
LibSEAL: Detecting Service Integrity Violations Using Trusted Execution

Pierre-Louis Aublin†1, Florian Kelbert†, Dan O’Keeffe†, Divya Muthukumaran†, Christian Priebe†2,
Joshua Lind†2, Robert Krahn‡2, Christof Fetzer‡, David Eyers¶, Peter Pietzuch†

†Imperial College London ‡TU Dresden ¶University of Otago

Introduction. Internet users have become reliant on a
swathe of online services for everyday tasks and expect
them to uphold service integrity. However, data loss or cor-
ruption do happen despite service providers’ best efforts. In
such cases, users often have little recourse. Our goal is to
strengthen the position of users by helping them to discover
and prove integrity violations by Internet services.

LibSEAL is a SEcure Audit Library for Internet services
that (i) transparently creates a non-repudiable audit log of
service operations and (ii) checks invariants over that log
to discover service integrity violations. LibSEAL protects
the confidentiality of code and data by executing inside an
Intel SGX trusted execution environment (called enclave).
LibSEAL securely and effectively discovers service integrity
violations, while reducing throughput by at most 32%.
Objectives. LibSEAL meets the following objectives.

O1: Ease-of-deployment. LibSEAL is easy to deploy with
existing Internet services, requiring minimal to no changes
to existing service and client implementations.

O2: Generality and flexibility. LibSEAL is general and
widely applicable, supporting a multitude of Internet ser-
vices with different specifications of integrity.

O3: Security and privacy. LibSEAL neither affects the
confidentiality or integrity of data handled by the service,
nor does it reveal details about the service implementation.

O4: Performance overhead. LibSEAL imposes a low per-
formance overhead with respect to native service execution.
Design. LibSEAL acts as a drop-in replacement for exist-
ing TLS libraries (O1). The omnipresence of TLS means
that LibSEAL can be applied to many existing Internet ser-
vices (O2). Once a TLS-enabled service links against Lib-
SEAL, LibSEAL terminates client connections and trans-
parently records information from client requests and ser-
vice responses in an audit log. The integrity of code and
data, including LibSEAL itself, the audit log, and service
requests and responses, is ensured by executing security-
sensitive parts of LibSEAL inside a hardware-protected In-
tel SGX enclave (O3). In addition, LibSEAL cryptograph-
ically signs the audit log when storing it on disk. Integrity
violations are expressed as violations of invariants over the
audit log in terms of simple SQL queries (O2). LibSEAL
avoids costly transitions between enclave and non-enclave
code by permanently associating threads with the enclave
(O4). Further, LibSEAL can be configured to write the log

to disk asynchronously, reducing the impact on the critical
path (O4).
Secure and efficient TLS termination. LibSEAL ports
LibreSSL to SGX enclaves, executing and maintaining
security-sensitive code and data inside the enclave. This
includes code related to the TLS protocol, as well as any
private keys and TLS session keys. LibSEAL reduces the
number of SGX enclave transitions by (i) allocating memory
for non-sensitive data in bulks, (ii) using the SGX provided
thread locks implementation instead of pthread synchroniza-
tion primitives, and (iii) ensuring that non-sensitive service
data is stored outside of the enclave. LibSEAL further re-
duces the cost of enclave transitions by performing calls into
the enclave asynchronously. For this, LibSEAL implements
dedicated user-level lthread tasks inside the enclave.
Audit logging and checking. LibSEAL generates the au-
dit log based on client requests and service responses. It
observes all messages exchanged in a TLS connection by
monitoring the TLS functions SSL_read() and SSL_write().
To prevent data loss under failure, LibSEAL writes the
audit log to local persistent storage. To avoid logging ev-
ery request and response in its entirety, LibSEAL employs
service-specific modules to (i) parse the service specific re-
quests and responses, (ii) extract the information required
to verify the service invariants, (iii) append the data to the
audit log in a relational format, and (iv) specify invariants—
usually soundness and completeness properties—as SQL
queries over the relational schema. LibSEAL triggers invari-
ant checks after configurable time intervals, but clients may
also trigger invariant checks explicitly.
Evaluation. We evaluate the security and performance of
LibSEAL using the Git version control service, the own-
Cloud collaborative document service, and the Dropbox file
storage service. Results show that: (i) invariants are sim-
ple to write yet strong enough to detect integrity violations,
such as the soundness and completeness of files and docu-
ments served by Dropbox and ownCloud; (ii) LibSEAL pre-
vents log bypassing and is secure against enclave interface
attacks; and (iii) LibSEAL has an acceptable performance
overhead of at most 32% for asynchronous logging; depend-
ing on the service and its invariants, invariant checking takes
40–200 ms for several thousand log entries.

1 Presenter 2 Student

Interface

TLS Protocol
SSL_read() SSL_write()

Logger

Log Analyser

LibSEAL

SGX
enclave

Log
Service
specific
modules

Application

TLS Library

request

Internet
Client

request

Server

1

2

4

3

response

6

responserequest

Service

response

5

request response

LibSEAL: Detecting Service Integrity
Violations Using Trusted Execution

Pierre-Louis Aublin, Florian Kelbert, Dan O'Keeffe, Divya Muthukumaran,
Christian Priebe, Joshua Lind and Peter Pietzuch

{p.aublin,f.kelbert}@imperial.ac.uk
Imperial College London

Motivation
- Internet services do not guarantee integrity

 e.g. Git, Dropbox

- Data can be lost or corrupted

- Goal: Discover and prove integrity violations

- Security instructions on Intel CPUs

- Enclaves isolate code and data

- Protects against malicious OS and hardware

- Service specific modules log relevant data

- Relational database stores the log

- Asynchronous writes improve performance

- Signatures to detect log tampering

- SQL statements specify service invariants

- Persistent counters to detect rollback attacks

SELECT time, repo FROM advertisements
NATURAL JOIN branchcnt
GROUP BY time, repo, cnt HAVING COUNT(branch) != cnt;

updates(time, repo, branch, cid, type)
advertisements(time, repo, branch, cid)

LibSEAL: SEcure Auditing Library

- Drop-in replacement for existing TLS libraries

- Terminate TLS inside an SGX enclave

- Securely log service requests and responses

- Periodical log-auditing by checking invariants

Improving performance

0

100

200

300

400

500

600

700

800

native sgx sgx native sgx sgx

La
te

n
cy

 (
m

s)

commit_batch
list

mem sync mem sync

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450

La
te

n
cy

 (
m

s)

Throughput (git push req/s)

native
sgx

sgx-process
sgx-mem
sgx-sync

Git version control Dropbox file storage

CPU
Memory

Untrusted
code

ecall

ocall

enclave
interface
Trusted

code

TrustedUntrusted

Background: Intel SGX

Audit logging and checking

- Asynchronous enclave transitions

- User-level scheduling

Performance results
- Implementation based on LibreSSL

- Performance overhead of at most 32%

- Invariant checking takes less than 200ms

Robert Krahn and Christof Fetzer
TU Dresden

David Eyers
University of Otago

SGX enclave

ecalls ocalls

Busy- waiting threadApplication
threads

SGX threads

lthread
scheduler

lthread
scheduler

lthread
scheduler

Lthread tasks

DropboxAlice DropboxAlice

