Explainability, interpretability, & safety in ML for electric power systems

Priya L. Donti

Assistant Professor Massachusetts Institute of Technology

Power systems are safety-critical systems

2

Power systems are human systems

What is being prioritized and/or missed?

Image source: Utility Dive

Image source: CNET

Power systems are heavily regulated systems

How can we diagnose what went wrong?

MIKE ELIASON/SANTA BARBARA COUNTY FIRE DEPARTMENT/AP

Gray-box models: Creating model components we can recognize and understand

Verifying model behaviors: Testing that a model will behave as intended

Enforcing model behaviors: Engineering desired behaviors into models

Gray-box models: Creating model components we can recognize and understand

O Verifying model behaviors: Testing that a model will behave as intended

Enforcing model behaviors: Engineering desired behaviors into models

Deep learning is differentiable function composition

Deep learning is differentiable function composition

- Neural network h_{θ} = composition of nonlinear, parameterized functions (*layers*)
- Update parameters θ to minimize loss ℓ using gradients from *backpropagation*
- All components (layers and loss) must be differentiable

Many power systems processes are implicit functions

Solve for *v* such that:

diag(
$$v$$
) $\overline{Y}\overline{v} = (p_g - p_d) + (q_g - q_d)j$

Implicit function solved using iterative processes such as Newton-Raphson

Toolkit: Implicit layers

Differentiating through optimization problems

Insight: Apply the implicit function theorem to the KKT optimality conditions

Example optimization problem

 $\begin{array}{ll} \underset{z}{\text{minimize}} & \frac{1}{2} z^{T} Q z + q^{T} z \\ \text{subject to} & A z = b \\ & G z \leq h \end{array}$

Selected KKT optimality conditions

$$Qz^{\star} + q + A^{T}v^{\star} + G^{T}\lambda^{\star} = 0$$
$$Az^{\star} - b = 0$$
$$diag(\lambda^{\star})(Gz^{\star} - h) = 0$$

Step 1: Apply implicit function theorem to the KKT conditions

$$\begin{bmatrix} Q & G^{T} & A^{T} \\ diag(\lambda^{*})G & diag(Gz^{*} - h) & 0 \\ A & 0 & 0 \end{bmatrix} \begin{bmatrix} dz \\ d\lambda \\ d\nu \end{bmatrix} = -\begin{bmatrix} dQz^{*} + dq + dG^{T}\lambda^{*} + dA^{T}\nu^{*} \\ diag(\lambda^{*})dGz^{*} - diag(\lambda^{*})dh \\ dAz^{*} - db \end{bmatrix}$$

Generalized Jacobian of KKT conditions Desired gradients Gradients of problem parameters
Step 2: Use "Jacobian-vector trick" for efficient backpropagation

Brandon Amos and J. Zico Kolter. "OptNet: Differentiable optimization as a layer in neural networks." *ICML 2017.* Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." *NeurIPS 2017.*

Deep learning is differentiable function composition

Using differentiable ACOPF for system identification

Problem (Inverse-OPF): Given grid data, identify generator costs and grid parameters

$$\begin{array}{l} \text{minimize} \quad \ell\left(\left(p_g,\lambda\right),\left(\hat{p}_g,\hat{\lambda}\right)\right)\\ \text{subject to} \quad \hat{p}_g,\hat{\lambda} = \text{ACOPF}(\hat{c},\hat{Y},p_d) \end{array}$$

Approach: "One-layer neural network" with implicit ACOPF layer

ACOPF layer
$$\hat{c}, \hat{Y}, p_d$$
 $\hat{p}_g, \hat{\lambda}$ $\ell\left((p_g, \lambda), (\hat{p}_g, \hat{\lambda})\right)$

Finding: Some system parameters are recoverable, in an interpretable way

Priya L. Donti, Inês Lima Azevedo, and J. Zico Kolter. "Inverse Optimal Power Flow: Assessing the Vulnerability of Power Grid Data." AI for Social Good Workshop at NeurIPS 2018.

Logical reasoning layers

Problem (Visual Sudoku): Given an image of a partially–filled Sudoku board, output the Sudoku solution

Approach: End-to-end training of a CNN with a maximum satisfiability (logical reasoning) layer

Finding: MAXSAT layer implicitly learns the "logical structure" of the Sudoku rules (i.e., structure of maximum satisfiability clauses) to achieve good performance

Po-Wei Wang, Priya L. Donti, Bryan Wilder, Zico Kolter. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver." *ICML 2019.* Zhaoyu Li, Jinpei Guo, Yuhe Jiang, Xujie Si. "Learning Reliable Logical Rules with SATNet." *NeurIPS 2023.*

Gray-box models: Creating model components we can recognize and understand

O Verifying model behaviors: Testing that a model will behave as intended

Enforcing model behaviors: Engineering desired behaviors into models

Gray-box models: Creating model components we can recognize and understand

Verifying model behaviors: Testing that a model will behave as intended

Enforcing model behaviors: Engineering desired behaviors into models

ε-retrain: Encouraging safety in RL via smart exploration

Problem: When training RL for domains such as power grids and robotics, can we prioritize behavioral preferences (e.g., safety desirada) while still getting good performance?

Approach: Modify the restart state distribution to combine standard uniform restart with restart over "retrain areas" where the agent violated a behavioral preference

Question: Beyond empirical experiments, how can we verify performance of the trained policy?

Active Network Management task

Toolkit: Formal verification

Reachability-based formal verification: Given trained policy \mathcal{F} and input-output relationships $\langle \mathcal{X}, \mathcal{Y} \rangle$, compute output-reachable set $\mathcal{R}(\mathcal{X}, \mathcal{F})$ and check $\mathcal{R}(\mathcal{X}, \mathcal{F}) \subseteq \mathcal{Y}$.

Luca Marzari, Changliu Liu, Priya L. Donti, Enrico Marchesini. "Improving Policy Optimization via ε-Retrain." Forthcoming at AAMAS 2025. L. Marzari, D. Corsi, F. Cicalese, and A. Farinelli. The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural Networks. *IJCAI 2023*.

Formal verification of ε-retrain policies

In robotic navigation setting, formal verification shows that ε-retrainbased algorithms better adhere to "collision avoidance" preference

	Retrain areas (1, 2, 3)			
ε-PPO	0.007%	0.011%	0.22%	
PPO	0.012%	0.017%	0.59%	
ε-TRPO	0.014%	0.67%	1%	
TRPO	0.015%	0.69%	0.8%	
ε -PPOLagr	0.006%	0%	0.012%	
PPOLagr	0.013%	0.05%	0.1%	
ε -TRPOLagr	0.0004%	0.007%	0.46%	
TRPOLagr	0.00005%	0.012%	0.48%	

Gray-box models: Creating model components we can recognize and understand

Verifying model behaviors: Testing that a model will behave as intended

Enforcing model behaviors: Engineering desired behaviors into models

Gray-box models: Creating model components we can recognize and understand

O Verifying model behaviors: Testing that a model will behave as intended

Enforcing model behaviors: Engineering desired behaviors into models

Deep reinforcement learning vs. robust control

Deep RL

Pro: Expressive, well-performing policies **Con:** Potential (catastrophic) failures

Robust control

Pro: Provable stability guarantees **Con:** Simple policies (e.g., linear)

Can we improve performance while still guaranteeing stability?

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network policies." *International Conference on Learning Representations (ICLR) 2021.*

Differentiable projection onto stabilizing actions

Deep learning-based policy with **provable robustness guarantees** (even for a randomly initialized neural network), trainable using reinforcement learning

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network policies." *International Conference on Learning Representations (ICLR) 2021.*

Finding a set of stabilizing actions (example)

Insight: Find a set of actions that are guaranteed to satisfy relevant Lyapunov stability criteria at a given state, even under worst-case conditions

Given the following (from robust control):

- Uncertainty model: e.g., $\dot{x}(t) \in Ax(t) + Bu(t) + Gw(t)$ s.t. $||w(t)||_2 \leq ||Cx(t) + Du(t)||_2$
- Lyapunov function V obtained via robust control synthesis
- Exponential stability criterion: $\dot{V}(x(t)) \leq -\alpha V(x(t)), \forall x \neq 0$

Find: For given *x*, set of actions satisfying exponential stability criterion even in worst case

$$\mathcal{C}(\mathbf{x}) \equiv \{ u: \left(\sup_{\substack{w : \|w\|_2 \le \|C\mathbf{x} + Du\|_2}} \dot{V}(\mathbf{x}) \right) \le -\alpha V(\mathbf{x}) \}$$

$$\Rightarrow \{ u: \|k_1(\mathbf{x}) + Du\|_2 \le k_2(\mathbf{x}) + k_3(\mathbf{x})^T u \}$$

$$Convex (non-empty) set in u(t)$$

Note: *t*-dependence has been dropped for brevity

Illustrative results: Synthetic NLDI system

Improved "average-case" performance over robust baselines

Provably stable under "worst-case" dynamics (unlike non-robust baselines)

Downside: Speed / computational cost

Energy-efficient heating and cooling

Goal: Control the HVAC supply water temperature to minimize energy use, while respecting equipment constraints and maintaining thermal comfort

Bingqing Chen^{*}, **Priya L. Donti**^{*}, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization." *ACM International Conference on Future Energy Systems (ACM e-Energy) 2021*.

Differentiable projection onto feasible actions

Results on realistic-scale building simulator

Improved energy efficiency (4-24%) Comparable thermal comfort

	Total Heating Demand	Predicted Percentage Dissatisfied	
		Mean	Std
	(kWh)	(%)	(%)
Existing controller	43709	9.45	5.59
Agent #6 (Zhang & Lam, 2018)	37131	11.71	3.76
Gnu-RL (Chen et al., 2019)	34678	9.56	6.39
PROF (ours)	33271	9.68	3.66

Feasible optimization proxies

Note: Learns directly from problem specification (no supervised training dataset)

Priya L. Donti^{*}, David Rolnick^{*}, and J. Zico Kolter. "DC3: A learning method for optimization with hard constraints." *International Conference on Learning Representations (ICLR) 2021.*

Approximating ACOPF: 57-bus test case

	Comparable objective valueSatisfies all (unlike b		l constraints baselines)	10x faster than IPOPT
	Objective value	Max equality violation	Mean equality violation	Time (s)
IPOPT	3.81 <u>+</u> 0.00	0.00 <u>+</u> 0.00	0.00 <u>+</u> 0.00	0.949 <u>+</u> 0.002
Baseline NN	—	0.19 + 0.01	0.03 <u>+</u> 0.00	—
Our approach	3.82 <u>+</u> 0.00	0.00 <u>+</u> 0.00	0.00 <u>+</u> 0.00	0.089 <u>+</u> 0.000

Gray-box models: Creating model components we can recognize and understand

O Verifying model behaviors: Testing that a model will behave as intended

Enforcing model behaviors: Engineering desired behaviors into models

Gray-box models: Creating model components we can recognize and understand

Verifying model behaviors: Testing that a model will behave as intended

Enforcing model behaviors: Engineering desired behaviors into models

Priya L. Donti: donti@mit.edu

Road ahead: Bridging needs & mechanisms

<u>Needs</u>

Mechanisms

