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High electricity demand raises prices and the overall cost
of power distribution networks. The demand mostly comes
from civil buildings, e.g., for cooling and heating, with
sparse distribution depending on population density (Ser-
rano et al. 2017). It then becomes crucial to optimize power
distribution according to the needs of different areas. As ev-
idenced by Jiang et al. 2023, efficient optimization in smart
buildings requires the combination of accurate demand fore-
casting, in order to make the best decisions in the long term.
Machine learning, especially deep learning models, have
shown promising results in this direction, allowing to ac-
curately forecast the power demand from large sets of dis-
tributed sensors (Li and Yao 2021). However, fundamental
challenges in the smart buildings domain are the high di-
mensionality of data, the intricacies introduced by the dis-
tributed nature of the system, and the requirement of robust
predictions over a medium / long horizon. In addition, ex-
plainability is of utmost importance to foster monitoring and
predictive maintainance (Kazmi, Fu, and Miller 2023).

In this abstract, we show preliminary results about cooling
demand forecasting in smart buildings, adopting a causal
discovery approach (Assaad et al. 2022). Causal discov-
ery allows to capture meaningful spatio-temporal patterns in
large datasets, fostering both interpretability and forecasting
robustness. We consider the popular benchmark citylearn
dataset1, containing data from three buildings. We compare
the forecasting capabilities of different models, including
random forest, Neural Network (NN) and recurrent NN.
Forecasting over a single building, NN results in the best
Normalized Mean Average Error (NMAE) from Fig. 1a;
however, causal discovery2 attains the same NMAE (0.06),
with a slightly superior standard deviation (0.09 vs. 0.07).
Interestingly, when training a model on a single building and
forecasting over different ones, causal discovery achieves
the best results, with NMAE 0.07 (Fig. 1d, comparable to
Fig. 1b) vs. 0.17 by NN (Fig. 1c). This proves the superior
generalization and robustness of causal forecasting. Causal
discovery also reduces the number of relevant variable links
up to 40%, enhancing explainability.
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1https://www.citylearn.net/index.html
2https://github.com/jakobrunge/tigramite

(a) NN single building. (b) Causal single building.

(c) NN generalization. (d) Causal generalization.

Figure 1: Forecasting results.
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