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ABSTRACT
Users of online services such as messaging, code hosting and collab-
orative document editing expect the services to uphold the integrity
of their data. Despite providers’ best efforts, data corruption still
occurs, but at present service integrity violations are excluded from
SLAs. For providers to include such violations as part of SLAs, the
competing requirements of clients and providers must be satisfied.
Clients need the ability to independently identify and prove ser-
vice integrity violations to claim compensation. At the same time,
providers must be able to refute spurious claims.

We describe LibSEAL, a SEcure Audit Library for Internet ser-
vices that creates a non-repudiable audit log of service operations
and checks invariants to discover violations of service integrity.
LibSEAL is a drop-in replacement for TLS libraries used by services,
and thus observes and logs all service requests and responses. It runs
inside a trusted execution environment, such as Intel SGX, to protect
the integrity of the audit log. Logs are stored using an embedded
relational database, permitting service invariant violations to be
discovered using simple SQL queries. We evaluate LibSEAL with
three popular online services (Git, ownCloud and Dropbox) and
demonstrate that it is effective in discovering integrity violations,
while reducing throughput by at most 14%.
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1 INTRODUCTION
Today, users rely on the correct operation of many Internet ser-
vices: they expect Dropbox [32] and Google Drive [46] to store
their files reliably; GitHub [40] to accurately record the commit
histories of repositories; and Google Docs [45], Office 365 [70] and
ownCloud [79] to preserve the integrity of shared documents. Ser-
vice providers are not immune to data loss or corruption (e.g. both
Dropbox and Gmail have lost data in the past [35, 44]) but the terms
and conditions for best-effort services typically absolve them of
any legal liability [33, 41, 47]. When services fail, it is challenging
for users to uncover these failures and receive compensation.

Instead, when users require assurances of higher integrity from
services, there is a business opportunity for providers to offer pre-
mium integrity-assured services with stronger service level agree-
ments (SLAs), e.g. offering compensation if integrity violations
occur. However, users must obtain independent indisputable proof
of integrity violations, which is hard. At the same time, malicious
users must be prevented from fabricating evidence to slander the
provider’s reputation.

Our goal is to help users discover service integrity violations,
such as incorrect processing or data loss, for integrity-assured ser-
vices and demonstrate unequivocally that a violation has taken
place. We achieve this goal by creating a trusted, non-repudiable
audit log of user operations and their service responses over time,
which constitutes a ground truth for dispute resolution. In the case
of Dropbox [32], for example, the audit log could include the hashes
of all files uploaded by a user. Violations of service integrity can
then be detected as invariant violations over the audit log. For Drop-
box, this could be the failure to retrieve a file that was uploaded
but not subsequently deleted.

A secure auditing solution must satisfy multiple requirements in
order to be adopted in practice: it must (a) be flexible and expressive
to support a wide range of Internet services and service-specific
integrity invariants; (b) be easily deployable with existing Internet
services and avoid third-party dependencies that affect its scalability
or availability; (c) protect the audit log and sensitive data handled
by the service; and (d) incur low performance overhead.

We describe LibSEAL, a SEcure Audit Library for Internet
services that creates a non-repudiable log of information about
service requests and responses. It then checks invariants over the
log to discover service integrity violations. LibSEAL makes the
following contributions:
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(i) Auditing using trusted execution. LibSEAL executes as part
of a provider’s infrastructure to avoid third-party dependencies. It
uses a trusted execution environment (TEE), such as Intel SGX [56],
to protect the audit log integrity and shield itself from tampering.
LibSEAL observes all service requests and responses, by acting as
a termination endpoint for transport layer security (TLS) [29] con-
nections to the service. Using the TEE’s cryptographic capabilities,
the audit log is stored securely on persistent storage. The TEE also
protects invariant checks over the audit log issued by clients.
(ii) Efficient TLS support within the TEE. The performance of
LibSEAL depends on how efficiently it handles TLS connections
inside the TEE. LibSEAL uses an existing TLS implementation (Li-
breSSL [77]) and, for performance reasons, executes non-sensitive
parts outside the TEE. It uses shadow pointers to permit untrusted
code to refer to protected TLS data structures without compromis-
ing security. It avoids expensive TEE code transitions by relying on
user-level threading inside the TEE and implementing asynchronous
calls to and from the TEE. The above techniques do not change the
TLS API, allowing LibSEAL to provide a transparent replacement
for existing TLS libraries.
(iii) Relational audit log and invariant queries. Even though
the information logged and the invariants checked are service-
specific, LibSEAL is easy to apply to new services. It uses a relational
log format with a service-specific schema. Small service-specific
modules parse requests and responses and log information. The log
is stored using an embedded database [96] running inside the TEE.
LibSEAL persists the log to avoid data loss and protect its integrity
and regularly prunes old superfluous log entries.

Invariants are written as standard SQL queries and clients can
trigger invariant checks by including a special header field as part
of HTTP requests. A web browser plug-in receives the results and
alerts users of invariant violations. For example, the following query
is an invariant for the Git service to detect when the list of branches
advertised to a client is incomplete:

SELECT time, repo FROM advertisements
NATURAL JOIN branchcnt
GROUP BY time, repo, cnt HAVING COUNT(branch) != cnt;

We evaluate a prototype implementation of LibSEAL, deployed with
Intel SGX as a TEE, using three Internet services: (i) the web-based
Git version control service [39]; (ii) the ownCloud collaborative doc-
ument service [79]; and (iii) the Dropbox file storage service [32].
We demonstrate how LibSEAL can discover a range of integrity vi-
olations, including teleport, rollback and reference deletion attacks
for Git [101], lost document edits for ownCloud, and inconsistent
or lost files for Dropbox. The performance overhead is modest:
LibSEAL reduces the throughput for ownCloud by 13%, for Git by
14%, and does not impact the latency of Dropbox.

This paper is organised as follows: §2 introduces the problem of
service integrity violations, states our threat model and discusses
existing solutions; §3 describes the design of LibSEAL; §4 explains
the techniques that LibSEAL uses to efficiently terminate TLS con-
nections; §5 details LibSEAL’s log format and invariant checking; §6
presents our evaluation results; §7 compares against related work;
and §8 concludes.

2 INTEGRITY OF INTERNET SERVICES
Next we motivate the problem of integrity violations in Internet
services (§2.1) and describe different application scenarios (§2.2).
We further introduce our threat model (§2.3), survey the space of
existing solutions (§2.4) and give background on trusted execution
environments (§2.5).

2.1 Violations of service integrity
Users of Internet services expect them to uphold service integrity.
We define service integrity to be the correctness of the state of
the service with respect to its public API, taking into account all
user interactions. For example, GitLab [42] and Dropbox [32] are
expected to maintain correct histories and versions of all files;
collaborative document services such as Google Docs [45] and
ownCloud [79] must offer consistent views across documents, even
under concurrent edits by multiple users; and messaging services
such as Slack [94] and XMPP [112] should deliver messages without
modification and should not drop them.

Service providers cannot avoid data loss and corruption alto-
gether: in February 2017, GitLab lost several hours’ worth of user
repository data, including merge requests and code snippets [91];
in October 2014, Dropbox admitted to a bug that caused thou-
sands of files to be deleted [35]; in February 2011 and January 2014,
Gmail [44] lost the emails of thousands of users [52, 111]; and, in
August 2014, Microsoft’s OneDrive service corrupted stored Excel
spreadsheet files [71].

Since many Internet services offer a free best-effort service, their
terms and conditions exclude liability under violations of service
integrity. A survey reports that ‘providers not only avoided giving
undertakings in respect of data integrity but actually disclaimed
liability for it’ [16]. Dropbox’ terms state that ‘to the fullest extent
permitted by law [...] in no event will Dropbox [...] be liable for [...] any
loss of use, data, business, or profits, regardless of legal theory’ [33];
Google’s terms state that it ‘[...] will not be responsible for lost profits,
revenues, or data, financial losses, or indirect, special, consequential,
exemplary, or punitive damages’ [47].

If users want assurances that go beyond a best-effort service,
providers may offer premium versions of services with stronger
SLAs that give compensation after integrity violations. However,
users must then rely on providers disclosing integrity violations
after they have occurred. Without independent means of detecting
violations, it may be tempting for service providers to deny, down-
play or hide violations. Often, data breaches come to light years
after they occurred [25, 36, 54, 72], sometimes only when aggrieved
users post incidences on social media or discussion forums [75, 86].

2.2 Application scenarios
Our goal is to establish an independent basis for providers and
users to agree that an integrity violation for an Internet service
has happened. This raises the challenge of how users can discover
integrity violations as they occur and credibly demonstrate them
during dispute resolution. Next we give examples of Internet ser-
vices that may suffer from service integrity violations and would
benefit from our approach.
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Object sharing services such as Dropbox [32], GitLab [91] and
GitHub [40] allow users to share files and track changes to them.
Typically these services rely on a central provider that stores objects,
manages the order of updates and provides data to authorised users.
Since the service provider acts a central authority, failures or bugs
in its software or hardware may lead to the corruption or loss of
objects. Even though these services sometimes encrypt objects or
maintain an object hash as metadata to ensure integrity, this is not
sufficient: some services must process or transform object contents,
and the metadata itself may become corrupted.
Collaborative document editing services—Google Docs [45],
Office 365 [70] and ownCloud [79] for example—allow users to edit
a range of documents types collaboratively and concurrently. For
all of these services, a central cloud service instance coordinates the
editing process between users, thus deciding, e.g. about the order of
document updates and the access rights to documents. A software
or hardware bug may lead to inconsistencies within the resulting
document or users being unable to access documents [107].
Online payment systems such as PayPal [82] and Stripe [99]
allow end users and businesses to hold and exchange funds via web
interfaces and APIs. While such services use TLS encryption to
protect the confidentiality and integrity of all messages exchanged
with clients, internal software bugs or database failures may result
in lost or even miscredited funds [24].
Communication and instantmessaging services such as email,
XMPP [112] and WhatsApp [109] allow end users to exchange
different message types—both directly as well as within user groups.
For most of these services, the communication between users is
relayed via one or more service providers. Faults or bugs may
compromise message integrity, e.g. causing messages to be dropped,
modified or delivered to the wrong recipients [28].

2.3 Threat model
We assume that providers of integrity-assured services are not ac-
tively malicious: they take the necessary precautions to maintain
service integrity, but misconfigurations, hardware failures, com-
promised or buggy software, malpractice, negligence on behalf of
system administrators, and other human errors can all result in
data loss and corruption [19, 24, 37, 62]. In such cases, the providers
may act only to protect their reputation. Under this threat model,
we assume the service provider to be “imperfect and selfish” [84],
i.e. susceptible to integrity violations and selfish about revealing
such incidents to users. For example, a 2012 study on healthcare
data breaches found that, on average, breaches are identified af-
ter 85 days and customers are only notified after an additional
68 days [53].

We assume that clients have an inherent interest in service in-
tegrity. Our aim is not to prevent integrity violations from occurring
but to enable clients to discover them after the fact, and have a
non-repudiable proof of the violation. This also thwarts disingenu-
ous clients seeking to slander the provider’s reputation with false
claims of integrity violations.

Note that we do not target data confidentiality, i.e. we assume
that the service provider can read the content of client data stored
on its machines. For some services, confidentiality can be ensured
by encrypting data on the client side [26, 100]; for others, including

collaborative services, this is not possible without modifications to
the server, e.g. by adding cryptographic key management so that
multiple clients can read and modify the same encrypted data.

We also do not consider availability—at any point, the service
provider may decide to stop the processing of client requests. This
is an orthogonal problem that can be addressed with other means:
service replication [61, 76] can be used to ensure availability of
the service; our approach can also be extended to detect service
downtimes.

2.4 Existing approaches for integrity assurance
Next we survey existing approaches for avoiding or detecting in-
tegrity violations of Internet services:
Cryptographic protection can ensure the integrity (and confiden-
tiality) of data given to service providers. EncFS [48] or GnuPG [43]
may be used to encrypt and sign files before uploading them to a
storage service such as Dropbox; the Git version control system uses
hash chains and signed commits to ensure integrity. However, this
limits the processing a service can carry out on behalf of clients. Col-
laboration services such as Google Docs or ownCloud require data
to be modifiable on the server side to support features such as data
sharing and content editors. Fully homomorphic encryption [38]
allows for computation over encrypted data, but the overheads
are impractical for production services. Cryptographic techniques
also require mitigation for attack vectors by which integrity can
be silently violated such as teleport, rollback, or reference deletion
attacks [101].
Redundant services. Service integrity can be enhanced by relying
onmultiple redundant services for data storage or processing [3, 21].
Clients may maintain multiple data replicas with different storage
services, and check data for consistency upon retrieval. Similarly,
clients may use multiple data processing services in parallel, execut-
ing the same computation and comparing results. Such techniques,
however, impose a burden on clients, which must integrate with
different services, and increase the resource footprint of services.
Third-party integrity services. Another approach is to employ
a third-party service that validates invariants over client requests
and service responses [73, 83, 105]. CloudProof [83] executes using
an existing cloud storage service such as Microsoft Azure [69],
and permits clients to exchange file modifications via integrity-
protected, authenticated messages; in DIaaS [73], clients exchange
messages with both the cloud storage service and an integrity
management service, requiring one additional network round-trip
for each request. These third-party services require substantial
changes to server- and/or client-side code, making their use non-
transparent. They also introduce external dependencies, which may
impair performance and availability.

PeerReview [50] maintains tamper-evident logs of messages
exchanged between the participants of a distributed application.
These logs are periodically shared with witnesses, which detect
faulty behaviour by replaying messages to recreate the current ap-
plication state. PeerReview, however, requires modifications to the
application, a complex state machine specification, and additional
resources for the replay.
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2.5 Trusted execution environments
Flexible integrity checking requires a root of trust acceptable to
both the service provider, who must remain in control, and the
clients, who must obtain trustworthy proofs of integrity violations.
Trusted execution environments (TEE), e.g. as supported by Intel
CPUs through the Software Guard Extensions (SGX) [56] can pro-
vide this root of trust. TEE enables applications to maintain data
confidentiality and integrity, even when the hardware and all priv-
ileged software (OS, hypervisor and BIOS), are controlled by an
untrusted entity.
Enclaves. Intel SGX provides a TEE through enclaves, and enclave
code and data reside in a region of protected physical memory called
the enclave page cache (EPC), where they are protected by CPU
access controls. When flushed to DRAM or disk, they are encrypted
and integrity protected transparently by an on-chip memory en-
cryption engine. Non-enclave code cannot access enclave memory,
but only invoke enclave execution through a pre-defined enclave
interface; enclave code is permitted to access enclave and non-
enclave memory. Since enclaves execute in user mode, privileged
operations such as system calls must be executed outside.

Enclaves are created by untrusted application code, and dur-
ing initialisation, a cryptographic measurement of it is created.
To execute enclave code, the CPU switches to enclave mode and
control jumps to a predefined enclave entrypoint. SGX supports
multi-threaded execution. The use of enclaves incurs a performance
overhead: (i) transitions between enclave and the outside incur
additional CPU checks and a TLB flush; (ii) enclave code pays a
higher penalty for cache misses because the hardware must en-
crypt and decrypt cache lines; and (iii) in current implementations,
enclaves using memory beyond the EPC size limit (typically less
than 128 MB) must swap pages between the EPC and unprotected
DRAM, which incurs a high overhead.
Remote attestation and sealing. A remote party can verify the
integrity of an enclave [4]. Based on the measurement during en-
clave initialisation, a dedicated quoting enclave signs the measure-
ment using a secret CPU key. Intel provides an auxiliary attestation
service to verify the validity of the signed measurements. Enclaves
allow data to be written to persistent storage securely—a process
known as sealing. Sealed data can be bound to a signing authority,
which allows enclaves to persist state across reboots. Any enclave
signed by the same authority can subsequently unseal it.
SGX SDK. Intel provides an SDK for programmers to use SGX [57].
Developers can create enclave libraries that are loaded into an en-
clave. A developer defines the interface between the enclave code
and other, untrusted application code: (i) a call into the enclave is
referred to as an enclave entry call (ecall). For each defined ecall,
the SDK adds instructions to marshal parameters outside, unmar-
shal the parameters inside the enclave and execute the function;
conversely (ii) outside calls (ocalls) allow enclave functions to call
untrusted functions outside.

3 LIBSEAL DESIGN
We describe LibSEAL,1 a SEcure Auditing Library for detecting
service integrity violations. The design of LibSEAL satisfies the
following requirements:
R1: Generality and flexibility. LibSEAL is widely applicable, and
supports different types of services with varying integrity require-
ments (see §2.1). LibSEAL intercepts client requests and service
responses by terminating TLS network connections on behalf of ser-
vices. It therefore observes all interactions between the clients and
the service2 and logs information from the requests and responses
in an audit log. Integrity violations are expressed as violations of
invariants over the audit log. The audit log has a relational schema,
allowing invariant checks to be written as simple SQL queries.
R2: Ease-of-deployment. LibSEAL is easy to deploy with existing
services, requiring few, if any, changes to service and client imple-
mentations. In addition, LibSEAL does not significantly affect the
scalability or availability of services. It acts as a drop-in replacement
for existing TLS libraries. By using a TEE as the root-of-trust, it
does not introduce third-party dependencies that may affect avail-
ability. Service providers have an incentive to deploy LibSEAL as it
increases the perceived assurance of their services. It also creates
opportunities for new premium integrity-assured services with
stronger SLAs.
R3: Security and privacy. LibSEAL is secure according to our threat
model (see §2.3). It does not affect the confidentiality or integrity of
data handled by services and does not reveal internal details about
service implementation to clients. LibSEAL protects itself and the
information in the audit log using a TEE. When the audit log is
stored to disk, it is cryptographically signed by the TEE to prevent
tampering by the service provider.
R4: Performance overhead. LibSEAL imposes a small performance
overhead with respect to native service execution. LibSEAL avoids
costly TEE transitions by permanently associating threads with the
enclave. It achieves fast and tamper-resistant persistent logging by
leveraging a distributed monotonic counter protocol.

3.1 Architecture
Fig. 1 shows the architecture of LibSEAL and summarises its op-
eration: a client issues a TLS-protected request (using e.g. HTTP
or IMAP) to the service (step 1); the service passes the request to
LibSEAL for decryption, which calls into the enclave and executes
the TLS protocol (step 2); the decrypted request is passed to a logger,
which invokes a service-specific module to parse the request and
write pertinent information to the audit log (step 3); the decrypted
request is then returned to the service outside the enclave, which
processes it (step 4); the service response is also passed to LibSEAL,
which logs it, encrypts it according to the TLS protocol and returns
the encrypted response (step 5). Periodically, a client may invoke
the log analyser to perform service-specific invariant checks over
the audit log (step 6).

1The LibSEAL source code is available at https://github.com/lsds/LibSEAL.
2While the popularity and ubiquity of TLS means that LibSEAL can be applied to
many existing Internet services, its design does not preclude it from working with
other encrypted protocols such as SSH.

https://github.com/lsds/LibSEAL
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Figure 1: LibSEAL architecture

TLS connection termination (§4). LibSEAL provides a TLS API
compatiblewithOpenSSL and LibreSSL. It can thus be used transpar-
ently by existing services, such as the Apache [11] and Nginx [87]
web servers, the Squid [97] proxy, and the JabberD [1] XMPP server.
To employ LibSEAL for auditing, services require linking against
LibSEAL. LibSEAL executes LibreSSL in an enclave, allowing it to
(i) terminate TLS connections securely; and (ii) protect session keys.
Audit logging (§5.1). Instead of logging all service request and
response data, LibSEAL only stores the minimum amount of infor-
mation required to check the integrity invariants. A service-specific
module extracts the required information and passes it to the logger.
For our use cases, these modules are between 250 and 400 lines of
C++ code.

To maintain the audit log, LibSEAL uses the embedded SQLite
relational database engine [96], which executes inside of the en-
clave. This allows invariant checking to be done using SQL queries.
Each service-specific module stipulates the relational schema of the
information to be logged. For example, for Git, the schema of the
audit log is as follows:

updates(time, repo, branch, cid, type)
advertisements(time, repo, branch, cid)

The updates relation records all changes to branch and tag pointers
that clients push to the server, while the advertisements relation
records all branch and tag pointer advertisements sent to clients in
response to client requests.
Invariant checking (§5.2). The invariants to check are service-
specific SQL queries, and provided in addition to the service-specific

module. For example, an invariant for Git is that “every advertise-
ment must correspond to the most recent update for the correspond-
ing (repo, branch, cid) triple”. The following invariant query checks
if there exists an advertisement such that the advertised commit ID
does not correspond to the most recent update:

SELECT a.time,a.repo,a.branch FROM advertisements a
JOIN updates u ON u.time < a.time AND u.repo = a.repo

AND u.branch = a.branch
WHERE a.cid != u.cid AND u.time = (SELECT MAX(time)

FROM updates WHERE branch = u.branch
AND repo = u.repo AND time < a.time);

The results of invariant checks on the audit log are returned to
clients in-band, through the TLS connection.

3.2 Discussion
Invariants in LibSEAL must be robust against non-deterministic
behaviour of services. For example, in the case of Facebook [34], it
is not possible to specify an invariant over the exact order of posts
in the newsfeed because this is non-deterministic from the point of
view of the client requests and service responses (i.e. decided by an
unknown algorithm). The content of the newsfeed and the validity
of posts by different users, however, could be verified because these
are observable by clients.

LibSEAL checks integrity invariants against the audit log of a
single service instance. For scalable services with many instances,
LibSEAL can be deployed at the load-balancer or reverse proxy.
This will log all requests and responses, even if they are served by
different service instances. In §6.4, we evaluate this deployment
scenario with Git and Apache as a reverse proxy.

When multiple LibSEAL instances are required, for example,
when scaling out, the requests of a single client may be processed
by different service instances. In this case, each instance would log
a subset of the client interactions with the service. These partial
logs must first be merged into a single log before invariant checking.
The design of LibSEAL could be extended so that each LibSEAL
instance manages a local log and periodically combines logs from
other instances for invariant checking. This approach would be
similar to distributed tracing systems, such as Dapper [93], that
also collect remote logs.

4 TLS TERMINATION
LibSEAL ensures that all client requests and responses are part of
the audit log by terminating the TLS network connection and exe-
cuting the security-sensitive TLS protocol code inside the enclave.

For ease-of-deployment, LibSEAL compiles to a library that ex-
poses the API of conventional TLS libraries (§4.1). To reduce the
performance penalty imposed by SGX §2.5, LibSEAL implements
several performance optimisations (§4.2). Finally, LibSEAL uses
an asynchronous enclave transition mechanism with user-level
threading to avoid costly enclave transitions (§4.3).

4.1 Enclave TLS implementation
LibSEAL provides the same API as OpenSSL and LibreSSL. It imple-
ments (i) the SSL_read() function, which reads encrypted network
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data, decrypts it and returns the plaintext to the caller (i.e. the ap-
plication); and (ii) the SSL_write() function, which takes as input
plaintext, encrypts it and sends the result along an existing TLS
network connection.

As shown in Fig. 2, LibSEAL ports LibreSSL [77] to SGX, ex-
ecuting and maintaining security-sensitive code and data inside
an enclave. This includes all code related to the TLS protocol im-
plementation, as well as the private keys and session keys used
to communicate with clients. The leakage of keys would allow
an attacker to tamper with the messages exchanged between the
client and server, thus defeating LibSEAL’s audit log. Non-sensitive
code and data, such as the BIO data structure that abstracts an I/O
stream, as well as API wrapper functions are placed outside of the
enclave for performance reasons. Function calls that cross the en-
clave boundary are converted into ecalls and ocalls, as supported
by the SGX SDK (see §2.5).

The implementation of TLS inside the enclave faces two chal-
lenges: (i) function callbacks are part of the LibreSSL API, but are
untrusted and must be invoked outside the enclave, which could
leak sensitive data. We address this issue by implementing secure
callbacks; and (ii) applications may try to access internal TLS data
structures that are security-sensitive and thus placed inside the
enclave. We support this by shadowing such data structures as
explained below.
Secure callbacks. Several API functions permit the application to
submit function pointers. This is for example the case of function
SSL_CTX_set_info_callback(), which registers a callback used to
obtain information about the current TLS context. To execute such
callback functions referring to outside code fromwithin the enclave,
LibSEAL must execute corresponding ocalls rather than regular
function calls. LibSEAL proceeds in four steps as shown in the
following listing (with error checks, shadow structures and SDK
details omitted for simplicity):3

1 /* LibSEAL API */
2 void SSL_CTX_set_info_callback(SSL_CTX *ctx, void

(*cb)(const SSL *ssl, int type, int val)) {
3 ecall_SSL_CTX_set_info_callback(ctx, (void*)cb);
4 }
5
6 int ocall_SSL_CTX_info_callback(const SSL* ssl, int

type, int val, void* cb) {
7 void (*callback)(const SSL*, int, int) = (void

(*)(const SSL*, int, int))cb;
8 return callback(ssl, type, val);
9 }

3Note that while there are two functions SSL_CTX_set_info_callback(), there
is no name clash as only one is inside the enclave.

10
11 /* inside the enclave */
12 void* callback_SSL_CTX_info_address = NULL;
13
14 static int callback_SSL_CTX_info_trampoline(const SSL*

ssl, int type, int val) {
15 return ocall_SSL_CTX_info_callback(ssl, type, val,

callback_SSL_CTX_info_address);
16 }
17
18 void ecall_SSL_set_info_callback(SSL_CTX *ctx, void*

cb) {
19 callback_SSL_CTX_info_address = cb;
20 SSL_CTX_set_info_callback(ctx,

&callback_SSL_CTX_info_trampoline);
21 }

(1) The LibSEAL API function executes an ecall into the en-
clave (line 3); (2) the enclave code saves the address of the outside
callback (line 19) and passes the address of a callback trampoline
function (line 14) to the original API function (line 20); (3) upon
invocation of the callback, the trampoline function is called in-
stead (line 14); and (4) the trampoline function retrieves the call-
back address and performs an ocall into the outside application
code (lines 6 and 15). For applications that register multiple call-
back functions, LibSEAL uses a hashmap to store and retrieve the
callback associations.

We manually inspect 19 callbacks for LibreSSL to ensure that
LibSEAL does not leak sensitive data. In the worst case, LibSEAL
can pass a pointer to trusted memory outside of the enclave. Manual
checks and the shadowing mechanism, presented below, mitigate
pointer swapping attacks.
Shadowing. Applications may access fields of TLS data structures
directly. For example, Apache and Squid access the SSL structure,
which stores the secure session context. To avoid modifications to
the applications, we refrain from using ecalls to access such fields.

Instead, LibSEAL employs shadow structures. In addition to the
security-sensitive structure inside the enclave, LibSEAL maintains
a sanitised copy of the SSL structure outside the enclave, with all
sensitive data removed. As shown in the listing below, LibSEAL
synchronises the two SSL structures at ecalls and ocalls:

1 BIO * ecall_SSL_get_wbio(const SSL *s) {
2 SSL* out_s = (SSL*) s;
3 SSL* in_s = (SSL*) hashmapGet(ssl_shadow_map, out_s);
4
5 SSL_copy_fields_to_in_s(in_s, out_s);
6 BIO* ret = SSL_get_wbio((const SSL*)in_s);
7 SSL_copy_sanitized_fields_to_out_s(in_s, out_s);
8 return ret;
9 }

The association between the enclave structure and the shadow
structure is stored in a hashmap inside the enclave.

4.2 Reducing enclave transitions
Enclave transitions are necessary to implement the TLS API. Our
micro-benchmarks show, however, that each enclave transition
imposes a cost of 8,400 CPU cycles—6× more costly than a typical
system call. We therefore apply three techniques to reduce the
number of ecalls and ocalls:
(1) LibSEAL preallocates a memory pool outside of the enclave.
This pool is used for frequent allocations of small objects by the
enclave that do not require integrity or confidentiality guarantees.
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This approach avoids ocalls to malloc() and free() by replacing
them with less costly enclave-internal calls to the memory pool.
For example, LibSEAL uses this for BIO objects that are freed from
inside the enclave when a TLS connection is closed.
(2) LibSEAL uses the thread locks and random number generator
provided by the SGX SDK, therefore avoiding ocalls to the pthread

library [14] and random system call.
(3) Finally, LibSEAL reduces the number of ecalls by storing applica-
tion-specific data written to TLS data structures outside the enclave.
For example, Apache stores the current request in the TLS object.
As the TLS object is stored inside the enclave for LibSEAL, this
would require an ecall for access. To avoid such enclave transitions,
LibSEAL ensures that this data is stored outside of the enclave.

Together, these three optimisations reduce the number of ecalls
and ocalls for Apache by up to 31% and 49%, respectively, improving
request throughput by up to 70%.

4.3 Reducing transition overhead
LibSEAL reduces the overhead of the remaining calls by executing
them asynchronously. Instead of threads entering and exiting the
enclave, user-level tasks, implemented by the lthread library [65],
execute the calls. This approach is similar to previous proposals [95].
While Eleos [78] and SCONE [12] execute asynchronous system
calls when an entire application runs inside an enclave, LibSEAL
executes arbitrary ecalls and ocalls asynchronously.

Fig. 3 shows how these asynchronous enclave calls (async-ecalls)
are executed. Inside the enclave, S enclave threads each execute T

lthread tasks, handling the async-ecalls from A application threads.4

Application threads also process async-ocalls made by lthread tasks.
The number of enclave threads and lthread tasks impact the

performance (see §6.8). To reduce the overhead of executing threads
inside the enclave, S should be less than the number of physical
CPU cores. A heuristic for the number of lthread tasks per enclave
thread is T ≥

A
S , which ensures that application threads wait a

minimum amount of time when issuing an asynchronous ecall.
LibSEAL does not affect the optimal number of application threads.

LibSEAL uses an array of ecall request slots, with one slot for
each application thread, that is shared between the enclave and
outside code. While an lthread task can execute an async-ecall for
any application thread, the opposite is not true: application threads
have their own context (e.g. a client network connection). LibSEAL
ensures that, when application thread a executes an async-ecall, the
necessary async-ocalls and the result are also handled by a. To that
end, each application thread is bound to a slot in both the async-
ecalls and async-ocalls arrays. Similarly, the lthread task resuming
an async-ecall after an async-ocall is the same as the one starting
the async-ecall.

When an application thread invokes an ecall, it issues an async-
ecall as follows (see Fig. 4): (1) the ecall type and its arguments are
written into this application thread’s request slot; (2) the lthread
scheduler detects a pending async-ecall. It finds the first available
lthread task inside the enclave and resumes its execution, passing it
the async-ecall arguments. In the meantime, the application thread
waits for the result of the async-ecall or async-ocall; (3) if it is
necessary to execute a function outside the enclave, the lthread task
adds its request to the application thread’s slot in the ocalls array;
(4) the application thread then retrieves the async-ocall arguments,
executes the call and returns the result; (5) once the result of the
async-ocall is available, the lthread scheduler finds the lthread task
that requested this async-ocall and schedules it; and (6) when the
async-ecall result is available, the application thread retrieves it and
resumes execution.

To avoid the overhead of all application threads busy-waiting
for async-ecall results, LibSEAL could use two approaches: (i) only
a single application thread that has invoked an async-ecall busy-
waits, while all other threads sleep. The thread polls the slots in the
ecalls and ocalls arrays and wakes up the corresponding application
threads; or (ii) an additional dedicated thread busy-waits, polling
both arrays, and waking up the corresponding application thread.
The former approach requires synchronisation between the appli-
cation threads whereas the latter approach adds the overhead of an
extra thread. We find empirically that a dedicated polling thread
results in better performance, and LibSEAL uses this solution.

Using async-ecalls and async-ocalls, the performance of LibSEAL
with Apache increases by more than 57%, from 1,126 requests/sec
to 1,771 requests/sec (see §6.8).

5 AUDIT LOGGING AND CHECKING
Here we describe how LibSEAL generates the audit log (§5.1) and
how it checks integrity invariants (§5.2).

4Due to a limitation of current SGX implementations, it is not possible to dynamically
add threads to the enclave.
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5.1 Logging
LibSEAL generates the audit log based on client requests and service
responses. It observes all messages exchanged in a TLS connection
by instrumenting the functions SSL_read() and SSL_write(). To
prevent data loss under failure, LibSEAL writes the audit log to
local persistent storage.
Service-specific logging. Rather than logging whole requests and
responses, LibSEAL employs service-specific modules (SSMs) to log
only the data required to verify the service invariants. Each SSM:
(i) parses the requests and responses using a protocol parsing library
(e.g. HTTP or IMAP); (ii) extracts the data required to verify the
service invariants; and (iii) appends the data to a relational audit
log. We envision the SSMs and service invariants being provided
by service developers.

Each SSM defines a relational schema, the relations of which are
created in the enclave during initialisation. For example, as men-
tioned in §3.1, the Git schema consists of two relations: (i) relation
updates records all changes for all repositories (field repo) to branch
and tag pointers (field branch) that clients push to the server. This
includes the creation and deletion of branch/tag pointers, as well
as their modification to point to a different commit ID (field cid);
(ii) relation advertisements records all branch/tag pointer adver-
tisements that the server returns to clients in response to a git fetch
query. The schema uniquely identifies each tuple via the fields time,
branch, and repo, with time being a logical timestamp maintained
in the enclave.

LibSEAL provides a simple API for SSMs. For each request/re-
sponse pair, it invokes the SSM using function

void libseal_log(char *req, char *rsp, size_t req_len,
size_t rsp_len, void (*cb)(char *));

where req and rsp contain the request and response; and the call-
back function cb returns zero or more result tuples according to
the SSM’s log schema, which are inserted into the audit log.

Some services, such as ownCloud, use HTTP sessions or stateful
protocols to maintain state across different request/response pairs.
The SSM developer can use the LibSEAL log to maintain any part
of this state that is relevant for auditing the service at a later point
in time.
Log persistence and integrity. To prevent data loss under fail-
ure, LibSEAL synchronously flushes the log to persistent storage
after each request/response pair. Since this storage is untrusted, a
service provider may manipulate the log by forging new entries,
deleting entries, or modifying them. To protect integrity, LibSEAL
constructs a hash chain over all tuples, similarly to PeerReview [50].
A cryptographic signature ensures that only LibSEAL can add valid
entries. LibSEAL verifies the log integrity by recomputing the hash
of each entry, comparing it to the stored hashes, and verifying the
signature. For the signatures, LibSEAL uses an ECDSA public/pri-
vate key pair, as supported by the SGX SDK and created during
enclave provisioning.

To prevent rollback attacks [81, 98] in which an attacker presents
an older version of the log, LibSEAL requires secure persistent
counters. The SGX hardware provides monotonic counters for this
purpose but they have poor performance and limited lifespans [98].
LibSEAL therefore employs the distributed protocol of ROTE [67]:

for each log entry, LibSEAL contacts n nodes, including itself, to
retrieve and update a monotonic counter, where n = 3f + 1 with f
being the tolerable number of malicious nodes. To be independent
of third-parties, we envision these nodes being LibSEAL instances
under the control of the service provider. If this is infeasible, dedi-
cated instances of a ROTE service may be used. We evaluate the
corresponding performance implications in §6.4.
Log trimming. To prevent the audit log from growing without
bound, LibSEAL trims the log periodically using one ormore service-
specific trimming queries. Trimming queries remove log entries no
longer needed for future invariant checks. Depending on the invari-
ants, trimming queries may either truncate the log or, if required,
selectively discard log entries to avoid missed or spurious violations.

For example, for Git, we define two trimming queries:

DELETE FROM advertisements;
DELETE FROM updates WHERE time NOT IN

(SELECT MAX(time) FROM updates GROUP BY repo,
branch);

The first query discards all advertisements, as they must be checked
only once for the Git invariants. The second query selectively re-
moves all but the most recent update for each branch: at least one
update must be retained per branch for the completeness invariant
and that update must be the most recent to enforce the soundness
invariant (see §6.2).

Since trimming may lead to an inconsistent hash chain, LibSEAL
recomputes the hashes of the remaining log entries. To prevent
expensive updates to each entry of the log, LibSEAL stores the
hashes separately and associates them with their corresponding
entry via their primary key.

5.2 Checking
Invariants typically express soundness and completeness properties
over the recorded tuples. Soundness invariants verify that any data
returned from the service to clients corresponds to expected values;
completeness invariants verify that the service does not fail to
return data to clients.
Invariant specification. Invariants in LibSEAL are expressed as
SQL queries over the audit logs’ relations. SQL is well-known by de-
velopers, and database engines provide efficient means to store and
query structured data. We find that SQL is sufficiently expressive
to specify all desired invariants for our real-world use cases.

Concretely, SQL SELECT queries express invariants that must hold
for all log entries. Since invariant violations are generally more
interesting, queries express the negation of an invariant. For our
use cases, we can detect relevant integrity violations using only
1–2 invariants, each consisting of around 10 lines of SQL (see §6.2).
Invariant checking. The default behaviour of LibSEAL is to trig-
ger invariant checks after configurable time intervals. Clients may
also trigger checks explicitly by setting a Libseal-Check request
header for HTTP-based services. When a client triggers an invari-
ant check, LibSEAL executes the corresponding query against all
the clients’ entries in the database. The result set contains all log
entries that violate the invariant; if the set is non-empty, the client
is notified.
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Module LOC #ecalls #ocalls

LibreSSL 269,400 (78.1%) 206 23
Enclave shim layer 9,400 (2.7%) 0 19
Async. transitions 3,400 (1.0%) 1 1
SQLite 61,000 (17.7%) 0 12
Audit logging 1,700 (0.5%) 2 0

LibSEAL total 344,900 (100%) 209 55
Table 1: Lines of code and enclave interface of LibSEAL

Result notification. LibSEAL communicates the results of checks
in-band. For HTTP-based services, clients retrieve the result of
the most recent check in a Libseal-Check-Result HTTP response
header. This header can be viewed using a web browser plugin [30,
88]. For other protocols, in-band communication may require a set
of changes to the client.
The implementations of LibSEAL and the service-specific modules
are publicly available. Anyone can audit the code, understand which
information is being logged and verify the correctness of the in-
variants. This provides assurance to clients that LibSEAL correctly
checks for integrity violations.

6 EVALUATION
We evaluate the security and performance of LibSEAL using three
popular Internet services: (i) the Git version control service and
(ii) the ownCloud collaborative document service, both using an
Apache web server; and (iii) the Dropbox file storage service using
a Squid proxy server.

Our evaluation results show that: (i) invariants are simple to
write yet expressive enough to detect service integrity violations
(§6.2); (ii) LibSEAL is secure against interface attacks and prevents
log bypassing (§6.3); (iii) LibSEAL has a low performance overhead
of at most 14% (§6.4); and (iv) log sizes and log checking times are
practical (§6.5).
Implementation. LibSEAL uses the Intel SGX SDK 1.9 for Linux
and LibreSSL 2.4.1. It consists of 344,900 lines of code (LOC), 78.1%
of which is LibreSSL (Tab. 1). The enclave shim layer includes:
5,400 lines of boiler-plate wrappers for ecalls and ocalls; 1,200 LOC
for the shadowing and secure callbacks; and 2,800 LOC for support-
ive data structures. Out of the 1,700 LOC for audit logging, 600 LOC
are glue code to parse HTTP messages and execute SQL queries.
There are 61,000 LOC for the SQLite implementation. The SSMs
account for 450 LOC (Git), 350 LOC (ownCloud), and 300 LOC (Drop-
box), respectively. The enclave interface consists of 209 ecalls defin-
ing the LibSEAL API and 55 ocalls to access libc and support the
secure callbacks.

6.1 Use cases
Git [39] is a distributed version control system used by the popular
GitHub and GitLab services. It provides integrity guarantees using
a hash chain: each commit ID is a result of hashing the committed
files, the commit message, and the previous commit ID. Tags and
branches are pointers to IDs.

We explore how LibSEAL discovers integrity violations that are
not prevented by Git’s hash chain [101]. Git’s hash chain detects
changes to committed files but fails to protect branches and tags:
teleport violations allow a branch pointer to reference an arbitrary
commit on a different branch; rollback violations allow a branch
pointer to reference an old commit; and reference deletion violations
enable the removal of entire branches or tags.
ownCloud [80] is a collaborative document editing service. Users
can edit documents by adding, deleting and annotating text. The
server and its clients synchronise changes to the document by
exchanging JSONmessageswithin sessionswith one ormore clients.
When a client leaves a session, it creates a snapshot of the document
and sends it to the server. Clients subsequently joining the session
receive the latest snapshot and all subsequent updates.

Due to the collaborative nature of ownCloud, the service provider
must read and modify the document content. Client-side protection
of the document, such as encryption or digital signatures, is not
supported. We evaluate if LibSEAL can verify the integrity of snap-
shopts and update messages and thus of the resulting document.
Dropbox [32] is a popular file sharing service. Internally, files are
split into 4 MB blocks, each with a hash value. The list of hashes,
called the blocklist, is part of the file metadata. To upload a file, a
client sends commit_batch messages that specify the blocklist, the
filename, and the size (−1 in case of deletion). Next, any missing
blocks are sent to the server. Periodically, the clients send list

requests, asking the server for their list of files. For each file that is
different, the server returns the size of the file and its blocklist.

While Dropbox protects the integrity of the files’ blocks, it does
not safeguard the metadata. We explore if LibSEAL can detect
violations in the blocklist integrity, and the completeness of the
returned file list.

6.2 Integrity invariants
We describe the LibSEAL integrity invariants and their associated
audit log schemas for the use cases.5

Git. LibSEAL can detect teleport, rollback and reference deletion
attacks [101] by recording and verifying the metadata exchanged
between the server and its clients.
Log schema. §5.1 described the log schema for Git.
Invariant. To verify integrity, we define both a soundness and a
completeness invariant. The soundness invariant specifies that
every advertisement must correspond to the most recent update
for the corresponding (repo, branch, cid) triple. We specify a
query that returns all (time, repo, branch) triples for which the
advertised commit ID did not match:

SELECT * FROM advertisements a WHERE cid != (
SELECT u.cid FROM updates u WHERE u.repo = a.repo AND

u.branch = a.branch AND u.time < a.time ORDER BY
u.time DESC LIMIT 1)

The completeness invariant states that when an advertisement
happens, all (repo, branch, cid) triples must be advertised to the

5Due to space constraints, we defer the complete list of invariants, log schemas, and
trimming queries to a technical report [13].



EuroSys ’18, April 23–26, 2018, Porto, Portugal
P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe,

J. Lind, R. Krahn, C. Fetzer, D. Eyers and P. Pietzuch

client. For this, we specify an auxiliary SQL view branchcnt return-
ing the number of non-deleted branches for each repository at each
point in time:

CREATE VIEW branchcnt AS
SELECT DISTINCT a.time,a.repo,COUNT(u.branch) AS cnt
FROM advertisements a
JOIN updates u ON u.time < a.time AND u.repo = a.repo
WHERE u.type != 'delete' AND u.time = (SELECT MAX(time)

FROM updates WHERE branch = u.branch
AND repo = u.repo AND time < a.time) GROUP BY

a.time,a.repo,a.branch;

The actual completeness invariant leverages this view (see §1).
Trimming. For the trimming query, see §5.1.
ownCloud. LibSEAL detects document integrity violations related
to text edits by recording document updates exchanged between
the ownCloud service and its clients.
Log schema. The schema consists of a single relation recording the
JSON document updates synchronised between the service and all
of its clients. For details, see [13].
Invariants. We model a document as a snapshot and an ordered
list of updates. Our invariants check the following: (i) snapshots
sent to new clients match the latest snapshot, and (ii) at each point
in time, the aggregate history of synchronised updates between
the service and a client for a document corresponds to a prefix of
the aggregate history of updates that the service received from all
clients. We formalise the invariant in terms of a document prefix be-
cause the service may receive updates from multiple clients before
redistributing them to other clients. For details, see [13].
Trimming. For the trimming query, see [13].
Dropbox. LibSEAL detects integrity violations concerning (i) the
list of files sent to the client and (ii) the content of files. It checks
the completeness of the list of files, as well as the soundness of
all blocklists. Since the Dropbox client verifies the integrity of the
blocks’ contents, LibSEAL does not: if Dropbox serves wrong block
contents, the Dropbox client will detect the incorrect hash of the
received block and drop it. As LibSEAL stores the original block
hash sent by the client, the client can later prove that either the
metadata or the block contents have been modified.
Log schema. LibSEAL logs the commit_batch and listmessages into
two relations:

commit_batch(time,file,blocks,account,host,size)
list(time,file,blocks,account,host,size)

An entry in relation commit_batch indicates that at logical time time,
the blocklist blocks of file file was updated by an account account
from host host and sent to Dropbox; list refers to updates sent by
Dropbox, following a client request to receive a list of all new or
updated files.
Invariants. LibSEAL verifies whether for each client and point in
time, the list of files sent by the server is consistent with the client’s
most recent file uploads and deletions. The corresponding invariant
ensures that each file update or deletion is reported to clients when
they request an updated file list. LibSEAL further verifies whether,
for each file served to a client, the announced blocklist is correct.

The associated invariant specifies that the blocklist returned by the
server must correspond to the blocklist most recently uploaded by
the client. For the SQL queries for both invariants, see [13].
Trimming. For the trimming query, see [13].

6.3 Security discussion
We discuss attacks according to our threat model (§2.3).
Bypassing logging.We assume that a provider has agreed to offer
LibSEAL as part of a premium integrity-assured service. In some
cases, the provider may still try to deactivate logging by linking
to a traditional TLS library instead of LibSEAL. By using the SGX
attestation and provisioning facilities, LibSEAL can obtain the TLS
certificate and the corresponding private key in a secure manner,
after the enclave has been successfully established and verified.
Clients can thus verify whether the presented certificate indeed
belongs to a genuine LibSEAL enclave. Since LibSEAL stores the
private keys and session keys in protected enclave memory, it is
not possible to forge the TLS certificate.
Impersonating clients. The cloud provider may impersonate a
client and create fake actions that mimic user requests in order
to hide an integrity violation. Clients can prevent such attacks by
using TLS client authentication. For each request, LibSEAL then
ensures the authenticity of the request by checking the certificate
provided by the client.
Log privacy. The audit log may contain sensitive information
about clients or services. For example, for ownCloud, LibSEAL
records the entire—potentially sensitive—document history. To pre-
vent privacy violations, LibSEAL can encrypt the log when written
to persistent storage. Note that, as mentioned in §2.5, the sealing
mechanism is not tied to a specific CPU but to a signing authority,
allowing the sealed log to be shared across machines if necessary.
Log inconsistency. Crashes of LibSEAL instances may lead to
inconsistencies between the log and the service state. This can
happen if the server has executed a client request but has not yet
sent a reply. In this case, we assume the client will retry the request
until it receives a reply, at which point the log contains consistent
information about both the request and response.
Interface attacks. A service provider may attempt to access en-
clave data by manipulating parameters and return values of ecalls
and ocalls, respectively [22]. To tackle this problem (i) LibSEAL ap-
plies checks on the parameters passed to ecalls and ocalls (see §4.1).
These checks reduce the attack surface by allowing only correct
value ranges. If interface checks fail, LibSEAL aborts; and (ii) Lib-
SEAL uses the shadowing mechanism to enforce the validity of
pointers for sensitive data structures.
SGX-specific attacks. Exploiting security vulnerabilities in the
LibSEAL implementation or side-channels in SGX may compro-
mise the security of sensitive data held within the enclave or the
integrity of the log [106, 108, 113]. While the current implementa-
tion of LibSEAL executes the entire LibreSSL codebase inside the
enclave, only a few components actually require protection: (i) the
private keys associated with the TLS certificate and the session
keys (to ensure that an attacker cannot impersonate a client or
bypass LibSEAL); and (ii) the code accessing the log (to ensure that
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Figure 5: Performance of Git, ownCloud and Dropbox with and without LibSEAL

an attacker cannot create or modify log entries). Other parts of
LibreSSL are not security-sensitive, thus drastically reducing the
attack surface. Well-known techniques such as CFI [2, 18], mem-
ory protection [17, 20] and cache protection [49] can be applied to
LibSEAL to mitigate such attack vectors.
Denial-of-service attacks. As explained in §5.2, clients may trig-
ger a log check at the server. A malicious client could use this to
perform a denial-of-service attack. LibSEAL therefore imposes a
limit on the rate at which clients can check the log.

6.4 Performance overhead
Experimental set-up. We deploy services on an SGX-capable 4-
core Intel Xeon E3-1280 v5 at 3.70 GHz (no hyper-threading) with
64 GB of RAM that runs Ubuntu 16.04 LTS with Linux kernel 4.4.
The clients are connected to the service via a 10 Gbps network. We
use Apache 2.4.23, Squid 3.5.23, Git 2.10.1 and ownCloud 9.1.3.

In the case of Git and ownCloud, we measure the achieved
throughput as the number of clients increases.
Git.We evaluate the performance impact of LibSEAL on the Git ser-
vice by replaying the first few hundred commits from six real-world
repositories [5–10]. We emulate a large-scale Git service by setting
up Apache in reverse proxymode and linking against LibSEAL. This
instance of Apache logs all requests/responses and forwards the
traffic to Git backend servers for request processing. The monotonic
counter service (see §5.1) is configured to synchronise with three
other nodes in the same cluster, therefore tolerating one malicious
server. To understand which parts of LibSEAL impose performance
overheads, we explore several configurations.

Fig. 5a shows the latency and throughput when replaying the
commons-validator repository [8]; other repositories gave simi-
lar results. Native execution with LibreSSL serves as a baseline
with a maximum throughput of 491 requests/sec (Fig. 5a, native).
We measure the SGX enclave overhead alone by running Git be-
hind Apache/LibSEAL without logging. This results in a maxi-
mum throughput of 472 requests/sec (Fig. 5a, LibSEAL-process),
or 4% overhead. If, in addition, LibSEAL logs to an in-memory
database, the maximum throughput is 452 requests/sec (Fig. 5a,
LibSEAL-mem)—an 8% overhead compared to native execution.
Finally, persisting the log to disk results in an overall throughput
of 425 requests/sec (Fig. 5a, LibSEAL-disk), i.e. 14% overhead.
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ownCloud. We set up an experiment in which multiple clients
send document updates—consisting of both single characters as
well as entire paragraphs—to the ownCloud service.

Fig. 5b shows the throughput and latency of ownCloud with:
(i) LibreSSL (Fig. 5b, native); (ii) LibSEAL with in-memory log-
ging (Fig. 5b, LibSEAL-mem); and (iii) LibSEAL with persistent
logging (Fig. 5b, LibSEAL-disk). Overall, LibSEAL imposes a 13%
overhead, from 115 requests/sec to 100 requests/sec. As the bottle-
neck is the underlying PHP engine, logging to disk does not impose
additional overhead.
Dropbox. As we are unable to monitor the Dropbox servers, (i) we
route all Dropbox traffic through a Squid proxy service, linking it
against LibSEAL, and disable the clients’ certificate verification [60];
and (ii) measure the request latency imposed by Squid/LibSEAL
rather than maximum throughput, as we can not saturate the Drop-
box service. The average network latency between Squid and Drop-
box is 76 ms. We use the benchmark by Drago et al. [31] to create
and delete text and binary files inside a Dropbox folder.

Fig. 5c shows the latency of commit_batch and list messages.
Overall, the median and quartile values are close for both types of
messages and for all configurations. For commit_batchmessages, na-
tive execution (i.e. Squid with LibreSSL) achieves a median latency
of 363 ms (Fig. 5c, native), LibSEAL logging in-memory 370 ms
(Fig. 5c, LibSEAL-mem), and LibSEAL logging to disk 377 ms (Fig. 5c,
LibSEAL-disk), respectively, which are all marginal increases. The
results for list messages are similar.

6.5 Checking/trimming overhead and log size
For each service, we evaluate: (i) the time needed for invariant
checking and log trimming; and (ii) the growth in log size.
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Figure 7: Performance of Apache and Squid

Checking and trimming.We explore the cost of invariant check-
ing and trimming by considering their execution at various fre-
quencies. For each use case, Fig. 6 shows the combined time for
checking and trimming for different request intervals. Since the
absolute checking and trimming times increase with larger inter-
vals, i.e. when executed less often, the reported time is normalized
by the interval size. We observe that there is an optimal interval
length at which the normalised cost is lowest: 25 requests for Git,
75 requests for ownCloud, and 100 requests for Dropbox.

Configuring LibSEAL to use the above interval lengths, the exe-
cution of log checking and trimming takes a total of 0.3 ms for Git
and 0.4 ms for both ownCloud and Dropbox. Since these times are
orders of magnitude smaller than the observed latencies for these
services (see §6.4), we consider checking and trimming at these
intervals to be practical.
Log size. Trimming at the above regular frequency, the log sizes
for our use cases are proportional to certain workload parameters:
(i) for Git, the log size is proportional to the number of branch and
tag pointers. Since logging one pointer takes 530 bytes, the result-
ing log size is #pointers × 530 bytes; (ii) for ownCloud, the log size
is proportional to the number of edited documents as well as the
number of clients and updates in the last session. Since each docu-
ment update causes a constant logging overhead of 124 bytes, small
updates lead to a large log size. Assuming only single-character up-
dates, this results in a maximum log size of #documents × #clients
× #updates × 131 bytes—with 7 bytes carrying information about
the actual update; and (iii) for Dropbox, the log size is proportional
to the number of files. Since LibSEAL stores a 64 byte hash for each
file blocklist, the resulting log size is #files × 64 bytes. Overall, these
log sizes are reasonably small, especially when compared with the
size of the service’s actual payload data.

6.6 Enclave TLS overhead
To measure the overhead introduced by LibSEAL’s TLS implemen-
tation inside an enclave, we evaluate the throughput and latency of
Apache and Squid by retrieving contents of different sizes using the
libcurl client [27]. For the Squid experiments, the clients request
contents from an HTTP server on a third machine located in the
same cluster.

We compare the maximum throughput of LibreSSL to LibSEAL
without auditing. To evaluate worst case performance, we use non-
persistent connections, i.e. a new TLS connection for each request.
Indeed, the TLS handshake becomes the performance bottleneck.

For all experiments, we show the maximum throughput when the
CPU is saturated.

Fig. 7a shows the maximum throughput for Apache for different
content sizes. The performance overhead ranges from 1% (with
100 MB of data) to 23%–25% (with 0 Byte to 10 KB of data). The
high performance overhead for small content sizes is due to the
significant cost of the TLS handshake. This cost is amortised when
transferring more data, resulting in a throughput of 8.7 Gbps for
100 MB. For comparison, we execute Apache inside an SGX enclave
using SCONE [12], which results in an overhead of 32% for non-
persistent connections with 1 KB of data.

Fig. 7b reports the latency and throughput for Squid with a con-
tent size of 1 KB. With LibSEAL, the throughput decreases from
850 to 590 requests/sec, i.e. a 31% overhead. The lower throughput
and higher overhead for Squid is due to the presence of two TLS
connections: one from the client to the proxy and the other from
the proxy to the server, resulting in additional TLS handshakes and
data en-/decryption.

In conclusion, we observe similar results for different content
sizes: LibSEAL and LibreSSL offer the same performance once the
network becomes the bottleneck.

6.7 Multi-core scalability
We investigate the throughput for Apache and Squid as we increase
the number of CPU cores. As Fig. 7c shows, performance improves
linearly with the number of cores, demonstrating that the multi-
threaded implementation of LibSEAL exploits multi-core CPUs.
Due to the current unavailability of SGX-capable CPUs with more
than 4 cores, we cannot evaluate further scaling behaviour.

6.8 Impact of asynchronous calls
LibSEAL’s use of asynchronous enclave calls (see §4.3) is motivated
by the increasing cost of enclave transitions as more threads execute
inside the enclave: invocation of one ecall takes 8,500 cycles when
one thread is executing, compared to 170,000 cycleswith 48 threads—
a 20× increase.

Tab. 2 reports the performance with and without asynchronous
calls for Apache when retrieving content of different sizes. Asyn-
chronous ecalls/ocalls improve the performance by at least 57%. For
content sizes larger than 10 KB, the performance benefit is around
2×. This gain is due to the increasing number of ocalls when trans-
ferring more data, in which case the asynchronous calls mechanism
decreases the relative enclave transitions overhead.
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Content size 0 Byte 1 KB 10 KB 64 KB

No async. calls 1,126 1,095 882 644
With async. calls 1,771 1,722 1,693 1,375
Improvement 57% 57% 92% 114%

Table 2: Throughput (in requests/sec) of Apache with LibSEAL
when using asynchronous enclave calls

The asynchronous enclave call mechanism has multiple tun-
ing parameters. We explore the impact of the number of SGX
threads (Tab. 3) and lthread tasks (Tab. 4) on the performance of
Apache-LibSEAL, for a 1 KB content size.

The number of SGX threads has a major impact on performance:
adding SGX threads increases performance from 593 requests/sec
(1 SGX thread) to 1,722 requests/sec (4 SGX threads). We also notice
that executing more SGX threads increases the CPU utilisation.
Once the CPU utilisation reaches the maximum (i.e. 400% with 3
SGX threads on a 4-core machine), increasing the number of SGX
threads further decreases performance. This is due to increased
contention between the SGX and Apache threads.

We do not observe a correlation between the number of lthread
tasks and the throughput, which is around 1,700 requests/sec. How-
ever, the number of lthread tasks affects the latency observed by
the client. Without enough lthread tasks, a request takes longer to
be processed. Using more lthread tasks improves the probability
of having one or more available user-level threads, which results
in less waiting time for the Apache threads when they execute an
ecall. Increasing the number of lthread tasks beyond the number of
application threads does not have an effect on the system.

7 RELATEDWORK
TrInc [63] and A2M [23] predate the commercial availability of
TEEs and propose using custom trusted hardware components
to enforce accountability—neither of these approaches support
invariant checking. Nguyen et al. [74] propose a cloud-based secure
logger using Intel SGX and a TPM for medical devices. Similar to
our work, the communication between the medical device and the
enclave is secured so that the system is resilient against replay and
injection attacks. However, they neither implement nor evaluate
their approach.

Wang et al. [102–105] verify the integrity of data stored in the
cloud. They support the privacy-preserving auditing of cloud data
by third parties. In contrast, LibSEAL verifies more general integrity
invariants. Since the verifier runs inside a TEE, the privacy of the
audited data is preserved.

Proof of storage [51, 92, 115] and proof of violation [55] permit
clients of distributed applications to verify the integrity of their
data stored at a server. These solutions are limited to data storage
services and involve complex cryptographic operations that are not
transparent to the client and server.

Auditing-as-a-service [85, 89, 90, 114] requires a trusted third
party to maintain an audit logs for detecting integrity violations.
LibSEAL does not require a trusted third party, but can instead rely
on the TEE for privacy and integrity.

#SGX threads Throughput (req/sec) Latency (ms) %CPU

1 593 152 216
2 1,172 179 325
3 1,722 160 400
4 1,516 119 400

Table 3: Asynchronous enclave calls when varying the number of
SGX threads (48 lthread tasks per thread)

#lthread tasks Throughput (req/sec) Latency (ms) %CPU

12 1,710 184 400
24 1,701 161 400
36 1,711 166 400
48 1,722 160 400

Table 4: Asynchronous enclave calls when varying the number of
lthread tasks per thread (3 SGX threads)

Depot [66] and CloudProof [83] provide secure storage on top
of untrusted cloud storage services. Client data is augmented with
metadata to ensure integrity: Depot builds a hash-chained modi-
fication log for the data; CloudProof uses cryptographic keys to
implement access control policies. LibSEAL is more generic by
supporting arbitrary services.

SUNDR [64] is a network file system that provides integrity
guarantees to clients. Clients can detect attempts by a malicious
server to tamper with files. Each client operation is signed and
saved on the server side. SUNDR constructs a history of operations
that the clients use to check for the integrity of the file system.
While SUNDR specifically protects file system integrity, LibSEAL
is more general and applicable to a larger variety of services.

mBedTLS-SGX [68] and WolfSSL [110] are TLS libraries that
execute inside SGX enclaves. Unlike LibSEAL, their interface is not
compatible with OpenSSL/LibreSSL, thus supporting fewer services.
mBedTLS-SGX and the Intel SGX SSL library [58] target applica-
tions running entirely inside an enclave, whereas in LibSEAL only
the TLS library executes inside an enclave. The auditing approach
of LibSEAL, however, can also be applied to these libraries.

In contrast to SCONE [12] and Haven [15], we chose not to
execute both the application and the TLS library inside the enclave.
This way, LibSEAL reduces the TCB size and remains compatible
with current applications.

Linux kernel 4.13 introduces in-kernel TLS encryption/decryp-
tion support [59], thus speeding up TLS applications. This feature,
however, does not suit the threat model of LibSEAL: we consider
the OS kernel to be untrusted, and SGX enclaves do not support
the secure execution of kernel code.

8 CONCLUSIONS
To enable service providers to differentiate their offerings in terms
of integrity assurances, we have created LibSEAL, a new SEcure
Audit Library that can identify and provide indisputable proof about
integrity violations. LibSEAL acts as a drop-in replacement for a
TLS library and creates an audit log of service operations. LibSEAL
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stores logs in a relational database, protected by a TEE in modern
CPUs, and checks invariants expressed as SQL queries to discover
violations. We implemented LibSEAL using Intel SGX and showed
that it is effective at identifying integrity violations for three popular
services with a low performance overhead.

Source code availability. LibSEAL is open source and can be down-
loaded from https://github.com/lsds/LibSEAL.
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