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Optimizing Complex Energy Systems is Hard

e Simulations are crucial for optimal decision-making in
complex energy systems

* Need: Improve computational efficiency and scalability of
digital twins

» Challenges:
1. Modeling and simulation of complex systems is hard
2. Optimal control and closed-loop decision-making for complex
systems is hard-er

3. Scientific computing and machine learning tools are
fragmented and not easily composable




Challenge 1: Heterogenous Modeling Methods
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Challenge 2: Heterogenous Solution Methods

Reinforcement Learning
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Challenge 3: Heterogenous Solution Tools

Constrained Optimization Differential Equations Supervised Learning Reinforcement Learning
Y. _
}”PYOMO \nsys O PyTorch
e JUMP
@ MarLas 1 TensorFlow

£fSEHO ZpETse 4L, TAO
CVXPY

&> CasADi
GUROBI

OPTIMIZATION

More domain Less domain
knowledge knowledge



Scientific Machine Learning (SciML)

What?

» SciML systematically integrates ML methods with mathematical models and algorithms
developed in various scientific and engineering domains

Why?

Artificial Intelligence
» Scientific applications are governed by fundamental

principles and physical constraints

Machine Learning
» Purely data-driven “black box” ML methods cannot

satisfy underlying physics
Deep
How? Learning

* Leverage automatic differentiation used in
learning for modeling, optimization, and control

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed
machine learning. Nat Rev Phys 3, 422—440, 2021.

Image source: https://sciml.wur.nl/reviews/sciml/sciml.html


https://sciml.wur.nl/reviews/sciml/sciml.html

Selected Scientific Machine Learning Literature

Differentiable Programming
= M. Innes, et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing,
2019
Learning to Solve (L2S)
= M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, 2019
Learning to Optimize (L20)
= A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
= P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021
= J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021

Learning to Model (L2M)
= B. Lusch, et al., Deep learning for universal linear embeddings of nonlinear dynamics, 2018
= R.T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
= C. Rackauckas, et al., Universal Differential Equations for Scientific Machine Learning, 2021

Learning to Control (L2C)
= B. Amos, et al., Differentiable MPC for End-to-end Planning and Control, 2019
= S. East, et al., Infinite-Horizon Differentiable Model Predictive Control, 2020
= Y Qiao, et al., Scalable Differentiable Physics for Learning and Control, 2020



Components of Scientific Machine Learning
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Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 2021.
Thiyagalingam, J., Shankar, M., Fox, G. et al. Scientific machine learning benchmarks. Nature Reviews Physics 4, 413—420, 2022.
Nghiem T., Drgona J., et al. Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems, ACC, 2023.




Learning to Solve Differential Equations with
Physics-Informed Neural Networks (PINNs)
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Training neural networks as PDE solutions Application: Parameter estimation from data

RNNs in Modulus: Gray-Scott system (Prediction) RNNs in Modulus: Gray-Scott system (Ground Truth)

M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and Images: NVIDIA Modulus
inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 2019



Learning to Solve Differential Equations with
Physics-Informed Neural Networks (PINNs)
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ithub.com/pnnl/neuromancer/blob/master/examples/PDEs/Part 2 PINN BurgersEquation.ipynb

M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, Journal of Computational Physics, 2019


https://github.com/pnnl/neuromancer/blob/master/examples/PDEs/Part_2_PINN_BurgersEquation.ipynb

Learning to Optimize (L20) with Constraints
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Learning to Optimize (L20) with Constraints
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https://qgithub.com/pnnl/neuromancer/blob/master/examples/parametric programming/Part 1 basics.ipynb

A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021


https://github.com/pnnl/neuromancer/blob/master/examples/parametric_programming/Part_1_basics.ipynb

Neural models for nonlinear system identification

Learning to Model (L2M) Dynamical Systems
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R. T. Q. Chen, et al., Neural ordinary differential equations. NeurIPS, 2018

C. Rackauckas, et al., Universal Differential Equations for Scientific Machine Learning, 2021
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Image: NVIDIA FourCastNet



Dataset: time-series of states,
inputs, and disturbances tuples.
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Learning to Model (L2M) Dynamical Systems
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Architecture: differentiable
ODE solver with neural network
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R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019
B. Lusch, et al., Deep learning for universal linear embeddings of nonlinear dynamics, 2018


https://github.com/pnnl/neuromancer/blob/master/examples/ODEs/Part_1_NODE.ipynb

Learning to Control (L2C) with Differentiable System Models
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J. Drgona, A. Tuor and D. Vrabie, "Learning Constrained Parametric Differentiable Predictive Control Policies With Guarantees," in
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024



Learning to Control (L2C) with Differentiable System Models

8

initial conditions
references
constraints

control
parameters

Dataset: collocation points in
the control parametric space.

0.2 0.4 0.6 0.8 1.0 12

httpé:[[github.éom[Q'nnl[néuromancer[bIob[master[examgles[control[Part 3 ref tracking ODE.ipynb

o200 | @ |l
reference tracking
----- - O O O sty e
O O A y
O @ constraints penalties
neural policy system model model predictive
control loss
Architecture: differentiable Loss function: reference tracking,
model with neural network constraints and terminal penalties.
control policy. m N—1
o . g
zr+1 = ODESolve(f(xk, ut)) = Z Z Qq ||zt — 7|2
ur = N Ny(zk, k) i=1 k=1
N—1
9(xr, ur, &) <0 = i iy 2
P =2 > QulRELU(g(}, v &)1
Lo ~ Fag i=1 k=1
&k~ Pe broc =4 + 4,

Jan Drgona, et al., Differentiable Predictive Control: An MPC Alternative for Unknown Nonlinear Systems using Constrained Deep
Learning, Journal of Process Control, 2022


https://github.com/pnnl/neuromancer/blob/master/examples/control/Part_3_ref_tracking_ODE.ipynb

NeuroMANCER Scientific Machine Learning Library
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* Physics-informed Neural Networks
Learning to optimize
» Neural differential equations

Learning to control

github.com/pnnl/neuromancer


https://github.com/pnnl/neuromancer

NeuroMANCER Scientific Machine Learning Library

1. Mathematical formulation
min (1 —x)* + p(y — x*)*
st. (p/2)? <x*+y* <p’, x>y
x = mo(p)
2. Python code interface

neuromancer

j = ((1-x)**2 + p*(y-x** ).minimize(
(p/2)**2 <= x**2 + y**

X¥*kD 4 y**D (= px

X >=

loss = nm. ([obj], [cl, c2, c3])

problem = nm. ([map], loss)

optimizer = torch.optim.AdamW(problem.parameters())
trainer = nm. (problem,data,optimizer)
best_model = trainer.train()

3. Problem graph

4, Results
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Summary

» Scientific machine learning (SciML) methods
integrating deep learning, constrained optimization,
physics-based modeling, and control

= Learning to optimize (L20)
= Learning to control (L2C)

= Learning to model (L2M)

= Learning to solve (L2S)

* Energy systems applications

= Buildings

= Power systems drgona.github.io
= Wind farms

= Energy storage jdrgonal@jh.edu

Transportation networks

github.com/pnnl/neuromancer



https://drgona.github.io/
mailto:jdrgona1@jh.edu
https://github.com/pnnl/neuromancer
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Learning to Control Building Energy System

Differentiable Predictive Control
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Benefits of Scientific Machine Learning-based Digital Twins

Modeling and optimal control design is roughly 10-times faster and requires less expertise.
Real-time decisions are made orders of magnitude faster than traditional model-based approaches.

J. Drgona, et al., Physics-constrained deep learning of multi-zone building thermal dynamics, Energy and Buildings, 2021
J. Drgona, et al., Deep Learning Explicit Differentiable Predictive Control Laws for Buildings, IFAC NMPC 2021



Learning to Control Power System

Power system network Dynamics-aware Economic Dispatch Differentiable Predictive Control (DED-DPC)
e N
8 6
GQF {_ L +GQ Koopman Modelofthe Power Svstemm. Parametrized Closed-loop dynamics
E' ‘ ¢ forwar opc j }
’ ’ i : N , \ MPC loss function OiE./szj.f)_/_?/_)j_q?_t_gn
3 v m = = backward propagation
J1-N Y d 3 71 J i 1 4l
PN {1 Pt s ———
Yon §1 1} il i\ Y
B m B EB N Y | @0
— | B 2w ¢ %e
\ A -y — K — w' o] O
l ’ u o @) O
p \N\ i System model Neural control law
w \/\/\ 1, Learn the Koopman operator 2, Learn explicit neural control law
time series dataset \_ Y,

Benefits of Scientific Machine Learning-based Digital Twins
Fast prototyping by re-using code template from building control project.
Real-time decisions are made orders of magnitude faster than traditional model-based approaches.

Ethan King, et al., Koopman-based Differentiable Predictive Control for the Dynamics-Aware Economic Dispatch Problem, American Control
Conference 2022



