' JOHNS HOPKINS
y WHITING SCHOOL
of ENGINEERING

Neuromancer: Differentiable
Programming Library for Data-Driven
Modeling and Control

Jan Drgona
Associate Professor @ CaSE & ROSEI

Optimizing Complex Energy Systems is Hard

e Simulations are crucial for optimal decision-making in
complex energy systems

* Need: Improve computational efficiency and scalability of
digital twins

» Challenges:
1. Modeling and simulation of complex systems is hard
2. Optimal control and closed-loop decision-making for complex
systems is hard-er

3. Scientific computing and machine learning tools are
fragmented and not easily composable

Challenge 1: Heterogenous Modeling Methods

44]
Scope

e >|_,D
powergui TRV RMS

RMS

i Scope o
v s s Qe T o
U
C

I éékfésm

TKV30MVA
Source Feeder 151:: jMvAYS . 0.4kv Load
Transformer s output layer
11kV/0.4kV
A A input layer
\i n\ Kl hidden layer 1 hidden layer 2
ultistage Fault
Fault

White-box models Gray-box models Black-box models

< >

Physics-based Data-driven
More domain Less domain
knowledge

knowledge

Challenge 2: Heterogenous Solution Methods

Reinforcement Learning

m

mgn Zr(x, o)

Supervised Learning

Constrained Optimization Differential Equations
N

i=1

min f(x) dy 1 i Z_
. dr f(=) mom N Z; L{y', f(=",6)) s.t. Bellman(x, 92 =(;)),
= environment(x,0) = 0
XEE

subject to b(z) > 0
0

Simple linear model Polynomial model

Y,
. .
.
. . ACTOR -
Implements the
. A control policy
A y=bo+bix y=bo+bixi+b2xi2 ‘('
NG »
X X

* Requires environment

Y,

* Requires prior knowledge + Requires prior knowledge of * Requires large labeled
of objective function and the physics to be modeled datasets model to sample
constraints
More domain Less domain
knowledge

knowledge

Challenge 3: Heterogenous Solution Tools

Constrained Optimization Differential Equations Supervised Learning Reinforcement Learning
Y. _
}”PYOMO \nsys O PyTorch
e JUMP
@ MarLas 1 TensorFlow

£fSEHO ZpETse 4L, TAO
CVXPY

&> CasADi
GUROBI

OPTIMIZATION

More domain Less domain
knowledge knowledge

Scientific Machine Learning (SciML)

What?

» SciML systematically integrates ML methods with mathematical models and algorithms
developed in various scientific and engineering domains

Why?

Artificial Intelligence
» Scientific applications are governed by fundamental

principles and physical constraints

Machine Learning
» Purely data-driven “black box” ML methods cannot

satisfy underlying physics
Deep
How? Learning

* Leverage automatic differentiation used in
learning for modeling, optimization, and control

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed
machine learning. Nat Rev Phys 3, 422—440, 2021.

Image source: https://sciml.wur.nl/reviews/sciml/sciml.html

https://sciml.wur.nl/reviews/sciml/sciml.html

Selected Scientific Machine Learning Literature

Differentiable Programming
= M. Innes, et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing,
2019
Learning to Solve (L2S)
= M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, 2019
Learning to Optimize (L20)
= A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
= P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021
= J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021

Learning to Model (L2M)
= B. Lusch, et al., Deep learning for universal linear embeddings of nonlinear dynamics, 2018
= R.T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
= C. Rackauckas, et al., Universal Differential Equations for Scientific Machine Learning, 2021

Learning to Control (L2C)
= B. Amos, et al., Differentiable MPC for End-to-end Planning and Control, 2019
= S. East, et al., Infinite-Horizon Differentiable Model Predictive Control, 2020
= Y Qiao, et al., Scalable Differentiable Physics for Learning and Control, 2020

Components of Scientific Machine Learning

25N

problem parameters
collocation points

e ——— -

Active sampling

00O
0000

8 < Pu 0*u
----- - 2 2
® dy 0z

Al surrogate
arcitecture

Domain prior

minimize objective

) B 4

constraints penalties

Domain-aware
loss function

Automatic

Domain-aware
loss functions

forward propagation

differentiation backward propagation

a0 1 S

collocation loss

Domain
priors

argmin flx;8)

X
subjectto g(x;6) <0
R(x;8)=0

/\/\ constraints

reference tracking minimize objective

penalties

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 2021.
Thiyagalingam, J., Shankar, M., Fox, G. et al. Scientific machine learning benchmarks. Nature Reviews Physics 4, 413—420, 2022.
Nghiem T., Drgona J., et al. Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems, ACC, 2023.

Learning to Solve Differential Equations with
Physics-Informed Neural Networks (PINNs)

O M
0% o O O EEmemsas aZu 82’“’ . [Eeaare] PDE collocation loss
""" - ® O | 2 P 1/ —
space-time e o Y 0z J -\
collocation points O IC & BC loss
PDE domain neural network PDE equations PINN loss
Training neural networks as PDE solutions Application: Parameter estimation from data

RNNs in Modulus: Gray-Scott system (Prediction) RNNs in Modulus: Gray-Scott system (Ground Truth)

M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and Images: NVIDIA Modulus
inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 2019

Learning to Solve Differential Equations with
Physics-Informed Neural Networks (PINNs)

@ SN
% © ® © Bamey 62“ 82'“ v | PDE collocation loss
————— - © @ — + o 0
space-time Q O O _____ = ay az _____ i / I\
collocation points O IC & BC loss
PDE domain neural network PDE equations PINN loss
Dataset: collocation points in Architecture: PDE equations Loss function: minimizing PDE equation,

the spatlo temporal

10—

Sampled IC BC, and CP (x,t) fortralnlng
X p¥ e

I\. B° e v o -

-1.00 -0.75

-0.50 -0.25 0.00 0.25 0.50 0.75 100
x

https:

solved with neural network via initial and boundary condition residuals.
automatic differentiation.

- i d2
j = NNy(z,1) by = g, 2 et} 7))
8NN9 82NN9)
fPINN(t,w) = (5 522) s N ; \y u,CL'u NNG(u,ﬂiu)!
+ e*t(sin(ﬂ'w) — 72 sin(mﬁ)) f E— éf Ly,

ithub.com/pnnl/neuromancer/blob/master/examples/PDEs/Part 2 PINN BurgersEquation.ipynb

M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, Journal of Computational Physics, 2019

https://github.com/pnnl/neuromancer/blob/master/examples/PDEs/Part_2_PINN_BurgersEquation.ipynb

Learning to Optimize (L20) with Constraints

N 020 | fmmmo | [N/

constraints | - & : O ----- —| subjectto g(x;0) <0 |- |l
objective functions O @ h(x;0) =0 \—/

collocation points constraints penalties

dgo00

problem neural network differentiable Lagrangian
parameters optimzation solver loss
Training neural networks as optimization solutions Application: solving optimal power flow

James Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, IJCAI, 2021 B

Learning to Optimize (L20) with Constraints

% @ ® | _____| argmin f(x;0) (- /\/\

@)
s O 8 O subjegtto g(x' 9) <0 minimize objective
constraints |] @A k- =g P | ket >
objective functions O &) O h(x;0)=0 \—/
collocation points constraints penalties
problem neural network differentiable Lagrangian
parameters optimzation solver loss
Dataset: collocation points in Architecture: differentiable Loss function: minimizing objective
the parametric space. optimization solver with function and constraints penalties.
neural network surrogate. .
1 i o¢i)|2
minimize ¢ f(x, &) by = — z; f(z*, &)
. 1=
subject to 9(x,6) <0 | m
Py
2 = NNy (€) £, = — [RELU(g(z",£"))|
i=1
L = projg(m,§)§0 (wa 5) lroo =Lp + 44

0.2 0.4 0.6 0.8 1.0 12

https://qgithub.com/pnnl/neuromancer/blob/master/examples/parametric programming/Part 1 basics.ipynb

A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021

https://github.com/pnnl/neuromancer/blob/master/examples/parametric_programming/Part_1_basics.ipynb

Neural models for nonlinear system identification

Learning to Model (L2M) Dynamical Systems

7~ =
\ SN
Ao~ N

/ —

/ DTN,
N =
X

/// \\/ _-

initial conditions
system trajectories

~——

training data

.

neural network

time-stepper

®)

/ -
® g ®
@ g ®
oo @

K\/

)

0

100

200

500 600

\
/
Z / O\

trajectory matching

Ty

constraints penalties

loss

system identification

Application: climate modeling

R. T. Q. Chen, et al., Neural ordinary differential equations. NeurIPS, 2018

C. Rackauckas, et al., Universal Differential Equations for Scientific Machine Learning, 2021

Ground truth

Image: NVIDIA FourCastNet

Dataset: time-series of states,
inputs, and disturbances tuples.

X =[&b,..

Learning to Model (L2M) Dynamical Systems

—~
R 7N
=7 N .

initial conditions
system trajectories

----- 4| @

training data

LEN] GeL,...,m]

https:

-

o2 o
OO
OOO

neural network time-stepper

.

~~

\
J /A

trajectory matching

) B 4

constraints penalties

Architecture: differentiable
ODE solver with neural network

2111 = ODESolve(N Np(zx))

Architecture: Koopman operator
with neural network basis

functi y, = NNp(z1)
Yei1 — Kg(yk)
Ty = NN; (Yria)

system identification
loss

Loss function: trajectory matching,
regularizations, and constraints penalties.

m N . -
0=)Y > Qllzt — &l

=1
m N-1 ' -
ly = Z Z Quz || Axy, — A5
=1 k=1
Lraom = 41 + 4o

ithub.com/pnnl/neuromancer/blob/master/examples/ODEs/Part 1 NODE.ipynb

R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
B. Lusch, et al., Deep learning for universal linear embeddings of nonlinear dynamics, 2018

https://github.com/pnnl/neuromancer/blob/master/examples/ODEs/Part_1_NODE.ipynb

Learning to Control (L2C) with Differentiable System Models

8

initial conditions
references
constraints

control
parameters

ogo® | @D+ ...
O o ® | ____ N @ |
o ® (B)

neural policy system model

Trajectory optimization for dynamical systems

o = N W
L ' L L

i T T T T i
0 5 10 15 20 25 30
time

T -y

yevsd

reference tracking

constraints penalties

model predictive
control loss

Application: autonomous systems

J. Drgona, A. Tuor and D. Vrabie, "Learning Constrained Parametric Differentiable Predictive Control Policies With Guarantees," in
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024

Learning to Control (L2C) with Differentiable System Models

8

initial conditions
references
constraints

control
parameters

Dataset: collocation points in
the control parametric space.

0.2 0.4 0.6 0.8 1.0 12

httpé:[[github.éom[Q'nnl[néuromancer[bIob[master[examgles[control[Part 3 ref tracking ODE.ipynb

o200 | @ |l
reference tracking
----- - O O O sty e
O O A y
O @ constraints penalties
neural policy system model model predictive
control loss
Architecture: differentiable Loss function: reference tracking,
model with neural network constraints and terminal penalties.
control policy. m N—1
o . g
zr+1 = ODESolve(f(xk, ut)) = Z Z Qq ||zt — 7|2
ur = N Ny(zk, k) i=1 k=1
N—1
9(xr, ur, &) <0 = i iy 2
P =2 > QulRELU(g(}, v &)1
Lo ~ Fag i=1 k=1
&k~ Pe broc =4 + 4,

Jan Drgona, et al., Differentiable Predictive Control: An MPC Alternative for Unknown Nonlinear Systems using Constrained Deep
Learning, Journal of Process Control, 2022

https://github.com/pnnl/neuromancer/blob/master/examples/control/Part_3_ref_tracking_ODE.ipynb

NeuroMANCER Scientific Machine Learning Library

- ; oA
% ______ === s 0u 0u = i) | PDE collocation loss
space-time | | a9l [T S 3y2 022 === M
collocation points 77l
IC & BC loss
PDE domain neural network PDE equations PINN loss
% o ____| argmin f(x;0) S N
_______ subje;t to g(x'G) <0 minimize objective

constraints
objective functions
collocation points

h(x;0)=0

v

constraints penalties

problem neural network differentiable Lagrangian
parameters optimzation solver loss

< ™ 7 7 \

NN zo 111 [‘ e | T J "t \
SN e,

SRS]

initial conditions
system trajectories

trajectory matching

T @wr

constraints penalties

training data

neural network

time-stepper

system identification

loss

- 8

initial conditions
references
constraints

-]

DAvAS

reference tracking

.4

constraints penalties

control
parameters

neural policy

system model

model predictive

control loss

Open-source library in PyTorch

* Physics-informed Neural Networks
Learning to optimize
» Neural differential equations

Learning to control

github.com/pnnl/neuromancer

https://github.com/pnnl/neuromancer

NeuroMANCER Scientific Machine Learning Library

1. Mathematical formulation
min (1 —x)* + p(y — x*)*
st. (p/2)? <x*+y* <p’, x>y
x = mo(p)
2. Python code interface

neuromancer

j = ((1-x)**2 + p*(y-x**).minimize(
(p/2)**2 <= x**2 + y**

X¥*kD 4 y**D (= px

X >=

loss = nm. ([obj], [cl, c2, c3])

problem = nm. ([map], loss)

optimizer = torch.optim.AdamW(problem.parameters())
trainer = nm. (problem,data,optimizer)
best_model = trainer.train()

3. Problem graph

4, Results

dataset

Rosenbrock problem

loss

Summary

» Scientific machine learning (SciML) methods
integrating deep learning, constrained optimization,
physics-based modeling, and control

= Learning to optimize (L20)
= Learning to control (L2C)

= Learning to model (L2M)

= Learning to solve (L2S)

* Energy systems applications

= Buildings

= Power systems drgona.github.io
= Wind farms

= Energy storage jdrgonal@jh.edu

Transportation networks

github.com/pnnl/neuromancer

https://drgona.github.io/
mailto:jdrgona1@jh.edu
https://github.com/pnnl/neuromancer

Acknowledgements

\ e /

Ethan King

Aaron Tuor

N Y i
Sayak Wenceslao Shaw Cortez ~ Soumya Vasisht ~ Shrirang Abhyankar ~ Mahantesh Halappanavar Panos Stinis Draguna Vrabie
Mukherjee

U.S. DEPARTMENT OF

EN ERGY Pacific Northwest

NATIONAL LABORATORY

Learning to Control Building Energy System

Differentiable Predictive Control
~

Autoregressive neural state space model Parametrized Closed-loop dynamics

forward propagation 3

__________________ -

MPC loss function
T

backward propagation

L

i
; dal

y 8 ®
O O

O
O

System model Neural control law :

......

1, Physics-constrained system identification

2, Control law learning with MPC loss function
time series dataset _

J

Benefits of Scientific Machine Learning-based Digital Twins

Modeling and optimal control design is roughly 10-times faster and requires less expertise.
Real-time decisions are made orders of magnitude faster than traditional model-based approaches.

J. Drgona, et al., Physics-constrained deep learning of multi-zone building thermal dynamics, Energy and Buildings, 2021
J. Drgona, et al., Deep Learning Explicit Differentiable Predictive Control Laws for Buildings, IFAC NMPC 2021

Learning to Control Power System

Power system network Dynamics-aware Economic Dispatch Differentiable Predictive Control (DED-DPC)
e N
8 6
GQF {_ L +GQ Koopman Modelofthe Power Svstemm. Parametrized Closed-loop dynamics
E' ‘ ¢ forwar opc j }
’ ’ i : N , \ MPC loss function OiE./szj.f)_/_?/_)j_q?_t_gn
3 v m = = backward propagation
J1-N Y d 3 71 J i 1 4l
PN {1 Pt s ———
Yon §1 1} il i\ Y
B m B EB N Y | @0
— | B 2w ¢ %e
\ A -y — K — w' o] O
l ’ u o @) O
p \N\ i System model Neural control law
w \/\/\ 1, Learn the Koopman operator 2, Learn explicit neural control law
time series dataset _ Y,

Benefits of Scientific Machine Learning-based Digital Twins
Fast prototyping by re-using code template from building control project.
Real-time decisions are made orders of magnitude faster than traditional model-based approaches.

Ethan King, et al., Koopman-based Differentiable Predictive Control for the Dynamics-Aware Economic Dispatch Problem, American Control
Conference 2022

