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Figure adapted from: US Congressional Budget Office

Physics: Power 
flows along lines

Hard constraints: 
Equipment constraints

Decision-making: Given (uncertain) demand, 
how do we schedule supply?
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Hard constraints: 
Stability constraints

Power systems are safety-critical systems

Am I confident that this model can be deployed?



Power systems are human systems
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Image source: CNET Image source: Utility Dive

What is being prioritized and/or missed?



Power systems are heavily regulated systems
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How can we diagnose what went wrong?
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Mechanisms for explainability, 
interpretability, & safety 

Gray-box models: Creating model components we can recognize and understand

Verifying model behaviors: Testing that a model will behave as intended 

Enforcing model behaviors: Engineering desired behaviors into models

Understanding and improving data: Ensuring data representativeness & reliability
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Model 
𝒉𝜽

Deep learning is differentiable function composition
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𝑥 ℎ𝜃(𝑥)

Loss, e.g., 
ℓ 𝑦, ℎ𝜃 𝑥

Inputs OutputsFunctional 
form of model

Model 
parameters



Model 
𝒉𝜽

Deep learning is differentiable function composition
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- Neural network ℎ𝜃  = composition of nonlinear, parameterized functions (layers)

- Update parameters 𝜃 to minimize loss ℓ using gradients from backpropagation

- All components (layers and loss) must be differentiable

𝑥 ℎ𝜃(𝑥)

Loss, e.g., 
ℓ 𝑦, ℎ𝜃 𝑥

…
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Many power systems processes are implicit functions
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diag 𝑣  ത𝑌 ҧ𝑣 = 𝑝𝑔 − 𝑝𝑑 + 𝑞𝑔 − 𝑞𝑑 𝑗

Solve for 𝑣 such that:

Implicit function solved using iterative 
processes such as Newton-Raphson



10

Toolkit: Implicit layers

Forward pass:

Backward pass:

Explicit layer

𝑧 = 𝑓(𝑥, 𝜃)

[e.g., 𝑧 = 𝜎(𝜃𝑇𝑥 + 𝜃0)]

d𝑧⋆(𝑥)

d𝑥
=

d𝑓(𝑥, 𝜃)

d𝑥

Implicit layer

Find 𝑧 such that 
𝑔 𝑧, 𝑥, 𝜃 = 0

[e.g., power flow]

Find Τd𝑧⋆(𝑥) d𝑥  such that 

d𝑔 𝑧⋆(𝑥), 𝑥, 𝜃

d𝑥
= 0

by using implicit function 
theorem at a solution point

dℓ

d𝜃
=

dℓ

d𝑧⋆

d𝑧⋆

d𝜃
 

dℓ

d𝑥
=

dℓ

d𝑧⋆

d𝑧⋆

d𝑥

See also: Zico Kolter, David Duvenaud, and Matt Johnson. “Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models, and Beyond.” Tutorial at NeurIPS 2020. https://implicit-layers-tutorial.org/



Differentiating through optimization problems 
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Brandon Amos and J. Zico Kolter. “OptNet: Differentiable optimization as a layer in neural networks.” ICML 2017.
Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." NeurIPS 2017.

Example optimization problem

minimize
𝑧

 ½ 𝑧𝑇𝑄𝑧 + 𝑞𝑇𝑧

subject to 𝐴𝑧 = 𝑏
 𝐺𝑧 ≤ ℎ 

Selected KKT optimality conditions 

𝑄𝑧⋆ + 𝑞 + 𝐴𝑇𝜈⋆ + 𝐺𝑇𝜆⋆ = 0
𝐴𝑧⋆ − 𝑏 = 0

diag 𝜆⋆ 𝐺𝑧⋆ − ℎ = 0

Step 1: Apply implicit function theorem to the KKT conditions

𝑄 𝐺𝑇 𝐴𝑇

diag 𝜆⋆ 𝐺 diag(𝐺𝑧⋆ − ℎ) 0
𝐴 0 0

 
d𝑧
d𝜆
dν

= −
d𝑄𝑧⋆ + d𝑞 + d𝐺𝑇𝜆⋆ + d𝐴𝑇𝜈⋆

diag 𝜆⋆ d𝐺𝑧⋆  − diag 𝜆⋆ dℎ

d𝐴𝑧⋆ − d𝑏

Generalized Jacobian of KKT conditions Desired gradients Gradients of problem parameters

Step 2: Use “Jacobian-vector trick” for efficient backpropagation

Insight: Apply the implicit function theorem to the KKT optimality conditions



Model 
𝒉𝜽

Deep learning is differentiable function composition
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Using differentiable ACOPF for system identification
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minimize
Ƹ𝑐,  𝑌 

ℓ 𝑝𝑔 , 𝜆 , Ƹ𝑝𝑔 , መ𝜆  

subject to Ƹ𝑝𝑔 , መ𝜆 = ACOPF( Ƹ𝑐, 𝑌, 𝑝𝑑)

Problem (Inverse-OPF): Given grid data, 
identify generator costs and grid parameters  

Approach: “One-layer neural 
network” with implicit ACOPF layer

ACOPF layer

Ƹ𝑐, 𝑌, 𝑝𝑑
Ƹ𝑝𝑔, መ𝜆

ℓ 𝑝𝑔, 𝜆 , Ƹ𝑝𝑔, መ𝜆

Finding: Some system parameters are recoverable, in an interpretable way

Priya L. Donti, Inês Lima Azevedo, and J. Zico Kolter. "Inverse Optimal Power Flow: Assessing the Vulnerability of Power Grid Data." AI for Social Good Workshop at NeurIPS 2018.



Logical reasoning layers
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Problem (Visual Sudoku): Given an image of a partially–filled Sudoku board, 
output the Sudoku solution

Approach: End-to-end training of a CNN with a maximum satisfiability (logical reasoning) layer

Finding: MAXSAT layer implicitly learns the “logical structure” of the Sudoku rules 
(i.e., structure of maximum satisfiability clauses) to achieve good performance  

Po-Wei Wang, Priya L. Donti, Bryan Wilder, Zico Kolter. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver." ICML 2019.

Zhaoyu Li, Jinpei Guo, Yuhe Jiang, Xujie Si. "Learning Reliable Logical Rules with SATNet." NeurIPS 2023.
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ε-retrain: Encouraging safety in RL via smart exploration
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Problem: When training RL for domains such as power grids 
and robotics, can we prioritize behavioral preferences (e.g., 
safety desirada) while still getting good performance?

Active Network Management taskApproach: Modify the restart state distribution to combine 
standard uniform restart with restart over “retrain areas” 
where the agent violated a behavioral preference

Question: Beyond empirical experiments, how 
can we verify performance of the trained policy?

Luca Marzari, Changliu Liu, Priya L. Donti, Enrico Marchesini. "Improving Policy Optimization via ε-Retrain." Forthcoming at AAMAS 2025.



Toolkit: Formal verification

Reachability-based formal verification: Given trained policy ℱ and input-output 
relationships 𝒳, 𝒴 , compute output-reachable set ℛ(𝒳, ℱ) and check ℛ 𝒳, ℱ ⊆ 𝒴.

18
Luca Marzari, Changliu Liu, Priya L. Donti, Enrico Marchesini. "Improving Policy Optimization via ε-Retrain." Forthcoming at AAMAS 2025.
L. Marzari, D. Corsi, F. Cicalese, and A. Farinelli. The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural Networks. IJCAI 2023.



Formal verification of ε-retrain policies
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In robotic navigation setting, formal verification shows that ε-retrain-
based algorithms better adhere to “collision avoidance” preference  

Luca Marzari, Changliu Liu, Priya L. Donti, Enrico Marchesini. "Improving Policy Optimization via ε-Retrain." Forthcoming at AAMAS 2025.
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Deep reinforcement learning vs. robust control

Deep RL Robust control

Pro: Expressive, well-performing policies
Con: Potential (catastrophic) failures

Can we improve performance while still guaranteeing stability?

Pro: Provable stability guarantees
Con: Simple policies (e.g., linear)

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network 
policies." International Conference on Learning Representations (ICLR) 2021. 22



Differentiable projection onto stabilizing actions

Reward…

𝑥 𝑢

𝜃

P
ro

je
ct
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to
 𝒞

𝑥

𝑢

Deep learning-based policy with provable robustness guarantees (even for a 
randomly initialized neural network), trainable using reinforcement learning

System state Nominal 
action

Action

Model

(*)

Backpropagate

23
Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network 
policies." International Conference on Learning Representations (ICLR) 2021.



Finding a set of stabilizing actions (example)

Given the following (from robust control): 

- Uncertainty model: e.g., ሶ𝑥 𝑡 ∈ 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐺𝑤 𝑡  s. t. ||𝑤 𝑡 ||2 ≤  ||𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 ||2

- Lyapunov function 𝑉 obtained via robust control synthesis

- Exponential stability criterion: ሶ𝑉 𝑥 𝑡 ≤ −𝛼𝑉(𝑥 𝑡 ), ∀𝑥 ≠ 0

Find: For given 𝑥, set of actions satisfying exponential stability criterion even in worst case

𝒞 𝑥 ≡ { 𝑢: sup
𝑤 ∶ 𝑤 2≤ 𝐶𝑥+𝐷𝑢 2

ሶ𝑉 𝑥 ≤ −𝛼𝑉 𝑥 }

⇒ {𝑢: 𝑘1 𝑥 + 𝐷𝑢 2 ≤ 𝑘2 𝑥 + 𝑘3 𝑥 𝑇𝑢}

24

Convex (non-empty) set in 𝑢 𝑡

Note: 𝑡-dependence has been dropped for brevity

𝒞 𝑥 𝑡

𝜋𝜃 𝑥 𝑡

𝐾𝑥(𝑡)

ො𝜋𝜃 𝑥 𝑡

Convex projection

Insight: Find a set of actions that are guaranteed to satisfy relevant 
Lyapunov stability criteria at a given state, even under worst-case conditions



Illustrative results: Synthetic NLDI system
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Unstable

Stable

Improved 
“average-case”
performance over 
robust baselines

Provably stable 
under “worst-case”
dynamics (unlike 
non-robust baselines)

Downside: Speed / 
computational cost

[lower is better]



Energy-efficient heating and cooling

Goal: Control the HVAC supply water temperature to minimize energy use, while 
respecting equipment constraints and maintaining thermal comfort

26

Intelligent Workplace
Margaret Morrison Hall, 4th Floor

(✤ Zhang & Lam, 2018)
HVAC Schematic

Bingqing Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through 
Differentiable Projection for Energy Optimization." ACM International Conference on Future Energy Systems (ACM e-Energy) 2021.



Differentiable projection onto feasible actions

Reward…
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Total Heating 
Demand 

Predicted Percentage Dissatisfied

Mean Std

(kWh) (%) (%)

Existing controller 43709 9.45 5.59

Agent #6 
(Zhang & Lam, 2018)

37131 11.71 3.76

Gnu-RL 
(Chen et al., 2019)

34678 9.56 6.39

PROF (ours) 33271 9.68 3.66

Results on realistic-scale building simulator

28

Improved energy efficiency (4-24%) Comparable thermal comfort

Total Heating 
Demand 

Predicted Percentage Dissatisfied

Mean Std

(kWh) (%) (%)

Existing controller 43709 9.45 5.59

Agent #6 
(Zhang & Lam, 2018)

37131 11.71 3.76

Gnu-RL 
(Chen et al., 2019)

34678 9.56 6.39

PROF (ours) 33271 9.68 3.66



Feasible optimization proxies

Goal: Provide fast, feasible approx. to 
AC optimal power flow (ACOPF)

Approach:

29

power 
demand

dispatch

Priya L. Donti*, David Rolnick*, and J. Zico Kolter. "DC3: A learning method for optimization with hard constraints.”
International Conference on Learning Representations (ICLR) 2021.
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Approximating ACOPF: 57-bus test case

30

10x faster 
than IPOPT

Comparable
objective value

Satisfies all constraints
(unlike baselines)

IPOPT

Baseline NN

Our approach

Objective value

3.81 + 0.00

—

3.82 + 0.00

Max equality 
violation

Mean equality 
violation

0.00 + 0.00 0.00 + 0.00

0.19 + 0.01 0.03 + 0.00

0.00 + 0.00 0.00 + 0.00

Time (s)

0.949 + 0.002

—

0.089  + 0.000
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Am I confident this model 
can be deployed?

What is being prioritized 
and/or missed?

How can we diagnose 
what went wrong?

Road ahead: Bridging needs & mechanisms

Gray-box models

Verifying model behaviors

Enforcing model behaviors

Understanding & improving data

Needs Mechanisms

Priya L. Donti: donti@mit.edu
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