventually execute it. The decryption key is shipped into the
binary using white-box cryptography, so attackers can not easily extract it from the program.
[36] did a similar protection with the difference of using virtualization obfuscation instead of
self-encryption. In addition to that, a set of self-checking guards are generated on the fly to
protect the dynamically translated program in the cache. [46] applied control flow flattening
obfuscation transformation in combination with self-hashing protection guards. In their scheme,
random intervals of a program are checked using CRC32 checksums.

[60] used constant mutation at runtime so that the same memory address is used for multiple
code and data blocks in one execution.

Secure hypervisor is used by some protection mechanisms to protect the process memory.
[31] used a secure hypervisor to verify code pages of the protected programs. [54] proposed a
measure that utilizes a secure emulator, code singing and encryption. First programs code blocks
are signed and encrypted. Later, the secure emulator can decrypt and execute the genuine code
blocks. [91] proposed a hypervisor monitoring tool called VMI to introspect the memory of run-
ning virtual machines. VMI has to, however, be executed with root permission on the host. [13]
aimed for integrity protection in IoT devices by proposing a concept of secure (tamper resistant)
tasks enabled by a trusted hardware. Furthermore, a secure interprocess communication protocol
is also designed. In order to pass a secure message, a source process loads the message m and
destination id, did, into CPU registers and then triggers a secure IPC interrupt. The interrupt
eventually makes m along with the sid accessible for destination process/task. [67] proposed a
hardware assisted hypervisor that enables users to define their custom integrity routines. Sim-
ilarly, [47] proposed to equip hosts with custom attestation and measurement probes to detect
violation of integrity.

[11] proposed a technique to use SGX secure enclaves to place the entire application in isolated
containers. This prevents attackers form runtime process memory manipulations.

Static protection to isolate process memory was done in [71]. Their goal was to ensure genuine
geolocation information by starting the service in a lightweight hypervisor which is secured by a
TPM.

Timed traces are another representation which was used to build protection schemes. In
effect, [43, 42] based their schemes completely on timing analysis to verify process memory. In
this approach, once the attestation is launched, all active memory contents are copied to the
flash memory. Then, the verifier sends a random seed that the attestation client uses for proof of
computation. At different check-points the verifier sends further seeds and defines the memory
addresses that need to be incorporated in the proof computation. Meanwhile, timing analysis
could be used as an additional source of information. For instance, [81] used reflection as its core
of integrity protection, but also utilized timing analysis for additional hardening.

5.2.4 Runtime data

To protect runtime data, data invariants and trace representations were utilized by the reviewed
protection schemes. The correlation indicates that 7 schemes operate based on the data shape
representation. [49] relied on an authenticated data structure (Merkle tree) to enable users

0https://github.com/google/syzygy/tree/integrity
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to verify correctness and freshness of the access control policies and user data. [16] used a
combination of static analyzer and memory analyzer to detect data tampering that leads to
kernel exploits. [83] used SDN to route data to an extra node to verify network data integrity.
[40] proposed to utilize a set of checkers are added to the program to check return values of
the sensitive functions. Inputs for these checkers are generated using symbolic execution. [34],
similar to [40], proposed to feed the return values of a given service to a set of clones and have
a majority vote based scheme to decide upon integrity of the service. [52] proposed to first run
a program using the Daikon tool [32] to capture dynamic data invariants. From these invariants
later a set of guards are generated and injected into the program of interest. At runtime these
invariant should hold, otherwise response function is triggered. [17] proposed a technique which
uses data flow graph to build a data model. At runtime the conformance of the application data
flow to the model is frequently verified.

Trace representation was used in two protection schemes to authenticate data integrity. [10]
utilized white box cryptography to protect the integrity of a configuration file in the Chromium
browser. A white box proxy enables Chromium to sign and verify genuine configuration files.
While attackers have difficulties extracting the key from white box crypto, they might be able to
subvert the execution flow and misuse the proxy to sign malicious configuration files. Therefore,
this scheme authenticates any call to the proxy.
[20] incorporated a selected set of memory references into hash variables. The constant program
data can be protected using this measure. However, incorporating input data will make it impos-
sible to precompute expected hashes, due to nondeterminism in programs.

In this correlation we identified and discussed the different schemes to mitigate particular
MATE attacks, viz. binary, control flow, process memory and runtime data manipulations, at
different representations. Amongst the reviewed schemes only [85] targeted distributed systems.
This work, however, focused on adding resilience to the static representation against buffer over-
flows. All the other reviewed schemes focused on protecting assets in a centralized application,
which might be in contact with a remote server. However, these schemes clearly fall short in
protecting a software system that is comprised of a set of distributed nodes, communicating over
network. Protecting program representations in a distributed architecture appears to be a major
gap.

5.3 Defense integration to program lifecycle
Each defense comes with a mean in which monitoring probes are hooked, connections to response
algorithm are established and hardening is applied. In a defense mechanism Transformation
is the component that employs protection in a program by applying necessary modifications.
Transformations may target different stages of a program varying from source codes to executable
binaries. This will impose some constraints on the applicability of defenses to different contexts.
For instance, one may have no access to the source code for a third party component. That is,
for such cases, all the defenses based on source code transformations become irrelevant. The
stream viewer in the DRM sample is an example of such components.

In addition to the constrains imposed by lifecycle activities, program representations on which
protections are applied impose further constrains. For instance, monitoring memory can impose
intolerable overheads in IoT devices. Therefore, it is of major importance to identify integration
constraints of protection schemes in different application contexts. To capture this concern,
we analyze the correlation between transformation target and system representation. Table 5
illustrates the outcome of this correlation. We discuss the correlation by iterating over lifecycle
activities as follows.
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Table 5: Defense mechanisms for different (asset) representations and their correlation to program
lifecycles.

Representation
Static Code inv. Data inv. HWC Trace Timed

trace

L
ife

cy
cl
e

Pre-compile - [31] [81] [49] [16] [40]
[52] [17]

[81] [10] [44] [56] [81]

Compile [85] [46] - - [20] -
Post-compile [30] [71] [53] [18] [39] [13] [67] [8] [37]

[19] [47] [74] [6] [36]
[54] [88] [91] [11]

[34] [62] [1] [41] [69] [70] [63] [42]
[79] [43]

Load - [36] - - - -
Run [23] [60] - - - -

5.3.1 Pre-compile

In the following we have a closer look at the schemes that operate on the source code level and
discuss their correlation to the asset representations.

Code invariants [81] proposed a scheme for remote verification of integrity protection. The
idea is to retrieve a program’s code shape using reflection and subsequently computing a hash
over it. This hash is then reported to the remote party. These reflection calls are injected into
the program source code.

[31] proposed a scheme that requires developers to generate integrity manifests for all programs-
to-protect. Integrity manifest contain program measurements and a unique program identity.
These manifests need to be shipped to a secure hypervisor which follows the measurements to
evaluate the integrity of programs at runtime.

Data invariants According to the correlation outcome there are four schemes that operate
on data shape to verify software integrity. We will discuss these schemes, focusing on their
integrability to systems. Data invariants verification is the technique that is used in [52]. In
order to capture these invariants, the Daikon tool is utilized, which requires programs to be
instrumented and subsequently executed. Afterwards, in the protection phase, these invariants
are verified by a set of protection guards.

[49] proposed a mechanism to protect program inputs using a set of data integrity polices
specified by users. These policies are enforced by the mean of an authenticated data structure
[65].

In order to protect program functionality at runtime, [40] proposed a scheme for C# programs
in which return values of program functions are tested in a network of cyclic checks. To construct
checkers, the PEX symbolic execution tool [86] is used. PEX generates test cases (input-output
pairs) for the functions of interest. Checkers are generated based on the test cases. They invoke
a protected function with the test’s input arguments and subsequently match the output of the
function with the expected result of the test case.

Conversely, [16] designed a scheme that inspects kernel’s dynamic data to detect tampering
attacks. They claim that their scheme can protect up to 99% of such attacks on kernel.

Trace The following schemes rely on trace data to evaluate program integrity. Given that
log records intrinsically capture enough information about the executed trace, [44] based their
scheme on recovering a program trace from its logs. In this scheme program code needs to be
augmented with a comprehensive logging mechanism. A hash chain mechanism is utilized to
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preserve the forward security properties. The logs are supposed to be verified by a trusted ex-
ternal entity Since attackers cannot forge logs, the verifier can detect malicious activities during
verifications. [56] proposed a scheme which aims at diversifying program’s execution trace by
randomly executing non-trivial clones of the sensitive functions. The downside is that all the
non-trivial clones have to manually be implemented. [10] aimed at defeating control-flow hijack-
ers by a set of stack trace introspection guards. These guards are injected in the prologue of
sensitive functions in the source code.

5.3.2 Compile

Compiler level protection could potentially generate far more optimized protection routines
thanks to built-in optimizations. Despite the benefits, compiler-based protections require ac-
cess to the source code. Also, compiler transformations will target a specific compiler and hence
restrict the choice of compilers at the user end.

Furthermore, since compiler optimization passes are oblivious to protections implemented,
they could potentially break them and thus cause false alarms in protected programs. For
instance, some compilers utilize enhanced memory caching by block reordering. This relocates
program blocks after protection is laid out and hence breaks the hash checks in self-checksumming
based protections, resulting in false alarms [8].

In our survey we only found three compiler based protections. Junod et al. [46] implemented
a scheme that aims at protecting code shape by a combination of control flow flattening and
tampering protection in a compiler pass (implemented in the LLVM infrastructure). On the
negative side, no evaluation results on the tamper resistance overhead were published in this
work. In an effort for securing distributed programs against buffer overflow exploits, [85] proposed
a LLVM based analysis tool that combines the CFG of all individual programs to construct a
distributed CFG. The distributed CFG is to improve the accuracy of vulnerability detection.
Oblivious hashing [20] is another scheme that is implemented in abstract syntax trees. It operates
on in-execution representation to authenticate program trace. In this transformation, program
assignments and branching conditions are reflected in a hash variable that serves as a trace hash.
Later, this hash could be verified at any desired point in the program.

5.3.3 Load

In our survey, we only found one research work that transforms program instructions at load
time. Ghosh et al. in [36] proposed a tamperproofing technique on top of instruction virtualiza-
tion obfuscation1. In this scheme, a mechanism was designed to protect translated instructions
(code invariants) within the emulator in a program by safeguarding them using a network of
checkers (similar to [19]) along with frequent cache flushes.

5.3.4 Run

Transforming applications at runtime is another option. These transformations render adver-
saries’ knowledge obsolete by turning the protection into a moving target. In this setting, at-
tackers have a limited time before the next mutation takes place, and hence their success rates
deteriorate. Collberg et al. [23] proposed a scheme for client-server applications in which the
server API is constantly mutated using diversification obfuscation techniques, forcing clients to

1It is a technique in which program instructions are randomized such that only the shipped emulator can
execute them [5]
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update frequently. Assuming that the server is secure, attackers have a limited time to carry out
reverse engineering attacks on client applications (static). Soon after the server API is mutated,
client applications have to be updated to reflect API usage changes, which renders attackers
knowledge obsolete.

The downside of this scheme, however, is the obligation of having the server and the clients
constantly connected to receive highly frequent updates

Similarly, [60] proposed a tamper resistant scheme based on dynamic code mutation in which
program’s data and code in the process memory are regularly relocated such that code and data
memory cells are indistinguishable. That is, a particular memory cell (which is allocated for the
process memory) serves both data and code during the course of an execution. Dynamic code
mutation aims for keeping the code unreadable until execution time. Therefore, we classified this
scheme as code invariants protector.

The basic assumptions in this technique are that reverse engineering (and hence tampering
with programs) is harder a) when program code and data are indistinguishable, and b) when
there is no fixed mapping between instruction and memory cells so that the same memory region
is used by multiple code blocks at a course of execution.

The general observation is that runtime transformations are technically much more challeng-
ing to implement, which justifies the limited number of schemes in this category.

5.3.5 Post-compile

Post compilation transformation operates at the binary level. That is, compiled programs and
libraries, without presence of their source code, can be protected. Because of their applicability on
majority of product line, plenty of schemes utilize post-compile transformation. In fact, we found
protection schemes for all the system representations which carry out their transformations in a
post-compile process. In the following, we elaborate on these schemes classified by their target
representations.

Code invariants Schemes that protect the code invariants (introspection) in a post-compilation
transformation process are listed in the following. To protect integrity of Android applications
[74] proposed a self-encrypting scheme that operates on the intermediate representation of An-
droid programs, i.e. Dalvik executable files. Although the key is shipped with the program, this
scheme adds resilience against tampering attacks. [8] applied self-checksumming transformation
on windows portable executable (PE) binaries. [19] used cyclic network of checkers with repairers
to recover tampered blocks to protect WIN32 (DLL and EXE) binaries. Similarly, [39] protected
binaries based on self-checksumming technique. [47, 67, 91, 54, 13] proposed schemes that oper-
ate at the hypervisor level to protect program binaries. [11] used an isolation supported by Intel
SGX to place the entire applications inside protected enclaves and protect them from attackers.
[37, 54, 6, 88] proposed to encrypt program binaries in order to protect it. [36] designed a method
that transforms program binary into a random instruction set to carry out protection.

Data invariants We identified two schemes that protect data integrity in after compilation.
In the scheme proposed by [34] multiple clones of a program are simultaneously executed to
detect instances that diverge from the majority of the clones. Malone et al. in [62] proposed a
scheme that has two phases: calibration and protection. In the first phase a program is executed
while hardware performance counter (HPC) values are continuously collected. A mathematical
tool is then utilized to identify hidden relations among the gathered data in form of equations,
which essentially captures the effect of genuine execution of the program on HPC. Finally, a set
of guards are injected in the program to evaluate those equations at different intervals. However,
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both Windows and Linux operating systems prohibit any access to HPC instructions in user-
mode. This essentially requires applications to invoke a kernel call to read HPC values at runtime,
which opens the door for call interceptions.

Static (file) To protect the integrity of static files checksum based techniques were proposed
in the literature. [53] introduced a tool to verify signatures of a large number of binaries on a
system. [30] enabled a remote verifier to compute and verify checksums of static files residing
on a server. In this model, the verifier sends a challenge with which the server has to initialize
checksum variables. To protect operating system static services [18] proposed a technique to
guarantee the integrity of standard operating system application by safeguarding core software
package providers.

As a mean to protect specific services in a system, [71] developed a genuine geolocation
provider service that is enclosed in a statically secured lightweight hypervisor.

Timed trace [79, 63] are two consecutive schemes that authenticated the integrity of legacy
systems (no multi core CPU) by measuring the time differences between genuine and forged
execution of programs (timed traces). Similarly, [42, 43] also relied on timing analysis to detect
malicious behaviors in remote programs. In these schemes, the verifier requests a checksum
over certain regions of the process memory (memory printing) and at the same time measures
the elapsed time. The checksum value and timing analysis enables the verifier to reason about
integrity of the system. Nevertheless, during the memory printing process the system must stop
functioning, otherwise the timing data will be inconsistent.

Trace Trace representation is utilized by a set of protection schemes to protect control flow
integrity. Abadi et. al in [1] proposed a scheme in which the integrity of control flow is verified
by a simple token matching scheme. For this purpose, before every jump instruction a unique
token is pushed into the stack. Subsequently, at all destinations (jump targets) a predicate is
added to verify the token which should have been previously added to the stack. [41] leveraged
invariant instruction length on x86 architecture to design a scheme with which tampering leads
to an inevitable crash at runtime. [70] verified branching patterns to detect ROP attacks at
the Windows 7 kernel, which can transparently protect all executing applications without any
modification in them.

In the correlation of transformation lifecycle and protected representations, we classified
schemes based on their representation-to-protect and their applicability on different program
lifecycles. Our results indicates a gap in compiler based, load and run time protection schemes.

5.4 Correlation of transformation lifecycle and protection overhead
Another interesting direction to look into is the influence of the transformation lifecycle on
the overhead of schemes. Compiler-level transformations leverage optimization passes in the
compilation pipe line. Naturally, applying transformation at compiler-level should impose less
overhead in comparison to post-compile transformation schemes. Mainly because binary level
modifications occur at the end of the build pipe line, where no further optimizations are carried
out. To capture this view we correlate overhead classes with the transformation lifecycles that
is presented in Table 6. We map our surveyed papers on 4 classes of overhead indicators, viz.
N/A, Fair, Medium and High.
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Table 6: The correlation between the transformation lifecycle and overhead.
Lifecycle

Pre-compile Compile Post-compile Load Run

O
ve
rh
ea
d

Fair [31] [52] - [1] [62] [21] [71] [67] [69] [37] [79] [36] [70]
[91] [11]

[36] [23]

Medium [10] [44] - [33] [8] [88] [43] - [60]
High [49] [85] [41] [13] [42] [19] [74] - -
N/A [56] [16] [81] [40]

[17]
[20] [46] [30] [39] [63] [6] [54] [34] [53] [18] - -

5.4.1 Fair

As can be seen in Table 6, a majority of schemes with fair overhead are directly applied on
the binaries, i.e. post-compile transformation. Precisely speaking, [36] with 10% overhead (in
addition to the virtualization overhead which is reported to be about 30%) from the load category,
[31, 52] with 8-10% overhead from the pre-compile category, and [23] with 4-23% overhead from
the run category.

5.4.2 Medium

In our survey we identified 6 schemes with a medium overhead. In post-compile category [33]
with 128%, [8] with 134% for non-CPU intensive applications and [88] with 107% are classified
as schemes with a medium overhead. In the pre-compile category, [10] with 130% and [44] are
in medium class. In the run category, [60] with an overhead of 107% (for a program with 70
protected basic blocks) falls under this overhead class.

5.4.3 High

In the high overhead class, we found 7 schemes for pre-compile and post-compile transformation
activities. [49] imposes 5x slowdowns on reads and 8x slowdowns on writes. Similarly, [74]
introduces an overhead of 500%, [41] and [13] both are reported to impose 3x slowdown in
protected applications. [85] utilizes an algorithm with complexity of O(N2 + 2N ).

5.4.4 N/A

We mapped all the schemes without performance evaluations or insufficient results into this class.
A major problem with the performance evaluation of the reviewed protection schemes is lack of
comprehensiveness. Thus, we are incapable of estimating the overhead of over 16 protection
schemes. Surprisingly, the two compiler-level protection schemes [46, 20] also fall under this
category.

This correlation once again shows that there is a gap in benchmarking protection schemes. To
the extent that from our results we cannot approve nor reject the hypothesis that compiler-level
transformations perform better.

We would like to emphasize here that this classification is just an estimation based on the
authors’ claim on the efficiency of their proposed schemes. Therefore, depending on what dataset
was used in the evaluation process by the authors, the overhead might differ. A fair evaluation
would be to use a constant dataset to measure overhead of different schemes.

Unfortunately, this is not possible due to two reasons. First, to the best of our knowledge, very
few of the reviewed schemes were made open source. Secondly, even if the source codes were
available we would not be able to compare their performance without further classifications.
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Because these schemes are designed for different operating systems and different representations.
Thus, they need to be clustered technologically and then evaluated.

5.5 Check and Monitor representation
Protection schemes, as stated earlier, operate on a particular representation of the assets. This
implies a sort of monitoring mechanism on the representation of interest. The collected data
(in the monitoring process) need to be analyzed and ultimately verified by the scheme’s Check
compartment. Studying the different check methods for verifying different asset representations
is particularly interesting. Table 7 depicts the correlation of check and representation items.
Based on this correlation we report on different check methods that were used in the literature
as follows.

5.5.1 Code invariants

Expectedly, the majority of code shape verifiers with a total number of 13 use checksum based
techniques, which also includes hash functions In addition to checksums, [6, 54] employed signa-
ture matching as a secondary measure for tamper detection. [11, 13] maintained code invariants
security by enforcing access control at a trusted hardware level.

5.5.2 Data invariants

In order to check the data shape, 3 schemes [83, 40, 34] used majority vote principle. On the
other hand, [62, 52] used equation system to verify the integrity.

5.5.3 Hardware counters

[62, 82] used hardware performance counters in their checking mechanism.

5.5.4 Timed trace

[42, 43, 63, 79] computed a checksum alike routine and measure the elapsed time.

Table 7: The correlation of the representation and check mechanism.
Asset representation

Static Code inv. Data inv. HWC Timed trace Trace

C
he

ck
m
ec
ha

ni
sm Access control - [13] [11] - - - [10] [70]

Checksum [68] [30] [31] [39] [67] [8] [47]
[46] [19] [74] [6] [36]
[54] [88] [91]

- - [63] [42] [79] [43] [44]

Equation eval - - [52] [62] - -
Majority vote [29] - [83] [40] [34] - - [44]
Signature [53] [18] [6] [54] - - - [44]

The correlation between checking mechanism in different protection schemes suggests that
checksumming is the most used technique for integrity verification. Other checking measures
such as signature verification, access control, equation evaluation and majority votes are equally
unpopular.
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5.6 Monitoring representation correlation with protection level (en-
forcement level)

In this subsection we are aiming to find out which representations could be monitored at which
protection level. For this matter, we correlate protection level and representation in Table 8.
Since we are interested in identifying the possibility of monitoring representations at different
levels, we only indicate the number of citations instead of citing the references.

Table 8: The correlation of the Representation and protection level.
Static Code invariants Data invariants HW counters Timed trace Trace

Internal 2 10 3 1 - 7
External 5 5 4 1 5 2
Hypervisor 1 4 - - - -

The correlation indicates that both the internal and external protection levels have no limita-
tions on monitoring system representations, with the exception of traces which were not targeted
by any of external protectors in the reviewed literature.

Furthermore, the correlation shows a gap in the hypervisor-based protection techniques in
which none of the data shape, hardware counters and traces were used in the reviewed schemes.
It is not clear whether this is due to a technical limitation of hypervisors or simply a research
gap. Further studies should be conducted to address this gap.

5.7 Hardening vs. reverse engineering attacks and tools
Attacks perhaps are the least studied (and published) part of the integrity protection schemes.
This is due to two main factors: a) plenty of security measures in industrial protection schemes
such as Themida and VMProtect are not publicly disclosed, which in turn, has left researcher
without enough knowledge about their security. b) Breaking schemes is unethical as it opens the
gate for the attackers to compromise system’s security. For example, the CIA Vault7 windows
file sharing exploit has led to WannaCry ransomware which infected 213,000 windows machines
in 112 countries [7].

Due to the lack of comprehensive research on attacks on integrity protection schemes, eval-
uating their security against various attacks is impossible. Therefore, as an initial step towards
analyzing the security of these schemes, we made assumptions regarding the resilience of protec-
tion schemes against different attacks. In the following we state our assumptions:

1. Disassembler: code concealment and layered interpretation hardening measures hinder
disassembly. Code concealment techniques commonly affect the correctness of static disas-
semblers [57].

2. Debugger: in a strict sense only schemes that directly utilize anti-debugger measures
impede debug based attacks. These technique are, however, ad-hoc [2]. In this work,
we consider hardening measures that impose some difficulties on the ability of debugging
programs as counter debug measures. Cyclic checks, layered protection and mutation
are the three hardening measures that we believe impede debug based attacks. Cyclic
checks confuse attackers and exhaust their resources. Layered protection complicates the
program execution flow and thus has an impact on the effectiveness of debugging. Mutation-
based techniques renders debug knowledge useless after each mutation. Furthermore, SGX
protected application cannot be debugged in production.
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Table 9: MATE tools resilience in the reviewed schemes.
Disassembler Debugger Tracer
[6, 10, 8, 60, 74, 88] [8, 11, 13, 19, 21, 31, 33, 37, 36, 40, 46, 54, 60,

67, 91]
[11, 23, 36, 41, 56,
60, 91]

3. Tracer: enable attackers to monitor what instructions are actually being executed by the
program. With the help of this tool, attackers could effectively bypass code concealment
and virtualization as program instructions have to be translated and eventually executed.
This is the point that a tracer can dump the plain instructions. Nevertheless, frequent
program mutation renders captured data useless. Furthermore, code clones are normally
harder to capture using a tracer and thus it hinders tracer based attacks. Intel SGX
isolation, by design, resist against tracers.

4. Emulator: enables adversaries to analyze protected programs in a revertible and side-effect
free environment. In effect, this defeats response mechanism and gives unlimited attempts
to attackers. Beside anti-emulation measures, which are again ad-hoc, only hardware based
security appears to impede emulators. However, emulation on its own does not break
an scheme, as attackers have to utilize other tools to detect and ultimately defeat the
protection. Simply put, emulation acts as a facilitator for attacks. Therefore, we exclude
emulator resilience from our analysis.

With the given assumption we have classified the reviewed literature based on their hardening
measures. Table 9 represents the mapping between different schemes and their resilience to
MATE Tools.

5.8 Resilience against known attacks
As mentioned earlier, the security of integrity protection schemes has not been thoroughly evalu-
ated, due to the obscurity and lack of access to the resources. This has led to very few attempts
on breaking such schemes.

To the best of our knowledge, three generic attacks on integrity protection schemes were
published, two technical attacks and one conceptual work for manifesting attacks. In the following
we discuss these attacks and map them to the hardening measures that could potentially address
them.

1. Pattern matching: There are no paper on pattern matching attacks on different protec-
tions schemes. Additionally, most of the papers mention obfuscation as the golden hammer
against pattern matching and entropy measurements. Unfortunately, we cannot evaluate
resilience of the reviewed schemes against pattern matching as their source code is not
available. Therefore, we do not consider this attack in the mapping process.

2. Memory split: Wurster et al. in [89] proposed an attack to defeat self-hashing protection
schemes by redirecting self-reads to an untampered version of the program loaded in a
different memory address. For this purpose, they modified the kernel to establish two
distinct memory pipelines for self-read and instruction fetch (execution). In this setting,
the execution pipeline can readily be tampered with by attackers and self-reads remain
unaware of such modifications.

To address this generic attack, Giffin et al. in [38] proposed self-modifying code defense
mechanism. The idea is to add a token to the program code at runtime and verify it
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accordingly. Dynamically generated tokens can detect redirection of self-memory reads in
the protected processes.

Self-modifying code, despite its effectiveness in thwarting memory split attacks, opens the
door for other integrity violating attacks. The reason being that enabling self-modification
requires flagging writable memory pages as executable pages in the program. This raises
the concerns about code injection attacks [4], in which maliciously prepared memory blocks
could potentially get executed.

This attack only applies to introspection based techniques, i.e. techniques in which a
program’s code blocks have to be read at runtime. Thus, state inspection based techniques
are resilience against memory split attack. In addition to that, self mutating protection
schemes express the same effect as the defense that was proposed by [4]. All in all, our
survey shows state inspection based and mutation based techniques mitigate the memory
split attack.

3. Taint analysis to detect self-checksumming: Qiu et al. in [75] proposed a tech-
nique to detect self-checksumming guards in programs. Their attack relies on the fact
that these class of protections forces a protected program to read its own memory at run-
time. This obligation enabled them to utilize dynamic information flows in detection of
self checksumming guards and check conditions (which trigger the response mechanism).
Technically speaking, their approach captures a trace of the program (using Intel Pin) and
then searches for a value X which is tainted by self memory values (backward taint analysis)
and then detects those Xs that are used in a condition (forward taint analysis).

This attack appears to be the ultimate attack on self-checking protection schemes as it can
in theory detect all checks in a given program. However, tracing medium to large sized
programs will generate massive trace logs that have to be analyzed. [8] reported analyzing
a small trace (captured in 10 minutes) of Google Chromium using the tainting technique
requires a long time in which only 1% of the traces were analyzed in a day.

Since this attack relies on a Tracer tool (Intel Pin), we can mark schemes that resist against
tracer as resilient to the attack presented in [75]. Needless to say that larger programs,
due to the complexity of the backward and forward taint analysis, in general cannot be
targeted by this attack in a reasonable time.

4. Graph based analysis: Dedic et al. in [29] indicate that flow graph analysis such as
pattern matching and connectivity analysis (given that checker nodes are weakly connected
to other graph nodes in a program) can help defeat the existing protection schemes. They
developed a graph based game to formally present these attacks.

Against these attacks, they proposed three design principles, viz. strongly connected checks,
distributed checks and threshold detection schemes, that can significantly harden the identi-
fication and disabling of a tamper protection technique. Strongly connected checks requires
checkers to be strongly connected to other nodes of the program. Distributed checks refers
to a network of checkers which an attacker has to disable them all in order to success-
fully tamper with an application. Threshold detection schemes suggests to call a response
function only when a k number of checks failed. This prevents attackers from sequentially
detecting checkers in the program.

This work can be seen as a conceptual work with no actual implementation of the defenses
or attacks. It would be interesting to employ the suggested measures and carry out the

1Intel pin is a dynamic program instrumentation tool
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Table 10: Resilient schemes against the two known technical attacks.
Taint based attack Memory split attack
[11, 23, 36, 41, 56,
60, 91]

[1, 10, 12, 13, 16, 17, 20, 23, 34, 36, 40, 41, 42, 43, 44, 49, 52, 60,
62, 63, 67, 69, 70, 79, 81, 83, 85]

attack to verify their claim. None of the reviewed schemes appears to utilize all the defenses
together. Therefore, it might be the case that in theory all of the schemes are defeated by
the graph based attack. Since this attack has not been implemented in practice, we rather
leave it for further evaluations.

In Table 10 we map the schemes that resist against the two practical attacks.

6 Related Work
The closest and yet distant research to our work is ASPIRE (www.aspire-fp7.eu) project. It is
a project funded by European Union for software protection. ASPIRE is designed to facilitate
software protection by introducing a reference architecture for protection schemes. Conformance
to this architecture enables practitioners to compose a chain of protections simultaneously, which
offers more resilience [84]. Data hiding, code hiding, tamperproofing, remote attestation and
renewability are the core protection principles that are addressed in ASPIRE.

ASPIRE introduces a security policy language expressed by annotations. To protect a pro-
gram using this framework, end-users have to annotate programs with their desired security
properties. A compiler tool chain is designed which analyzes these annotations and carries out
necessary protection steps. To do so, the tool chain comes with three components: a source code
transformation engine powered by TXL [28], a set of routines to link external protection schemes
compatible with standard compilers (LLVM and gcc), and a link-time binary rewriting infras-
tructure for post-compilation protections powered by Diablo (http://diablo.elis.ugent.be/).
All these enable rapid development of protection tools which could be used by different programs
in a customizable and yet composable manner.

The ASPIRE framework focuses on a technical architecture for design and employment of a
wide range of protection mechanisms (not only integrity protection). However, both the programs
to protect and the protection schemes have to conform to the requirements of the tool chain.
Specifically, the source code (in C/C++ language) of programs is mandatory. Furthermore,
constraints of each scheme need to be specified in its manifest. The framework uses these
manifests to report potential conflicts to users based on which they can identify and subsequently
single out conflicting measures.

The ASPIRE project has not provided a taxonomy of integrity protection schemes and does
not include comparison of different schemes. In fact, the outcome of this work can contribute
in extending the ASPIRE architecture to accommodate a wider range of integrity protection
schemes, namely by means of introducing new requirements for the annotation language (such
as desired resilience against certain attacks), and extensions for the support of further protection
schemes (such as hypervisor based and hardware assisted ones).

To the best of our knowledge, our work is the first taxonomy of integrity protection schemes.
Therefore, reviewing existing taxonomies was not an option for us. Instead, we reviewed scheme
classifications and surveys on integrity protection. In the following we report on the reviewed
publications.
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6.1 Existing Classifications
Mavrogiannopoulos et al. in [64] propose a taxonomy for self-modifying obfuscation techniques,
which essentially is based on the concept of mutation.

Collberg et al. in [26] classify integrity protection techniques into four main categories:
self-checking, self-modifying, layered interpretation and remote tamper-proofing. In a similar
effort, Bryant et al. [15] classify tamper resistant systems into 6 categories, viz. hardware
assisted, encryption, obfuscation, watermarking, fingerprinting and guarding. Considering the
fact that watermarking on its own does not contribute to integrity protection, we exclude it from
our analysis. Guarding also fits the self-checking category, thus it can be omitted. Likewise
encryption is a substance of self-modifying primitive. After we resolved the conflicts, we study
the structure of the five remaining categories of integrity protection techniques as follows.

Self-checking. This refers to a technique in which self-unaware programs are transformed into
somewhat self-conscious equivalent versions. The transformation is done via equipping programs
with a set of monitoring probes (checkers/testers), that monitor some authentic features of the
target program, along with a group of assertions, who compare probe results to the corresponding
known expected values and take appropriate actions against tampering attacks.

Depending on which features of a program are being monitored, self-checking itself has two
subcategories: Introspection and State Inspection. The former exercises the shape of a program,
for instance code blocks, whereas the latter is after monitoring the program’s execution effects,
for example the sum of a program’s constant variables. Among the two, state inspection is more
appealing because, unlike the introspection, it reflects the actual execution of a program, and
thus it is harder to counterfeit. However, monitoring dynamic properties of a program is more
difficult compared to the static code shape verification.

Self-modifying. Turning a program into a running target by mutating it at runtime is the
idea behind self-modifying techniques. The majority of schemes that are based on this technique
use encryption as the mean to mutate and ultimately to protect a program. However, there are
some schemes that use instruction re-ordering, instead of encryption, to mutate the program.

Mavrogiannopoulos et al. in [64] define four main criteria in their proposed taxonomy for
self-modifying obfuscation techniques: concealment (the size of program slices that are being
modified at each mutation interval), encoding (the technique that is used to mutate the code,
e.g. instruction reordering or encryption), visibility (whether the code is entirely or partially
protected) and exposure (whether the actual code is permanently or temporarily obtainable at
runtime). Nevertheless, in a more recent survey, virtualization was also proposed as a relevant
technique in [90], but we rather consider virtualization as a subcategory of layered interpretation
techniques.

Sasirekha et al. in [77] review 11 software protection techniques. Their research confirms
the trade off between and security and performance for all the reviewed schemes based on which
they suggested compiler-level protection as possible direction for further research. However, their
work lacks any classification of techniques.

Layered interpretation. In this approach a program’s instructions are replaced with a set
of seemingly random byte codes. These codes can only be executed with a program specific
emulator that is normally shipped with the program itself. Tampering with the program byte
code may result in unrecognized byte code in the emulator and may eventually causes failures.
However, some techniques (for instance [54]) perform integrity verifications at the emulator prior
to executions. In general, layered interpretation techniques add resilience against static program
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analysis attacks. To the best of our knowledge, there is also no published taxonomy on layered
interpretation protection methods.

Remote tamper-proofing. Protection schemes that enables a software systems to be verified
externally fall under this category. In an abstract sense, remote tamper proofing has very much
in common with remote attestation concept. Since remote attestation is a vast field of research
that deserve a taxonomy on its own, its classification falls out of the scope of this paper.

6.2 Comparison of schemes and surveys
Dedic et al. in [29] define distributed check and threshold based detection as significant resilience
improver factors in integrity protection schemes. They use a graph based game and theoretically
prove the enhanced complexity of the scheme with the aforementioned factors. From this work
two interesting features are extracted: detection and response algorithms.

In an effort for security classification and unification of protection notation, Collberg et al.
after defining a notation, use natural science and human history to derive a set of 11 unique
defense primitives in [25]. These primitives state the defense concepts rather than security
guarantees.

In an effort for MATE attack classification, Akhunzada et al. in [3] study different types and
motives behind these attacks. As another outcome of their work, they stressed that performance
factor is one of the main pain points of protection techniques. However, it appears that no study
tackled this matter and there is a lack of a benchmark for protection schemes [3]. The focus of
their work is not the techniques-to-protect themselves, but rather the attackers. Consequently,
the security guarantees are not studied.

The main gap here is lack of a holistic view software protection process. The process itself
is not well defined, business requirements are not elicited, constraints are not studied, and more
importantly, security guarantees that different schemes offer are not studied.

7 Future of integrity protection
Integrity protection is a crucial subject in cyber security. We believe this subject will attract
more attention as the trend of digitalization expands into more domains of our daily life. As a
matter of fact, the Internet of Things (IoT) is one of the major domains which requires immediate
action w.r.t. integrity protection. The reason is the exposure of IoT devices to MATE attackers.

Integrity protection will be impacted by three dimensions: a) trusted hardware, c) computer
networks and (c) complexity of software systems. As a consequence of advances in trusted hard-
ware, software based integrity protection will perhaps be slowly replaced by more hardware based
or hybrid methods. Simply put, advancements in secure and yet cheap hardware equipments will
be a major influence on the transition from software based to hardware aided integrity protec-
tion. However, this transition will require a new adaptation of the current trust model utilized
by trusted hardware.

Network advances can enable a far more flexible software systems with respect to connectivity
requirements. Currently, enforcing constant connections between a remote trusted party and a
client system is undesirable in many contexts, e.g. the automotive industry. Lower latency and
higher availability in communication protocols can foster a new model of integrity protection
that far more relies on remote parties.

Beside hardware and network improvements, software systems are getting more complex as
a natural response to complex problems. This negatively impacts integrity protection, as it
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becomes more challenging for users to apply protections. Therefore, integrity protection requires
a solution to reduce the complexity of protection.

In the following we have a closer look at the aforementioned influencing dimensions.

7.1 Trusted hardware and collective trust model
Advances in hardware aided integrity could offer better program isolation and hence better
integrity. Moving towards future, secure hardware should become more and more common in new
computers. Dedicated hardware can improve integrity protection. However, trusted hardware is
and will not be silver bullet. Side channels remain a problem in such systems. Recent attack
proposed in [78] on SGX protected program enabled attackers to extract RSA keys from protected
(fully isolated) enclaves. This proves that integrity protection against MATE attacks remains a
cat-mouse-game.

Hardware security can potentially improve integrity protection in software systems. Never-
theless, this is a double edged sword, as malware can also benefit from such technologies to hide
their malicious behavior from anti viruses or malware analysts. To cope with this problem, Intel
SGX requires protected programs (enclaves) to be signed by Intel in production machines. This
implies trusting Intel with holding signing keys. Intel argues this is necessary for two reasons.
First, they can sell licenses to use their security technology, without purchasing a license they
will not sign anything. Second, they can control who can use their security system, in an effort
to ensure malware producers are unable to misuse Intel’s ecosystem.

The current model, however, clearly resembles a single point of failure. If the current trend
of block chain and collective trust model persists, it is likely that Intel will not remain the only
player. Most probably a block chain alike system will replace the current model. One naive
realization would be to have a group of semi trusted entities (with conflicting interests) to sign
protected applications. Mapping this to SGX means that n entities will sign enclaves in addition
to Intel. At the user end, the protected program will be executed, if and only if k signatures
match, where 0 < k ≤ n.

A more interesting realization would be to enable users to report any misbehavior of the
protected program by broadcasting a message to a set of disjoint logging entities. Then a set
of third party verifiers (similar to miners in block chain) can verify these broadcast list and
subsequently warn new users about the malicious protected packages. The main benefit of this
approach is that there is no single point of failure.

7.2 Goal based protection
Currently, most protection schemes require the user to specify sensitive regions/data in the
program to be protected. The protection scheme then runs a transformation in order to safeguard
the specified items. For instance, Intel SGX requires users to implement their application in two
regions: trusted and untrusted. The trusted region will access sensitive data and hence shall
be protected by secure enclaves. Software advances along integrity protecting hardwares can
enable a smooth transition from manual software transformation to automatic or at least guided
transformations. One possibility is to have users specify high level integrity goals, instead of
marking code regions, then some static analyzers scan the program and automatically mark
regions of the program to be protected. This not only reduces the effort on the user end, but
also improves the precision of the protection.

Once these sensitive regions are identified, then hardware integrity could be utilized to protect
them. For instance, sensitive regions could be automatically moved into SGX trusted zone and
necessary signature changes could be applied to minimize the user intervene.
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7.3 Tactile Internet
Real-time constraints are one of the main reasons to deliver applications to untrusted clients.
Recent advancement in cloud computing have greatly extended this model by migrating applica-
tion to client-server paradigm. Servers implement functionality of the system and deliver results
to clients as per their requests. Today, we have fully functional word processing applications
hosted on the cloud and enabled users to interact with them via their browser. In this setting,
software vendors need not to worry about license check circumvention as end users do not have
access to the program binaries nor execution environment. A secure authentication mechanism
in effect handles license verifications.

However, given the current latency and availability of Internet networks, shifting to enforcing
clients to stay in direct and constant connections with servers imposes substantial overheads. In
a system with real-time constraint, e.g. the automotive industry, such delays are unacceptable.
Thus, a thick layer of software systems has to reside on the client side to deliver the functionality
within an acceptable time frame.

Advances in tactile Internet, which guarantees insignificant latency and high availability [61],
may render the need for distributing softwares obsolete, by enabling the execution of softwares
on trusted servers and communicating results to endusers. The tactile Internet can change the
current model, by moving the control system away into a trusted secure environment. Moving
the sensitive code into trusted servers does not fully mitigate integrity attacks, however. For
instance, attackers may manage to intercept and forge control commands send to a connected
car. Another attack could be to manipulate internal equipments to behave faulty. Nevertheless,
this shift reduces the attack surface and effectively protects proprietary data.

All in all, integrity protection will move towards a more hardware protected system with a
major dependency on network reachability in realtime. Moreover, user’s role in the protection
process will be as much as defining high-level integrity goals after. The rest of the protection
will be handled by the system automatically.

8 Conclusions
MATE attackers have successfully executed serious integrity attacks far beyond disabling license
checks in software system, to the extent that the safety and security of users is at stake.

Software integrity protection offers a wide range of techniques to mitigate a variety of MATE
attacks. Despite the existence of different protection schemes to mitigate certain attacks on differ-
ent system assets, there is no comprehensive study that compares advantages and disadvantages
of these schemes. No holistic study was done to measure completeness and more importantly
effectiveness of such schemes in different industrial contexts.

In this work, we therefore presented a taxonomy for software integrity protection which is
based on the protection process. This process starts by identifying integrity assets in the system
along with their exposure in different asset representations throughout the program lifecycle.
These steps are captured in the system view, which is the first dimension of our taxonomy. In the
next dimension, the attack view, potential threats to assets’ integrity are analyzed and desirable
protections against particular attacks and tools are singled out. Then, the defense dimension
sheds light on different techniques to satisfy the desired protection level for assets at different
representations. This dimension also serves as a classification for integrity protection techniques
by introducing 8 unique criteria for comparison, viz. protection level, trust anchor, overhead,
monitor, check, response, transformation and hardening. To support the understandability of
the taxonomy we used a fictional DRM case study and mapped it to the taxonomy elements.
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We also evaluated our taxonomy by mapping over 49 research articles in the field of integrity
protection. From the mapped articles we correlated different elements in the taxonomy to address
practical concerns with protection schemes, and to identify research gaps.

In the correlation of assets and representations on which protections are applied we identified
relevant schemes for protecting different integrity assets (behavior, data and data and behavior).
This facilitates the scheme selection based on the assets and representations at the user end. A
major gap was identified in protecting integrity of distributed software systems.

In MATE vs. representation correlation we have shown different schemes that mitigate dif-
ferent MATE attacks, viz. binary, control flow, process memory and runtime data, at different
asset representations.

In the correlation of transformation lifecycle and protected representations, we classified
schemes based on their representation-to-protect and their applicability on different program
lifecycles. Our results indicates a gap in compiler based, load and run time protection schemes.

To study the impact of the transformation lifecycle on the protection overhead, we correlated
transformation lifecycles and scheme overheads. Despite the general belief that compiler based
protection should perform better, our results suggest that post-compilation transformations per-
form quite optimal. Nevertheless, we were unable to verify the performance of compiler based
protections due to lack of benchmark results. We believe the lack of reliable benchmark data as
well as a benchmarking infrastructure is a significant gap in software integrity protection. This
is due to the fact that only implementation of a few protection schemes were made public, for
instance in self-checking schemes only [8] has published their source code. Thus, evaluating their
performance, without re-implementing them, is infeasible.

The correlation between checking mechanism in different protection schemes suggests that
checksumming is the most used technique for integrity verification. Other checking measures
are equally unpopular. The correlation of representation and protection level shows a gap in
hypervisor based protections.

Another major gap in the literature is to analyze resilience of protection schemes against
attacks. Based on our classification data we evaluated the resilience of reviewed schemes against
MATE tools and known attacks on integrity protections. In the resilience against MATE tools
analysis, we proposed a set of assumptions for declaring whether a scheme resists again a certain
MATE tool or not. The assumptions are based on the hardening techniques that are used by
protection schemes. These assumptions were then used to classify schemes based on resilience
against MATE tools.

In the last correlation we analyzed the resilience of reviewed schemes against known attacks
on protection schemes. Our Survey indicated that there is a gap in studying the resilience of
protection schemes against pattern matching attacks. This is again due to a lack of any bench-
mark of different techniques whatsoever. Regarding memory split and taint based attacks, we
first identified hardening measures that impedes such attacks. Subsequently, we marked schemes
as resilient to memory split and taint based attacks according to their hardening measures.

All in all, a big gap in integrity protection research is the lack of a benchmark of performance
and security guarantees, both of which require a dataset of integrity protection mechanisms.

Limitation: The proposed taxonomy only serves as a help for practitioners. We do not claim
that it is exhaustive nor complete w.r.t. industry standard protection processes. A good direc-
tion for future work is to map the taxonomy on standard processes such as Microsoft Secure
Development lifecycle [66].

Our taxonomy puts more emphasis on the defense mechanisms, as the number of published
attacks on integrity protections is incomparably fewer than published defenses. Mapping concrete
attacks will be a good extension to our taxonomy.
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Although we included some research papers on infrastructural security, the main focus of our
analysis was application level integrity protection. In reality, there are plenty of ways in the
infrastructure that adversaries can potentially exploit. Such exploits could lead to circumvention
of defense mechanisms and potentially violation of the application integrity. For instance, one
major attack that we did not address in this work is call interception (also known as call hooking),
which enables attackers to run malicious code by swapping the address of external calls. Another
interesting direction is to map infrastructural integrity protection measures along with known
attacks on them to the taxonomy.
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