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Optimizing Complex Energy Systems is Hard

• Simulations are crucial for optimal decision-making in 
complex energy systems

• Need: Improve computational efficiency and scalability of 
digital twins

• Challenges: 
1. Modeling and simulation of complex systems is hard 
2. Optimal control and closed-loop decision-making for complex 

systems is hard-er
3. Scientific computing and machine learning tools are 

fragmented and not easily composable
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Challenge 1: Heterogenous Modeling Methods

Data-drivenPhysics-based

More domain 
knowledge

Less domain 
knowledge

White-box models Gray-box models Black-box models



Challenge 2: Heterogenous Solution Methods

Constrained Optimization Differential Equations Supervised Learning

• Requires prior knowledge 
of objective function and 

constraints

• Requires prior knowledge of 
the physics to be modeled

• Requires large labeled 
datasets

Reinforcement Learning

• Requires environment 
model to sample

More domain 
knowledge

Less domain 
knowledge



Challenge 3: Heterogenous Solution Tools

Constrained Optimization Differential Equations Supervised Learning Reinforcement Learning

More domain 
knowledge

Less domain 
knowledge
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Scientific Machine Learning (SciML)

What?
• SciML systematically integrates ML methods with mathematical models and algorithms 

developed in various scientific and engineering domains
Why?

• Scientific applications are governed by fundamental 
principles and physical constraints

• Purely data-driven “black box” ML methods cannot 
satisfy underlying physics

How?

• Leverage automatic differentiation used in 
learning for modeling, optimization, and control

Image source: https://sciml.wur.nl/reviews/sciml/sciml.html

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed 
machine learning. Nat Rev Phys 3, 422–440, 2021. 

https://sciml.wur.nl/reviews/sciml/sciml.html
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Selected Scientific Machine Learning Literature

• Differentiable Programming
▪ M. Innes, et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing, 

2019

• Learning to Solve (L2S)
▪ M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse 

problems involving nonlinear partial differential equations, 2019

• Learning to Optimize (L2O)
▪ A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
▪ P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021
▪ J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021

• Learning to Model (L2M)
▪ B. Lusch, et al., Deep learning for universal linear embeddings of nonlinear dynamics, 2018
▪ R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
▪ C. Rackauckas, et al., Universal Differential Equations for Scientific Machine Learning, 2021 

• Learning to Control (L2C)
▪ B. Amos, et al., Differentiable MPC for End-to-end Planning and Control, 2019
▪ S. East, et al., Infinite-Horizon Differentiable Model Predictive Control, 2020
▪ Y Qiao, et al., Scalable Differentiable Physics for Learning and Control, 2020
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Components of Scientific Machine Learning

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 2021. 
Thiyagalingam, J., Shankar, M., Fox, G. et al. Scientific machine learning benchmarks. Nature Reviews Physics 4, 413–420, 2022. 
Nghiem T., Drgona J., et al. Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems, ACC, 2023.
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Training neural networks as PDE solutions Application: Parameter estimation from data

M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and 
inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 2019

Images: NVIDIA Modulus

Learning to Solve Differential Equations with 
Physics-Informed Neural Networks (PINNs)
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M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems 
involving nonlinear partial differential equations, Journal of Computational Physics, 2019

Dataset: collocation points in 
the spatio-temporal 
coordinates.

https://github.com/pnnl/neuromancer/blob/master/examples/PDEs/Part_2_PINN_BurgersEquation.ipynb 

Architecture: PDE equations 
solved with neural network via 
automatic differentiation. 

Loss function: minimizing PDE equation, 
initial and boundary condition residuals.

Learning to Solve Differential Equations with 
Physics-Informed Neural Networks (PINNs)

https://github.com/pnnl/neuromancer/blob/master/examples/PDEs/Part_2_PINN_BurgersEquation.ipynb
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Learning to Optimize (L2O) with Constraints 

Training neural networks as optimization solutions Application: solving optimal power flow

James Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, IJCAI, 2021
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Learning to Optimize (L2O) with Constraints 

A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021

Dataset: collocation points in 
the parametric space.

https://github.com/pnnl/neuromancer/blob/master/examples/parametric_programming/Part_1_basics.ipynb 

Loss function: minimizing objective 
function and constraints penalties.

Architecture: differentiable 
optimization solver with 
neural network surrogate. 

https://github.com/pnnl/neuromancer/blob/master/examples/parametric_programming/Part_1_basics.ipynb
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Learning to Model (L2M) Dynamical Systems 

Neural models for nonlinear system identification Application: climate modeling

R. T. Q. Chen, et al., Neural ordinary differential equations. NeurIPS, 2018
C. Rackauckas, et al., Universal Differential Equations for Scientific Machine Learning, 2021 

Image: NVIDIA FourCastNet
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R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
B. Lusch, et al., Deep learning for universal linear embeddings of nonlinear dynamics, 2018

Dataset: time-series of states, 
inputs, and disturbances tuples.

Loss function: trajectory matching, 
regularizations, and constraints penalties.

Architecture: differentiable 
ODE solver with neural network 
model. 

https://github.com/pnnl/neuromancer/blob/master/examples/ODEs/Part_1_NODE.ipynb 

Architecture: Koopman operator 
with neural network basis 
functions. 

Learning to Model (L2M) Dynamical Systems 

https://github.com/pnnl/neuromancer/blob/master/examples/ODEs/Part_1_NODE.ipynb
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Learning to Control (L2C) with Differentiable System Models

Trajectory optimization for dynamical systems Application: autonomous systems

J. Drgoňa, A. Tuor and D. Vrabie, "Learning Constrained Parametric Differentiable Predictive Control Policies With Guarantees," in 
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024
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Jan Drgona, et al., Differentiable Predictive Control: An MPC Alternative for Unknown Nonlinear Systems using Constrained Deep 
Learning, Journal of Process Control, 2022

Dataset: collocation points in 
the control parametric space.

Loss function: reference tracking, 
constraints and terminal penalties.

Architecture: differentiable 
model with neural network 
control policy. 

https://github.com/pnnl/neuromancer/blob/master/examples/control/Part_3_ref_tracking_ODE.ipynb 

Learning to Control (L2C) with Differentiable System Models

https://github.com/pnnl/neuromancer/blob/master/examples/control/Part_3_ref_tracking_ODE.ipynb
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NeuroMANCER Scientific Machine Learning Library

github.com/pnnl/neuromancer

Open-source library in PyTorch

• Physics-informed Neural Networks

• Learning to optimize

• Neural differential equations

• Learning to control

https://github.com/pnnl/neuromancer


import neuromancer as nm

p = nm.variable(‘p’) 
x = nm.variable(‘x’)
y = nm.variable('y’)

obj = ((1-x)**2 + p*(y-x**2)**2).minimize(weight=1.0, name='obj’)
c1 = (p/2)**2 <= x**2 + y**2
c2 = x**2 + y**2 <= p**2 
c3 = x >= y

net = nm.MLP(insize=2, outsize=2, hsizes=[80]*4)
map = nm.Node(net, input_keys=['p’], output_keys=[‘x’,‘y’])

loss = nm.PenaltyLoss([obj], [c1, c2, c3])
problem = nm.Problem([map], loss)
optimizer = torch.optim.AdamW(problem.parameters())
trainer = nm.Trainer(problem,data,optimizer)
best_model = trainer.train()
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NeuroMANCER Scientific Machine Learning Library

2. Python code interface

1. Mathematical formulation

4. Results

3. Problem graph

map
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• Scientific machine learning (SciML) methods 
integrating deep learning, constrained optimization, 
physics-based modeling, and control
▪ Learning to optimize (L2O)
▪ Learning to control (L2C)
▪ Learning to model (L2M)
▪ Learning to solve (L2S) 

• Energy systems applications
▪ Buildings
▪ Power systems
▪ Wind farms
▪ Energy storage
▪ Transportation networks

drgona.github.io

jdrgona1@jh.edu 

Summary

github.com/pnnl/neuromancer

https://drgona.github.io/
mailto:jdrgona1@jh.edu
https://github.com/pnnl/neuromancer
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Learning to Control Building Energy System

J. Drgona, et al., Physics-constrained deep learning of multi-zone building thermal dynamics, Energy and Buildings, 2021
J. Drgona, et al., Deep Learning Explicit Differentiable Predictive Control Laws for Buildings, IFAC NMPC 2021

Benefits of Scientific Machine Learning-based Digital Twins
Modeling and optimal control design is roughly 10-times faster and requires less expertise.
Real-time decisions are made orders of magnitude faster than traditional model-based approaches. 
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Learning to Control Power System

Ethan King, et al., Koopman-based Differentiable Predictive Control for the Dynamics-Aware Economic Dispatch Problem, American Control 
Conference 2022 

Benefits of Scientific Machine Learning-based Digital Twins
Fast prototyping by re-using code template from building control project.
Real-time decisions are made orders of magnitude faster than traditional model-based approaches.  


