
%'1��������8LMW�MW�XLI�EYXLSVW�ZIVWMSR�SJ�XLI�[SVO��-X�MW�TSWXIH�LIVI
F]�TIVQMWWMSR�SJ�%'1�JSYV�]SYV�TIVWSREP�YWI��2SX�JSV�VIHMWXVMFYXMSR�
8LI�HI�RMXMZI�ZIVWMSR�[EW�TYFPMWLIH�MR�7%'1%8�����.YRI�������������
LXXT���HSM�EGQ�SVK������������������������

Towards a Policy Enforcement Infrastructure for
Distributed Usage Control

Florian Kelbert
Karlsruhe Institute of Technology

Am Fasanengarten 5
Karlsruhe, Germany

florian.kelbert@kit.edu

Alexander Pretschner
Karlsruhe Institute of Technology

Am Fasanengarten 5
Karlsruhe, Germany

alexander.pretschner@kit.edu

ABSTRACT

Distributed usage control is concerned with how data may
or may not be used after initial access to it has been granted
and is therefore particularly important in distributed system
environments. We present an application- and application-
protocol-independent infrastructure that allows for the en-
forcement of usage control policies in a distributed environ-
ment. We instantiate the infrastructure for transferring files
using FTP and for a scenario where smart meters are con-
nected to a Facebook application.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Information flow con-
trols; D.4.6 [Security and Protection]: Access controls

General Terms

Security

Keywords

Distributed Usage Control, Policy Enforcement, Security
and Privacy, Sticky Policies

1. INTRODUCTION
Usage control [8] has been proposed and discussed with

the goal to overcome one shortcoming of traditional access
control models: the loss of control after access to data has
been granted. Distributed usage control [4] is concerned
with the usage of data in distributed system environments.
Policies express what may or may not happen to usage-
controlled data [3, 5]. They must be enforced at and across
all systems storing, processing, and distributing data. For
this reason, an infrastructure is needed that allows for (1)
inter-system data flow tracking and (2) the enforcement of
both globally and locally enforceable usage control policies.
Examples for policies are “do not process my data with ap-
plication X” and “not more than two instances of document

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’12, June 20–22, 2012, Newark, New Jersey, USA.
Copyright 2012 ACM 978-1-4503-1295-0/12/06 ...$10.00.

Y may be opened simultaneously”. While the compliance
with the former can be enforced locally, this is not the case
for the latter, since the document may be opened on differ-
ent systems at the same time.

We present an infrastructure that supports (1) application-
and protocol-independent data flow tracking across differ-
ent operating system instances, (2) sticking policies to data
upon sending it to another system, and (3) policy enforce-
ment at the receiving site. We implement our infrastructure
at the operating system layer and focus on TCP/IP and lo-
cally enforceable policies. The infrastructure integrates into
an existing usage control infrastructure for independent sys-
tems [6]. Security aspects, provided guarantees, and the
corresponding assumptions are out of the scope of this work.

We show two instantiations of our infrastructure: the File
Transfer Protocol (FTP) and a scenario where a smart meter
is connected to a Facebook application in order to share
energy usage data with online contacts.

2. INFRASTRUCTURE
The core components of our distributed enforcement in-

frastructure are a distribution-enhanced Policy Information
Point (PIP) and a Policy Management Point (PMP). The
infrastructure is distributed in that its components must be
deployed on any system, i.e. an operating system instance,
that is expected to enforce usage control policies. The task of
the PIP is to hold the information flow state of the system on
which it is deployed, i.e. information about the distribution
of data. At the operating system layer this is essentially the
information which data is stored in which files [1, 6]. The
PMP manages all usage control policies for data entering,
leaving, and residing in the respective system. We equipped
both the PIP and the PMP with the capability to commu-
nicate with their respective counterparts on other systems,
therefore allowing for the exchange of usage control relevant
information (namely inter-system data flow tracking and us-
age control policies) once data flows between systems.

Our infrastructure integrates into an existing usage con-
trol solution for single independent systems [6]. The latter
consists of a Policy Enforcement Point (PEP), a Policy De-
cision Point (PDP), and a local Policy Information Point
(PIP). We will now show how these two infrastructures in-
tegrate.

Initially, the PMP deploys the policy in the system (Fig.
1, step 1). In this work we assume policies to be formulated
in terms of system calls as described in [3, 6]. The PEP is
tailored to one system layer [6] (in our case the operating
system); it intercepts attempted and actual events within

119

��������

����

���� ����

�	
���
����������
�

�
��������������������
�

�
����

�	��������

�
������ ���!�"#�

$#���!�!%

&
�'"(�!)���������
�
�

*��))#+

*��#,"$

*���-"."�

*���)!

*��!�!������ ���!�"#���

�

�

�

�

��

�
��#)"/
��!�!

���� ����

����

0
��#)"/
��!�!
 �1
��#)"/
��!�!

2
��" ��".3�"#���!�!

'
 ��4�� '
 ��4��

5
���$#�4��!�!��

Figure 1: Interplay of the infrastructure’s main components.

the layer (at the operating system layer such events have
been identified as system calls [1]) and signals them to the
PDP (step 2). In order to take a usage control decision, the
PDP queries the PIP for additional information about data
distribution (step 3). The PIP therefore replies with a list of
representations the data has taken (step 4) (e.g., data may
be contained in files, pipes, or in some processes’ memory).
The PDP then decides on the grounds of the policy and
data distribution whether to allow, modify, inhibit, or delay
the event [5] and sends the decision to the PEP (step 5).
The PEP enforces the PDP’s decision. If an event actually
happened, the PEP signals it to the PIP (step 6) that then
updates the system’s information flow state.
Likewise any event corresponding to sending usage con-

trolled data to another system over the network is temporar-
ily blocked by the PEP. Our infrastructure then takes care
of tracking the inter-system data flow and sticking the cor-
responding usage control policies to the data.
For example, if PEPA (XA denotes component X on sys-

tem A) intercepts an event of sending data d to system B and
if PDPA decides that releasing data d complies with the pol-
icy (otherwise there is no inter-system data flow), then both
PIPA and PMPA communicate with their respective coun-
terparts on system B: PIPA communicates to PIPB that data
d is about to be received on a specific network socket (step
7), therefore accomplishing inter-system data flow tracking.
PIPA then informs PMPA about the data flow to system B
(step 8) and PMPA communicates the usage-control policy
associated with data d to PMPB (step 9), therefore imple-
menting the sticky policy paradigm. PMPB then deploys
the received policy on system B (step 10). After the PIPs
and PMPs finished their communication, the original event
is unblocked and the actual data transfer proceeds. Once
data d is received on system B, its components are already
aware of the previous inter-system data flow and the corre-
sponding policy. Consequently they enforce the policy on
the received data. Note that the example is analogous if
PEPB intercepts a corresponding event.

3. IMPLEMENTATION
Our implementation leverages an existing PEP for the

OpenBSD operating system [1]. This implementation ob-
serves and intercepts system calls using the tool Systrace

[7]. We extended the implementation with TCP/IP-related
system calls, the most important ones being socket, accept,
connect, and write (and all equivalents like send). Notably
all system calls related to sending data through a TCP con-
nection (write and equivalents) are intercepted and handled
as described in §2. The remote communication between

the PIPs and PMPs has been realized using XML-RPC [9];
though conceptually different, our current implementation
bundles the two remote procedure calls for performance rea-
sons.

4. USE CASES
We instantiate our generic infrastructure for FTP in §4.1

and for a smart meter connected to a Facebook applica-
tion in §4.2. Note that our infrastructure is independent
of application-level protocols, applications, and implemen-
tations. It may be used with any application building upon
TCP/IP. Videos of our use cases are provided online1.

4.1 File Transfer Protocol (FTP)
In this use case we consider users Alice and Bob on two

different operating system instances. Alice owns the usage-
controlled file “AlicesFriends.txt” within her home folder;
the corresponding policy states that “the content of ‘Al-
icesFriends.txt’ may not be opened using the ‘mousepad’
text editor”. Technically, this policy is specified as event-
condition-action (ECA) rule [3]:

1 <controlMechanism >
2 <id>DenyMousepad </id>
3 <triggerEvent >
4 <id>open</id>
5 <param name="filename" value="/home/alice/

AlicesFriends.txt" type="dataUsage"/>
6 </triggerEvent >
7 <condition >
8 <XPathEval >
9 /triggerEvent/param[@name=’command’]/ @value=’

mousepad ’
10 </XPathEval >
11 </condition >
12 <actions>
13 </inhibit>
14 </actions>
15 </controlMechanism >

Therefore, if Alice tries to open the file“AlicesFriends.txt”
(or any local copy of it, since the infrastructure for single in-
dependent systems tracks local data flows) using mousepad,
the corresponding open system call is denied and mousepad
fails to open the file (cf. Fig. 2).

Then, Alice decides to share this file with Bob and starts
an FTP server (we used a standard vsftpd implementation)
that is configured to make Alice’s home folder readable.
Now, Bob runs an FTP client (gftp standard implementa-
tion) and logs in to Alice’s FTP server. Therefore, Bob is
able to list and read the contents of Alice’s home folder;
he transfers the usage-controlled file “AlicesFriends.txt” to

1http://zvi.ipd.kit.edu/english/26_422.php

120

http://zvi.ipd.kit.edu/english/26_422.php

Figure 2: Mousepad fails to open the protected file.

his home folder. Although having read permissions on the
transferred file, Bob is not able to open the file, nor any copy
of it, using the mousepad text editor.
This is because the PIPs and PMPs of the two systems

took care of (i) tracking the inter-system data flow of the
content of file “AlicesFriends.txt” through the TCP channel
established by FTP and (ii) transferring and deploying the
policy to Bob’s system before the actual data transfer hap-
pened. Note that we didn’t modify the implementation of
vsftpd, gftp, or mousepad. Any other equivalent tools would
behave identically.

4.2 Smart Meter connected to Facebook
Our second use case is an instantiation of our infrastruc-

ture to smart meters connected to Facebook [2]. In this
scenario, both Alice and Bob have (simulated) smart meters
installed in their homes and opted in to a Facebook applica-
tion that allows for the sharing and comparison of the energy
consumption measured by the smart meters.
The smart meters send their readings to a trusted third

party (meter reader) that accumulates the data for further
services like billing. The meter reader also releases the en-
ergy usage data to other services, like the Facebook appli-
cation, upon receiving appropriate credentials (that must
be provided by the corresponding smart meter user). Since
both Alice and Bob provided their credentials in the regis-
tration phase, the Facebook application is allowed to request
their energy usage data and share it for comparison in forms
of graphs and avatars. If no usage control policy is specified,
data may be used, stored, and shared unrestrictedly once it
has been released by the meter reader.
The meter reader gives users the ability to specify us-

age control policies for their energy usage data. While in
our current implementation users have to specify policies as
ECA rules, future instantiations of this work may integrate
a more user-friendly policy specification tool as described in

[3]. Once Alice decides to deploy the policy “Facebook ap-
plication must delete all data older than 14 days”, the policy
is sent to the Facebook application along with the next re-
quest of energy usage data. The policy is enforced and the
graphs and avatars shown are based on the data of the last
14 days only.

Technically, the meter reader and the Facebook applica-
tion communicate using HTTP. The meter reader runs a
(standard Apache) HTTP server that is queried regularly
for the readings by a (simple self-written) script run on the
Facebook application server. We instantiated our enforce-
ment infrastructure at both of these sites, therefore expand-
ing data flow tracking and policy enforcement of the energy
usage data to the Facebook application once Alice deploys a
policy. Each further data request after policy deployment is
then temporarily blocked until the meta communication in-
troduced by our infrastructure (between the respective PIPs
and PMPs) has finished.

Again, our infrastructure is independent from the appli-
cations used.

Acknowledgment. This work was funded by a Google
Focused Research Award on Cloud Computing.

5. REFERENCES
[1] M. Harvan and A. Pretschner. State-Based Usage

Control Enforcement with Data Flow Tracking using
System Call Interposition. In Proc. 3rd International

Conference on Network and System Security, pages
373–380, Oct. 2009.

[2] P. Kumari, F. Kelbert, and A. Pretschner. Data
Protection in Heterogeneous Distributed Systems: A
Smart Meter Example. In Proc. Workshop on

Dependable Software for Critical Infrastructures. GI

Lecture Notes in Informatics, Oct. 2011.

[3] P. Kumari and A. Pretschner. Deriving
Implementation-level Policies for Usage Control
Enforcement. In Proc. 2nd ACM Conference on Data

and Application Security and Privacy, pages 83–94,
Feb. 2012.

[4] A. Pretschner, M. Hilty, and D. Basin. Distributed
Usage Control. Communications of the ACM, pages
39–44, Sept. 2006.

[5] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and
T. Walter. Mechanisms for Usage Control. In Proc.

2008 ACM Symposium on Information, Computer and

Communications Security, pages 240–244, Mar. 2008.

[6] A. Pretschner, E. Lovat, and M. Büchler.
Representation-Independent Data Usage Control. In
Data Privacy Management and Autonomous

Spontaneus Security, volume 7122 of Lecture Notes in

Computer Science, pages 122–140, 2012.

[7] N. Provos. Improving Host Security with System Call
Policies. In Proc. 12th USENIX Security Symposium,
June 2003.

[8] R. Sandhu and J. Park. Usage Control: A Vision for
Next Generation Access Control. In Computer Network

Security, volume 2776 of Lecture Notes in Computer

Science, pages 17–31. 2003.

[9] D. Winer. XML-RPC, http://xmlrpc.scripting.com/,
1998.

121

	Introduction
	Infrastructure
	Implementation
	Use Cases
	File Transfer Protocol (FTP)
	Smart Meter connected to Facebook

	References

