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Abstract

In this thesis, I explore an approach called “active libraries”. These are libraries that take

part in their own optimisation, enabling both high-performance code and the presentation of

intuitive abstractions.

I investigate the use of active libraries in two domains. Firstly, dense and sparse linear algebra,

particularly, the solution of linear systems of equations. Secondly, the specification and solution

of finite element problems.

Extending my earlier (MEng) thesis work, I describe the modifications to my linear algebra

library “Desola” required to perform sparse-matrix code generation. I show that optimisations

easily applied in the dense case using code-transformation must be applied at a higher level of

abstraction in the sparse case. I present performance results for sparse linear system solvers

generated using Desola and compare against an implementation using the Intel Math Kernel

Library. I also present improved dense linear-algebra performance results.

Next, I explore the active-library approach by developing a finite element library that captures

runtime representations of basis functions, variational forms and sequences of operations be-

tween discretised operators and fields. Using captured representations of variational forms and

basis functions, I demonstrate optimisations to cell-local integral assembly that this approach

enables, and compare against the state of the art.

As part of my work on optimising local assembly, I extend the work of Hosangadi et al. on

common sub-expression elimination and factorisation of polynomials. I improve the weight

function presented by Hosangadi et al., increasing the number of factorisations found. I present

an implementation of an optimised branch-and-bound algorithm inspired by reformulating the

original matrix-covering problem as a maximal graph biclique search problem. I evaluate the

algorithm’s effectiveness on the expressions generated by our finite element solver.
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stant tensor values are associated with integer valued labels used to identify facets

on the boundary of the domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Construction of a SolveOperation object in Excafé. We explicitly construct
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equation in UFL and Excafé. We use the same function space for the trial and
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Chapter 1

Introduction

1.1 Thesis Statement

This thesis argues that active libraries, libraries that self-optimise, are an essential requirement

for obtaining both performance and abstraction in computational science applications.

1.2 Motivation and Objectives

Abstractions offer the ability to model a domain while hiding other concerns from the client

using them. They permit more comprehensible code, and separation of domain concerns from

other issues. However, this often comes at the cost of performance. In mathematical and

computational science applications, speed is considered essential. Therefore, scientific code is

often written in a performance-oriented manner, with clean abstractions a secondary concern.

Active libraries are are a technique whereby a library can take responsibility for the optimisation

of its own code. By shifting responsibility for performance to the library, they enable library

clients to write code without having to concern themselves with performance. This enables the

library writer to focus on how to make the abstractions fast.

Active libraries would appear to be the perfect match for computational science applications.

1
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They enable both the domain expert and computer scientist to focus on the problems they

know how to solve without having to become an expert in each other’s field.

This thesis is an investigation of active libraries in the context of computational science. First,

we consider sparse linear algebra as an extension to previous work. Next, we examine active

libraries as a tool to specify and optimise a solver for partial differential equations, using the

finite element method.

Our objectives in this thesis are to:

• Extend previous work on dense linear algebra into the sparse domain and demonstrate how

active libraries can apply optimisations to this domain that are beyond the capabilities

of conventional compilers.

• Apply active libraries to a more complex domain, specifically that of the finite element

method.

• Demonstrate how active libraries can be used to raise the level of abstraction in this

domain, and develop our expression capture techniques beyond those that we applied to

linear algebra.

• Develop optimisations for the finite element method based on domain-specific knowledge

obtained through our expression capture techniques.

In aiming to achieve these, we hope to further work both on the design and implementation of

active libraries and on optimisation techniques for the finite element method.

1.3 Contributions

We make the following contributions with this work:

• We present the extension of our delayed-evaluation runtime code-generation library “Des-

ola” to sparse linear algebra.
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• We show that some of the important optimisations applied to our dense linear iterative

solvers are also applicable to our sparse ones. We also show that these optimisations

are beyond the automatic optimisation capabilities of modern compilers and require a

generative approach in order to be implemented effectively.

• We present new performance results for sparse linear iterative solvers implemented using

the Intel Math Kernel Library against our extended Desola implementation.

• We present the design and implementation of a C++ finite element library that performs

expression capture of multiple aspects of the finite element method.

• We show that expression capture of certain aspects of the finite element method enables

analyses and optimisations not possible in other finite element implementations. We

present an optimisation framework for the evaluation of local assembly matrices and

compare against the state of the art.

• We extend the work of Hosangadi et al. [1] for common sub-expression elimination of

polynomials. We present improvements to the original factorisation weighting function

that further reduce the operation count of our factorised expressions. We reformulate

the primary problem of finding a maximally weighted matrix covering as a graph biclique

search problem, and present a branch-and-bound algorithm optimised for the presented

weight function through insights into the graph structure.

1.4 Statement of Originality

I hereby declare that this document is the result of my own work as is the work it presents

except where otherwise stated.

This thesis contains work on sparse extensions to Desola, an active linear algebra library that

I developed during my MEng thesis. This work was first published as a workshop paper [2]

and then revised for a special issue [3] of “Science of Computer Programming” published by

Elsevier.
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The sparse extensions detailed in this thesis (Section 3.8) are new work, however, content

and background is incorporated from the journal paper and MEng thesis in order to provide

sufficient context for both the sparse extensions and the relationship of the work to Excafé,

which extends the ideas developed in Desola.

1.5 Publications

F. P. Russell, M. R. Mellor, P. H. J. Kelly, and O. Beckmann, “DESOLA: An active linear

algebra library using delayed evaluation and runtime code generation,” Science of Computer

Programming, vol. 76, no. 4, pp. 227–242, 2011. Special issue on library-centric software design

(LCSD 2006).

This paper is the journal version of the original Desola workshop paper [2]. It describes work I

developed during my MEng thesis, with new dense linear algebra results that are also presented

in this thesis.



Chapter 2

Background

In this chapter, I survey literature relevant to this research. I cover work relevant to optimising

domain-specific abstractions, techniques for supporting adaptation in languages and libraries,

and models and techniques for code optimisation and generation. I provide a brief mathematical

description of the finite element method and review various domain-specific languages and

libraries used for the specification and solution of finite element problems.

This thesis incorporates material on the active library Desola from my journal paper [3] and

Masters thesis to provide context for the sparse extensions detailed in Chapter 3 in Section 3.8.

Some of the code-generation and optimisation background originates from this work.

2.1 Optimising Domain-Specific Abstractions

Optimising domain-specific abstractions provides the key to achieving both high performance

and comprehensible code. C++ provides mechanisms such as classes and operator overloading

that make it relatively easy for developers to define their own abstractions. Significant research

has been undertaken into techniques for optimising these abstractions, one of the most well-

known being template metaprogramming.

5
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2.1.1 Expression Templates and Template Metaprogramming

Expression Templates [4] are a C++ technique for passing expressions as function arguments.

Conventional C-style code would involve passing the expression as a callback using function

pointers. Expression templates make it possible for expressions to be passed as function ar-

guments, and inlined into the function body. This results in less overhead, more convenient

code and enables the developer to control the implementation of the code that evaluates the

expression.

Expression Templates work by parsing expressions at compile time and storing the nested

template arguments as an “expression type”. Thus, rather than the expression 1.0+x having

the type float, it might have the type:

DExpr< DBinExprOp< DExpr<DExprLiteral>, DExpr<DExprIdentity>, DExprAdd > >

Expression templates give developers control over code generation for expressions. This is

particularly useful for numerical applications where the näıve implementation of vector and

matrix arithmetic produces code that allocates and deallocates a number of temporary arrays

and uses more loops than necessary.

The Matrix Template Library [5] (MTL) is one C++ library that has successfully used ex-

pression templates and other template metaprogramming techniques [6] for producing efficient

C++ code. MTL has the aim of providing the library user with appropriate C++ abstractions

and high performance.

Algorithms in MTL are expressed independently of the data storage formats they may work

on, using iterators to traverse the containers involved. MTL relies on the optimising abilities

of the compiler to be able to remove these levels of abstraction.

MTL algorithms are built on top of a library called BLAIS [7] (Basic Linear Algebra Instruc-

tion Set) which is layered on top of FAST, the Fixed Algorithm Size Template Library. BLAIS

provides similar functionality to the levels 1, 2 & 3 of BLAS (Basic Linear Algebra Subpro-
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// STL

int len = 4;

int* x = new int[len];

int* y = new int[len];

fill(x, x+len, 1);

fill(y, y+len, 3);

std::transform(x, x+len, y, y, plus<int>());

(a) STL

// FAST

const int LEN = 4;

int* x = new int[LEN];

int* y = new int[LEN]:

fill(x, x+LEN, 1);

fill(y, y+LEN, 3);

fast::transform(x, cnt<LEN>(), y, y, plus<int>());

(b) FAST

Figure 2.1: Implementations of vector addition using STL and FAST. The FAST implementa-
tion requires that the vector sizes are compile time constants.

grams). FAST is effectively an implementation of the C++ Standard Template Library for

computations whose size is known at compile time.

We compare STL and FAST implementations of a vector addition in Figure 2.1. Both transform

instantiations iterate over the arrays x and y, pairwise summing them into array y. However,

the STL instantiation of this code will involve a loop whereas the FAST implementation uses

recursive templates to perform loop unrolling, resulting in inlined code.

Using template techniques, MTL is also able to provide other performance optimisations in-

cluding:

• Static Polymorphism

• Lightweight Object Optimisation

• Automatic Unrolling

• Algorithmic Blocking
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2.1.2 ROSE

ROSE [8] is a framework for building source-to-source translators for the high-level optimisation

of scientific applications. ROSE provides the ability to recognise library-defined abstractions

and leverage their semantics to provide compile-time optimisation.

User-defined abstractions may not be optimised by a conventional compiler because it does

not perform sufficient global optimisation, or cannot infer the high-level semantics of user-

defined abstractions in acceptable time bounds. ROSE attempts to solve this problem by

providing additional semantic information through annotations. Using these annotations and

transformations, ROSE can optimise arbitrary abstractions.

The ROSE front-end is responsible for parsing C++ programs. It accepts C++ source files

and annotated library headers and produces an object-oriented abstract syntax tree (AST)

which represents both sets of files. The AST is annotated with type information, and may

additionally be annotated with information supplied by the programmer using pragmas, com-

ments and separate annotation files. The mid-end is responsible for restructuring the AST

and performing performance improving program transformations. The mid-end provides three

types of operations:

AST processing These operations provide mechanisms for traversal of the AST and enable

attributes to be computed for and attached to each AST node. Attributes can then be

used in subsequent optimisations. Attributes may be also be inherited or synthesised, in

which case they are passed down or up the AST, respectively For example, loop nesting

is an inherited attribute. Annotations can be used by transformations to decide whether

a particular restructuring operation can be applied safely.

Query operators These perform read-only operations on the AST and are built on top of the

AST processing operators. ROSE provides a number of pre-defined queries. The query

operators abstract away some of the details of the AST traversal, and can be composed

to form more complex queries.
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Transformation operators Transformation operators consist of two parts. Firstly, a pre-

condition based on the AST annotations which holds when the transformation can be

applied safely. Secondly, a sequence of AST restructuring operations.

Lastly, the ROSE back-end is responsible for unparsing the AST and generating C++ source

code.

ROSE’s annotation language makes it possible for the programmer to declare that certain

abstractions satisfy the extended requirements for certain predefined compiler optimisations.

As a result ROSE can apply a number of standard compiler transformations more effectively.

For example, by annotating a user-defined array class with the declaration that it has Fortran

array semantics, optimisations such as loop blocking, fusion, fission and interchange can be

applied to loops with statements accessing the user-defined type.

2.1.3 Broadway Compiler

Guyer and Lin describe the Broadway [9] compiler, a source-to-source translator for C designed

to support domain-specific optimisations. Domain-specific optimisation information is provided

to the compiler through files written using a lightweight annotation language.

Broadway’s annotation language conveys four kinds of information to the compiler: dependence

information about the library interfaces, domain-specific program analysis problems, transfor-

mations that apply domain-specific optimisations and compile-time messages which are emitted

based on analysis results.

Broadway’s domain-specific analyses permit properties to be associated program values. The

annotation writer defines how each library routine affects these properties. Broadway uses data

flow analysis to determine how properties are associated with values at different points in the

program. In a linear algebra library, for example, one property of matrices could be the form

they are in (e.g. triangular or tridiagonal).

The annotation language enables the specification of library behaviour in terms of the abstract



10 Chapter 2. Background

properties. This permits special-purpose routines to be chosen when certain properties are

present on objects. For example, in a linear algebra library this could be used to choose

routines optimised for a particular matrix structure.

The overall Broadway optimisation model is as follows:

1. A library expert designs a set of domain-specific optimisations and encodes them using

the annotation language. To do this they must identify the properties and property

values relevant to the library, specify the behaviour of each routine in terms of these

abstract properties and specify code transformations predicated on property values of the

arguments.

2. The application programmer obtains the annotation file and passes it to Broadway.

3. During compilation, Broadway consults the annotations and determines how to manipu-

late library calls. To do this it solves the problem of determining what property values

objects possess in the application and evaluates predicates at each function call site to

determine which transformations to apply.

Guyer and Lin describe [9] how Broadway can be used to optimise a parallel linear algebra

library at multiple application layers. At the highest layer, Broadway is used to perform

algebraic simplification. At the middle layer, where data distribution has been made explicit,

Broadway is used to eliminate empty views, unnecessary copies and make compile-time selection

of specialised routines. At the lowest level, optimisations of the use of MPI have been identified,

but not yet implemented.

2.2 Programming for Adaptation

In this section, I will look at programming models designed to support adaptation to different

environments. Sequoia [10] uses task decomposition to facilitate mapping regular computations

onto a memory hierarchy. The Themis [11] proposal suggests a run-time system which can

adapt communication and scheduling in response to varying resources and component context.
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2.2.1 Sequoia

Sequoia [10] is a programming language designed to facilitate the development of memory

hierarchy aware parallel programs. Sequoia aims to enable such programs to remain portable

across modern machines with different memory hierarchy configurations.

Sequoia introduces the notion of hierarchical memory directly into its programming model.

Sequoia programs run on machines abstracted as trees of distinct memory modules. Sequoia

defines tasks as abstractions to represent self-contained units of computation that include de-

scriptions of communication and working sets. The programmer must define ways to decompose

tasks so they can be mapped onto the memory hierarchy. Data movement between all levels of

the hierarchy is explicit and computation is only allowed to occur at the leaf nodes of the hier-

archy. Sequoia leaf tasks may be implemented directly in Sequoia, but may also wrap kernels

written in traditional languages such as Fortran or C.

Sequoia borrows from the idea of space-limited procedures [12], proposed to encourage hierarchy-

aware, parallel divide-and-conquer programs. Space-limited procedures require each function in

a call chain to accept arguments occupying significantly less storage than the calling function.

Sequoia tasks generalise and implement this concept to express communication and parallelism.

Sequoia code does not make explicit references to machine hierarchy levels and remains oblivious

to the mechanisms used to move data between memory modules.

Tasks in Sequoia allow the expression of:

Explicit Communication and Locality Communication of data is expressed by calling tasks,

and is the only means of expressing data movement in Sequoia. Virtual levels can be used

in the memory hierarchy which do not correspond to a physical machine memory. This

enables modelling of communication mechanisms such as cluster interconnects.

Isolation and Parallelism Tasks operate entirely within their own private address space and

have no way of communicating with other tasks other than by calling subtasks, and

returning to their parent task.
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Task Decomposition Sequoia provides array blocking and task mapping constructs to de-

scribe portable task decomposition.

Algorithmic Variants The programmer can specify multiple implementations of a task and

specify which one to call based on context.

Parameterisation Tasks use parameterisation to preserve independence from machine con-

straints. Values are chosen to match the hierarchy level of the target machine.

To enable the mapping of task hierarchy onto the memory hierarchy, Sequoia allows the pro-

grammer to provide a task mapping specification that is created by the programmer on a

per-machine basis. The task mapping specification defines how to map a task hierarchy onto

the memory hierarchy and also serves as the mechanism whereby the programmer can provide

optimisation and tuning directives.

2.2.2 Themis

Themis [11] is a proposed programming model and run-time library intended to support cross-

component optimisation through the explicit manipulation of the computation’s iteration space

at runtime, Themis has not been implemented although many of the ideas have been investi-

gated in prototype form using tools such as TaskGraph [13].

The main idea behind Themis is to combine software components with metadata describing

data placement and component dependence. This metadata should permit the adaptation of

software to:

Heterogeneous and varying resources There is the expectation of high performance com-

puting resources to be heterogeneous collections of symmetric multiprocessing (SMP)

clusters, linked by fast heterogeneous networks. It is necessary for components to be able

to adapt themselves to these configurations. Importantly, these may vary from run to

run.
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The context in which components are used The data placement of components may vary,

as well as the schedule for the production and consumption of a component’s operands

and results. Components may contend with each other for resources and may be capable

of multiple levels of parallelism with different forms of communication.

The adaptive and irregular nature of problems In irregular and adaptive applications,

communication and computation are focussed in specific regions of interest which may

change with time.

Component metadata in Themis consists of two parts. Firstly, the Component Composition

Graph data structure that represents the large-grain inter-component control graph. Secondly,

the Component Dependence Summaries which describe each component’s internal iteration

space, and functions mapping points in the iteration space to the memory addresses it may use

and define. In Themis, each component has parameters and properties. Properties of some

component, P, are:

IterationSpace The n-dimensional integer space in which iterations of P ’s execution are enu-

merated.

Uses For each of the operands of P, this defines a mapping from each point in the iteration

space to the set of indices which might be read by that iteration. In simple cases, these

will be affine functions.

Defines For each of the results of P, defines a mapping from the iteration space to any items

that might be written.

Parameters of a component are:

IterationDomain Defines the iterations that should be executed. These are composed of a

set of non-intersecting IterationRegions each of which is a polytope contained in Itera-

tionSpace.
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Operands A set of indexed data collections that a component may read from.

Results A set of indexed data collections that a component may write to.

The component metadata in Themis would allow it to solve various cross component optimi-

sation problems. For example, given a data distribution D which specifies the subsections of

an array A accessed by component P, it is possible to calculate the required placement of P’s

other operands and/or results. If the Uses or Defines mappings referring to A are invertible,

they can be used to find the relevant iterations that access the subsections in D. Using the Uses

and Defines mappings forward, the other data accessed by P can be found.

Themis Component metadata could also be used to derive communication plans, or perform

cross-component loop fusion. The runtime nature of the system would also allow it to make

decisions about how to apply these optimisations more effectively. As Themis would maintain

extra dependence information, it would enable the use of different techniques useful for large

scale simulations such as checkpointing combined with recompute-on-demand, or propagation

of data dependencies backwards through a pipeline.

2.3 Library Adaptation through Empirical Techniques

In this section I will look at libraries that optimise their performance through empirical tech-

niques. These are important examples of how to achieve performance competitive with hand-

tuned libraries without having to possess expert knowledge for every architecture targeted.

SPIRAL [14] is particularly interesting because of its ability to use domain-specific knowledge

to perform a broad range of transformations and to target specific instruction sets. The X [15]

language is not a programming model per se, but rather a way to represent multiple program

versions to facilitate adaptation.



2.3. Library Adaptation through Empirical Techniques 15

2.3.1 X Language

Donadio et al. [15] describe the X language. The X language represents parameterised program

versions in a compact way using annotations which can be used directly by the programmer or

by an empirical search tool.

Donadio et al. observe the increasing complexity of processors and architectures and the in-

creasing difficultly of identifying optimal code sequences for them. They note that empirical

search techniques can be an effective tool for searching the space of possible program versions.

They describe the following features that they believe are necessary for compact representation

of multiple code versions:

Elementary Transformations These are transformations that cannot be easily recast into

simpler transformations. These usually target compound statements and manipulate the

order of execution and control structure of the statements. Statement transformations

include reordering, replication and deletion. Loop transformations include unrolling, in-

terchange, strip-mining and fusion. Elementary transformations may require parameters.

Transformation Composition As the best version of a statement is usually the result of the

application of several transformations, it should be possible to apply multiple transforma-

tions to a statement. Additionally, it should possible to perform conditional composition

in which a condition is used to select whether a transformation should be applied. For

example, unrolling an inner loop only when the size of a strip is less than a certain value.

Procedural Abstraction It should be possible to encapsulate new transformations in order

to avoid duplication.

Definition mechanism for new transformations This mechanism should make it possible

for the language user to define new transformations that cannot be expressed as a compo-

sition of elementary transformations. This allows the library user to define application-

dependent transforms that use domain-specific knowledge of the computation semantics.

Such a mechanism is most easily implemented using transformation rules which consist
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of a code template before and after transformation. However, as this may not always

be sufficient, it should also be possible to express transformations in a conventional pro-

gramming language with a well defined interface to the source language.

Statement naming mechanism Sequences of transformations often require the application

of transformations to one of the components of the transformed code. It is necessary to

be able name components and subcomponents of statements to compose these transfor-

mations.

The X language uses C pragmas to name loops or portions of code and also to specify the

transformations to apply. Syntax to name code is as follows:

# pragma xlang name <id> { ... }

Syntax to specify transformations is as follows:

# pragma xlang transform keyword <list-input-par> <list-output-par>

Figure 2.2 shows the code for a matrix-vector annotated with X directives, before and after

transformation. The transformation strip mines loop l1 with a tile size of 4, naming the new

loop l3 and the remainder loop l1rem.

Donadio et al. present results that show a matrix multiply written using X and tuned using an

automatic mechanism can achieve performance superior to ATLAS routines on an Intel Itanium

when using a custom memory copy routines. However, both the ATLAS and X language code

variants are still outperformed by the Intel Math Kernel Library.

2.3.2 ATLAS

The Automatically Tuned Linear Algebra Software library [16] (ATLAS) is part of a research

effort focussing on applying empirical techniques to provide portable performance. ATLAS uses
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# pragma xlang name l1

for(i=0; i<N; i++) {

# pragma xlang name l2

for(j=0; j<M; j++) {

c[i] = a[i][j] * b[j];

}

}

# pragma xlang transform stripmine l1 4 l3 l1rem

(a) Before transformation

# pragma xlang name l1

for(i=0; i<(N/4)*4; i+=4) {

# pragma xlang name l3

for (ii=i; ii<i+4; ii++) {

# pragma xlang name l2

for (j=0; j<M; j++) {

c[ii] = a[ii][j] * b[j];

}

}

}

# pragma xlang name l1rem

for(i=(N/4)*4; i<N; i++) {

# pragma xlang name l2

for(j=0; j<M; j++) {

c[i] = a[i][j] * b[j];

}

}

(b) After transformation

Figure 2.2: C code to perform a matrix-vector multiply, annotated with X pragmas. Code is
shown before and after the application of the X directives.
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a paradigm the authors call “Automated Empirical Optimisation of Software” (AEOS). The

fundamental idea behind AEOS is that a software package provides many ways of performing the

same operation and can use empirical timings to choose the best method for a given architecture.

This avoids the painstaking effort required to hand optimise routines for a given architecture,

which given the pace of hardware evolution, may be untenable in the long run. The ATLAS

library uses these techniques to provide portably efficient routines from BLAS (Basic Linear

Algebra Subprograms) and LAPACK.

A library supporting AEOS methodologies must satisfy some basic requirements:

Isolation of performance-critical routines The performance-critical sections of code need

to be identified and separated into subroutines.

A method of adapting to differing environments AEOS depends on iteratively trying a

number of different implementations of performance-critical routines so they must provide

a way of instantiating themselves with a wide range of optimisations. This might be

done by having fixed code with varying parameters or with a highly parameterised code

generator.

Robust, context-sensitive timers Accurate timings are needed if the best code is to be

selected. Importantly, timings need to be robust if they are carried out on a heavily

loaded machine since users may not be able to guarantee they are the only user. Timings

also need to reflect the context in which a routine will be called. For example, the data

a routine needs may or may not already be present in the cache. This may require cache

flushing or pre-loading to simulate.

Appropriate search heuristic If the search space for possible implementations is large, a

heuristic is required that will prune the search tree as rapidly as possible.

ATLAS, using the AEOS methodology, makes a couple of assumptions in order to perform well:

Adequate ANSI C compiler ATLAS is written in ANSI C (with the exception of Fortran77

wrappers). ATLAS does not require an excellent compiler because it performs many of the
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optimisations usually performed by compilers. However, overly aggressive compilers may

convert optimal code into suboptimal code. On the other hand, compilers that cannot

effectively use the underlying instruction set architecture (ISA) may produce poor results

as well.

Hierarchical memory ATLAS assumes a memory hierarchy. Best results are obtained when

both registers and at least an L1 cache are present.

ATLAS demonstrates that empirical optimisation techniques can be used to generate code

with significantly better performance than obtained by compiler optimisation alone, and that

auto-generated code can compete with hand-tuned implementations.

2.3.3 SPIRAL

SPIRAL [14] is a code generator for digital signal processing (DSP) algorithms. It uses domain-

specific knowledge about the structure of the signal transformation algorithms in order to

implement feedback based optimisation. SPIRAL can generate code for a domain encompassing

a large number of mathematically complex algorithms. It encapsulates mathematical knowledge

about the domain using a concise declarative representation suitable for computer exploration

and optimisation. It also uses dynamic programming and machine learning techniques for its

algorithm selection and optimisation.

The SPIRAL architecture consists of three levels:

Algorithm This level handles the breakdown and manipulation of the requested transform

into a representation called SPL (Signal Processing Language).

Implementation This level takes the SPL formula, converts into Fortran or C, and performs

various standard compiler optimisations.

Evaluation This level is responsible for compiling code into executables and benchmarking

their performance. The evaluation provides performance information to a search mech-
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anism which controls actions taken at both the algorithm and implementation levels to

try to find the best implementation.

SPIRAL represents DSP transformations using matrix-vector multiplies. If x and y are input

and output vectors of signal samples of length n and M is an n × n transformation matrix,

the transformation can be expressed as y = Mx. Transforms in SPIRAL are represented by

parameterised classes of matrices. For example, most transforms exist for all input sizes and will

take the size value n as a parameter. In SPIRAL, the discrete Fourier transform is represented

as follows:

DFTn = [ωkln ]0≤k,l≤n, ωn = e−2πi/n, i =
√
−1

As well as representing transforms as matrices, SPIRAL can also define transforms recursively

or iteratively. At the time of writing of [14], SPIRAL contains 36 transforms, some of which

are variants of each other.

SPIRAL uses SPL to generate and manipulate DSP algorithms. The motivation behind SPL

is to identify the structure of matrix factors and make use of them. SPL is intended to allow

the expression of the product of structured sparse matrices using a small set of constructs and

symbols.

SPL contains a number of constructs:

Generic matrices SPL provides constructs to represent generic matrices such as diagonal or

permutation matrices.

Symbols Frequently occurring classes of matrices are represented using parameterised sym-

bols. For example, the n × n identity matrix, the zero matrix and the 2 × 2 rotation

matrix are all represented by symbols.

Transforms These have already been described. The DFTn transform is one example. Trans-

forms differ from symbols in the important aspect that they cannot be translated into
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code.

Matrix constructs These are used to form structured matrices from SPL matrices. Examples

include the matrix product and matrix sum. One of the most important constructs

is the Kronecker product which has been recognised as important for describing and

manipulating DFT algorithms.

Conversion to real data format Complex transforms are usually implemented with real

numbers. Constructs exist to convert complex arithmetic into real arithmetic, the most

popular being interleaved complex format which represents a vector of complex numbers

with alternating real and imaginary parts.

SPIRAL uses two types of rules to manipulate SPL formulae, Breakdown and Manipulation.

Breakdown rules are used to decompose a transform into a product of structured sparse matrices

that often contain other smaller transforms. Terminal breakdown rules form the base case,

usually decomposing transforms of size 2 into formulae that contain no transforms.

Manipulation rules are matrix expressions where both sides are SPL formulae which contain

no transforms. These are used to manipulate SPL formulae that have already been completely

expanded. For example, one manipulation rule handles the translation of the operator used to

convert complex to real arithmetic.

The implementation level is responsible for taking the expanded SPL formulae and converting

them into code. The SPL implementation allows tags to be associated with formulae that

can instruct the compiler to make specific code generation options such as performing loop

unrolling. Templates are used to translate SPL code into C or Fortran code. Templates consist

of a parameterised SPL formula construct, a set of preconditions on the formula’s parameters

and a C-like code fragment. Templates allow experimentation with the way formulae are

mapped into code and enable the SPL code compiler to generate special instruction types such

as vector instructions.

The evaluation level handles code compilation and performance analysis. The optimisations

performed at this stage are standard compiler optimisations such as constant propagation and
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array scalarisation. Benchmarking the result is done through the compilation and timing of

the compiled code for a large number of iterations. This information provides feedback to a

search/learning mechanism which can modify the previously generated formulae.

2.4 Code Optimisation Techniques and Models

Here I cover some of the frameworks and techniques used to optimise code. A description

of a large number of standard compiler transformations is described by Bacon et al. [17].

The Polytope Model [18] seems to be particularly relevant to my work, as it provides useful

mechanisms for reasoning about iteration spaces. I also cover techniques useful for runtime

optimisation. The loop fusion and array contraction transformations are particularly important

for optimising linear algebra.

2.4.1 Loop Fusion

Loop fusion [17] is a transformation that rewrites multiple loops and a single loop. It can

improve performance by:

• Reducing loop overhead.

• Increasing instruction parallelism.

• Improving register, vector, data cache, translation lookaside buffer (TLB) or page locality,

if both loops use the same data.

Loop fusion requires that the loops being fused have the same bounds. If they do not, they can

sometimes be made to match by loop peeling, or introducing a conditional. Two loops with

the same bounds may be fused so long as there exists no statement S1 in the first loop and S2

in the second loop such that S1 has a dependence on S2.
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It is also possible for loop fusion to decrease performance. This can occur if the loop instructions

can no longer fit into the instruction cache or register pressure increases to the extent that values

must be “spilled” into main memory.

2.4.2 Array Contraction

Array contraction [17] is a transformation intended to optimise the memory access of a pro-

gram. It allows the dimensionality of arrays to be reduced (e.g. by replacing an array with

a single scalar-valued variable). It cam decrease the memory taken up by compiler generated

temporaries and the number of cache lines referenced.

It is expected that this technique will be useful for removing temporary vectors and matrices

created during code generation. For details of other memory access transformations, consult

Bacon et al. [17].

If the iteration variable p of some loop within a loop nest is being used to index the kth dimension

of an array x, then dimension k may be removed from x if:

• Loop p is not in parallel.

• All distance vectors involving x have their distance for iteration variable of p equal to 0

(i.e. values do not propagate between different iterations of p via x).

• Array x is not used subsequent to the loop.

Loop transformations such as fusion and interchange are often used to facilitate array contrac-

tion.

2.4.3 Polytope Model

The Polytope model [18] is a mathematical framework for representing loop nests and loop nest

transformations. The Polytope model defines geometric representations of iteration spaces,

statement orderings and array accesses.
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Transformations take place within Static Control Parts (SCoPs) which are maximal sets of

consecutive statements containing no while loops. Within a SCoP, all loop bounds are affine

and may only depend on symbolic constants and surrounding loop counters. These symbolic

values are called global parameters of the SCoP.

The Polytope model identifies three components for representing loop nests:

Iteration Domains These are geometric representation of the bounds and strides of a loop.

In the Polytope model, these are represented by convex polyhedra, which in turn can

be represented by a matrix of inequalities. Each statement in the SCoP has has an

associated iteration domain. By separating the iteration domain from the statement

schedule, it is possible to isolate the effect of certain transformations. For example, strip

mining and loop unrolling modify the iteration domain but do not affect the execution

order of statements.

Affine Schedules These characterise the execution order of each statement instance. They

map statement instances to multidimensional time stamp vectors which are ordered lexi-

cographically. The affine schedule is stored as a matrix, which represents an affine function

of loop index variables and possible parameters that generates the time-stamp vector.

The affine schedule can be decomposed in three sub-matrices. Firstly, a square iteration

ordering matrix that orders the statements w.r.t. the surrounding loop counters. Sec-

ondly, a statement ordering vector that represents the ordering of all statements executed

during the same iteration. Lastly, a parameterisation matrix that enables statements to

be offset by constant or parametric amounts.

Array Access Functions These map points in the iteration domain to the array elements

accessed at that point. Array access functions allow the isolation of the effect of data ac-

cess transformations. For example, array privatisation does not affect either the iteration

domain or statement schedule.

Array access functions are stored as a matrices that represent an affine function of loop

indices, local variables and global parameters. Each row of an access function matrix
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corresponds to an index used to access the associated array.

Each program statement is mapped to two sets which represent the accesses to array

locations written and read by that statement. Each set contains tuples of the form (A, f)

where f is the access function used to access an element of array A.

Transformations in the Polytope model correspond to recomputing the matrices of certain

statements. This provides advantages over other approaches where code complexity increases

with each transformation. One exception to this are transformations that add new loops or

local variables, which increases the size of some matrices, however, this does not make the

representation less generic.

Cohen et al. [19] describe the advantages of the Polytope model for composing program trans-

formations. The separation of different representations allows data and control transformations

to commute in general. Many transformations in the Polytope model only have the effect of

modifying the matrix parameters themselves even though they may correspond to a sequence

of program transformations, making it simpler to search for transformations. It is possible to

characterise the exact set of all schedule, domain and access matrices associated with legal

transformation sequences, so invalid transformations can be filtered quickly.

2.4.4 Runtime Data and Computation Reordering

Making efficient use of the memory hierarchy is an essential component of performance optimi-

sation. For an algorithm to achieve high performance, it should be ensured that the processor

spends as little time as possible waiting on data from memory. Techniques such as loop blocking

and prefetching can be used to try to place data as close to the processor in the memory hier-

archy as possible, hiding the widening gap between CPU and memory speed. These techniques

work well for regular applications, but less effectively for irregular ones. Irregular applications

possess poor temporal and spatial locality because they do not access data in memory with

small, constant strides.
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Consecutive Packing

Consecutive packing [20], also known as first-touch data reordering, is a data layout reordering

transformation in which data is moved into adjacent locations in the order that they will first

be accessed. The result is a data layout with improved spatial locality. Consecutive packing

traverses an array only once, giving it a minimal time overhead. If objects are accessed at

most once, consecutive packing gives optimal cache line utilisation. With repeated accesses,

the problem becomes NP-complete, reducing to the G-partition problem [21].

Locality Grouping

Dynamic applications such as molecular dynamics possess locality derived from the physical

model in which a particle only interacts with its neighbours. Given a set of objects and their

interactions, locality grouping [20] clusters interactions involving each object in the list. Locality

grouping can be done with minimal runtime overhead. One pass collects a histogram of the

interactions, and another produces a sorted interaction list.

Bucket Tiling

Bucket tiling [22] is a technique to localise non-affine array references. In a bucket sort, values

are first sorted into buckets, then sorted within each bucket. Bucket tiling makes use of the

first step, called bucketisation. Bucket tiling cannot be carried out if a computation contains

more than one distinct non-affine reference.

Bucket tiling consists of three tasks:

Permutation generation This task generates a new iteration order. This involves the buck-

etisation of a function f involved in indexing an array. The function f will be a function

of one or more of the loop index variables, but need not be the array indexing expression.

It might, for example, be the non-affine component of the array indexing expression.
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Iterations of all loops which have their induction variables referenced by f will have their

iterations mapped into a fixed number of buckets. The permutations applied to each

affected loop i are stored in a permutation function σi. Given a bucket b and the number

of times that bucket has been visited k, σi(b, k) gives the value of the iteration variable

of loop i.

Loop Regeneration Loop regeneration involves generating loops that iterate through the

iterations assigned to each bucket. Using a mechanism similar to loop coalescing, it is

possible to use two loops to iterate over the values in all buckets regardless of the number

of loops in the original code. Using the σ functions computed in the previous step, it is

possible to recover the original induction variables.

Data Remapping After loop regeneration, the locality of affine accesses to other arrays may

have been reduced. Data remapping solves this problem for certain classes of array ac-

cesses. Every reference to some array a is replaced by an access to a new array a′[b, k]

where b and k are the bucket index and number of times the bucket has been visited,

respectively.

If the loop nest consumes values from a it is necessary to perform a gather operation to

populate a′ from a. Similarly, if values from a are used after the loop nest, it is necessary

to perform a scatter operation to form a from a′. Additionally, if a′ is larger than a, the

scatter operation will also involve a reduction as a′ contains only partial computations.

Clearly this also requires that the computation of a can be expressed as a reduction.

We consider the following simple pseudocode segment that involves a non-affine access to array

A:

do i = 1 to N

D[i] = C[i] + A[f(i)]

The loop regeneration step will produce the following code:
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do b = 1 to numbuckets

do k = 1 to bucketsize(b)

i = σi(b, k)

D[i] = C[i] + A[f(i)]

The locality of accesses to A have been improved but the locality of accesses to C and D have

been reduced since values of i are no longer consecutive. Applying data remapping to array C,

we would get:

do b = 1 to numbuckets

do k = 1 to bucketsize(b)

C’[b,k] = C[σi(b,k)]

do b = 1 to numbuckets

do k = 1 to bucketsize(b)

i = σi(b, k)

D[i] = C’[b,k] + A[f(i)]

The accesses to C’[b,k] possess improved data locality compared to C[i] but the overhead is

incurred of computing C’. The runtime overhead of both data remapping and the calculation

of the σ functions must be considered when applying these transformations.

Sparse Tiling

Sparse tiling [23] is an algorithm for tiling sparse matrix computations at runtime, improving

data locality. Such computations cannot be tiled at compile-time due to the existence of non-

affine loop bounds and indirect memory references.

Strout et al. consider the specific case of sparse tiling applied to a Gauss-Seidel computation

where unknown values and sparse matrix entries are associated with locations on the mesh.



2.4. Code Optimisation Techniques and Models 29

Such matrices occur through numerical solution techniques such as the Finite Element Method

(Section 2.8).

The Gauss-Seidel method is an iterative technique for solving a system of linear equations. We

consider a linear problem of the form Au = f , where A is a sparse matrix and the vectors f and

u are known and unknown, respectively. We express the Gauss-Seidel algorithm in pseudo-code

as follows:

for i = 1 to T

for j = 1 to R

u
(i)
j = (1/Ajj)(fj −

∑j−1
k=1Ajku

(i)
k −

∑n
k=j+1Ajku

(i−1)
k )

Each iteration of the outer loop indexed by i produces a new approximation to the solution u.

The inner loop indexed by j iterates over the R rows of the sparse matrix. The summations,

which form the loop indexed by k, use values from the unknown vector from both the current

and previous iteration of i. Each update to u can be performed in-place. The total number

of iterations, T , needs to be a fixed value as the iteration space will be partitioned for a finite

number of iterations.

The algorithm for sparse tiling Gauss-Seidel constructs a number of tiles, a set of computations

that can be executed atomically. In serial sparse tiling the tiles must be executed in a particular

order. In parallel sparse tiling, the tiles can be executed in parallel, but must be followed by

a fill-in stage that executes computations not included in the tiles. Both strategies have the

same runtime structure:

Partitioning The mesh over which the problem is being solved is partitioned. Graph parti-

tioning is an NP-Hard problem, however, there exist many rapid heuristics for obtaining

reasonable partitioning.

Tiling The iteration space for Gauss-Seidel is split into a number of atomically executable

tiles. Each tile corresponds to the computations necessary to evaluate the unknowns
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corresponding to a particular partition of the mesh. Each tile has layers, which correspond

the to different values of i.

Tiles are constructed by partitioning the iteration space corresponding to the final itera-

tion of loop i using the mesh partitioning as a basis. The tiles are then grown backwards

to contain parts of iteration space corresponding to earlier values of i. Computations are

added and removed from each tile as needed to avoid violating data dependencies.

Rescheduling Mesh nodes are renumbered so that they respect inter-tile dependencies. Within

a tile, computations are scheduled by layer and within each layer.

Execution The computation is executed using the new schedule. It describes the layers within

each tile and when they should be executed. The schedule may contain a tile execution

ordering in the case of serial sparse tiling.

2.5 Code Generation and Optimisation Frameworks

Here I cover libraries and frameworks for multistage optimisation and code generation. LLVM

maintains information throughout a program’s lifetime to enable analyses and optimisation.

Comparing to active libraries, this approach is also “active”, but no further responsibility for

performance is shifted to the library writer. Both SUIF and TaskGraph are in used our active

linear algebra library Desola, described in Chapter 3.

2.5.1 LLVM

LLVM [24] (Low Level Virtual Machine) is a compiler framework designed to support trans-

parent lifelong program analysis and transformation by providing high-level information to

compiler transformations at compile-time, run-time, link-time and in the idle time between

runs.

LLVM provides a number of capabilities that are useful for lifelong transformation and analysis

of arbitrary programs:
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Persistent program information The compilation model preserves the LLVM representa-

tion throughout the application lifetime, making it possible to perform complex optimi-

sations at all stages.

Offline code generation It is possible to compile programs into native machine code offline,

which is useful when expensive code generation techniques need to be employed.

User-based profiling and optimisation LLVM allows profiling information to be gathered

at runtime so it can be applied with profiling guided transformations at run-time and

idle-time.

Transparent runtime model LLVM does not enforce any kind of object model or exception

handling semantics or runtime environment, making it possible to use any language or

combination of languages to be compiled using it.

Uniform, whole program compilation LLVM’s language independence makes it possible

to compile and optimise the complete code of an application in a uniform manner including

language-specific runtime libraries and system libraries.

Program representation

LLVM represents code using an abstract RISC-like instruction set but with higher level infor-

mation for effective analysis. The LLVM instruction set consists of 31 opcodes, most of which

are overloaded. LLVM provides an infinite set of typed virtual registers in Single Static As-

signment (SSA) form, which can hold values of primitive types. Thus, each register is written

by an instruction only once. The SSA representation provides a compact use-def graph that

simplifies many data-flow optimisations. Non-loop transformations are simplified because they

do not encounter anti or output dependencies. LLVM also makes the control flow graph of

every function explicit in the representation.

Features of the LLVM program representation include:

Language independent type system Every SSA register and explicit memory object has
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an associated type and obeys explicit type rules. Type information combined with the

instruction opcode is used to determine exact instruction semantics, enabling a broad

class of high-level transformations on low-level code. Primitive types in the LLVM sys-

tem consist of ints and floats of different sizes and bools and voids. LLVM also defines

four derived types sufficient to implement most high level languages: pointers, arrays,

structures and functions.

The derived types capture enough information to support sophisticated language inde-

pendent analyses and transformations such as call-graph construction, structure field

reordering and array dependence analysis. LLVM also supports weakly typed languages.

This means the declared type information in a program may not be reliable. Pointer anal-

ysis algorithms are used to determine whether the types of pointer targets are reliably

known.

Explicit memory allocation LLVM instructions are provided for performing typed memory

allocation. These include malloc and free which allocate and free, respectively, memory

from the heap. An alloca instruction is provided to allocate memory on the heap which

is automatically deallocated on return from a function. All l-values (addressable objects)

in LLVM are explicitly allocated giving a model in which there are no implicit memory

accesses, simplifying memory address analysis.

Function call and exception handling support LLVM provides a call instruction that ab-

stracts away the calling convention of the target machine, simplifying program analysis.

Unusually, it provides an explicit, low-level, machine independent mechanism for imple-

menting exception handling. An invoke instruction is provided to transfer control to a

function that might throw an exception and to specify a basic block to transfer control

to, should an exception be thrown. The unwind instruction is used to throw the excep-

tion and will transfer control to the basic block specified by invoke after removing the

activation record it created. This system has allowed both C’s setjmp/longjmp calls and

the C++ exception model to be implemented cleanly.

Plain-text, binary and in-memory representations The LLVM representation is a first
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class language that defines equivalent textual, binary and in-memory representations. The

instruction set is designed to serve as both an offline code representation and compiler

internal representation without semantic conversion. This makes it much simpler to write

debugging transformations and understand the in-memory representation.

Compiler Architecture

The LLVM compiler architecture is designed to enable lifelong transformation and analysis of

arbitrary code. The compiler architecture has the following components:

External front-end The front-end is responsible for converting source-language programs

into the LLVM instruction set. It translates source into LLVM code whilst trying to

synthesise as much useful LLVM type information as possible. It may also perform

language-specific optimisations or invoke LLVM inter-procedural optimisations at the

module level.

The front-end need not perform SSA construction. Stack allocated variables will be

converted into SSA registers if their address does not escape the enclosing function.

Linker and Inter-procedural optimiser Link-time is the first phase where most of the pro-

gram is available for analysis and transformation. LLVM takes this opportunity to

perform aggressive inter-procedural optimisations. LLVM contains a number of inter-

procedural analyses including call graph construction mod/ref analysis and call graph

construction. It can perform transformations like inlining, dead global and argument

elimination, constant propagation, array bounds check elimination and structure field

reordering.

At compile time, inter-procedural summaries can be computed for each program and

attached to the bytecode. The link-time optimiser can use this to avoid recalculating

this information from scratch, dramatically speeding up the incremental compilation of a

large number of small translation units.
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Native code generator Before execution, a code generator is used to translate from LLVM

to native code for the target platform. This may be done at link-time or install-time

and possibly use expensive code generation techniques. If a user decides to use the post-

link optimisers, a copy of the LLVM bytecode is included with the executable. The

code generator also inserts lightweight instrumentation code into the program to identify

frequently executed regions of code. It is also possible to use a JIT code generator which

translates one function at a time during execution and is capable of adding the same

instrumentation as the offline code generator.

Runtime optimiser During program execution, the most frequently executed paths are iden-

tified through a combination of online and offline instrumentation. When a hot loop

region is detected at runtime, a runtime instrumentation library instruments the execut-

ing native code to identify frequently taken paths. When a hot path is identified, the

original LLVM code is duplicated into a trace, optimised and then regenerated into na-

tive code and placed into a trace cache. Branch instructions are inserted into the original

code to the new native code.

This strategy enables LLVM to perform efficient native code generation ahead of time,

enabling the runtime optimiser to receive support from the native code generator (e.g.

for instrumentation) and allowing the runtime optimiser to use high-level information to

perform sophisticated optimisations.

Offline optimiser The offline optimiser enables optimisation during idle-time on the end

user’s system. It is similar to the link-time inter-procedural optimiser but with greater

emphasis on profile-driven and target-specific optimisation. Benefits include the ability to

use profile information collected from runs of the system, the ability to tailor code to the

architecture of a single machine and the ability to apply more aggressive optimisations

due to the relaxed time constraints when operating offline.
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2.5.2 SUIF

SUIF [25] (Stanford University Intermediate Format) is a C++ infrastructure for research on

parallelising and optimising compilers. It has been used to perform research on topics including

scalar optimisations, array data dependence analysis, loop transformations for locality and

parallelism, software prefetching and instruction scheduling.

SUIF has been structured as a kernel plus a small toolkit. The kernel defines the intermediate

representation between passes of the compiler while the toolkit contains compilation analyses

and passes built using the kernel.

The SUIF intermediate format is a mixed level representation supporting both high level re-

structuring transformations and low level analyses and optimisations. The SUIF intermediate

representation (IR) has a hierarchical structure and maintains high level constructs such as

loops, conditionals and array access which provide enough information to allow parallelising

passes to work effectively. It also provides RISC-like operations which are stored as lists.

The SUIF IR also supports annotations which allow communication between compiler passes.

For example, data dependence information could be passed from a high-level analysis by anno-

tating load and store instructions.

SUIF has a C front-end which allows parsing of C into SUIF, which along with a FORTRAN

to C converter can also parse FORTRAN into SUIF with additional information stored as

annotations. The SUIF IR retains enough information to allow it to be converted back to legal

high-level C which makes it useful for source-to-source translation, C code generation or object

code generation.

SUIF provides libraries for carrying out dependence analysis and loop transformations. SUIF’s

dependence analysis library provides tools for determining the dependence between array ac-

cesses inside loops. It consists of a sequence of fast exact tests, aimed towards generating exact

answers for array accesses that are affine functions of the enclosing loop bounds. SUIF’s loop

transformation library provides tools for performing tiling as well as unimodular transforma-

tions such as loop interchange, reversal and skewing. Using SUIF’s dependence analysis and
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loop transformation tools, the authors have implemented a loop-level paralleliser and locality

optimiser.

SUIF also defines a file format for the intermediate representation. This allow the different

compilation passes to be implemented as separate programs. Although inefficient, this allows

flexibility with respect to adding new passes or reordering existing ones.

2.5.3 TaskGraph

TaskGraph [13] is a SUIF-based C++ library for dynamic code generation. TaskGraph is used

extensively in our linear algebra active library, Desola and is covered in Section 3.3.

2.6 Tensors

We make extensive use of tensor fields and notation in later chapters. We provide a brief

description of tensors and the common operations defined between them.

Tensors can be viewed as geometric objects that are a generalisation of scalars and vectors.

Tensors have an associated:

Rank The rank of a tensor is the number of indices required to uniquely identify a value

within the tensor. For example, rank-0 tensors represent scalar values and rank-1 tensors

represent vectors.

Dimension The dimension of a tensor refers to the dimensionality of the physical space in

which the tensor represents a value.

The indices of a tensor can be classified as contravariant (upper) indices and covariant (lower)

indices depending on how the index transforms with a change of basis. However, in a Cartesian

co-ordinate system the two types of index are equivalent.
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Notation for referencing tensor elements is similar to that for matrices. The expression aijk

references the element in tensor a with contravariant index i and covariant indices j and k.

It is common to write tensor operations using Einstein summation convention which represents

a tensor product with summation over repeated indices. For example the inner product between

two n-dimensional vectors vectors u · v would be written as uivi where:

uivi =
n∑
i=1

uivi = u1v1 + . . .+ unvn

using this notation, we can define the following operations.

The inner product, a · b, of two tensors a and b with ranks ra and rb produces a tensor of rank

ra + rb − 2. Summation is performed over the innermost index of both tensors. For example,

the inner product where a and b are two rank-2 tensors can be defined as:

a · b = T where Tik = aijbjk

The double dot product, a : b, between two tensors with ranks ra and rb produces a tensor with

rank ra + rb − 4. Summation is performed over the two innermost indices. For example, the

double dot product where a and b are rank-3 tensors can be defined as:

a : b = T where Til = aijkbjkl

The outer product, ab, of two tensors a and b with ranks ra and rb produces a tensor of rank

ra + rb. It performs no summation and therefore has no repeated indices. For example, the

outer product of two rank-2 tensors, a and b, can be defined as:

ab = T where Tijkl = aijbkl

The cross-product, a× b, of two tensors a and b is only defined when a and b are both rank-1
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tensors. The result is also a rank-1 tensor. It can be defined as:

a× b = T where Ti = εijkajbk

and ε is the Levi-Civita symbol, defined for dimension n as

εijk =


0 when any two indices are equal

+1 when i, j, k are an even permutation of 1, 2, . . . , n

−1 when i, j, k are an odd permutation of 1, 2, . . . , n

2.7 Vector Calculus Notation

In this section, I cover notation for the application of the gradient, divergence and curl vector

differential operators, all denoted using the symbol ∇. The following definitions assume a

Cartesian co-ordinate system.

The gradient operator applied to a tensor field f is written as ∇f . It increases the rank of the

tensor field by 1. If f is a scalar field of dimension n, the result is defined as:

∇f =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)

The divergence operator applied to a tensor field f is written as ∇ · f . It decreases the rank of

the tensor field by 1 and therefore can only be applied to rank-1 or higher tensor fields. Applied

to a vector field of dimension n, the result is defined as:

∇ · f =
∂f

∂x1

+
∂f

∂x2

+ . . .+
∂f

∂xn

The curl operator applied to a tensor field f is written as ∇× f . Applied to a 3 dimensional

vector field, the result is defined as:
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∇× f =

(
∂f3

∂x2

− ∂f2

∂x3

,
∂f1

∂x3

− ∂f3

∂x1

,
∂f2

∂x1

− ∂f1

∂x2

)

Finally, we define the Laplacian operator ∇2 also written as ∆. It can be written using the

divergence and gradient operators as ∇ · ∇. It transforms a tensor field to one of the same

rank. Applied to a scalar field f of dimension n the result is defined as:

∇2f = ∆f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ . . .+
∂2f

∂x2
n

2.8 The Finite Element Method

This section provides a brief overview of the finite element method. Readers unfamiliar with

the finite element method are advised to consult a text such as Sherwin and Karniadakis [26]

or lecture notes such as Rolf Rannacher’s [27].

2.8.1 Introduction

The finite element method is a technique used to find the approximate solution to some general

linear problem:

L(u) = 0 (2.1)

where L is some linear operator usually containing partial derivatives. We introduce the ap-

proximate solution uδ and the residual R:

L(uδ) = R(uδ) (2.2)

The approximate solution uδ is represented as follows:
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uδ(x) =

Ndof∑
i=0

ûiΦi(x) (2.3)

uδ is represented by a linear combination of a finite number of basis functions. ûi represents

the co-efficient for basis function i. The functions Φi(x) are known as trial functions.

2.8.2 The Method of Weighted Residuals

As the name suggests, we multiply the residual by a weight function and then integrate over

the domain. Choosing g as our weight function gives us:

∫
Ω

R(uδ(x))g(x) dx = 0 (2.4)

This is known as the weak formulation of the problem as the approximate solution uδ does not

require that R(uδ) = 0 over the whole domain, but rather that the weighted integral of R over

the domain is equal to zero.

We choose a set of functions that will act as our weighting function. These are commonly called

test functions. Assuming Ndof test functions, we have a minimization problem of the form:

∫
Ω

R(uδ(x))wj(x) dx, j = 1, . . . , Ndof (2.5)

Different choices of wj correspond to different projections methods. The most common is the

Galerkin method where wj = Φj. If wj = Υj where Υj 6= Φj this is known as a Petrov-Galerkin

method.

Typically, the LHS integral is a bilinear form (linear in the trial and test functions) and the

RHS integral is a linear form (linear in the test function). Such systems can be assembled

into a linear system of equations and solved using standard techniques. If the LHS integral is
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non-linear in the trial function, it may be necessary to employ a linearisation technique or use

a non-linear solver.

2.8.3 Boundary Conditions

In order for a problem to be well-posed, it may be necessary to specify boundary conditions

(e.g. constraints on the value of the variable being solved for, on the edge of the domain).

These may be classified as follows:

Dirichlet These specify the value of the problem variable on the edge of the domain. Sherwin

et al. [26] describe an elegant mathematical formulation where the unknown solution

uδ is decomposed into a known function uD that satisfies the boundary conditions and

a homogeneous function uH which is unknown and zero on the Dirichlet boundaries.

Solution only takes place for uD as uH is known.

Often, imposition of Dirichlet boundary conditions is done in a less elegant manner, by

altering the constructed linear system of equations. One method to do this is to use the

Payne-Irons (or big-spring) method which scales a matrix diagonal by a large value α

and a value in the RHS vector by qα so that a value in the unknown is strongly drawn

towards the value q.

Neumann These specify restrictions on the derivative of a solution on the edge of the domain.

These types of boundary conditions are dealt with implicitly as part of the formulation.

Integration by parts typically results in integrals over the edge of the domain involving

derivatives of the variable to be solved for. By substituting values of the variable into

that term Neumann boundary conditions are applied.

For example, consider the following problem in a one-dimensional domain:

1∫
0

vL(u) dx =

1∫
0

v

(
∂2u

∂x2
+ f

)
dx = 0 (2.6)

Integrating by parts we obtain:
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1∫
0

∂v

∂x

∂u

∂x
dx =

1∫
0

vf dx+

[
v
∂u

∂x

]1

0

(2.7)

Substituting in values of ∂u
∂x

at x = 0 and x = 1 imposes Neumann boundary conditions

at those edges.

Robin Also known as mixed conditions, these refer to a combination of Dirichlet and Neumann

boundary conditions.

2.8.4 Problem Discretisation

Our solution domain is partitioned into non-overlapping elements. Our basis functions are

defined so that they are only non-zero over a small number of cells in physical proximity.

Typically we define our basis functions over a reference cell and transform our basis function

to a global cell. We define a mapping function ιk(i) which given the local numbering of a

basis function coefficient i on some cell k returns the global numbering. We also define χk(ξ)

which will transform a co-ordinate on some cell k specified in local co-ordinates ξ to global

co-ordinates. Hence we have:

Φιk(i)(χ
k(ξ)) = φi(ξ) (2.8)

where φi(ξ) represents basis function i defined on the reference cell, evaluated at local co-

ordinate ξ.

Finite element discretisations may either be continuous or discontinuous. A continuous dis-

cretisation will have field basis function coefficients shared between neighbouring cells. A

discontinuous discretisation results in fields that may take multiple values at the boundaries

between cells.

Even with a continuous discretisation, our discrete function space can usually only represent
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C0 continuous fields (i.e. fields with a discontinuous derivative). As a consequence, integration

by parts must often be applied to the weak form if it requires a second derivative or higher.

2.8.5 Assembly and Solution

Assembly is the process of constructing the linear system:

Au = b (2.9)

A represents the discretised version of our linear operator, b represents our discretised RHS

and u is the vector of unknown trial function coefficients. The number of rows and columns of

A are equal to the number of test and trial functions respectively. Each element of A is equal

to the value of the integral of the corresponding variational form over the domain so that:

Aij = a(Φj,Ψi)

Where a represents our bilinear form. Since our basis functions are only non-zero over neigh-

bouring cells, A is a sparse matrix and can be constructed from a set of smaller matrices

corresponding to integrals over individual cells. This process is called local assembly.

For each cell k we construct the local assembly matrix:

Mk
pq = a(Φιk(q),Ψιk(p)) (2.10)

where p and q are the numberings of the test and trial functions local to each cell. Φ and Ψ

are approximated by their local equivalents when evaluating a. This requires performing co-

ordinate transforms between local and global co-ordinates and rewriting to the integral, which

we do not describe here. Each contribution Mk is summed into the global system matrix A.



44 Chapter 2. Background

(integral-forms

((m u v) (* u v))

((k u v) (dot (gradient u) (gradient v)))

((d u v) (* (divergence u) (divergence v)))

((p u v) (+ (* alpha (m u v))

(* nu (k u v))

(* rho (d u v))))

)

Figure 2.3: The declaration of four variational forms in Analysa. The forms m and k correspond
to the standard “mass” and “stiffness” forms respectively.

Once assembled, the sparse linear system can be solved by a number of methods (e.g. Krylov

subspace [28]) in order to obtain u, which is the vector of trial function coefficients used to

represent uδ.

2.9 Finite Element Libraries

In this section we describe a number of finite element implementations and domain-specific

languages. In particular, we are interested in what information these systems consider necessary

to specify a finite element problem, the abstractions they define and how they can use domain-

specific knowledge to optimise their implementations.

2.9.1 Analysa

Analysa [29] is a problem solving environment for partial differential equations. It is written

in the functional language Scheme and incorporates an embedded domain-specific language for

specifying variational forms. We provide an example of the declaration of four variational forms

in Analysa in Figure 2.3.

We note that Analysa provides a projection operator that operates on finite element function

spaces. Given a discretised field (interpolants in Analysa terminology) and a function space,

the projection operator will transform the field to that space. Depending on use, this function

can act as both an extension or restriction operator on discrete fields. In particular, this seems
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FunctionSpace {

{ Name H1; Type Form0;

BasisFunction {

{ Name sn; NameOfCoef vn; Function BF_Node; Support D;

Entity NodesOf[All]; }

}

}

}

Formulation {

{ Name Poisson; Type FemEquation;

Quantity {

{ Name v; Type Local; NameOfSpace H1; }

}

Equation {

Galerkin { [ a[] * Dof{Grad v}, {Grad v} ] ; In D; Jacobian V;

Integration I; }

Galerkin { [ f[], {v} ] ; In D; Jacobian V; Integration I; }

}

}

}

Figure 2.4: Declaration of a discrete function space and system of equations for solving the
weak form of Poisson’s equation in GetDP’s problem definition language.

to support the elegant implementation of Dirichlet boundary conditions by separating Dirichlet

and Homogeneous components as described by Sherwin et al. [26].

2.9.2 GetDP

GetDP [30] is a software environment for the numeric solution of differential equations sup-

porting multiple solution techniques including finite element methods.

Most notably, GetDP uses a problem definition structure that provides a formal mathematical

definition of the problem in the form of a text file. We present an example of a GetDP

specification for solving Poisson’s equation in Figure 2.4

The generality of GetDP is of particular interest. GetDP is not embedded in some other

language and provides no other means of specifying the problem and solution method other

than the problem definition file. Hence, the GetDP problem definition must truly capture every

aspect of the problem being solved. In contrast, language embedded finite element DSLs most
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for (unsigned int i=0; i<dofs_per_cell; ++i)

for (unsigned int j=0; j<dofs_per_cell; ++j)

for (unsigned int q_point=0; q_point<n_q_points; ++q_point)

cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) *

fe_values.shape_grad (j, q_point) *

fe_values.JxW (q_point));

Figure 2.5: Local assembly of the Laplace operator in deal.II. Handling of iteration over the
basis functions is performed explicitly by the library client.

often have a very specific scope (commonly, just the specification of variational forms) and

anything beyond that scope is handled directly in the host language.

GetDP’s problem definition file is a complete problem specification including mesh topology,

user defined functions, function space definitions, integration methods, linear system generation

and solution and post-processing. As a consequence, the specification of GetDP’s problem defi-

nition file provides a useful basis for determining what information may be needed to completely

specify a general finite element solver must capture.

2.9.3 deal.II

deal.II [31] is a general purpose finite element library written in C++. It provides C++ classes

for meshes, quadrature, linear systems and other finite element concepts. However, deal.II

doesn’t attempt to abstract finite element concepts such a variational forms or system matrix

assembly. We show a code example for performing local assembly of the Laplace operator in

Figure 2.5.

deal.II’s interface is representative of finite element software that does not attempt to abstract

away certain implementation aspects of a finite element solver. Although deal.II is of little

interest to us abstraction-wise, it does provide insight into the building blocks of an efficient

finite element solver implementation which may resemble what we want our abstract problem

descriptions to map down to.
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border C(t=0,2*pi){x=cos(t); y=sin(t);}

mesh Th = buildmesh (C(50));

fespace Vh(Th,P1);

Vh u,v;

func f= x*y;

real cpu=clock();

solve Poisson(u,v,solver=LU) =

int2d(Th)(dx(u)*dx(v) + dy(u)*dy(v))

- int2d(Th)(f*v)

+ on(C,u=0);

plot(u);

cout << " CPU time = " << clock()-cpu << endl;

Figure 2.6: Code for solving Poission’s equation in FreeFEM++’s C++-like language.

2.9.4 FreeFEM++

FreeFEM++ [32] is an interactive graphical environment for solving partial differential equa-

tions written in C++. It is the successor of a family of other applications, FreeFEM, FreeFEM+

and FreeFEM3D. FreeFEM++ implements an interpreter for a language that strongly resembles

C++ augmented with additional finite element related types. We show an example definition

of a Poisson solver in FreeFEM++ in Figure 2.6.

Although FreeFEM appears to use expression capture in their language, in choosing to incorpo-

rate C++, FreeFEM++ does not attempt to raise the level of abstraction as strongly as other

languages for specifying finite element problems.

2.9.5 Sundance

Sundance [33] is a C++ library for solving partial differential equations using the finite element

method. Sundance uses symbolic expressions and expression capture in order to specify problem

aspects such as variational forms and boundary conditions. Sundance also supports MPI,

enabling distributed memory parallelisation of data-structures and parallel solves.

Sundance makes extensive use of expression capture to the extent that it significantly raises

the level of abstraction when specifying a finite element solver. We distinguish from Sundance



48 Chapter 2. Background

Expr phiHat = new TestFunction(new Langrange(1));

Expr phi = new UnknownFunction(new Langrange(1));

Expr v = 10.0;

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr dz = new Derivative(2);

Expr grad = List(dx, dy, dz);

QuadratureFamily quad2 = new GuassianQuadrature(2);

Expr eqn = Integral(interior, (grad*phiHat)*(grad*phi) - v*phiHat, quad2);

Figure 2.7: Specification of a Poisson problem in Sundance. The code also illustrates how the
List type can be used to construct the gradient differential operator.

by noting that one aim of our research is to capture a complete specification of a finite element

solver with the aim of being to generate code from it. In contrast, Sundance’s control and

data flow is specified in standard C++ and therefore exists outside the scope of Sundance’s

expression capture.

2.9.6 FEniCS

FEniCS [34, 35] is a collection of projects and components a number of which are oriented

towards the solution of partial differential equations in C, C++ and Python. Of particular

interest are the FEniCS Form Compiler [36] (FFC) and the Unified Form Language [37] (UFL).

The Unified Form Language specification defines a domain-specific language for declaring dis-

crete variational forms. This enables researchers to explore different choices of form and dis-

cretisation in a notation similar to mathematical description, without interacting with other

concerns. We present an example of the UFL specification of a bilinear form for a Poisson

problem in Figure 2.8.

The FEniCS Form Compiler accepts input in UFL and produces code to evaluate variational

forms that can be used from C, C++ or Python. FFC development also reflects ongoing

research into optimising evaluation of variational forms. FFC can generate code that performs

local assembly using quadrature, but can also generate code using a tensor representation that
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element = FiniteElement("Lagrange", triangle, 1)

v = TestFunction(element)

u = TrialFunction(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

Figure 2.8: Specification of the bilinear and linear forms for the Poisson problem in UFL.

separates geometry-dependent and geometry-independent factors into different tensors which

are combined using an inner product to form the final local assembly matrix. For variational

forms with high-order basis functions, this can reduce the operation count considerably.

Work on optimising evaluation using tensor representation of local assembly has been under-

taken by Kirby et al. [38] who have presented work on reducing the operation count needed to

take the inner product between the geometry-dependent and independent tensors by exploiting

redundancies in the latter.

The FEniCS optimisations demonstrate how domain-specific knowledge can be used to opti-

mise performance. We also intend to search for domain-specific optimisation opportunities for

optimisation.

2.10 Conclusion

In this chapter I covered background related to domain-specific abstractions, self-optimising

libraries, code generation and optimisation which are useful in the construction of active li-

braries. I also covered the finite element method, domain-specific languages and libraries for

specifying and solving finite element problems which will assist in understanding the design of

our finite element library Excafé, detailed in later chapters.

In the next chapter, we present the sparse linear code-generation extension to my linear algebra

active library Desola, in context with material from earlier work.
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Chapter 3

Code Generation for Iterative Solvers

of Sparse Linear Systems

3.1 Introduction

In my MEng thesis work, I explored the issues involved in performing runtime code generation

for iterative solvers on dense linear systems of equations. I developed a prototype implementa-

tion of an “active” dense linear algebra library, Desola (Delayed Evaluation Self Optimising

Linear Algebra), by delaying evaluation of expressions built using library calls, then generating

code at runtime for the compositions that occurred.

This work was presented at the Library-Centric Software Design Workshop ’06 [2]. During

my PhD, I was invited to revise the paper for submission to a special issue of “Science of

Computer Programming” published by Elsevier with extended performance results and an

extensive background section [3]. This chapter is primarily intended to detail the work to

extend this library to sparse linear algebra. Sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.9 are mainly

excerpted from the journal paper and provide necessary background. Section 3.7 presents the

new results collected for the journal Paper, and Section 3.8 describes work to extend Desola

to sparse linear algebra.

51
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“Active libraries” can be defined as libraries which play an active part in the compilation, in

particular, the optimisation of their client code. The term was coined by Czarnecki et al. [39],

who observed that active libraries break the abstractions common in conventional compilers.

Active libraries are described in detail by Veldhuizen and Gannon [40]. In Desola, the key

optimisations are loop fusion and array contraction. The ideas behind Desola are to:

Delay library call execution Calls made to the library are used to build a “recipe” for the

delayed computation. When execution is finally forced by the need for a result, the recipe

will often represent a complex composition of primitive calls.

Generate optimised code at runtime Code is generated at runtime to perform the opera-

tions present in the delayed recipe. In order to improve performance over a conventional

library, it is important that the generated code should execute faster than a statically

generated counterpart in a conventional library. To achieve this, we apply optimisations

that exploit the structure, semantics and context of each library call. Compiled recipes

are cached to limit overheads, but need to be executed enough times to offset the cost of

the initial compilation.

This approach has a number of advantages. It does not need to analyse the client source code

but is still able to optimise across statement and procedural bounds. Desola is implemented

in standard C++ and uses a standard C compiler for runtime code compilation so the library

user is not tied to a specific compiler.

One aspect of this approach is that the library interface remains isolated from the concerns

of achieving high performance. The evolution of high performance numerical libraries such

as BLAS [41] has been accompanied by a corresponding increase in the complexity of their

interfaces. By allowing the library implementation to take more responsibility for optimisation,

we aim to provide a more appropriate interface to the user, a similar goal to the Matrix Template

Library [5].

Another aspect of this approach is that the code generated for a recipe is isolated from client-

side code - it is not interwoven with non-library code. This is particularly important because
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the structure of the code for a recipe is restricted in form, enabling us to introduce compilation

passes specially targeted to achieve particular effects.

The disadvantage of this approach is the overhead of runtime compilation and the infrastructure

to delay evaluation. In order to minimise the first factor, we maintain a cache of previously

generated code along with the recipe used to generate it. This enables us to reuse previously

optimised and compiled code when the same recipe is encountered again.

There are also more subtle disadvantages. In contrast to a compile-time solution, we are forced

to make online decisions about what to evaluate, and when. Living without static analysis of

the client code means we do not know, for example, which variables involved in a recipe are

actually live when the recipe is forced.

3.2 Delaying Evaluation

Delayed evaluation provides the mechanism whereby we collect the sequences of operations we

wish to optimise. We call the runtime information we obtain about these operations runtime

context information.

This information may consist of values such as matrix or vector sizes, or the various relationships

between successive library calls. Knowledge of dynamic values such as matrix and vector sizes

allows us to improve the performance of the implementation of operations using these objects.

For example, the runtime code generation system (see Section 3.3) can use this information to

specialise the generated code. One specialisation we perform is with loop bounds. We incor-

porate dynamically known sizes of vectors and matrices as constants in the runtime-generated

code.

Desola clients pass around handles to delayed expressions. The client can use these handles to

build and assign expressions, and determine their values when needed. The library client need

not be aware that delayed evaluation is occurring. Building and assigning numerical expressions

with the handles causes them to be delayed by the library. Only when the client performs an
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Figure 3.1: An example DAG. The circular node denotes a handle held by the library client. The
expression represents the matrix-vector multiply function from Level 2 BLAS, y = αAx+ βy.

operation that requires knowledge of the value of an expression is it calculated.

The delayed expressions are represented as Directed Acyclic Graphs (DAGs). Arcs in the

DAG are directed in the direction of data dependence. Leaves in the DAG are data values

(literals) and the other nodes represent delayed operations involving them. When the client

forces evaluation of an expression node referenced by a handle, the node is replaced by a

literal value. A literal value has no dependencies so previously referenced sections of the DAG

may be orphaned. A simple reference counting scheme is used to determine when expression

DAG nodes are no longer referenced by either other nodes or client handles, and reclaim them

automatically.

An example DAG is illustrated in Figure 3.1. The circular node represents a handle held by

the library client, and the other nodes represent delayed expressions. The three multiplication

nodes do not have a handle referencing them. This makes them in effect, unnamed. When

the expression DAG is evaluated, it is possible to optimise away the storage for these values

entirely (their values are not required outside the runtime generated code). For expression

DAGs involving matrix and vector operations, this enables us to reduce memory usage and

improve cache utilisation.

Currently, we do not perform any form of common subexpression elimination on our expression
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DAGs, although it would be possible to do so. We have not observed any of our benchmark

examples computing redundant expressions. Explicit expression reuse, which does occur, is

expressed directly in the structure of the constructed expression DAG.

Delayed evaluation allows Desola to perform cross component optimisation at runtime, and

also allows us to equip it with a simple interface, such as the one required by the Iterative

Template Library (ITL) set of iterative solvers.

3.3 Runtime Code Generation

Runtime code generation is performed using the TaskGraph [13]. TaskGraph is a C++ li-

brary for dynamic code generation. A TaskGraph represents a fragment of code which can

be constructed and manipulated at runtime, compiled, dynamically linked back into the host

application and executed. TaskGraph enables optimisation with respect to:

Runtime Parameters Code can be specialised to its parameters and other runtime contex-

tual information.

Platform SUIF-1, the Stanford University Intermediate Format is used as an internal rep-

resentation in TaskGraph, making a large set of dependence analysis and restructuring

passes available for code optimisation.

Characteristics of the TaskGraph approach include:

Simple Language Design TaskGraph is implemented in C++ enabling it to be compiled

with a number of widely available compilers.

Explicit Specification of Dynamic Code TaskGraph requires the application programmer

to construct the code explicitly as a data structure, as opposed to annotation of code or

automated analysis.
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void TG_mm_ijk(unsigned int sz[2], TaskGraph &t)

{

taskgraph(t) {

tParameter(tArrayFromList(float, A, 2, sz));

tParameter(tArrayFromList(float, B, 2, sz));

tParameter(tArrayFromList(float, C, 2, sz));

tVar(int, i); tVar(int, j); tVar(int, k);

tFor(i, 0, sz[0]-1)

tFor(j, 0, sz[1]-1)

tFor(k, 0, sz[0] -1)

C[i][j] += A[i][k] * B[k][j];

}

}

Figure 3.2: A C++ function for constructing a TaskGraph that performs a dense matrix mul-
tiplication. The matrix sizes are passed in through the array sz and incorporated as constants
inside the TaskGraph.

Simplified C-like Sub-language Dynamic code is specified with the TaskGraph library via

an embedded sub-language similar to C. This language is implemented through extensive

use of macros and C++ operator overloading. The language has first-class arrays, which

facilitates dependence analysis.

We show a C++ function that constructs a matrix multiplication in the TaskGraph sub-

language in Figure 3.2. The library is designed so that TaskGraph construction resembles

C code. The generated code is specialised to the matrix dimensions stored in the array sz. The

matrix parameters A, B, and C are supplied when the code is executed.

A code generation visitor visits nodes from the delayed expression DAG in reverse topological

order to generate TaskGraph code. In order to calculate the value of the node that has been

forced, the only nodes we need to evaluate are those that the forced node transitively depends

on. However, as we wish to maximise the opportunities for optimisation, we evaluate all nodes

transitively connected to the one being evaluated (i.e. we traverse the dependence edges in both

directions). This heuristic is intended to maximise optimisation opportunities by evaluating all

expressions that use the same data at the same time, possibly allowing loop fusion and array

contraction to occur between loops using the same data.
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Code generated by Desola is specialised to matrix and vector sizes as demonstrated in Fig-

ure 3.2. The constant loop bounds and array sizes make it much simpler to apply our loop

fusion and array contraction optimisations. These are described in Section 3.5.

3.4 Code Caching

As the cost of compiling the runtime generated code is extremely high (compiler execution time

is in the order of tenths of a second) it is important that this overhead be minimised.

Related work by Beckmann [42], on the efficient placement of data in a parallel linear algebra

library, cached execution plans in order to improve performance. We adopt a similar strategy

in order to reuse previously compiled code. We maintain a cache of previously encountered

recipes along with the compiled code required to execute them. As any caching system will be

invoked at every force point within a program using the library, it is essential that checking for

cache hits is as computationally inexpensive as possible.

As previously described, delayed recipes are represented in the form of directed acyclic graphs.

In order to allow the fast resolution of possible cache hits, all previously cached recipes are

associated with a hash value. If recipes already exist in the cache with the same hash value, a

full check is then performed to see if the recipes match.

Time and space constraints were of paramount importance in the development of the caching

strategy and certain concessions were made in order that it could be performed quickly. The

primary concession was that both hash calculation and isomorphism checking occur on flattened

forms of the delayed expression DAG, ordered using a topological sort.

This causes two limitations:

• We do not detect the situation where the presence of commutative operations allow two

differently structured delayed expression DAGs to be used in place of each other.
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• As there can be more than one valid topological sort of a DAG, it is possible for multiple

identically structured expression DAGs to exist in the code cache.

As we will see later, neither of these limitations significantly affects the usefulness of the cache,

but first we will briefly describe the hashing and isomorphism algorithms.

Hashing occurs as follows:

• Each DAG node in the sorted list is assigned a value corresponding to its position in the

list.

• A hash value is calculated for each node with references to other nodes encoded using the

values assigned to them in the previous step.

• The hash values of all the nodes in the list are combined together in list order using a

non-commutative function.

Isomorphism checking works similarly:

• Nodes in the sorted lists for each graph are assigned a value corresponding to their location

in their list.

• Both lists are checked to be the same size.

• The corresponding nodes from both lists are checked to be the same type, and any nodes

they reference are checked to see if they have been assigned the same numerical value.

Isomorphism checking in this manner does not require that a mapping be found between nodes

in the two DAGs involved (it is implied by each node’s location in the sorted list for each

graph). It only requires determining whether the mapping is valid.

As the maximum number of nodes a node can depend on is bounded (maximum of two for a

library with only unary and binary operators) then both hashing and isomorphism checking
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between delayed expression DAGs can be performed in linear time with respect to the number

of nodes in the DAG.

We previously stated that the limitations imposed by using a flattened representation of an

expression DAG do not significantly affect the usefulness of the code cache. We expect the

code cache to be at its most useful when the same sequence of library calls are repeatedly

encountered (as in a loop). In this case, the generated DAGs will have identical structures, and

the ability to detect non-identical DAGs that compute the same operation provides no benefit.

The second limitation, the need for identical DAGs matched by the caching mechanism to also

have the same topological sort is more important. To ensure this, we store the dependency

information held at each DAG node using lists rather than sets. By using lists, we can guarantee

that when two DAGs are constructed in the same order they will also be traversed in the same

order. Thus, when we come to perform our topological sort, the nodes from both DAGs will

be sorted identically.

The code caching mechanism discussed, while it cannot recognise all opportunities for reuse, is

well suited for detecting repeatedly generated recipes from client code. For the benchmark set

of iterative solvers, compilation time becomes a constant overhead, regardless of the number of

iterations executed.

3.5 Loop Fusion and Array Contraction

We implemented two optimisations using the TaskGraph back-end, SUIF [25]. Both loop fusion

and array contraction are applied to the runtime generated code. As loop fusion often facilitates

array contraction, the loop fusion pass precedes the array contraction pass.

Loop fusion [17] can lead to an improvement in performance when the fused loops use the same

data. As the data is only loaded into the cache once, the fused loops take less time to execute

than the sequential loops. Alternatively, if the fused loops use different data, it can lead to

poorer performance, as the data used by the fused loop displace each other in the cache. Loop
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for (int i=0; i<100; ++i)

a[i] = b[i] + c[i];

for(int i=0; i<100; ++i)

e[i] = a[i] + d[i];

(a) Before loop fusion

for (int i=0; i<100; ++i) {

a[i] = b[i] + c[i];

e[i] = a[i] + d[i];

}

(b) After loop fusion

Figure 3.3: Vector addition before and after loop fusion. The computed values assigned to a[i]

are reused immediately, leading to improved temporal locality.

fusion is described in more detail in Section 2.4.1.

We provide an example of loop fusion in Figure 3.3. After fusion, the value stored in a[i] is

reused immediately for the calculation of e[i].

In Desola, we use a rather simple loop fusion algorithm which does not take into account

cache locality and could be improved (although the fusions are always correct). We require

that the loop bounds of the loops to be fused are constant but this does not limit us since our

runtime generated code has already been specialised with loop bound information.

As discussed in Section 3.3, we employ a heuristic to generate code where loops are likely

to reference the same data. Visual inspection of the code generated during execution of the

iterative solvers indicates that the fused loops commonly use the same data. We believe this

is likely due to the structure of the dependencies involved in the operations required for the

iterative solvers.

We follow the loop fusion transformation by array contraction [17]. Array contraction allows

the size of arrays to be reduced, possibly to a scalar value, when dependencies permit. This

results in a reduction in memory, cache lines referenced, etc. Array contraction is described in

more detail in Section 2.4.2. We also provide results on the number of array contractions we

perform on our benchmarks in Section 3.7.

We provide an example of array contraction in Figure 3.4. The array a can be reduced to a

scalar value so long as it is not required by any code following the two fused loops.

We use this technique to optimise away temporary matrices or vectors in the runtime generated
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double a[100], b[100], c[100] d[100];

for (int i=0; i<100; ++i) {

a[i] = b[i] + c[i];

e[i] = a[i] + d[i];

}

(a) Before array contraction

double a, b[100], c[100] d[100];

for (int i=0; i<100; ++i) {

a = b[i] + c[i];

e[i] = a + d[i];

}

(b) After array contraction

Figure 3.4: Vector addition before and after array contraction. The array a is replaced by a
scalar value, reducing memory requirements.

code. This is important because the DAG representation of the delayed operations does not

hold information on what memory can be reused. However, we can determine whether or not

each node in the DAG is referenced by the client code, and if it is not, it can be allocated locally

to the runtime generated code and possibly optimised away. For details of other memory access

transformations, consult Bacon et al. [17].

3.6 Liveness Analysis

Upon visual inspection of the runtime generated code produced by our benchmark suite of

iterative solvers, it became apparent that a large number of vectors were being passed in as

parameters. Their initial values were not used by the runtime generated code, instead, they

were being assigned inside the runtime generated code so that their values could be propagated

out.

Further investigation showed that that the values of these vectors were not used outside the

runtime generated code either. In other words, these vectors could be made completely local

to the runtime generated code. Unfortunately, our library could not determine this because

handles to the vectors were still held by the iterative solver. As a consequence, these vectors

were not susceptible to our array contraction pass. We realised that by designing a system to

recover runtime information, we had lost the ability to use static information, in particular, the

liveness properties of variables.
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void printScaledCrossProduct(const Vector<float>& a,

const Vector<float>& b,

const Scalar<float>& alpha)

{

const Vector<float> product = cross(a, b);

const Vector<float> scaled = mul(product, alpha);

print(scaled);

}

Figure 3.5: A C++ function that computes and prints the scaled value of a cross product using
Desola vector and scalar handles passed as parameters.

×product

a b

×

scaled

α

Figure 3.6: A DAG representing the computation built in Figure 3.5. The client holds handles
to both the cross product and scaling operations (handles are denoted with elliptical nodes).
When evaluation of the handle scaled is forced, the client still possesses the handle product, so
the cross-product result cannot be allocated locally to the runtime generated code.

Consider the code in Figure 3.5 that takes the cross product of two vectors, scales the result and

prints it. This operation can be represented with the DAG in Figure 3.6. The value pointed

to by the handle product is never required by the client code. From the client’s perspective

the value is dead, but the library must assume that any value which has a handle may be

required later on. Values required by the library client cannot be allocated locally to the

runtime generated code, and therefore cannot be optimised away through techniques such as

array contraction. Runtime liveness analysis permits the library to make informed guesses

about the liveness of nodes in repeatedly executed DAGs, and allow them to be allocated

locally to runtime generated code if it is suspected they are dead, regardless of whether they

have a handle.

Having already developed a system for recognising repeatedly executed delayed expression
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DAGs, we developed a similar mechanism for associating collected liveness information with

expression DAGs.

Nodes in each generated expression DAG are instrumented and information collected on whether

the values are live or dead. The next time the same DAG is encountered, the previously collected

information is used to annotate each node in the DAG with an expectation with regards to

whether it is live or dead. As the same DAG is repeatedly encountered, statistical information

about the liveness of each node is built up.

If an expression DAG node is believed to be dead, then it can be allocated locally to the

runtime generated code and possibly optimised away. This could lead to a possible performance

improvement. Alternatively, it is also possible that the expression DAG node is not dead, and

its value is required by the library client at a later time. As the value was not saved the first

time it was computed, the value must be computed again. This could result in a performance

decrease of the client application if such a situation occurs repeatedly.

3.7 Performance Evaluation for Dense Linear Algebra

We evaluated the performance of Desola using solvers from the Iterative Template Library

(ITL) set of templated iterative solvers running on dense asymmetric matrices of different sizes.

The ITL provides templated classes and methods for the iterative solution of linear systems, but

not an implementation of the linear algebra operations themselves. ITL is capable of utilising

a number of numerical libraries, requiring only the use of an appropriate header file to map

the templated types and methods ITL uses to those specific to a particular library. ITL was

modified to use Desola through the addition of a header file and other minor modifications.

We compare the performance of our library against the Matrix Template Library [5] (MTL),

Intel’s Math Kernel Library (IMKL) and ATLAS [16]. We compare against MTL because it

has a similar goal of trying to provide high performance code in C++ with an elegant interface.

Comparisons against ATLAS and Intel’s MKL are provided as a performance baseline.
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ITL already provides support for using MTL as its numerical library. We adapted ITL’s existing

interface for Sparse BLAS to dense BLAS allowing the ITL solvers to work with ATLAS and

Intel’s Math Kernel Library. We analysed the performance of five iterative solvers suitable for

asymmetric matrices, namely Conjugate Gradient Squared, BiConjugate Gradient, BiConju-

gate Gradient Stabilised, Quasi-Minimal Residual and Transpose Free Quasi-Minimal Residual.

The Chebyshev Iteration and Preconditioned Richardson solvers were not benchmarked due to

the need to generate coefficient matrices with appropriate spectral properties.

We did not benchmark the Generalised Conjugate Residual (GCR) and Generalised Minimum

Residual (GMRES) solvers because they required additional functionality from the matrix ab-

straction that we did not have time to implement (e.g. access to matrix columns as vectors).

Additionally, all benchmarks used the identity preconditioner since all other ITL precondi-

tioners were coded specifically to MTL. This is due to the fact that the ITL-specified interface

provides insufficient functionality to implement them directly (e.g. decomposition into diagonal,

upper and strictly lower parts for the Symmetric Successive Overrelaxation preconditioner).

The version of ITL used was 4.0.0-1. The version of MTL used was 2.1.2-23 of MTL2. Version

10.1 of the Intel C and C++ Compilers was used for both the runtime compiled code generated

by our library and the compilation of the MTL benchmarks, respectively. The options passed to

the Intel C and C++ compilers are described in Table 3.2. The version of Intel’s MKL library

was 10.0.2.018. Version 3.8.1 of ATLAS was used on architecture 1 (Xeon, see below). On

architecture 2 (Pentium IV, see below) we took the slightly unusual step of comparing against

ATLAS 3.6.0 with pre-collected tuning results from the Ubuntu Linux distribution for the

Pentium IV with SSE2 support. We did this because we found that it outperformed any locally

tuned ATLAS we could build. Both ATLAS builds used GCC 4.2.1 for kernel code compilation.

We note that at the time of writing the online ATLAS installation guide advocates the use of

GCC 4.2 over previous series 4 and 3 versions and also advises against the use of Intel’s C

Compiler for compiling ATLAS kernel code.

In order to show trends more clearly, we show throughput in terms of floating point operations

per second. The number of floating point operations required have been estimated from the ITL
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implementation of the iterative solvers. It is important to note that our library requires that

we invoke a compiler at runtime and hence incur a compilation overhead. We omit this from

the throughput graphs as the relative effect of this overhead is dependent on numerous factors

including the size of the matrices involved and the number of iterations the solvers are run for.

An indication of the compilation overhead for one of our architectures is given in Table 3.1.

The number of compiler invocations in our benchmarks is independent of the number solver

iterations (when ≥ 3) as compiled code fragments are reused each iteration. The number of

invocations corresponds to the number of unique expression DAGs generated. Two interrelated

factors affect this value:

Force Points Any point in the execution of solver where the value of an expression is required

forces evaluation of its associated expression DAG. Larger numbers of force points tend to

result in more unique expression DAGs and therefore more compiler invocations. Within

the main loop of many of the iterative solvers, force points exist both for checking the

convergence condition and for checking various conditions to detect solver breakdowns.

Control Flow Changes in a program’s control flow may cause it to construct novel expression

DAGs. In our solvers, the expression DAGs constructed on the first and second iterations

of the main loop differ due to the code that preceded each iteration. It is only on the

third iteration of the loop that all generated expression DAGs can be evaluated using

previously compiled code fragments.

We will discuss the observed effects of the different optimisation methods we implemented, and

we conclude with a comparison against the same benchmarks using MTL, ATLAS and Intel’s

MKL. We evaluated the performance of the solvers on two architectures. All the solvers are

single threaded and use double precision.

1. Intel Xeon “Clovertown” processor running at 2.66GHz, 4096 KB L2 cache with 4 GB

RAM running 64-bit Ubuntu 7.04.
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Solver Number of Com-
piler Invocations

Total Compilation
Time

Total Execution
Time (size 500)

Total Execution
Time (size 5000)

bicg 9 0.929 0.999 20.340
bicgstab 10 0.942 1.033 36.170
cgs 9 0.930 1.025 35.977
qmr 12 1.120 1.237 20.659
tfqmr 9 0.887 1.056 36.292

Table 3.1: The number of compiler invocations in each iterative solver, the total compiler
overhead in seconds and total execution time (including compilation) for 256 iterations of each
solver with a problem size of 500 and 5000 for architecture 1. Liveness analysis (Section 3.6)
was disabled since it consistently lowered performance. This was due to the increased number
of compiler invocations required.

Option Description
-O3 Enables the most aggressive level of optimisation including loop and memory

access transformations, and prefetching.
-restrict Enables the use of the restrict keyword for disambiguating pointers. The restrict

keyword is not used in MTL but is used in our runtime generated code.
-ansi-alias Allows icc to perform more aggressive optimisations if the program adheres to

the ISO C aliasing rules.
-xT Generate code specialised for Intel Core2 Duo (for architecture 1).
-xP Generate code specialised for Intel Pentium 4 with SSE3 (for architecture 2).

Table 3.2: The options supplied to Intel C/C++ compilers and their meanings.

2. Pentium IV “Prescott” processor running at 3.2GHz with Hyper-threading disabled, 2048

KB L2 cache with 2 GB RAM running 32-bit Ubuntu 7.04.

The first optimisation implemented was loop fusion. Three of five of the benchmarks did not

show any noticeable improvement with this optimisation. Visual inspection of the runtime

generated code showed multiple loop fusions had occurred between vector-vector operations

but not between matrix-vector operations. As we were working with dense matrices, these

fusions were unable to contribute any significant performance effects given that vector-vector

operations are O(n) and the matrix-vector multiplies present in each solver are O(n2).

We obtained significant speedups from loop fusion between matrix-vector multiply operations

on two benchmarks, the BiConjugate Gradient solver and the Quasi-Minimal Residual solver.

The first required no modification to ITL, but the latter1 required minor changes to ITL.

We observed that the checks for QMR breakdown forced the evaluation of a matrix-vector

1the QMR matrix-vector multiply fusion result was not yet achieved in the LCSD’06 paper [2].
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Figure 3.7: Throughput of the BiConjugate Gradient (BiCG) and Quasi-Minimal Residual
solvers running on architecture 2 with and without loop fusion.

multiply before a second matrix-vector multiply, making fusion impossible. Data dependencies

permitted moving the second (transpose) matrix-vector multiply to be adjacent to the first,

enabling fusion. We note that as this move disregarded the control dependence between the

transpose matrix-vector multiply and the QMR breakdown check, our changes also had the

minor effect of the multiply being executed unnecessarily in the instance of the breakdown of

the solver.

In both these cases the loop fuser was able to fuse a matrix-vector multiply and a transpose

matrix-vector multiply with the result that the matrix involved was only iterated over once for

both operations. A graph of the speedup obtained across matrix sizes is shown in Figure 3.7.

The second optimisation implemented was array contraction. We only evaluated this in the

presence of loop fusion as the former is facilitated by the latter. The array contraction pass

did not show any noticeable improvement on any of the benchmarks applications. On visual

inspection of the runtime generated code we found that the array contractions had occurred in

all the iterative solvers. The number of array contractions for each iterative solver are listed in

Table 3.3. However, these only occurred on vectors, and affected only vector-vector operations.

This is not surprising since only one matrix is used during the execution of the linear solvers
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Solver Total array contractions Array contractions in repeatedly exe-
cuted code

bicg 13 5
bicgstab 12 7
cgs 17 7
qmr 10 9
tfqmr 13 10

Table 3.3: Number of array contractions occurring in each iterative solver. Total array con-
tractions refers to the number of array contractions performed in code generated during the
execution of the solver. Array contractions in repeatedly executed code refers to the number
of array contractions that occurred in code executed by the solver each iteration. Liveness
analysis (Section 3.6) was disabled since it consistently lowered performance. This was due to
the increased number of compiler invocations required.

and as it was required for all iterations, could not be optimised away. Section 3.8 describes

the extension of our library to sparse matrices, which makes the effect of array contraction

more apparent since the cost of the matrix-vector multiply operations becomes O(n) instead of

O(n2).

The last technique we implemented was runtime liveness analysis. This was used to try to

recognise which expression DAG nodes were dead to allow them to be allocated locally to

runtime generated code.

The runtime liveness analysis mechanism was able to find vectors in three of the five iterative

solvers that could be allocated locally to the runtime generated code. The three solvers had

an average of two vectors that could be optimised away, located in repeatedly executed code.

Unfortunately, usage of the liveness analysis mechanism resulted in an overall decrease in per-

formance. We discovered this to be because the liveness mechanism resulted in extra constant

overhead due to more compiler invocations at the start of the iterative solver. This was due

to the statistical nature of the liveness prediction, and the fact that as it changed its beliefs

with regard to whether a value was live or dead, a greater number of runtime generated code

fragments had to be compiled.

We also compared Desola against the Matrix Template Library (MTL), Intel’s Math Kernel

Library (IMKL) and ATLAS, running the same benchmarks. We enabled the loop fusion and

array contraction optimisations, but did not enable the runtime liveness analysis mechanism
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because of the overhead previously discussed.

We observe that on the BiCG and QMR benchmarks, on which we were able to perform matrix-

vector loop fusion, we outperform the other implementations on both architectures at matrix

sizes above 1500. We show the performance of the different implementations with the BiCG

benchmark running on architecture 1 in Figure 3.8 and QMR on architecture 2 in Figure 3.9.

Performance results for the QMR and BiCG benchmarks are similar on both architectures.

On architecture 1, we note that IMKL and ATLAS appear to perform particularly well with

matrix sizes smaller than 1000. On the BiCGSTAB, TFQMR and CGS benchmarks, we can

outperform MTL and ATLAS for matrix sizes above 2000, but do not achieve the performance

of IMKL. Performance comparisons for the TFQMR benchmark are shown in Figure 3.10.

Results for the BiCGSTAB and CGS benchmarks are similar.

On architecture 2, on the BiCGSTAB, TFQMR and CGS benchmarks, we outperform IMKL

and MTL at matrix sizes above 1500. ATLAS consistently outperforms all other implementa-

tions at all matrix sizes. Performance comparisons for the TFQMR benchmark are shown in

Figure 3.11. Results for the BiCGSTAB and CGS benchmarks are similar.

Once again, we stress that these graphs ignore the compilation overhead which is a constant in

the case of the iterative solvers (see Table 3.1). Therefore, the relative effects of this overhead

on performance will vary depending on the size of the problem, and the number of iterations

required to meet convergence. We also note that mechanisms such as a persistent code cache

could allow the compilation overheads to be significantly reduced. These overheads are dis-

cussed in Section 3.9.
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Figure 3.8: Throughput of the BiConjugate Gradient (BiCG) solver using Desola, MTL,
ATLAS and IMKL running on architecture 1. Estimated throughput for IMKL at matrix size
500 is 4504 MFLOPs. Throughput for Desola ignores the constant compilation overhead (see
Table 3.1).
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Figure 3.9: Throughput of the Quasi-Minimal Residual (QMR) solver using Desola, MTL,
ATLAS and IMKL running on architecture 2. Throughput for Desola ignores the constant
compilation overhead (see Table 3.1).
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Figure 3.10: Throughput of the Transpose Free Quasi-Minimal Residual (TFQMR) solver using
Desola, MTL, ATLAS and IMKL running on architecture 1. Estimated throughput for IMKL
at matrix size 500 is 4233 MFLOPs. Throughput for Desola ignores the constant compilation
overhead (see Table 3.1).
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Figure 3.11: Throughput of the Transpose Free Quasi-Minimal Residual (TFQMR) solver using
Desola, MTL, ATLAS and IMKL running on architecture 2. Throughput for Desola ignores
the constant compilation overhead (see Table 3.1).
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3.8 Extension to Sparse Matrices

Desola was originally restricted to dense linear algebra as this provided a simple domain

in which to investigate and understand the various aspects of delayed-evaluation and runtime

code generation. However, our benchmark suite, a set of iterative solvers for linear systems

of equations is only of limited usefulness when employed with dense linear algebra. This is

because direct techniques, such as Gaussian elimination, can be used to solve these systems in

O(n3) operations.

Direct techniques are less applicable to sparse systems, because they typically cause large

increases in the number of non-zeros in the matrix, causing it to become dense and making it

extremely memory inefficient and impractical to store. The primary benefit of iterative methods

is that they do not have this issue and thus can be used to solve sparse linear systems. We

note that research into implementing direct sparse solvers that do not suffer from fill-in is an

active research topic, with scalable parallelisation being an important issue [43, 44].

3.8.1 Sparse Matrix Storage

Compressed Row Storage [28] and Compressed Column Storage are two of the most common

data structures for representing sparse matrices. I added support for CRS storage and two

different implementations of sparse matrix-vector multiply to Desola. An example of a small

sparse matrix in CRS representation is given in Figure 3.12.

3.8.2 Code Generation

We expect that the optimisations we apply to the runtime generated code may have different

behaviours on the sparse solvers compared to the dense case. In particular:

Performance is matrix-dependent. In a matrix-vector multiply, the sparsity pattern of the

matrix determines the access pattern to the vector. As the cache access pattern for the
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
1 0 0 7 0 0
0 2 0 0 0 8
0 0 0 0 9 0
0 0 0 6 0 0
5 8 0 0 4 0
0 0 0 7 0 2

 (3.1)

val 1 7 2 8 9 6 5 8 4 7 2
col ind 1 4 2 6 5 4 1 2 5 4 6

row ptr 1 3 5 6 7 10 12

Figure 3.12: A Compressed Row Storage representation of the matrix in Equation 3.1 is held
by the arrays val, col ind and row ptr. Array val contains the non-zero values in the matrix.
Array col ind holds the corresponding columns of the non-zero values. Array row ptr holds the
indices at which each row starts in the col ind and row ptr arrays. This example uses one-based
indexing, however zero-based indexing may be used as well.

vector is matrix-dependent, a matrix-vector multiply that performs well on one sparse

matrix may perform poorly on another.

Sparse matrix-vector multiply is O(n). We apply loop fusion and array contraction opti-

misations to the runtime generated code. This has the effect of reducing the memory usage

and improving locality for a number of O(n) vector-vector operations. However, dense

matrix-vector multiply is an O(n2) operation so these optimisations have little observable

effect except for the loop fusions between dense matrix-vector multiplies. Many sparse

matrices from scientific applications have an upper bound on the number of non-zeros

per row that is independent of system size, making the sparse matrix-vector multiply an

O(n) operation. As a consequence, we expect that the benefits of these optimisations

should be more apparent.

Loop fusion is more difficult to achieve. In order to perform loop fusion between com-

patible loops, our optimisation pass only required that the loop bounds were identical

and constant. This worked for dense matrix-vector multiply, but is harder in the sparse

case as loop bounds are dependent on the matrix structure.

Vectorisation is difficult to achieve. As accesses into the left-hand side vector are no longer

contiguous it is difficult to make effective use of vector instructions.
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currentRow = 0

for valIndex = 0 to length(val)

{

while row_ptr[currentRow+1] == valIndex

currentRow += 1

b[currentRow] += val[valIndex] * x[col_ind[valIndex]]

}

Figure 3.13: Pseudo-code implementation of CRS sparse matrix-vector multiply using an inner
while-loop. The outer for loop iterates along all the non-zero values in the matrix whilst the
inner while loop is used to update the corresponding row.

for row = 0 to numRows

{

valStartIndex = row_ptr[row]

valEndIndex = row_ptr[row+1]

for valIndex = valStartIndex to valEndIndex

b[row] += val[valIndex] * x[col_ind[valIndex]]

}

Figure 3.14: Pseudo-code implementation of CRS sparse matrix-vector multiply using an inner
for-loop. The outer for-loop iterates over the matrix rows whilst the inner for-loop is used to
iterate over the non-zero values for each row.

Sparse Matrix Iteration

We developed two different implementations of sparse matrix-vector multiply. The version in

Figure 3.13 uses a for-loop to iterate over all the non-zero values of the matrix. An inner while

loop is used to increment a variable storing the current row by detecting when the offset into

the val array is equal to index of the next row. A while-loop rather than an if-statement is

required for when there are rows with no non-zero values.

The implementation in Figure 3.14 uses two nested for loops. The outer loop iterates over each

row of the sparse matrix and the inner loop iterates over the range of the val array corresponding

to the non-zero values in that row.
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High-Level Fusion

Our double for-loop implementation of sparse matrix iteration cannot be fully fused by our

SUIF loop fusion pass. This is due to the fact that the inner loop has non-constant bounds

that our pass cannot handle. Our single for-loop implementation also cannot be fused, because

our fuser cannot reason about the dependence implications of the inner while-loop.

In order to overcome these problems, we wrote a pass specifically for performing sparse matrix-

vector multiply fusion. Rather than attempting to perform this optimisation on the AST of the

generated code, we do it at the level of the TaskGraph DAG. The TaskGraph DAG still resem-

bles the high-level expression tree, but contains information specific to code-generation such as

the names of variables to be bound and the data storage formats of expressions represented in

the DAG.

We add a new node type to the TaskGraph DAG which represents a number of matrix-vector

and transpose matrix-vector multiplies involving the same matrix but different vectors. We also

add a pass that takes individual (possibly transpose) matrix-vector multiplies and combines

them if they operate on the same matrix and there are no dependencies between them.

This has the benefit that we are always able to generated fused code for matrix-vector multiplies

regardless of the complexity of the code for iterating over the matrix. We also avoid performing

any redundant index computations that might have been done had we simply performed loop

fusion. The differences between the code generated after fusion as performed by SUIF and by

the high-level fusion pass can be seen by comparing Figures 3.15 and 3.16, respectively.

Row-Length Specialisation

We observe that for the majority of sparse matrices representing linear systems, the number of

non-zeros in each row tends to fall into a small set of values. We use this property to specialise

the code for iterating over a sparse matrix to the most frequent row lengths.

For the sparse matrix iteration implementation using two nested for-loops, we generate a num-
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for row = 0 to numRows

{

valStartIndex_1 = row_ptr[row]

valEndIndex_1 = row_ptr[row+1]

for valIndex_1 = valStartIndex_1 to valEndIndex_1

b_1[row] += val[valIndex_1] * x_1[col_ind[valIndex_1]]

valStartIndex_2 = row_ptr[row]

valEndIndex_2 = row_ptr[row+1]

for valIndex_2 = valStartIndex_2 to valEndIndex_2

b_2[col_ind[valIndex_2]] += val[valIndex_2] * x_2[row]

}

Figure 3.15: Pseudo-code implementation of CRS sparse matrix-vector multiply and transpose
matrix-vector multiply after application of the SUIF loop fusion pass. The pass is unable to
fuse the inner loops and redundant index calculations are performed.

for row = 0 to numRows

{

valStartIndex = row_ptr[row]

valEndIndex = row_ptr[row+1]

for valIndex = valStartIndex to valEndIndex {

b_1[row] += val[valIndex] * x_1[col_ind[valIndex]]

b_2[col_ind[valIndex]] += val[valIndex] * x_2[row]

}

}

Figure 3.16: Pseudo-code implementation of a fused CRS sparse matrix-vector multiply and
transpose matrix-vector multiply. The code is generated completely fused and there are no
redundant calculations.
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for (row_0 = 0u; row_0 <= 4690001u; row_0++) {

valPtrStart_0 = rowPtr_0[row_0];

valPtrEnd_0 = rowPtr_0[row_0 + 1];

rowLength_0 = valPtrEnd_0 - valPtrStart_0;

if (rowLength_0 == 5u) {

for (valOffset_0 = 0; valOffset_0 <= 4u; valOffset_0++) {

(*convVector_2)[row_0] = (*convVector_2)[row_0] +

val_0[valPtrStart_0 + valOffset_0] *

(*convVector_0)[colInd_0[valPtrStart_0 + valOffset_0]];

}

continue;

}

if (rowLength_0 == 3u) {

for (valOffset_0 = 0; valOffset_0 <= 2u; valOffset_0++) {

(*convVector_2)[row_0] = (*convVector_2)[row_0] +

val_0[valPtrStart_0 + valOffset_0] *

(*convVector_0)[colInd_0[valPtrStart_0 + valOffset_0]];

}

continue;

}

for (valPtr_0 = valPtrStart_0; valPtr_0 <= valPtrEnd_0 - 1; valPtr_0++) {

(*convVector_2)[row_0] = (*convVector_2)[row_0] + val_0[valPtr_0] *

(*convVector_0)[colInd_0[valPtr_0]];

}

}

Figure 3.17: Specialised C generated by the Desola BiConjugate Gradient Stabilised solver
for a matrix-vector multiply with the matrix rajat31. The u suffix on some integer values is C
syntax for declaring an integer literal to be unsigned.

ber of variants of the inner loop specialised to the number of non-zeros in that row. These

are ordered by frequency so that the most commonly executed loops require fewer conditionals

to be checked. To avoid generating code for rows with infrequent numbers of non-zeros, we

specialise to 95% of the matrix rows. The remaining rows are iterated over using the unspe-

cialised version of the inner loop. Through this specialisation, we hope that the compiler can

use techniques such as loop unrolling to improve the performance of the code.

An example of the specialised code is given in Figure 3.17.
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3.8.3 Matrices

For our dense benchmark suite, we generated matrices of various sizes with appropriate numer-

ical properties. For our sparse benchmark suite, this is no longer appropriate as performance

is matrix-dependent.

We chose the following matrices from the University of Florida Sparse Matrix Collection:

Name Rows Columns Non-zeros Non-zeros

per row

Structure Problem kind

ASIC 680k 682,862 682,862 2,638,997 3.86 asymmetric circuit simulation

Chebyshev4 68,121 68,121 5,377,761 78.94 asymmetric structural

ex11 16,614 16,614 1,096,948 66.03 asymmetric computation fluid

dynamics

rajat26 51,032 51,032 247,528 4.85 asymmetric circuit simulation

rajat31 4,690,002 4,690,002 20,316,253 4.33 asymmetric circuit simulation

torso1 116,158 116,158 8,516,500 73.32 asymmetric 2D/3D problem

3.8.4 Results

We benchmarked Desola with different optimisations and code-generation options enabled

against MTL and Intel’s MKL. All benchmarks were single threaded and used double precision.

The sparse matrices were represented using the Compressed Sparse Row storage format in the

Desola and IMKL benchmarks and MTL’s own internal format in the MTL benchmarks as a

MTL CSR implementation was not available.

The version of ITL used was 4.0.0-1. The version of MTL used was 2.1.2-23 of MTL2. Version

11.0 of the Intel C and C++ Compilers was used for both the runtime compiled code generated

by our library and the compilation of the MTL benchmarks, respectively. The options passed

to the Intel C and C++ compilers are described in Table 3.2. The version of Intel’s MKL

library was 10.1.1.019.

The two architectures used for benchmarking were:
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1. Intel Xeon “Clovertown” processor running at 2.66GHz, 4096 KB L2 cache with 4 GB

RAM running 64-bit Ubuntu 8.10.

2. Pentium IV “Prescott” processor running at 3.2GHz with Hyper-threading disabled, 2048

KB L2 cache with 2 GB RAM running 32-bit Ubuntu 8.10.

Our complete benchmark results are presented in Appendix B. We summarize them here for

clarity.

We observe that our double for-loop implementation of sparse matrix-vector multiply consis-

tently performs better than our other implementation that uses an inner while loop. For this

reason we do not show the for-while based implementation in conjunction with other optimi-

sations.

The high-level fusion optimisation has a significant performance impact on the BiConjugate

Gradient and Quasi-Minimal Residual solvers. Both of these solvers are the ones on which

matrix-vector multiply fusion provided significant performance improvements in the dense case.

We note that this performance improvement is most significant on sparse matrices with high

numbers of non-zeros per row. An example of this is illustrated in Figure 3.18.

We have not done analysis as to why the for-for implementation outperforms the for-while one.

We note that the variable storing the current matrix row is more susceptible to induction anal-

ysis in the for-for implementation. We also note that it is possible the compiler has performed

loop unrolling based on the dynamically determined row-lengths in the for-for implementation.

This is consistent with the observation that our sparse matrix-vector multiply seems to perform

best on matrices with high numbers of non-zeros per row.

Our array contraction also improves performance in the majority of benchmarks and never

decreases it. In our dense benchmarks, we theorised that the array contraction optimisation

had no observable effect because the execution time was being dominated by the O(n2) sparse

matrix-vector multiply whereas the array contractions affected O(n) vector-vector operations.

In our sparse benchmarks, the matrix-vector multiply operations are also O(n), allowing the

effects of the contraction optimisations to produce observable effects.
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Figure 3.18: Time to execute 256 iterations of the Quasi-Minimal Residual solver with matrix
torso1 on architecture 1.

Unfortunately, our row-length specialisation optimisation does not produce a consistent per-

formance impact across our benchmarks and in a number of cases significantly increases the

compilation overhead of some of the benchmarks. For this reason, we do not present perfor-

mance results for this transformation.

Desola’s performance in relation to our Intel MKL implementation varies with respect to

both the solver and the matrix used. For example, we consistently outperform the IMKL

implementation for all benchmarks on matrix ASIC 680k and rajat31. On other matrices, the

performance of our solvers are less consistent.

The factors which affect the performance of Desola against the IMKL implementation is

unclear. Both matrices ASIC 680k and rajat31 have low (< 5) numbers of non-zeros per row.

However, matrix rajat26 also has a low number of non-zeros per row, but has performance

similar to that of the IMKL implementation.



3.9. Conclusions and Further Work 81

3.9 Conclusions and Further Work

We have presented Desola, a prototype library that allows the composition and optimisation

of arbitrary sequences of kernels. The experimental results from Section 3.7 show that for larger

sizes of dense matrices we match or exceed the performance of MTL, and when fusion of matrix

operations occurs, we exceed the performance of ATLAS and IMKL. For sparse matrices, our

experimental results from Section 3.8.4 show that in some cases we can significantly improve

upon the performance of IMKL.

Furthermore, we do this while providing a relatively simple library interface, because by han-

dling kernel composition at runtime, the library user is not required to assist the library by

mapping their application onto a specific set of kernels.

Numerical libraries such as BLAS have had to adopt a complex interface to obtain the perfor-

mance they provide. Libraries such as MTL use unconventional techniques to work around the

limitations of conventional libraries to provide both simplicity and performance. The library

we developed also uses unconventional techniques, namely delayed evaluation and runtime code

generation, to work around these limitations. The effectiveness of this approach provides more

compelling evidence towards the benefits of Active Libraries [39].

We have shown how a framework based on delayed evaluation and runtime code generation

can achieve high performance on certain sets of applications. We have also shown that this

framework permits optimisations such as loop fusion and array contraction to be performed on

numerical code where it would not be possible otherwise, due to either compiler limitations or

the difficulty of performing these optimisations across procedural boundaries.

We have shown that loop fusion can be an effective technique for optimising both dense and

sparse linear algebra. However, the additional improvements provided by our high-level fusion

pass suggest that optimising the AST of the generated code is insufficient for high-performance

code generation. The loop fusion pass is limited by its ability to fuse what they can prove to

be correct but by recognising kernels that use the same pattern of iteration, we can generate

fused kernels, regardless of their complexity.
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We have also shown the performance improvements array contraction can provide for sparse

linear algebra, by removing temporary vectors that would have been difficult or impossible to

contract in a BLAS based implementation.

While we have concentrated on the benefits such a framework can provide, we have paid less

attention to the situations in which it can perform poorly. The overhead of the delayed evalu-

ation framework, expression DAG caching and matching and runtime compiler invocation will

be particularly significant for programs which have a large number of force points, and/or use

small sized matrices and vectors. Some of these overheads can be reduced. Methods include:

Persistent compiled code caching This would allow cached compiled code fragments to

persist across multiple executions of the same program and avoid compilation overheads

on future runs. The extent to which this would benefit performance would be dependent

on how likely subsequent program executions were to generate the same expression DAGs

and how specialised the generated code fragments were to values such as vector sizes and

sparsity patterns. The more specialised the code-fragment to problem-specific values, the

less likely it is that it would be able to be reused.

Evaluation using BLAS or static code Evaluation of the delayed expression DAG using

BLAS or a statically compiled code variant would allow the overhead of runtime code

generation to be avoided when it is believed that runtime code generation would provide

no benefit.

Investigation of other applications using numerical linear algebra would be required before the

effectiveness of these techniques can be evaluated.

We also note that while we aim for our system to be transparent to the library user, the

placement of force points can have a significant effect on performance. As we observed in the

Quasi-Minimal Residual solver, force points place a barrier between the operations that may

be optimised together, possibly resulting in lost optimisation opportunities. One method to

combat this would be to perform speculative evaluation based on detecting repeated evaluated

sequences of expressions.
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Other plans for future work include:

Client Level Algorithms Currently, all delayed operations correspond to nodes of specific

types in the delayed expression DAG. Any library client needing to perform an operation

not present in the library would either need to extend it (difficult), or implement it using

element level access to the matrices or vectors involved (poor performance). The ability

of the client to specify algorithms to be delayed would significantly improve the usefulness

of this approach.

Improved Optimisations We implemented restricted methods of loop fusion and array con-

traction. Improvements to these optimisations or applying others such as skewing or

tiling could improve the compiled code’s performance further. It could also reduce de-

pendence on the of the quality of the runtime-generated code and effectiveness of the

vendor compiler used.

Parallelisation This provides a number of interesting research topics. Loop fusion can inhibit

parallelisation when sequential and parallel loops are fused. We need to able to choose

when to fuse and when to parallelise taking into account these interactions. In addition,

there is the issue of data alignment when parallelisation is considered in a distributed

memory setting. Work by Beckmann and Kelly [42] has already investigated these issues

in the context of delayed evaluation.

In the following chapters, we continue our exploration of active libraries. We have chosen the

domain of finite element solvers for partial differential equations. This domain is a superset

of our work on sparse linear algebra. As well as including the solution of sparse linear sys-

tems, it requires capture of other domain-specific expressions. We also attempt to extend our

abstractions further, incorporating knowledge of iteration into our captured expressions.
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Chapter 4

Excafé: An Expression Capturing

Finite Element Library

To continue our exploration of active libraries, we needed a domain which would benefit from

the abstraction and optimisation abilities that active libraries offer and would also enable us

to push our investigation further by requiring new, more complex abstractions and facilitating

interesting domain-specific optimisations.

4.1 The Finite Element Method

The domain we chose was the solution of partial differential equations using the finite element

method. As a tool for performing this investigation, we have developed an active finite element

library in C++ that we call Excafé.

In contrast to Desola which was specifically designed to perform expression capture trans-

parently to the client, Excafé does this explicitly, requiring the client to build an object that

represents all the information required to solve a given finite element problem.

We assume familiarity with the finite element method and its implementation. Otherwise,

readers are encouraged to consult Sherwin et al. [26] or Logg’s paper on automating the finite

85
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element method [34].

Finite element solvers typically solve partial differential equations over some physical domain to

find the value of unknown scalar and/or vector fields. Any solution to the equations is approx-

imate and represented by a linear combination of so called basis functions. Any approximated

field can be represented by a list of coefficients which are used to weight the basis functions

before summation. These lists of coefficients are usually stored in vectors and determined as

the solution of a sparse linear system of equations.

The system of equations is constructed using the partial differential equations governing the

system after being re-written into an appropriate form (including linearisation of non-linear

terms if necessary). System matrices and vectors are constructed from bilinear and linear

forms respectively. Both correspond to descriptions of integrals over the mesh, defined using

linear differential operators applied to basis functions.

4.2 Our Investigation

Excafé performs expression capture at the level of basis functions, bilinear forms, and matrices

and vectors corresponding to discretised operators and tensor fields. Our investigation focusses

on two main areas:

Abstractions and Expression Capture

Desola performed expression capture and optimisation transparently to the library

client. The technique of building DAGs to represent delayed computations then optimis-

ing and executing them on demand worked well, but also demonstrated two important

limitations:

1. The on-demand evaluation of expressions that was needed to perform optimisation

transparently also meant that Desola never saw a complete representation of the

problem being solved. Conditionals on delayed expressions caused the delayed com-

putations to be evaluated since capture of conditionals could not be implemented
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transparently. This resulted in research into the development of heuristics to esti-

mate what expression DAG nodes contained live or dead values (Section 3.6).

2. The lack of ability to capture (or represent) loops in Desola required the develop-

ment of low-cost expression DAG comparisons that could be used to detect repeat-

edly constructed expression DAGs and reuse previously optimised code.

In Excafé, we have attempted to take expression capture to a higher level. Firstly, we

have made expression capture explicit, as only by doing this can we capture a complete

view of the finite element problem to be solved. Secondly, we have developed a mechanism

for specifying iteration within our captured expressions.

Most importantly, our iteration capture does not work imperatively as in TaskGraph [13]

but uses a declarative syntax inspired by mathematical subscript notation. Excafé infers

the loop structure itself and the programmer is freed from manually managing constructs

such as cyclic buffers.

Local Assembly Optimisation

Using expressions captured from our basis functions and bilinear forms, we search for

domain-specific optimisations for reducing the operation count required to perform local

assembly (the process of constructing the small dense matrices that are summed into the

large sparse system matrix).

In doing so we build upon existing work on polynomial factorisation [1] by improving the

scoring function for factorisations and developing an algorithm to find maximum scoring

factorisations whilst also scaling to the large problem sizes we deal with.

Work on local assembly optimisation is still ongoing and has not yet reached that stage

where the effectiveness of the approach can be evaluated effectively.

We emphasise that despite being designed to capture enough information to perform code

generation for the majority of a finite element solver, Excafé does not currently perform any

code generation. Our work has focussed on the development of Excafé’s expression capture
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Figure 4.1: Data flow in Excafé. Rectangular nodes represent data being manipulated. El-
liptical nodes represent processes that operate on the data. The arcs show the relationships
between the data and processes.

capabilities and our local assembly optimisations, the operation count of which we can evaluate

without code generation.

In the next section, we provide a high-level overview of how the various expressions captured

by Excafé are analysed and manipulated to produce an optimised execution plan.

4.3 Data Flow in Excafé

We present a diagram of high-level data flow in Excafé in Figure 4.1.

The user initially provides a specification of operations between discretised fields, discretised

operators and scalars which are used to produce a new state of the discretised system. Details

of how the client specifies this are provided in Section 6.3 and details of the data structures

involved in Section D.3.

The directed acyclic graph (DAG) of discrete expressions incorporates references to indices
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used to declare iteration. The DAG is processed by a loop inference pass that constructs an

imperative execution schedule. Details of how the client specifies iteration are provided in

Section 6.4. Details of the loop inference analysis are provided in Chapter 7.

Within the discrete expression DAG, it is likely that there will exist operators assembled from

the specification of a bilinear form. The mechanism of bilinear form specification is described

in Section 6.5 with details of the data structures involved in Section D.4. The bilinear form

can reference both fields and scalar values from the discrete expression DAG.

Combining the specification of the bilinear form with the symbolic representation of basis func-

tions allows Excafé to construct a symbolic representation of the scalar expressions contained

within the local assembly matrix. How this is performed is described in Chapter 9. Details of

the scalar expression representation are provided in Section D.5.

The symbolic representation of the local assembly matrix is subjected to an optimisation pass

designed to exploit common subexpressions and factorisation to reduce the cost of performing

assembly for each cell. These optimisations are discussed in Chapters 9 and 10.

The imperative execution schedule and the symbolic assembly matrix representation (although

not yet the optimised one) are used to evaluate the discrete expression DAG and compute

the new state of the discrete system. The data structures used to actually store the values

computed by Excafé are described in Section D.2.

In the next section, we describe the current state of Excafé in representing certain aspects

and variations of the finite element method.

4.4 Representation Capabilities of Excafé

In this section, I discuss the extent of Excafé’s support for representing certain aspects of the

finite element method. I also describe what would be required to extend Excafé to support

the aspects it currently cannot handle.
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Boundary Conditions

Dirichlet boundary conditions are currently specified by attaching constant tensor val-

ues to mesh facets. This could easily be extended to non-constant values by attaching

position-dependent functions.

Currently, boundary conditions must be represented by a discretised field i.e. they must

be discretised using a finite element approximation. Although we have not implemented

the specification of boundary conditions using data from a file, it would be possible to

construct a discretised field in this manner.

We have not yet considered the case of when boundary conditions are specified using

time-dependent functions or time-dependent data from a file. Both these cases typically

require that quadrature be used for efficiency (as discretising the function each time-step

would be too expensive). This would require an extension of our symbolic representation

to represent call-backs to the source of the boundary condition data.

Neumann boundary conditions are always incorporated as boundary integrals which are

described next.

Boundary Integrals

We permit specification of boundary integrals, although support for them is incomplete

in Excafé. This was primarily due to time constraints since handling edge-normal and

Jacobian calculations in a symbolic manner is more complex in the case of facet integrals.

Discontinuous Elements

Excafé does not currently support discontinuous elements. In order to do so would

need to extend our symbolic representation of assembly to handle referencing degrees of

freedom associated with neighbouring elements.

True Tensor-Valued Elements

Although all currently implemented tensor-valued elements in Excafé are implemented

by repeating scalar basis functions, Excafé supports true tensor-valued elements.

Constructing tensor-valued basis functions by repeating scalar-valued ones is sometimes

hard-coded into finite element libraries in order to exploit sparsity properties. Excafé’s
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symbolic representation naturally specialises to these cases so there is no need for this

restriction.

Higher-Degree Basis Functions

Excafé currently implements linear and quadratic polynomial basis functions. However,

Excafé can represent any basis function that can be expressed symbolically in its ex-

pression capture framework. Experimentation has been performed with different symbolic

representation back-ends including a GiNaC [45] based one, and an alternative internal

representation that is restricted to rational functions. Since Excafé needs to be able to

perform symbolic integration of these functions, arbitrary order polynomials are the best

supported (and most basis functions can be approximated by them). If using the GiNaC

based representation, it would also be possible to directly represent trigonometric based

ones (e.g. sin, cos).

Curved Elements

Excafé currently uses a custom data structure to hold mesh geometry information and

uses a linear basis to interpolate global co-ordinates. However, Excafé’s representa-

tion would permit an arbitrary vector field to be used to describe the mesh geometry,

facilitating curved elements.

However, we do note that curved elements result in the need to be able to perform

integrals of expressions that are no longer polynomial in the local co-ordinate system.

This may be non-trivial to do symbolically, meaning that it may be necessary to resort

back to quadrature based approaches. This in turn could hinder our ability to optimise

expressions.

We also note that it is often beneficial to only use curved elements on mesh boundaries,

and use linear elements elsewhere. We have not yet considered how to handle this in

Excafé.
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4.5 Overview of the Excafé Chapters

The chapters on Excafé are organised as follows:

In Chapter 5 we present a heat solver implemented using Excafé. This serves as an introduc-

tion to the library and its client visible expression capture mechanisms.

In Chapter 6 we provide a description of Excafé’s expression capture facilities and discuss

what information this provides to the library. In particular, we describe Excafé’s declarative

loop syntax that we use to perform iteration within a solver step.

In Chapter 7 we describe how we may infer an imperative loop structure and nesting using a

specification captured as a DAG.

In Chapter 8 we describe the implementation of an incompressible Navier-Stokes solver demon-

strating Excafé solving a non-trivial problem. It incorporates many different aspects includ-

ing:

1. Linearisation of a term using declarative loop syntax to perform Picard iteration within

each time-step.

2. Global assembly matrices constructed from multiple bilinear forms.

3. Use of composite function spaces and fields and the projection operator to extend and

restrict those fields.

4. Multiple assemblies within a time-step. Assembly is performed to construct both the LHS

of a linear system, and an operator used to transform a field to produce the RHS.

The local assembly matrices produced by our incompressible Navier-Stokes solver also serve as

the basis on which we are evaluating our assembly optimisations.

In Chapter 9 we describe how Excafé constructs its representation of a local assembly matrix

from the information previously captured. We discuss our approach to optimising evaluation

and compare it against the optimisations developed in the FEniCS Form Compiler [38].
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In Chapter 10 we discuss our improvements to the factorisation algorithm presented by Hosan-

gadi et al. [1] and the construction of an algorithm to search for optimal matrix coverings

utilising properties of bipartite graphs.
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Chapter 5

Heat Solver Example in Excafé

In order to explore the optimisation opportunities present in finite element method implemen-

tations, I constructed an active finite element library in C++ named Excafé. In this chapter,

I describe how a finite element problem can be specified and solved using Excafé.

Many of the design decisions in Excafé are similar to those in other finite element libraries.

For this reason, they are detailed in Appendix C. This allows us to concentrate on the more

important aspects of the library in this chapter.

5.1 A Simple Heat Conduction Problem

To illustrate the library, we show how to specify and solve a simple test problem. We choose a

time-dependent heat conduction problem, the layout of which is shown in Figure 5.1.

Excafé includes an interface to the triangle library [46] which can be used to construct simple

two-dimensional meshes. We construct the mesh and central object with the code in Figure 5.2.

The central diamond is associated with the label 5. This label will be used to identify its edges

when applying Dirichlet boundary conditions.

95
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1m

1m

0.1m1◦C

0◦C

Figure 5.1: We specify a temperature of 0◦C on the top, left and right boundaries and a
temperature of 1◦C on the bottom edge and the central diamond.

static const std::size_t dimension = TriangularMeshBuilder::cell_dimension;

static const double maxCellArea = 1.0/5000;

static const double polySize = 0.1;

static const std::size_t polyEdges = 4;

static const double polyLabel = 5;

static const double polyRotation = 0.0;

TriangularMeshBuilder meshBuilder(1.0, 1.0, maxCellArea);

const Polygon poly(vertex<2>(0.5, 0.5), polyEdges, polySize, polyRotation);

meshBuilder.addPolygon(poly, polyLabel);

Mesh<dimension> mesh(meshBuilder.buildMesh());

Figure 5.2: The construction of the discretised domain used for out heat solver problem in
Excafé. The mesh builder is instructed to place a 4-sided polygon in the centre of the domain
and label its edges with the value 5.
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5.2 Discretisation of the Heat Equation

In order to solve our problem using the finite element method, we must take the partial differ-

ential equation describing heat conduction and re-write in a form suitable for the finite element

method. We start with the heat equation with no external source:

∂u

∂t
− α∇2u = 0 (5.1)

where:

u is the temperature at some point.

∂u
∂t

represents the rate-of-change of temperature at some point w.r.t. time.

α is a scalar representing thermal diffusivity.

∇2 is the Laplacian operator and represents the divergence of the gradient or ∇ · ∇.

We assume that we are solving this problem in a bounded domain Ω. In order to solve this

problem using the finite element method, we need to convert it to the “weak form”. We multiply

with a function φ (the test function) and integrate over the domain Ω. We assume φ is zero on

the boundaries on which we apply Dirichlet conditions.

∫
Ω

(
∂u

∂t
− α∇2u)φ dx = 0 (5.2)

We discretise in time using the backward Euler method and introduce un and un−1 to refer to

the heat field at the current and previous time-steps, respectively:

1

k

∫
Ω

(un − un−1)φ dx−
∫

Ω

α∇2unφ dx = 0 (5.3)

We apply integration by parts to remove the Laplacian. This is required because our approx-

imation of u is of differentiability class C0, that is, the derivative may be discontinuous so we
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cannot take the second derivative.

1

k

∫
Ω

(un − un−1)φ dx+

∫
Ω

α∇un · ∇φ dx−
∫
∂Ω

α(∇un · n)φ dS = 0 (5.4)

This introduces a boundary integral. Here, ∂Ω is the boundary of our domain over which we

integrate this term, and n is the outward pointing surface normal. To solve these equations,

we need to re-arrange into a form where the left-hand side is a bilinear form in u and φ, and

the right-hand side is a linear form in φ.

∫
Ω

unφ dx+ k

∫
Ω

α∇un · ∇φ dx− k
∫
∂Ω

α(∇un · n)φ dS =

∫
Ω

un−1φ dx (5.5)

Since we have no non-Dirichlet boundary conditions and we assume φ is zero on all Dirichlet

boundaries, our edge integral vanishes.

∫
Ω

unφ dx+ k

∫
Ω

α∇un · ∇φ dx =

∫
Ω

un−1φ dx (5.6)

We use the finite element discretisation to form a linear system of equations. The linear form

on the RHS becomes a vector, and the bilinear form on the LHS becomes the application of an

operator to our unknown un. This operator is represented by a sparse matrix. In discretised

form, we can write our problem as:

Mun + kαAun = Mun−1 (5.7)

We solve this system of equations (with appropriate boundary conditions) each time-step of

our simulation. Next we describe how we specify this problem to Excafé.
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// Define scenario over the given mesh

Scenario<dimension> scenario(mesh);

// Define the basis we will use for our temperature field

Element temperature = scenario.addElement(new LagrangeTriangleLinear<0>());

// Define the discretisation of our temperature field

FunctionSpace temperatureSpace = scenario.defineFunctionSpace(temperature, mesh);

// Add the temperature field

temperatureField = scenario.defineNamedField("temperature", temperatureSpace);

Figure 5.3: The construction of an Excafé Scenario object. The finite elements and function
spaces used in the solver are registered with the Scenario to provide handles that will be used
during expression capture. Fields that are persistent state of the problem (in this example, the
temperature field) must also be specified.

5.3 Specifying the Problem Context to Excafé

In order to solve any finite element problem in Excafé, we need to construct a Scenario object.

The Scenario object contains references to the mesh, function spaces and finite elements which

describe how the problem has been discretised. Any Dirichlet boundary conditions to be used

must also be added to the Scenario object. Additionally, it contains discretised tensor fields

that constitute the state of the simulation (persistent fields) and expressions to calculate the

next state from the existing values.

In Figure 5.3 we show the code to construct the Scenario object for a given mesh. After

construction, the finite elements, function spaces and persistent fields of the problem are added

to the scenario.

We also need to register the Dirichlet boundary conditions with the Scenario object. We show

the code to do this in Figure 5.4. The BoundaryConditionList class allows us to specify a

prioritised list of boundary conditions. The BoundaryConditionTrivial class allows us to

specify a constant tensor value that will be applied to all facets of our mesh with a specified

label. Here, the edges of our domain have been labelled 1 to 4, and polyLabel is the label we

gave to the object at the centre of our mesh.
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Tensor<dimension> cold(0);

cold = 0.0;

Tensor<dimension> hot(0);

hot = 1.0;

BoundaryConditionList<dimension> boundaryConditionList(0);

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(1, hot));

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(2, cold));

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(3, cold));

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(4, cold));

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(polyLabel, hot));

BoundaryCondition boundaryCondition =

scenario.addBoundaryCondition(temperatureSpace, boundaryConditionList);

Figure 5.4: The registration of boundary conditions with an Excafé Scenario object. Con-
stant tensor values are associated with integer valued labels used to identify facets on the
boundary of the domain.

5.4 Specifying the Solution Steps to Excafé

Now we have specified the problem context to Excafé, we need to tell it how to advance the

system by a time-step. As Excafé is an expression capture library, the code written by the

user is only executed once when building the description. Excafé is then free to implement

the solution steps in whatever way it sees fit.

Specification of the evolution of a Scenario is done through the construction of a Solve-

Operation object. We show the code to do this in Figure 5.5. The SolveOperation object

associates persistent fields with a discrete expression DAGs used to compute their value in the

next step of the simulation.

Our syntax for specifying bilinear forms is similar to that of the Unified Form Language [37].

However, we do not explicitly denote basis functions as trial or test. Instead, we use the B()

method to construct the inner product1 between the trial and test parts of the form. The basis

functions used to form the first and second parameters to B() become the trial and test spaces,

respectively, for that bilinear form.

1This may be a scalar multiplication, inner product or double inner product depending on the rank of the
operands. The result is always a scalar.
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SolveOperation solve = scenario.newSolveOperation();

// Define alpha and k.

Scalar alpha = 1e-4;

Scalar k = 10.0;

// Construct the mass matrix.

Operator massMatrix(temperatureSpace, temperatureSpace);

massMatrix = B(temperature, temperature)*dx;

// Apply mass matrix to temperature field from previous time-step to transform

// to test-space.

Field rhs = massMatrix * temperatureField;

// Define the LHS bilinear form.

const BilinearFormIntegralSum lhsForm =

B(temperature, temperature)*dx +

B(alpha*k*grad(temperature), grad(temperature))*dx;

// Construct a linear system.

LinearSystem system =

assembleGalerkinSystem(temperatureSpace, // Function space

lhsForm, // Linear operator

rhs, // Field in test-space

boundaryCondition, // Boundary conditions

temperatureField); // Initial guess

// Define new value of temperature field.

solve.setNewValue(temperatureField, system.getSolution());

// Signal that construction of the SolveOperation object is complete and

// analyses can be applied.

solve.finish();

Figure 5.5: Construction of a SolveOperation object in Excafé. We explicitly construct
the mass matrix and multiply it with the previous temperature field to obtain the RHS of
our linear system. We do not explicitly construct the system matrix. This is handled by the
method assembleGalerkinSystem which takes the bilinear form used to assemble the system
matrix, as well as the boundary conditions to apply to it and the RHS vector.
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for(int i=0; i<200; ++i)

{

std::cout << "Starting timestep " << i << "..." << std::endl;

solve.execute();

std::ostringstream filename;

filename << "./heat_" << boost::format("%|04|") % i << ".vtk";

solve.outputFieldsToFile(filename.str());

}

Figure 5.6: The loop used to drive our heat solver simulation. It repeatedly calls the Solve-

Operation object to advance the state of the discretised system then outputs the fields to a
VTK file.

We also use UFL syntax for specifying the region over which a bilinear form should be integrated.

An integral over the domain interior is denoted by a multiplication by dx. Exterior and interior

facet integrals are denoted by multiplications by ds and dS respectively. Currently, only cell

integrals are fully implemented in Excafé.

5.5 Executing the solver

Excafé does not yet implement capture of the time-stepping loop so we use a standard for

loop to drive time-stepping. We show the code to do this in Figure 5.6.

Excafé provides a syntax that permits nested iteration to be specified within a given time-step

using a declarative notation. This is described in Section 6.4. The time-stepping loop could be

described with our declarative iteration syntax, however, we have not yet considered issues such

as how to specify when fields should be written to a file, or how to generate useful diagnostic

output from within a declaratively declared loop.

5.6 Generated Output

We show the scalar temperature fields generated by solving our problem in Figure 5.7. The

complete source of the heat solver example is provided in Appendix E.



5.6. Generated Output 103

(a) Time-step 0 (0 seconds) (b) Time-step 5 (50 seconds)

(c) Time-step 10 (100 seconds) (d) Time-step 20 (200 seconds)

(e) Time-step 30 (300 seconds) (f) Time-step 50 (500 seconds)

Figure 5.7: Our example heat conduction problem at different time-steps. Thermal diffusivity
α = 10−4m2s−1 and time-step duration k = 10s.
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5.7 Conclusion

In this chapter, we have shown how to specify and solve problems using Excafé. In doing so,

we have demonstrated Excafé’s expression capture capabilities applied to variational forms

and operations between discretised fields and operators. In the next chapter, we cover Excafé’s

expression capture in more detail, looking at the types of optimisations that we may be able

to perform with the captured representations.



Chapter 6

Expression Capture in Excafé

In this chapter, we describe Excafé’s expression capture in more detail. In particular, we

describe how capture is performed, the types of optimisations we hope to apply and the advan-

tages and limitations of our approach. We also compare our approach with that taken in the

FEniCS Form Compiler [36], a code-generator for variational forms that incorporates research

into the optimisations of local matrix assembly. Further information on the data structures

used for our expression capture can be found in Appendix D.

6.1 Overview

The finite element method requires that we can rewrite our problem into the following form:

a(u, v) = L(v) (6.1)

where a is linear in u and v and L is a linear in v. a and L are called bilinear and linear forms,

respectively. They are both variational forms. In the finite element method, the LHS and RHS

are integrals over our mesh. For example, for our heat conduction problem from Chapter 5, we

let:

105
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a(u, φ) =

∫
Ω

uφ dx+ k

∫
Ω

α∇u · ∇φ dx

L(φ) =

∫
Ω

un−1φ dx

this description, combined with boundary conditions and discretisation choices for u and φ is

sufficient information to construct the discretised system:

Ax = b

Matrix A is constructed from the bilinear form, and due to the finite-element discretisation,

is sparse. Vector b can be assembled from the linear form. x (the discretised value of u) can

be found using a linear system solver. As the basis functions are cell-local, the matrix A is

sparse. For small systems a direct solver can be applied, but for larger ones Krylov subspace

methods [28] are typically used as these avoid matrix fill-in.

Even though sparse linear algebra is invariably required during the solution of a finite element

problem, there is no need for the solution specification to explicitly refer to the discrete rep-

resentations of the field and operators i.e. the vectors and sparse matrices involved. Despite

this, Excafé provides distinct levels of expression capture for:

Variational forms We provide a syntax for expressing variational forms in a manner similar

to the Unified Form Language [37]. Variational forms describe integrals over cells used

to construct our discretised fields and operators.

Discrete Fields and Operators We allow specification of operations between discrete fields

and operators. Naturally, the syntax is similar to that of a linear algebra library.

We provide these distinct levels of expression capture for two reasons:
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1. It may still be necessary for the library user to specify parameters that directly affect the

discretised operations. These include the tolerances for the linear solvers, preconditioning

methods and other aspects that require direct knowledge of the linear system.

2. The majority of finite element libraries treat the specification of linear and bilinear forms

as a means to performing assembly and not as a subset of a mathematical expression

for the entire problem. As Excafé developed from a more conventional (non-expression

capture) implementation, it also inherited this distinction.

Hence, although we make a distinction between expression capture of variational forms and

discrete operations we expect that these two syntaxes can be unified, with the discrete level

less apparent to the library client.

6.2 Problem Context Construction

In order to solve a problem in Excafé (as demonstrated in Chapter 5), we first need to specify

the physical domain, the fields we wish to solve for and our choice of discretisation for those

fields.

The Scenario class stores all state related to a particular finite element problem as well as

descriptions of the steps required to solve or advance the problem. Scenario instances are

templated by the physical dimension of the problem, and are constructed using a supplied

Mesh instance that will be used for spatial discretisation. An example of a declaration of a

Scenario over a mesh is given in Figure 6.1.

6.2.1 Specifying Tensor Field Discretisation

Next we need to define the fields that we wish to solve for. However, before we can do this,

we must choose the basis functions used to approximate the fields, and the sub-domain of the

mesh that the fields’ function spaces will cover.
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// A 2D problem

static const std::size_t dimension = 2;

// Define a mesh over the unit square with a maximum cell area of 0.01

TriangularMeshBuilder meshBuilder(1.0, 1.0, 0.01);

Mesh<dimension> mesh(meshBuilder.buildMesh());

// Declare finite element problem over the mesh

Scenario<dimension> scenario(mesh);

Figure 6.1: Declaration of the context for a 2D finite element problem.

Element velocity = scenario.addElement(new LagrangeTriangleQuadratic<1>());

Element pressure = scenario.addElement(new LagrangeTriangleLinear<0>());

FunctionSpace velocitySpace = scenario.defineFunctionSpace(velocity, mesh);

FunctionSpace pressureSpace = scenario.defineFunctionSpace(pressure, mesh);

FunctionSpace coupledSpace = velocitySpace + pressureSpace;

Figure 6.2: Declaring a coupled velocity-pressure function space using a linear scalar pressure
space and quadratic vector velocity space. The field ranks are specified through the template
parameters used to instantiate the basis function classes.

Excafé currently implements linear and quadratic basis functions over 2D triangular cells with

the LagrangeTriangleLinear and LagrangeTriangleQuadratic types, both which implement

the FiniteElement interface. Both types are templated by the rank of the tensor field they

are approximating. Adding user-defined basis functions can be achieved by providing other

implementations of the FiniteElement interface.

To avoid mixing implementation with expression capture types, classes implementing the Finite-

Element interface must be instantiated then added to the Scenario using the addElement

method. The Scenario returns an Element object that can then be used during expression

capture. Registration of basis functions with a Scenario is shown in Figure 6.2.

The FunctionSpace type is used to reference discrete finite element function spaces. They are

constructed from a choice of finite element basis and a subset of the physical domain. Hence,

they correspond to the collection of functions that can be represented as a linear combination

of the basis-functions located in a sub-domain of our mesh.

We permit addition and subtraction of FunctionSpace instances (the latter only works as our
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NamedField velocityField = scenario.defineNamedField("velocity", velocitySpace);

NamedField pressureField = scenario.defineNamedField("pressure", pressureSpace);

Figure 6.3: Declaring the desired fields to solve for to a Scenario. Each field is discretised
using the supplied FunctionSpace and becomes persistent state of the Scenario.

function spaces are discretised). Thus, we can construct composite and disjoint function spaces.

These can be used for:

Coupled pressure-velocity solvers We can construct a function space that represents the

various possible joint pressure-velocity fields.

Boundary condition application When applying boundary conditions, we can form dis-

joint function spaces corresponding to the fixed (Dirichlet) and non-fixed (homogeneous)

degrees of freedom. This enables boundary conditions to be applied in a mathematically

elegant form. However, we do not currently do this in Excafé since applying bound-

ary conditions directly to the system matrix is more convenient from an implementation

perspective.

FunctionSpace construction and addition is shown in Figure 6.2.

As a FunctionSpace completely describes the discretisation of a field, it is used in the definition

of the fields we wish to solve for (persistent fields). Persistent fields are referenced using the

NamedField type as shown in Figure 6.3. Each NamedField becomes part of the state of the

Scenario (as opposed to temporary fields calculating during a solve). Persistent fields are

named so they can be identified when written to an output file.

6.2.2 Boundary Conditions

In order for our problems to be well-posed, we need to be able to specify boundary conditions.

Neumann boundary conditions (restrictions on the normal component of the gradient of a field)

can be incorporated in the finite element formulation as additional integrals over the boundaries

of the physical domain and do not require additional library support.
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// Define a couple of rank-0 (scalar-valued) tensors

Tensor<dimension> one(0), zero(0);

one = 1.0;

zero = 0.0

// Set a scalar-field to 0.0 on mesh facets labelled 1 and to 1.0

// on mesh facets labelled 2.

BoundaryConditionList<dimension> boundaryConditionList(0);

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(1, zero));

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(2, one));

// Construct a handle to be used during expression capture

BoundaryCondition bc =

scenario.addBoundaryCondition(temperatureSpace, boundaryConditionList);

Figure 6.4: Construction of Dirichlet boundary conditions attached to certain mesh facets for
a scalar field in Excafé.

Dirichlet boundary conditions (specification of the value of a field) constrain specific degrees of

freedom and require library support in order to define and apply. Our current implementation

stores Dirichlet boundary conditions as a field only defined on edges where boundary conditions

have been applied. During mesh construction, the generator attaches integer valued labels to

the different facets in our mesh. We provide a simple means to associate constant tensor values

to facets with a particular label.

The library client constructs a priority ordered list of tensor field values and the label of the

facets they should be attached to. When registered with the Scenario object, all boundary

values are evaluated and a BoundaryCondition object is returned that can be used to refer-

ence them in Excafé captured expressions. We show the construction of Dirichlet boundary

conditions and the returned handle to them in Figure 6.4.

We describe how the BoundaryCondition handle can be used to apply Dirichlet boundary

conditions when solving for a field in the next section.
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6.3 Discrete Expression Capture

The previous section described how to define a discretised physical domain, and the fields to

be represented over that domain. In this section, I describe how the steps required to solve or

advance the problem state provided to Excafé. The majority of Excafé’s expression capture

occurs during this phase. Additional information on the data structures built can be found in

Section D.3.

As mentioned in Section 6.1, Excafé provides separate levels of expression capture for discrete

operations and for variational forms. We describe discrete expression capture first.

6.3.1 Handle Types

Discretised tensor fields and operators can be represented by vectors and sparse matrices,

respectively. Our strategy for expression capture is similar to that used in Desola for linear-

algebra expression capture (i.e. we build a DAG representing the computation to be executed

by providing handle types to the library client to manipulate). We define three main handle

types.

Scalar

The Scalar type represents references to scalar values that we compute during the execution

of a solve. They are distinct scalar values such as parameters of our PDEs or the residual

of a linear solve. They are unrelated to scalar-fields which are scalar values defined over our

physical domain.

Using C++ operator overloading, we provide addition, subtraction, division and multiplication

as well as comparison operators. We show valid syntax in Figure 6.5. We have not defined a

boolean type in our discrete expression capture, so scalar comparisons return a zero or non-zero

scalar to represent false or true, respectively.
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Scalar a = 5.0; Scalar b = 2.0;

a=b;

// Arithmetic operations

a+=b; a-=b; a/=b; a*=b;

a+b; a-b; a/b; a*b;

// Comparison operations

a<b; a<=b; a==b; a>b; a>b;

Figure 6.5: Valid operations on handles to scalar expressions.

// Declaring zero valued fields

Field pressureA(pressureSpace), pressureB(pressureSpace);

// Valid Expressions

pressureA+pressureB; pressureA+=pressureB;

pressureA-pressureB; pressureA-=pressureB;

// Combining a pressure and velocity field

Field composite = project(velocityField, coupledSpace) +

project(pressureField, coupledSpace);

// Extracting a velocity field

Field extracted = project(composite, velocitySpace);

Figure 6.6: Discretised fields can be added and subtracted if they are defined on the same
function space. The project function can be used to perform sub-field extraction and create
composite fields.

Field

The Field type provides a handle to tensor fields defined over the mesh. All Fields possess a

reference to a FunctionSpace which determines how they are discretised. Fields can be added

and subtracted provided that they have the same function space. We also provide a project

function (quite possibly a misnomer) that given a new function space, will copy the subset of

the field that shares the same basis and spatial discretisation into a field with that function

space. In a coupled Navier-Stokes solver for example, we can use this to extract the velocity

and pressure fields from a coupled solution.

Figure 6.6 shows valid field expressions, the construction of a composite field and extraction of

a sub-field.
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// Define trial and test elements and function spaces

Element trial = scenario.addElement(new LagrangeTriangleLinear<0>());

Element test = scenario.addElement(new LagrangeTriangleLinear<0>());

FunctionSpace trialSpace = scenario.defineFunctionSpace(trial, mesh);

FunctionSpace testSpace = scenario.defineFunctionSpace(test, mesh);

// Construction of a mass matrix

Operator massMatrix(trialSpace, testSpace);

massMatrix = B(trial, test)*dx;

// Operator application

Field trialField(trialSpace);

Field testField = massMatrix * trialField;

Figure 6.7: Construction of the mass matrix and application to a field in Excafé. In this
example, we have constructed different function spaces to represent the trial and test spaces.
However, it is possible to use the same space for both as we do not require that function spaces
be designated as trial or test.

Operator

The Operator type is a handle to a discretised linear operator. Typically, a discretised operator

is represented as a sparse matrix. Each Operator possesses a reference to two FunctionSpaces.

The first is the FunctionSpace of the Field the Operator can be used to transform. The second

is the FunctionSpace of the result Field. In the finite element method, these are typically

the trial and test spaces. By associating this information with the matrix, we can verify the

operator isn’t used in invalid ways during expression capture.

Most importantly, Operator handles can have bilinear forms assigned to them which causes the

operator to be populated with the result of the assembly. We show the syntax for assembling

and application of an Operator in Figure 6.7. As mentioned in Section 5.3, we borrow UFL’s

syntax for specifying the mesh region to integrate over and provide the B() method to declare

a bilinear form where the first and second parameters are functions in the trial and test spaces

respectively.

In addition to the Scalar, Field and Operator expression handle types, we provide a helper

class to hide some of the details of solving our discretised system.
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6.3.2 Linear System Solution

We provide a LinearSystem type that represents a linear system solver. Currently, construction

is only possible through a call to the assembleGalerkinSystem function. The constructed

LinearSystem transparently generates expression DAG nodes that represent the following:

1. An system matrix assembled from a bilinear form.

2. The system matrix with boundary conditions applied.

3. The system RHS with boundary conditions applied.

4. The result field (currently calculated using a PETSc linear system solver).

We do this partly for simplicity and also because we do not wish to directly expose the operators

we use for applying boundary conditions to a linear system.

The operators we generate do not correspond to standard algebraic operations and may change

in future. Currently, we apply boundary conditions in the following manner:

1. Zero rows in the system matrix corresponding to constrained degrees of freedom, except

for the diagonals which are set to one.

2. Update values in the RHS vector to the boundary condition values.

We do however expose mechanisms for accessing the modified system matrix and RHS for the

purposes of calculating the residual. We show the construction and use of a LinearSystem

instance in Figure 6.8.

6.3.3 Registering Solution Steps

The discrete expression DAGs we construct must be registered with our Scenario object. We

do this through the construction of a SolveOperation object, which is a handle to a sequence
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LinearSystem system = assembleGalerkinSystem(

functionSpace, // The function space of the field being transfomed and

// the result. We assume that they are both the same in

// the Galerkin case.

lhs, // The bilinear form to be assembled.

load, // The RHS of the system (the desired field after

// application of the operator).

boundaryConditions, // Dirichlet boundary conditions to apply to the system.

initialGuess); // A field representing initial guess at the solution of

// the system.

// Retriving the solution to the system

Field solution = system.getSolution();

// Retrieving the operator with boundary conditions applied.

Operator modifiedSystem = system.getConstrainedSystem();

// Retrieving the RHS with boundary conditions applied.

Field modifiedRHS = system.getConstrainedLoad();

// Calculating the residual

Scalar residual = (modifiedSystem*solution - modifiedRHS).two_norm();

Figure 6.8: Solution of for a linear operator with Dirichlet boundary conditions in Excafé. It
is possible to retrieve the LHS operator and RHS field with boundary conditions applied, so
the linear system’s residual can be determined.
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FunctionSpace functionSpace = scenario.defineFunctionSpace(element, mesh);

NamedField field = scenario.defineNamedField("field", functionSpace);

SolveOperation solve = scenario.newSolveOperation();

Operator op(functionSpace, functionSpace);

op += B(element, element)*dx;

Field newField = op * field;

// Define new value of temperature field.

solve.setNewValue(field, newField);

// Complete construction of SolveOperation.

solve.finish();

Figure 6.9: Creation of a SolveOperation (with little practical application) that updates a
field by multiplying it by the mass-matrix.

of operations that solve (or advance by a time-step) the finite element problem. We support

multiple SolveOperation instances to account for that possibility of needing to advance the

simulation in different ways (e.g. progressing the system towards an acceptable initial state

before performing solution steps).

After constructing a SolveOperation object using a given Scenario, we associate each Named-

Field with an expression DAG that describes how to calculate its new value using the set-

NewValueMethod. Finally, the finish method must be called on the SolveOperation in order

to initiate analysis and optimisation. A trivial example demonstrating syntax is shown in

Figure 6.9.

6.4 Declarative Iteration Capture

In the last section, we described how a DAG was built in order to represent the steps required

to perform a solution step for a given finite element problem. This was sufficient for our heat

equation. However, for more complex problems, we may need to be able to perform iteration

within a time-step.
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Excafé provides a mechanism to perform expression capture of iteration using a declarative

syntax. Before describing this we present a motivating example, solving the non-linear convec-

tive acceleration term of the Navier-Stokes equations.

6.4.1 Linearising the Convective Acceleration Term of Navier-Stokes

We consider the convective acceleration term of the Navier-Stokes equations:

u · ∇u

The finite element method requires that the discretised operator is linear in the trial function

if the system of equations is to be solved using a linear solver. Unfortunately, the convective

acceleration term is not linear in u. We linearise this term using the Picard iteration by

approximating it as follows:

ui · ∇ui ≈ ui−1 · ∇ui

That is, we replace one instance of u with ui−1 so that our term is now linear in u. At each

iteration i, we substitute the value of u from the previous iteration as ui−1 and construct a

new approximate solution for u. In our example, we will solve repeatedly until we find a value

of ui such that letting u · ∇u = ui · ∇ui in our original equation satisfies the convergence

requirement. For our initial guess of ui−1 we use u from the previous time-step.

Figure 6.10 shows an Excafé implementation of the solution of the Navier-Stokes convective

acceleration term using Picard iteration. We declare the TemporalIndex variable i which will

be the index variable of our Picard iteration loop. We use this to define an IndexedField

named unknown which has a distinct value for each value of i.

Expressions that access unknown using i as part of the index expression implicitly become part

of the loop. The loop will iterate until the termination condition attached to i becomes true.
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Accessing the final values unknown took is done by using index expressions that are offsets

against the special variable final.

Finally, we note that solving this term in isolation from other terms with a zero RHS field is not

a useful exercise and we use it merely to demonstrate Excafé’s indexing syntax. An imple-

mentation of an incompressible Navier-Stokes solver including the Picard iteration linearisation

of the convective acceleration term is discussed in Chapter 8, and the corresponding code is

presented in Appendix F.

6.4.2 C++ Syntax

Our syntax for the declarative declaration of loops is inspired by mathematical subscript (or

sometimes superscript) notation to denote different values of the same symbolic variable.

Excafé provides the following handle types to represent this notation:

TemporalIndex

which represents a mathematical subscript or superscript used to refer to different values

of a variable calculated during the repeated application of a formula.

IndexedScalar, IndexedField & IndexedOperator

which are indexed versions of the Scalar, Field and Operator handles. They are used

to assign values of the variable at the current iteration and access variables from previous

iterations.

Declaration of a TemporalIndex and each indexed type is shown in Figure 6.11. Each indexed

type instance is associated with a particular TemporalIndex at construction. For example,

indexed field as declared in Figure 6.11 will take a unique value for each value of i.

At this point, we stress that although the library client associates each instance of an indexed

type with only one TemporalIndex, this does not prevent that variable taking unique values

with respect to multiple index variables. In other words, our declarative loop declaration syntax
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// Declare a temporal index i. Expressions referencing i will implicitly be

// placed in a loop with i as the index variable.

TemporalIndex i;

// Declare a vector field for the unknown indexable by i.

IndexedField unknown(i);

// Declare the load vector (zero in this example).

Field load(velocitySpace);

// Set the initial value of the unknown guess to velocity field from the

// previous time-step.

unknown[-1] = velocityField;

// Declare a bilinear form dependent on the value of unknown at the

// previous iteration.

const forms::BilinearFormIntegralSum lhsForm =

B(inner(unknown[i-1], grad(velocity)), velocity)*dx;

// Declare a linear system that assembles a matrix using the declared bilinear

// form. As both the form and guess at the solution involve an expression

// dependent on i, the linear system is placed in a loop.

LinearSystem system = assembleGalerkinSystem(velocitySpace,

lhsForm,

load,

velocityConditions,

unknown[i-1]);

// Get the discretised operator with boundary conditions applied.

Operator linearisedSystem = system.getConstrainedSystem();

// Set the next value of unknown to be the solution from this iteration.

unknown[i] = system.getSolution();

// Calculate the residual using the solution from the *previous* time-step. As

// our operator was assembled using unknown[i-1], we must compute the

// residual as the norm of the operator applied to unknown[i-1].

Scalar residual = (linearisedSystem*unknown[i-1] -

system.getConstrainedLoad()).two_norm();

// Describe how to terminate the loop with index i.

i.setTermination(residual < 1e-3);

// Set the value of the velocity field for this time-step.

s.setNewValue(velocityField, unknown[final-1]);

Figure 6.10: Declarative construction of a loop to linearise the convective acceleration term
of the Navier-Stokes equations using Picard iteration. This example exists to demonstrate
the indexing syntax and does not solve a useful problem. See Appendix F for the code of an
incompressible Navier-Stokes implementation using this linearisation.
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TemporalIndex i;

IndexedScalar indexed_scalar(i);

IndexedField indexed_field(i);

IndexedOperator indexed_operator(i);

Figure 6.11: Declaration of of a TemporalIndex and indexed scalar, field and operator types.
Each indexed type instance is associated with a particular TemporalIndex at construction.

// Given C++ variables of the following types:

TemporalIndex i;

Field f;

IndexedField u;

// Indexed value initialisation

u[-2] = f;

u[-1] = f;

// Setting a value of u within an iteration

u[i] = f;

// Retrieving a previous value of u within an iteration

f = u[i-1];

// Accessing value of u relative to to the final value

f = u[final];

f = u[final-1];

Figure 6.12: Given C++ variables of the specified types, examples of construction of valid
expressions using the IndexedField type. Identical syntax is valid for the IndexedScalar and
IndexedOperator types.

in composable, otherwise we would not be able to support nested iteration. Before we describe

how composability is achieved, we first consider declarative loop construction involving a single

TemporalIndex.

We give an example of the use of the IndexedField type in Figure 6.12. For our indexed types,

we have overloaded C++’s array indexing operator in order to represent our subscript notation.

For some indexed type associated with a TemporalIndex i we can assign values at negative

constant indices, which correspond to initial values required before an iteration. We can also

assign at index i, which describes the value assigned to the variable at each iteration.
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TemporalIndex i;

Field a = ...

IndexedField b(i)

Field c = a + b[i];

Figure 6.13: Assignment of the expression a + b[i], which is only valid inside a loop indexed
by i, to the non-indexed handle c. The expression held by handle c is only valid within loop
i as well, but it is not possible to use indexing with the handle c.

At any given iteration, we can retrieve values of the variable at index i-n, for any natural

number n. Once an iteration is complete, we can also use indices of the form final-n, where

final is a special value that indicates the final value of an index.

What happens when we assign a value that is only defined within an iteration to a non-indexed

type as in Figure 6.13?

The expression a + b[i] is only valid within the scope of the iteration corresponding to

TemporalIndex i. Hence, c is only valid within the same scope. In order for assignments

like this to be valid, we require that expressions inherit indices associated with their operands.

Thus, the set of indices associated with an expression describe the scope in which that expres-

sion is valid.

The propagation of TemporalIndex instances through expressions also provides the mechanism

whereby we achieve nested iteration. An expression of the form a[i] + b[j] is only valid if

loops i and j are contained within each other. However, it does not tell us if loop j is nested

in loop i or vice-versa. We describe how this is determined in the next chapter.

In Chapter 7, I describe how TemporalIndex instances are associated with each node in the

expression DAG and how this is used to infer a valid loop nesting structure required to evaluate

expressions involving declarative iteration.



122 Chapter 6. Expression Capture in Excafé

TemporalIndex i;

IndexedScalar f(i);

f[-2] = 0.0;

f[-1] = 1.0;

f[i] = f[i-1] + f[i-2];

i.setTermination(f[i] > 100.0);

(a) Excafé

double f[3];

f[0] = 0.0;

f[1] = 1.0;

int i=1;

do

{

++i;

f[i%3] = f[(i+2) % 3] + f[(i+1) % 3];

}

while (f[i%3] <= 100.0)

(b) C

Figure 6.14: Excafé syntax for describing an iterative construction of Fibonacci values (in
floating point) and a corresponding C implementation. The C implementation requires more
complex indexing to access f which is used as a cyclic buffer.

6.4.3 Comparison to Imperative Form

Consider the declaratively declared loop in Figure 6.14 that iterates until f reaches the first

Fibonacci number greater than 1001.

The advantages of the declarative syntax are apparent. How to store f is not a consideration

in the Excafé implementation whilst in the C implementation we must explicitly manage f as

a cyclic buffer of the previously computed values. In addition, we do not need to specify how

large the buffer to store f should be. The size of the buffer can be automatically determined

from the sizes of the offsets used to access f.

6.4.4 Future Development

We previously showed how the indexing notation and discrete expression syntax could be used

to linearise the convective acceleration term of the Navier-Stokes equations.

We note that this syntax is ideally suited to description of iterative linear system solvers.

Currently, we call PETSc [47] to perform our linear system solve, invoked by a linear-system

1This is a contrived example with no purpose other than to demonstrate the benefits of Excafé’s indexing
syntax.
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solver node in our discrete expression DAG. However, we can see no reason why these solvers

could not be represented directly in our syntax.

6.5 Variational Form Capture

Similarly to other finite element libraries, we provide a mechanism for expressing variational

forms. Our syntax is deliberately similar to that of the variational form notation of the Unified

Form Language [37]. However, we only implement the most common vector calculus operators

required for the forms we investigate. We have not implemented the more general indexed

representation that UFL uses to represent its tensor operations. Additional information on the

data structures used during variational form capture can be found in Section D.4.

Figure 6.15 shows the declaration of a bilinear form for Poisson’s equation in UFL and Excafé.

Unlike UFL, we do not specifically denote certain function spaces as trial and test. In our

example, we have used the same one for both the trial and test space (as is always the case with

Galerkin methods). However, it is possible to declare the same function space again, making

it possible to distinguish between the two. This allows us to raise an error if mathematical

expressions are declared involving incompatible function spaces.

The Excafé expression capture representation has the expected DAG structure as presented

in Figure 6.16. We do not perform any optimisation on the DAG representation, instead it

is visited during the construction of the local assembly matrix (as detailed in Chapter 7) and

optimisations performed on the resulting expressions.

We draw attention to the fact that our captured bilinear forms can reference any discretised

fields defined in our discrete expression DAG (as is needed in time-dependent problems). As a

consequence, it is possible for an optimiser to see the structure of the discretised fields (i.e. a

summation of basis functions multiplied by coefficients). There is the possibility that this may

lead to redundancy optimisations if the basis functions used to represent our discretised field

are already being used for the trial and test functions, as is likely.
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element = FiniteElement("Lagrange", triangle, 1)

v = TestFunction(element)

u = TrialFunction(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

(a) UFL

u = scenario.addElement(new LagrangeTriangleQuadratic<1>());

const BilinearFormIntegralSum form = B(grad(u), grad(u))*dx;

(b) Excafé

Figure 6.15: A Bilinear form for the LHS of the finite element discretisation of Poisson’s
equation in UFL and Excafé. We use the same function space for the trial and test spaces
in the Excafé example. The order of parameters to the B method implies whether u is being
used in the context of a trial or test function.

BilinearFormIntegralSum

form

BilinearForm

LagrangeTriangleQuadratic

uFieldGradient FieldGradient

dx

Figure 6.16: The DAG we construct for the bilinear form
∫

Ω
∇u·∇u dx. It is used to assemble an

operator required during the calculation of the RHS of our heat solver example. The assembled
operator is applied to the temperature field from the previous time-step in order the obtain the
RHS vector.
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Figure 6.17: Linear Lagrange basis functions defined over the reference triangle.

For example, in our Navier-Stokes problem (described in Chapter 8), all velocity fields are dis-

cretised with the same basis functions. We wish to explore the possibility that when assembling

bilinear forms involving previously calculated fields, knowledge of the field discretisation can

assist in optimising local assembly.

We contrast with the FEniCS Form Compiler [36] which also has knowledge of the discretisa-

tions of the referenced fields, but performs tensor contraction optimisations using a numeric

representation of the local assembly matrix, where redundancy relationships due to basis func-

tion reuse may be significantly more difficult or impossible to infer.

6.6 Basis Function Capture

Excafé implements expression capture of basis functions. Currently, Excafé has implemen-

tations of linear and quadratic Lagrangian basis functions over triangular cells. We show plots

of the linear and quadratic basis functions in Figures 6.17 and 6.18 respectively. Additional in-

formation on the data structures used to represent scalar basis function expressions in Excafé

can be found in Section D.5.

We show a code excerpt from Excafé that performs expression capture for the Lagrange

linear basis functions in Figure 6.19. The code doesn’t directly resemble the formulae because

we exploit the rotational symmetry of the basis functions so that we only define one formula.

In addition, we make use of a helper function in order to generalise our scalar basis to a set of

arbitrary tensor-valued basis functions.
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Figure 6.18: Quadratic Lagrange basis functions defined over the reference triangle.

Unlike the rest of our expression capture facilities, the interface for basis function definition

has not yet been optimised for easy use by library clients, though it is possible for clients to

define other basis functions. The primary purpose of our basis function capture is to give our

library representations that it can analyse and optimise, rather than to expose an interface to

the library client.

The most common way to construct vector or arbitrary tensor-valued basis functions is to

repeat the same set of scalar basis functions for each element of the tensor. This permits

efficient implementations since they can be hard-coded to the sparsity of the basis functions.

However, these optimisations can prohibit the use of truly vector-valued basis functions such

as the Raviart-Thomas [48] element.

Excafé supports arbitrary tensor-valued basis functions, although all current tensor-valued

bases currently repeat scalar-valued ones. As Excafé has access to run-time representations of

basis functions, this permits analysis to determine when sparsity optimisations are appropriate.

We discuss how the captured basis function representations are optimised in Chapter 9.

As is common in finite-element implementations [31, 34], our basis functions are defined over a

reference cell. However, we require the ability to evaluate integrals of bilinear forms involving

our basis functions and their derivatives over arbitrary cells. We can do this provided we have:
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tensor_expr_t

getBasis(const std::size_t i, const detail::PositionPlaceholder& v) const

{

using namespace detail;

if (i >= spaceDimension())

CFD_EXCEPTION("Requested invalid basis function.");

const TensorSize tensorSize(rank, dimension);

tensor_expr_t bases(tensorSize);

const DofAssociation dofAssociation = dofNumbering.getLocalAssociation(i);

assert(dofAssociation.getEntityDimension() == 0);

const unsigned node_on_cell = dofAssociation.getEntityIndex();

const unsigned index_into_tensor = dofNumbering.getTensorIndex(i);

const int ip1 = (node_on_cell+1) % 3;

const int ip2 = (node_on_cell+2) % 3;

const TensorIndex tensorIndex =

TensorIndex::unflatten(tensorSize, index_into_tensor, row_major_tag());

bases[tensorIndex] =

(referenceCell->getLocalVertex(ip2)[0]-referenceCell->getLocalVertex(ip1)[0])*

(v[1] - referenceCell->getLocalVertex(ip1)[1]) -

(referenceCell->getLocalVertex(ip2)[1]-referenceCell->getLocalVertex(ip1)[1])*

(v[0] - referenceCell->getLocalVertex(ip1)[0]);

return bases;

}

Figure 6.19: Excafé implementation of expression capture for the linear Lagrange basis func-
tions over a triangular element. We exploit rotational symmetry and use a helper class that
simplifies the generalisation of the scalar basis to arbitrary tensor-valued bases.
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1. The ability to transform a gradient of a function on our reference cell to that of the

function on an arbitrary cell.

2. The ability to transform an integral of a function over our reference cell to that of the

integral of the function over an arbitrary cell.

The gradient of a function u in the elemental region x ∈ Ωe can be calculated from the gradient

in a standard region ξ ∈ Ωst using the chain rule. For example, in 2-D space:

∂u

∂x1

=
∂u

∂ξ1

∂ξ1

∂x1

+
∂u

∂ξ2

∂ξ2

∂x1

(6.2)

∂u

∂x2

=
∂u

∂ξ1

∂ξ1

∂x2

+
∂u

∂ξ2

∂ξ2

∂x2

(6.3)

Integration within the general element can be expressed in terms of an integral over the standard

element via a change of co-ordinates:

∫
Ωe

ue(x1, x2) dx1 dx2 =

∫
Ωst

u(ξ1, ξ2)|J2D| dξ1 dξ2 (6.4)

where ue is the function u defined in terms of global co-ordinates, and |J2D| is the determinant

of the Jacobian of the local-to-global co-ordinate transformation:

|J2D| =

∣∣∣∣∣∣∣
∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

∣∣∣∣∣∣∣ =
∂x1

∂ξ1

∂x2

∂ξ2

− ∂x1

∂ξ2

∂x2

∂ξ1

(6.5)

In order to evaluate these, we need to define a mapping between the reference space ξ and the

elemental space x. We define the mapping χ so that:
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x1 = χ1(ξ1, ξ2) (6.6)

x2 = χ2(ξ1, ξ2) (6.7)

For our triangular cell, we define χ using the linear basis φ already defined.

χi(ξ1, ξ2) =
n∑
q=0

x̂iqφq(ξ1, ξ2) (6.8)

where x̂iq is component i of vertex q of the cell. In other words, we have represented the co-

ordinate transformation from the reference cell to an arbitrary cell as an interpolation between

cell vertices using our set of linear basis functions. Our framework’s symbolic nature permits

the possibility of using an arbitrary vector field to specify mesh geometry, enabling curved

elements. However, we have not yet extended Excafé to do this.

Hence, in capturing our basis functions we not only have the representations of our basis

functions over our reference cells, but a representation of the geometric transformation required

to represent the integrands of integrals over an arbitrary cell analytically.

We note that having an expression capture representation of our basis functions may not ap-

pear useful at first glance. As the basis functions are defined over the reference cell, finite

element implementations typically evaluate the basis functions and their gradients at quadra-

ture points defined over the reference cell. These values are then stored in tables and the

gradients transformed as appropriate when calculating integrals over the cells in the mesh.

Fringe benefits of capturing our basis functions include:

1. Automatic calculation of derivatives.

2. Automatic determination of degree of quadrature for integrals.
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However, our primary hope is to expose patterns between elements of our assembly matrices

that can only be determined using a representation of our basis functions. We believe such op-

timisations should be a superset of those possible with the topological optimisations developed

by the FEniCS project [38] which operates on local assembly matrices (on the reference cell)

where all elements have already been evaluated.

6.7 Conclusion

In this chapter, we presented Excafé’s expression capture features. Specifically, Excafé

captures run-time representations of basis functions, variational forms and a declarative repre-

sentation of operations between scalars, discretised fields and operators. We conclude with an

overview of the most important aspects.

We contrast with code generators such as FFC that optimise assembly without an expression

representation of basis functions. We hope to use our basis function representations to explore

optimisations that arise from repeated use of, and redundancies between, basis functions.

In capturing basis functions over the reference cell, we also have the ability to construct ex-

pressions representing the geometric transformation between the reference cell and an arbitrary

cell. Typically this is done using the linear basis functions over that cell, but future work could

include other basis functions or discretised vector fields used to represent curved cells.

Above the level of basis functions, we capture representations of bilinear forms. These are

functionals that are linear in the functions used for the trial and test spaces, built from vector

calculus operators. We observe that in many finite element problems, our bilinear forms often

make reference to fields defined earlier during the solver execution.

By capturing the symbolic representations of the trial and test functions, along with the basis

functions of any other discretised fields, we have the opportunity to detect optimisations that

may arise from commonalities between those discretisations. FFC’s local assembly optimisa-

tions operate on a numeric representation of the local assembly matrix, where these relationships
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are no longer apparent. Hence, we hope this will expose optimisation opportunities not visible

to FFC.

Our highest level of expression capture captures operations between scalars, discretised fields

and operators. For the most part, these resemble traditional linear algebra, but with some

additional operators and additional constraints on valid operations dictated by choices about

discretisation.

Rather than choosing to capture these operations in an imperative form (e.g. in the manner

used by TaskGraph [13]) we have chosen to explore a declarative mechanism. Most notably, this

mechanism includes support for specification of iteration, needed within some more complex

problems. The resulting syntax is similar to mathematical subscript notation and avoids the

need to specify mathematically unrelated concerns such as cyclic buffer handling. We provide

a description of how we convert this representation to an imperative form in Chapter 7.

In this next chapter we present our implementation of an incompressible Navier-Stokes solver

in Excafé. We use this as an example problem to motivate the optimisations we wish to

explore.



132 Chapter 6. Expression Capture in Excafé



Chapter 7

Imperative Loop Inference

We described a syntax that permits declarative specification of iteration in Section 6.4. This

syntax enables Excafé to build a representation of the computation to be performed in the

form of a directed acyclic graph (DAG). In Desola, which could not capture iteration, there

was a direct correspondence between nodes in the expression DAG and values in the compu-

tation. In Excafé, the relationship is less apparent, since nodes in our expression DAG may

correspond to expressions that are evaluated within a loop nest, and therefore take multiple

values.

In this section, we describe how we take an expression DAG with references to indexed values

and infer an imperative structure that can be used to execute the computation. We then look

at how it is possible for a library client to construct an invalid specification and how this may

be detected.

7.1 The Problem

To consider the issues raised when trying to evaluate an expression DAG involving indexed

expressions, we will consider our linearisation example from Section 6.4.1. Code for this example

was presented in Figure 6.10.

133
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The example shows the solution of a non-linear system by repeatedly solving a linear approxi-

mation, constructed using the approximate solution for system computed during the previous

iteration. The example makes use of one indexed field, called unknown. We show the discrete

expression DAG that is constructed in Figure 7.1.

The DAG describes a computation that repeatedly computes values for the field unknown,

which represents the solution to a non-linear system. The approximate solution from the

previous iteration, unknown[i-1] is used to assemble a linear operator so that it can be used to

approximate the non-linear one. The previous value of unknown is also used as the initial guess

for the next approximate solution. The nodes OperatorApplyBC and DiscreteFieldApplyBC

are responsible for applying boundary conditions to the LHS and RHS, respectively, of our

linear system.

To determine when to terminate, the true residual of our non-linear system (as opposed to the

approximate one) is compared against a tolerance value. We multiply the operator by the value

of unknown from the previous iteration, subtract the RHS, take the l2-norm and compare to

our tolerance value. As the previous value of unknown was also used to assemble the operator,

this gives us the true residual. This is why the final solution is taken as unknown[final-1]

and not unknown[final].

A handle labelled unext is held by Excafé to the result of the computation. This represents

the new value of the field u. Nodes representing accesses to the indexed field unknown do not

maintain any references. It is the responsibility of the IndexableValue internal handle class

corresponding to unknown to keep references to the values assigned to it. Lastly, each Temporal-

IndexValue instance, which represents an index variable, must also maintain a reference to its

termination condition.

7.2 Algorithm

Our algorithm to infer an imperative execution strategy computes a set of possibly-nested loop

scopes and an execution order. It consists of three steps:
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DiscreteFieldZero

TemporalIndexValue “i”

OperatorAssembly

<

IndexedField

-

unext

×

DiscreteFieldPersistent “u”

TemporalIndex

ScalarLiteral “10−3”

IndexableValue “unknown”

unknown[i-1]

unknown[final-1]

DiscreteFieldApplyBC

DiscreteFieldTwoNorm

OperatorApplyBC

LinearSolve

RHS

initial guess

indexed by

termination condition

i ≥ 0

LHS

i = −1

Figure 7.1: The data structure built during execution of the linearisation example from Fig-
ure 6.10. The elliptical nodes correspond to handles held by the library client. The trapezoid
shaped nodes correspond to Excafé internal classes that also need to maintain handles to parts
of the discrete expression DAG. The rectangular nodes correspond to expressions that are either
scalar, discrete field or discrete operator valued. These are the nodes that form our (discrete)
expression DAG. The handle unext holds a reference to unknown[final-1], the expression that
will become the next value of u. However, unknown[final-1] has no dependencies on other
expressions. This is due to the fact that our expression DAG structure no longer fully reflects
data dependencies when dealing with indexed values.
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Expression DAG Annotation We associate sets of index variables with each node in the

expression DAG. The expression corresponding to the node is only well-defined within all

loops referenced by the index set, implying that they are nested. The order of nesting is

not yet known.

Nesting Order Inference Using the annotations, we infer the loop nesting structure of the

imperative code.

Topological Sorting The nodes and loops within every scope must be sorted with respect to

dependencies in order to construct a valid execution order.

We describe these steps in detail in the next sub-sections.

7.2.1 Expression DAG Annotation

In a conventional expression DAG, each node corresponds to a single expression. In our expres-

sion DAGs, it is possible for a node to correspond to a syntactic expression that takes multiple

values, if it is computed iteratively.

In our example, the expression unknown[i-1] is clearly only valid within the scope of loop i

since it has a dependency on the value of i. Similarly, any expressions that use unknown[i-1]

directly or indirectly are only well-defined within loop i.

In order to determine which expression DAG nodes are associated with which indices, we

construct a new graph in which edges represent the inheritance of indices (TemporalIndex-

Value instances) from a node’s operands. We show the graph corresponding to our linearisation

example in Figure 7.2.

In Figure 7.2 the arcs show the propagation from indices from expression DAG nodes to their

operands. Indices must also propagate from values assigned to unknown to all uses of unknown.

These rules aren’t reflected in the structure of Figure 7.1 since the values being used are

computed in previous iterations of i. We show these propagation rules using dashed arcs since

they are in a sense, implicit.
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DiscreteFieldZero

<

-

OperatorAssembly

DiscreteFieldTwoNorm

unknown[i-1]

DiscreteFieldPersistent “u”

unknown[final-1]

×

DiscreteFieldApplyBC

ScalarLiteral “10−3”

OperatorApplyBC

LinearSolve

6= i

6= i

∅

∅

∅

∅

{i}

∅

∅

∅

∅

∅ ∅

∅

∅

Figure 7.2: The example discrete expression DAG with arcs between nodes in the direction
of index propagation. The dashed arcs denote index propagation from expressions assigned to
unknown to all uses of unknown. We show the indices associated with each node at the start
of the propagation phase. The index variable i is not allowed to propagate along the two arcs
labelled 6= i since the expression unknown[final-1] is only valid outside of loop i.
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DiscreteFieldZero

ScalarLiteral “10−3”

<

OperatorAssembly

-

×

DiscreteFieldPersistent “u”

unknown[i-1]

unknown[final-1]

DiscreteFieldApplyBC

DiscreteFieldTwoNorm

OperatorApplyBC

LinearSolve

6= i

6= i

{i}

{i}

{i}

∅

{i}

∅

{i}

{i}

{i}

∅{i}

∅

∅

Figure 7.3: Our expression DAG after index propagation. Each node is annotated with the
indices of the loops it is contained in. All expression DAG nodes inferred to be in loop i have
been placed in the rectangular region.

Two of our implicitly defined arcs are labelled 6= i. These arcs are forbidden from propagating

the index variable i. Since the expression unknown[final-1] refers to the penultimate value

assigned to unknown by loop i, it must be in the enclosing scope of loop i. Therefore, it inherits

all indices of the values assigned to unknown, except i.

At the start of our index propagation, only nodes that explicitly make use of an index are

associated with it. In Figure 7.2, the only node that refers to i is unknown[i-1]. We show the

result of the index propagation pass for our linearisation example in Figure 7.3.

The implicitly defined edges used for our index propagation result in a problem defined over

a graph that may no longer be acyclic. As a consequence, index propagation is an iterative

process. However, it is guaranteed to terminate since our graph is finite and each propagation

step either makes progress, or marks the end of the algorithm.
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We recall that the unknown[final-1] expression DAG node is the value that will become

the next value of the persistent field u. Therefore, it cannot be associated with any indices,

otherwise its value would not be well defined.

7.2.2 Determining Loop Nesting

Associating each node in our discrete expression DAG with a set of TemporalIndexValue

instances tells us the loops in which that node must be contained. However, it does not tell us

the loop nesting structure.

For example, if node n is associated with TemporalIndexValue instances i, j, we know that n

is an expression that is calculated within loops i and j but we do not know if loop i contains

loop j or vice-versa.

Loop nesting is determined as follows:

1. Assign all expression DAG nodes associated with no TemporalIndexValue instances to

the global scope.

2. For each expression DAG node associated with a TemporalIndexValue set {i} of size 1,

create a scope for the new loop i and place the node inside that scope.

3. Continue the process for expression DAG nodes associated with TemporalIndexValue

sets of increasing size. Scopes for at least all but one TemporalIndexValue instances in

the set should already have been created, so it is possible to unambiguously identify the

scope in which any new loop scope should be created.

For an example, assume we are given nodes A, B, C, D and E associated with sets of indices

as follows:

A→ {i, k, l}

B → {i, j}
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global

A CBE D

{i, k, l} {i, j} {i, k} {i}

(a) 0

global

loop i

A CBE D

{i, k, l} {i, j} {i, k}

(b) 1

global

loop i

loop jloop k

AC BE D

{i, k, l}

(c) 2

global

loop i

loop j

loop k

loop l

AC BE D

(d) 3

Figure 7.4: The loop nesting construction at different iterations of our algorithm. At each step,
nodes for which the all but one of the indices belong to a known scope are used to construct
new nested scopes.

C → {i, k}

D → {i}

E → ∅

We show the inference of the corresponding loop nesting in Figure 7.4. The complete scope of

a node can be determined once all but one of the scopes of its indices are known.

Our algorithm uses the property that for any node n associated with a TemporalIndexValue

set S of size |S| > 0, there exists another node p associated with a TemporalIndexValue set T

of size |T | = |S| − 1 such that T ⊂ S.

The single TemporalIndexValue in the set S − T corresponds to the loop scope that n is in,

but p is not. If no node p exits, the loop nesting is under-specified and ambiguous. If there is

more that one candidate for p, S − T should be identical for all of them otherwise, the nesting

has been over-specified and cannot be satisfied.
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We discuss whether it is possible for a library client to under or over-specify loop nesting and

how these situations can be detected in Section 7.3.

7.2.3 Topological Sort

Once each expression DAG node has been assigned to a loop, the remaining step is to determine

an execution order. Instead of applying the topological sort to the whole expression DAG, as

would be the case with an ordinary DAG, the sort is applied to each loop scope independently.

Within each loop scope, expression DAG nodes and sub-loops are sorted together. Any loop

scope S will have the following dependencies:

• The initialisation values of any IndexedScalar, IndexedField or IndexedOperator as-

sociated with TemporalIndex of the loop.

• Dependencies of all expression DAG nodes in S that are not found in S.

• Dependencies of all sub-scopes of S that are not found in S.

Within a scope, the root elements used to perform a topological sort are:

• The expression DAG node representing the loop termination condition.

• All values assigned to indexable scalars, fields or operators during the current iteration.

Only indexed types can be used to retrieve a value from a loop or have their values used

by the next iteration.

Once the topological sort is complete, we have a complete loop nesting structure and an exe-

cution order for the global scope and all loop scopes.
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TemporalIndex i;

IndexedField f(i);

i.setTermination(f[i].two_norm() < 1e-4);

solve.setNewValue(u, f[i]);

Figure 7.5: A code fragment showing the construction of an invalid specification for updating
the value of u. Since the expression f[i] is only valid within the context of a loop, it cannot
be used to define the new value of u.

7.3 Declarative Specification Validation

Our algorithm assumes that we have a valid unambiguous declarative loop specification. How-

ever, there are multiple ways to construct invalid loop specifications. We consider invalid

specifications and how construction is either prevented or detected.

7.3.1 Updating persistent values with incorrectly scoped expres-

sions

Our expression DAG is used to define new values for persistent scalars, discretised fields or

discretised operators. The nodes that represent the new values must exist at the global scope

(i.e. they cannot exist within a loop).

Figure 7.5 shows a code fragment that tries to use an incorrectly scoped value to update the

value of the persistent field u. This incorrect usage can easily be detected. After application of

our index propagation algorithm, we verify that the expression DAG node used to define the

new value for a persistent variable is not associated with any index variables.

7.3.2 Under-specification of loop nesting

An under-specified loop nesting means that we do not have sufficient ordering relations between

index variables to construct an unambiguous loop nesting. Provided that the expressions used
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to update our persistent variables are correctly scoped, it is impossible to construct an under-

specified loop nesting.

We prove this by considering the index propagation graph of any valid discrete expression DAG

(e.g. Figure 7.3).

1. We select an arbitrary node n from our discrete expression DAG. We will call the set

of indices associated with a node the index set. We denote the index set of n as θ(n).

We will show that for any n, it is possible to determine the scoping of the loops whose

induction variables are contained in θ(n).

2. Since n is required to evaluate the final result (or results) of the expression DAG, there

exists at least one path to some result node r from n.

3. As we require that our result nodes are correctly scoped, the index set of any r is the

empty set so that θ(r) = ∅.

4. If θ(n) = ∅, we already know that n is in the global scope. If θ(n) 6= ∅, then we know

that n must be inside at least one loop.

5. As loop indices propagate along the edges of our graph, in order for θ(r) to be empty, the

path from n to r must contain edges such that each loop index in θ(n) cannot propagate

along at least one of them.

6. By definition, our edges can either propagate all indices, or propagate all except one

index.

7. By only restricting one index variable at a time, the path from n to r specifies a total

nesting relationship for all loops referenced by θ(n).

Hence, we can always find at least one containment ordering between a set of nested loops.

However, different paths between n and r may specify different orderings. This is an over-

specification of loop nesting and we discuss how we detect it in the next sub-section.
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TemporalIndex i, j;

IndexedScalar a(i), b(j);

IndexedScalar c(j), d(i);

a[-1] = 1;

b[-1] = 2;

// Implies that loop i is contained in loop j

a[i] = a[i-1] + b[j-1];

c[j] = a[final];

// Implies that loop j is contained in loop i

b[j] = a[i-1] + b[j-1];

d[i] = b[final];

solve.setNewValue(u, c[final] + d[final]);

Figure 7.6: A declarative loop specification that cannot be satisfied. Both a and b are only
valid inside the nested scopes of loops i and j. However, it is impossible to infer whether i ⊂ j
or vice-versa. We note that the expression assigned to u has no indices associated with it, and
is therefore scoped correctly according to our definition.

7.3.3 Over-specification of loop nesting

It is possible to over-specify loop nesting i.e. declare conflicting constraints on how loops should

be nested. We show an example of this in Figure 7.6.

As both a and b have expressions assigned to them using both indices i and j, loops i and j

must be nested. However, the first use of final implies that i is the innermost loop, and the

second use implies that j is.

Our algorithm for determining loop nestings will handle this case by constructing multiple

scopes for identical loop variables, corresponding to the different conflicting loop nestings. We

can detect this case at run-time and raise an error to inform the library client.

7.3.4 Invalid dependencies

We consider the attempt to construct a value that has a cyclic dependency in Figure 7.7.

Unlike our Scalar, Field and Operator handles, which can be assigned expressions involving
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TemporalIndex i;

IndexedScalar s[i];

IndexedScalar t[i];

s[i] = t[i] + 1;

t[i] = s[i] + 1;

Figure 7.7: Construction of invalid values in Excafé. This will raise an exception.

themselves to progressively build up an expression, indexed types can only be assigned once

during an iteration. We prevent invalid constructions like the one in Figure 7.7 by requiring

that all indexed values used on the RHS of an assignment must come from a previous iteration.

7.4 Conclusion

In this chapter, we have described how we infer an imperative loop structure from an iteration

specification represented in the form of a DAG. This enables recipes for iteratively constructed

values to be specified to Excafé in a form far more similar to mathematical notation than

using imperative constructs such as for or while loops. In addition to an algorithm for inferring

an imperative representation, we have also described how it is possible to construct an invalid

declarative specification and how to detect such situations.
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Chapter 8

Incompressible Navier-Stokes Solver

In this section, we describe the implementation of an incompressible Navier-Stokes solver in

Excafé. We chose this problem in order explore optimisations for a non-trivial (i.e. time-

dependent, multiple term, non-linear and multiple discretisations) test case. Before describing

our implementation, we present our derivation of the finite element discretisation of the incom-

pressible Navier-Stokes equations. The complete source of our incompressible Navier-Stokes

solver is available in Appendix F.

8.1 The Test Problem

Our chosen problem is the time-dependent, two-dimensional fluid flow around a cylinder in a

rectangular channel. This test case is commonly used in the literature [49]. We present the

physical layout of our test problem in Figure 8.1. Fluid enters through the left edge Γin, around

the cylinder and exits through Γout. Fluid velocity is 0 at the edges Γedge and on the surface of

the cylinder.

More formally, we apply the following Dirichlet boundary conditions:

At Γedge and Γcylinder, fluid velocity is (0, 0) ms−1.

At Γin, fluid velocity is (5, 0) ms−1.

147
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3m

1m 0.3m

0.35m

0.35m

0.35m

Γin

Γout
Γedge

Figure 8.1: The physical layout of our test problem. A cylinder of diameter 0.3m is positioned
at (0.5,0.5)m. Fluid enters through the edge Γin and exits through Γout.

On the outflow edge Γout, we will apply the “natural” outflow boundary condition. We describe

this in Section 8.4.

Under certain conditions, vortices will be periodically shed from either side of the cylinder.

This is known as a Kármán vortex street. In order to observe this effect we require that the

Reynolds number, which describes the ratio of inertial to viscous forces in the fluid, to be within

a certain range. We note that the Reynolds number, which primarily characterises the type of

flow, is a dimensionless value. We have only made use of units when describing our test case

to ease comprehension.

The Reynolds number, Re may be defined as [49]:

Re =
Ūd

ν
(8.1)

where Ū is the average fluid velocity upstream of the cylinder,

d is the diameter of the cylinder and

ν is the kinematic viscosity of the fluid.

We let ν = 1÷ 250 = 0.004 in our test problem. Substituting into Equation 8.1 we get:

Re =
5× 0.3

0.004
= 375 (8.2)
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Our system should exhibit vortex shedding behaviour at this Reynolds number.

8.2 Our model

Our derivation is based around that described by Ralf Rannacher’s lecture notes [27]. Equations

8.3a, 8.3b and 8.3c describe conservation of momentum, mass and energy, respectively.

∂t(ρv) + ρv · ∇v −∇ · (µ∇v +
1

3
µ∇ · vI) +∇p = ρf (8.3a)

∂tρ+∇ · (ρv) = 0 (8.3b)

∂t(cpρT ) + cpρv · ∇T −∇ · (λ∇T ) = h (8.3c)

Our unknowns are the fluid velocity v, fluid pressure p, fluid density ρ and fluid temperature

T . Parameters describing our fluid are the heat capacity cp, heat conductivity λ and dynamic

viscosity µ. f and h are our volume forcing and heat source terms, respectively, and are given.

Firstly, we assume that our flow is isothermal. This causes Equation 8.3c to decouple from our

system and we do not consider it further. Secondly, we assume that the density of our fluid

ρ = ρ0, a constant. This enables us to rewrite Equation 8.3b as follows:

∇ · v = 0 (8.4)

Equation 8.4 states that our fluid is incompressible and is called the incompressibility constraint.

Substituting Equation 8.4 back into Equation 8.3a, letting ρ0 = 1 and ν = µ/ρ0 we get the

form of the incompressible Navier-Stokes equations that we will discretise with the finite element
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method.

unsteady
acceleration︷︸︸︷
∂tv +

convective
acceleration︷ ︸︸ ︷
v · ∇v −

viscosity︷ ︸︸ ︷
ν∇2v +

pressure
gradient︷︸︸︷
∇p =

volume
force︷︸︸︷
f (8.5a)

∇ · v︸︷︷︸
incompressibility

constraint

= 0 (8.5b)

8.3 Variational Formulation

We let v and p be our velocity and pressure trial functions, respectively. We introduce ϕ and

χ as our test functions in the same function spaces as v and p, respectively.

We also introduce the following notation, where Equations 8.6, 8.7, 8.8 show the shorthand

for integrals over the domain involving scalar multiplication, vector inner products and double

inner products, respectively:

(u, v) =

∫
Ω

uv dx (8.6)

〈u, v〉 =

∫
Ω

u · v dx (8.7)

[u, v] =

∫
Ω

u : v dx (8.8)

Multiplying by our test functions and integrating over our domain Ω:

〈∂tv, ϕ〉+ 〈v · ∇v, ϕ〉 − ν〈∇2v, ϕ〉+ 〈∇p, ϕ〉 = 〈f, ϕ〉 (8.9)

(∇ · v, χ) = 0 (8.10)

As our finite element approximation of v is only of differentiability class C0 (i.e. we can only
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take the first derivative) we apply Green’s first identity to the viscosity term, reducing the order

of the derivative:

ν〈∇2v, ϕ〉 = −ν[∇v,∇ϕ] + ν

∫
∂Ω

(ϕ · (∇v · n)) dS (8.11)

We also apply the Divergence theorem to the pressure gradient term:

〈∇p, ϕ〉 = −(p,∇ · ϕ) +

∫
∂Ω

p(ϕ · n) dS (8.12)

We rewrite our system as follows, excluding the edge integrals.

〈∂tv, ϕ〉+ 〈v · ∇v, ϕ〉+ ν[∇v,∇ϕ]− (p,∇ · ϕ) = 〈f, ϕ〉 (8.13)

(∇ · v, χ) = 0 (8.14)

Excluding the edge integrals implicitly gives us boundary conditions on the outflow, which we

describe in the next section.

8.4 Outflow Boundary Condition

From Equations 8.11 and 8.12, it follows that:

ν[∇v,∇ϕ]− (p,∇ · ϕ) = 〈∇p, ϕ〉 − ν〈∇2v, ϕ〉

−
∫
∂Ω

p(ϕ · n) dS + ν

∫
∂Ω

ϕ · (∇v · n) dS
(8.15)

Integration by parts of the pressure gradient and viscosity terms gives us boundary integrals

that we use to impose Neumann boundary conditions. We impose the “do nothing” boundary
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condition by setting these terms to zero on the outflow Γout. Hence, our outflow boundary

condition is:

∫
Γout

(ν(ϕ · (∇v · n))− p(ϕ · n)) dS = 0 (8.16)

These have been observed to produce satisfactory results for essentially parallel flow [49].

8.5 Temporal Discretisation

We define the following matrices that we will use to define our linear system:

Mi,j = (ϕδj , ϕ
δ
i )
Nv
i,j=1

Ai,j = ν(∇ϕδj ,∇ϕδi )Nv
i,j=1

N(x)i,j =

(
Nv∑
k=0

xkϕ
δ
k · ∇ϕδj , ϕδi

)Nv

i,j=1

Bi,j = (χδj ,∇ · ϕδi )
Nv ,Np

i,j=1

where:

ϕδi , 1 ≤ i ≤ Nv is the set of discrete basis functions used to approximate v and ϕ.

χδi , 1 ≤ i ≤ Np is the set of the discrete basis function i uses to approximate p and χ.

We ignore our forcing term f , which for our example problem will be 0. We write our system

of ordinary differential equations as follows:

Mẋn + Axn +N(xn)xn −Byn = 0 (8.17)

BTxn = 0 (8.18)
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where xn and yn represent vectors of discrete basis function coefficients used to approximate v

and p respectively at time-step n.

We apply a one-step-θ time-stepping scheme:

[M + θk(A+N(xn))]xn −Byn = [M − (1− θ)k(A+N(xn−1))]xn−1 (8.19)

BTxn = 0 (8.20)

where k is the time-step length from tn−1 → tn. Special cases of this scheme include the

forward Euler scheme (θ = 0, first-order explicit), the backward Euler scheme (θ = 1, first-

order implicit, strongly A-stable) and the Crank-Nicolson scheme (θ = 1
2
, second-order implicit,

A-stable). We adopt the Crank-Nicolson scheme for our solver.

8.6 Linearising the Convective Acceleration Term

To be able to use a linear system solver, all of our operators must be linear (i.e. they must

correspond to a bilinear form). However, we have the term N(xn)xn which corresponds to the

non-linear operator (v · ∇v).

We linearise our system using the Picard iteration. We approximate the non-linear term by

assuming that:

vi · ∇vi ≈ vi−1 · ∇vi

and repeatedly solve for vi until our residual becomes acceptable. Rewriting our discretised

term, we approximate our discrete non-linear operator as:

N(xn)xn ≈ N(xn,i−1)xn,i
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static const std::size_t dimension = 2;

TriangularMeshBuilder meshBuilder(3.0, 1.0, 1.0/900.0);

meshBuilder.addPolygon(Polygon(vertex<2>(0.5, 0.5), 16, 0.15, 0), 5);

Mesh<dimension> mesh(meshBuilder.buildMesh());

Figure 8.2: Construction of of a 3x1 mesh in Excafé with a 16-sided regular polygon located
at (0.5, 0.5).

Hence, we solve a linear system assembled using successive approximations to the non-linear

term, multiple times within each time-step.

8.7 Implementation in Excafé

We briefly describe the implementation of our solver.

8.7.1 Mesh Construction

First, we construct our rectangular domain and add our cylindrical barrier. Since we can only

model shapes with straight edges, we approximate the cylinder using a 16-sided regular polygon.

We show the code to construct the mesh in Excafé in Figure 8.2.

For mesh generation we use the triangle library [46]. The mesh we generate is shown in Fig-

ure 8.3. In our implementation, we have restricted the maximum cell area to 900−1m2.

8.7.2 Discretisation

For our solver to be numerically stable, we require that our choice of element satisfies the

Babus̆ka-Brezzi (BB) condition [49] a.k.a. the inf-sup condition. The BB condition prescribes

restrictions on the choice of the velocity and pressure discrete function spaces in order that the

solution to be stable and unique.
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Figure 8.3: The mesh we use for our incompressible Navier-Stokes test problem. Mesh size is
3x1 and maximum cell area is 900−1.

velocity & pressure

velocity

Figure 8.4: A P2-P1 Taylor-Hood element is a two-dimensional triangular element with pressure
nodes located at the cell vertices (rectangular nodes) and velocity nodes located at both the
cell vertices and edge midpoints (circular nodes). Consequently, pressure is a linear field and
velocity is a quadratic field.

We satisfy the BB condition by using the Taylor-Hood P2-P1 element (shown in Figure 8.4)

which is known to satisfy these requirements [49]. We construct our element by using a linear

basis for pressure and a quadratic basis for velocity. We show the code we use to declare our

elements, function spaces and fields in Figure 8.5. We declare a composite function space that

can be used to construct a field that contains both velocity and pressure components.

8.7.3 Boundary Conditions

We recall the Dirichlet boundary conditions we specified in Section 8.1. Boundary conditions

in Excafé are currently built by associating mesh facets with constant tensor values. We show

the code to do this in Excafé in Figure 8.6 and the resulting labelling in Figure 8.7. Labels

1 to 4 are automatically assigned to the edges of our mesh. Label 5 was specified to the mesh

generator for the edges constructed when adding our cylinder approximation to the mesh.
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Scenario<dimension> scenario(mesh);

Element velocity = scenario.addElement(new LagrangeTriangleQuadratic<1>());

Element pressure = scenario.addElement(new LagrangeTriangleLinear<0>());

FunctionSpace velocitySpace = scenario.defineFunctionSpace(velocity, mesh);

FunctionSpace pressureSpace = scenario.defineFunctionSpace(pressure, mesh);

FunctionSpace coupledSpace = velocitySpace + pressureSpace;

NamedField velocityField = scenario.defineNamedField("velocity", velocitySpace);

NamedField pressureField = scenario.defineNamedField("pressure", pressureSpace);

Figure 8.5: Declaration of vector-valued quadratic and scalar-valued linear function spaces. We
define the fields that will approximate velocity and pressure using the vector-valued and scalar-
valued fields respectively. We also define a function space that can be used to approximate a
coupled velocity-pressure field.

const Tensor<dimension> zero(1);

Tensor<dimension> inflow(1);

inflow(0) = 5.0;

BoundaryConditionList<dimension> velocityConditionList(1);

velocityConditionList.add(BoundaryConditionTrivial<dimension>(1, zero));

velocityConditionList.add(BoundaryConditionTrivial<dimension>(3, zero));

velocityConditionList.add(BoundaryConditionTrivial<dimension>(4, inflow));

velocityConditionList.add(BoundaryConditionTrivial<dimension>(5, zero));

BoundaryCondition velocityConditions =

scenario.addBoundaryCondition(velocitySpace, velocityConditionList);

Figure 8.6: Construction of rank-1 (vector) valued Dirichlet boundary conditions for the velocity
field. Vector-valued values are attached to mesh facets using labels provided by the mesh
generator. We do not attach a Dirichlet boundary condition to label 2 since this is the outflow
boundary.

4

2

1

35

Figure 8.7: The boundary facet labelling used for our test problem. Labels 1− 4 are assigned
automatically by the mesh generator and the cylinder was declared to have label 5.
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8.7.4 Solver Specification

Specification of a sequence of operations required to solve, or advance, a finite element problem

is done through the construction of a SolveOperation instance. For our example, we use a

coupled solver that solves for velocity and pressure simultaneously.

Our bilinear form lhsForm is used to construct the system matrix in the following problem:

M + θk(A+N(xn,i−1)) −B

BT 0


xn
yn

 =

Dun−1

0

 (8.21)

where D represents the other operator we construct, nonLinearRhs.

D =

(
M − (1− θ)k(A+N(xn−1))

)
(8.22)

The system in Equation 8.21 is repeatedly solved until the residual of the system using the actual

non-linear term N(xn,i) instead of our approximation N(xn,i−1) is less than an acceptable value.

8.7.5 Solver Execution

To execute our solver for multiple time-steps, we execute the SolveOperation repeatedly and

dump the scenario’s tensor fields to VTK file at each time-step. This is shown in Figure 8.9. In

future, we hope to also capture the time-stepping loop using our declarative indexing syntax.

8.8 Generated Output

We present the vector fields generated by the Excafé on our example incompressible Navier-

Stokes problem in Figures 8.10 and 8.11.
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SolveOperation step = scenario.newSolveOperation();

Scalar theta = 0.5;

Scalar k = 0.01;

Scalar kinematic_viscosity = 1.0/250;

Operator nonLinearRhs(velocitySpace, velocitySpace);

nonLinearRhs =

B(velocity, velocity)*dx +

B(-(1.0-theta)*k * kinematic_viscosity * grad(velocity), grad(velocity))*dx +

B(-(1.0-theta)*k * inner(velocityField, grad(velocity)), velocity)*dx;

Field velocityRhs = nonLinearRhs * velocityField;

Field load(project(velocityRhs, coupledSpace));

TemporalIndex i;

IndexedField unknownGuess(i);

unknownGuess[-1] = project(velocityField, coupledSpace) +

project(pressureField, coupledSpace);

const forms::BilinearFormIntegralSum lhsForm =

B(velocity, velocity)*dx +

B(theta * k * kinematic_viscosity * grad(velocity), grad(velocity))*dx +

B(-1.0 * k * pressure, div(velocity))*dx +

B(div(velocity), pressure)*dx +

B(theta * k * inner(project(unknownGuess[i-1], velocitySpace),

grad(velocity)), velocity)*dx;

LinearSystem system = assembleGalerkinSystem(coupledSpace, lhsForm, load,

velocityConditions, unknownGuess[i-1]);

Operator linearisedSystem = system.getConstrainedSystem();

unknownGuess[i] = system.getSolution();

Scalar residual = ((linearisedSystem * unknownGuess[i-1]) -

system.getConstrainedLoad()).two_norm();

i.setTermination(residual < 1e-3);

step.setNewValue(velocityField, project(unknownGuess[final-1], velocitySpace));

step.setNewValue(pressureField, project(unknownGuess[final-1], pressureSpace));

step.finish();

Figure 8.8: Construction of SolveOperation object that describes how to advance the sim-
ulation by a single time-step. The solution of velocity and pressure components is done si-
multaneously, producing a field from which the velocity and pressure components are then
extracted.
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for(int i=0; i<6000; ++i)

{

std::cout << "Starting timestep " << i << "..." << std::endl;

step.execute();

std::ostringstream filename;

filename << "./navier_stokes_" << boost::format("%|04|") % i << ".vtk";

scenario.outputFieldsToFile(filename.str());

}

Figure 8.9: The time-stepping loop of our Navier-Stokes solver.

8.9 Conclusion

In this chapter we presented the implementation of an incompressible Navier-Stokes solver using

Excafé. It also demonstrated an application of the declarative loop syntax, which was used

to implement Picard iteration for linearising the convective acceleration term.

The problem presents many interesting aspects that we wish to explore with our local assembly

optimisations. These include the use of previously computed fields during assembly, assembly

using multiple bilinear forms and reuse of basis functions and their gradients across bilinear

forms.

In the next chapter we discuss how Excafé constructs a representation of the local assembly

matrix amenable to optimisation and how an optimiser might be able to take advantage of

these properties.
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(a) Time-step 0 (0 seconds)

(b) Time-step 9 (0.09 seconds)

(c) Time-step 18 (0.18 seconds)

(d) Time-step 27 (0.27 seconds)

Figure 8.10: The velocity vector fields produced by our incompressible Navier-Stokes solver for
the time interval 0→ 0.27 seconds.
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(a) Time-step 36 (0.36 seconds)

(b) Time-step 45 (0.45 seconds)

(c) Time-step 54 (0.54 seconds)

(d) Time-step 63 (0.63 seconds)

Figure 8.11: The velocity vector fields produced by our incompressible Navier-Stokes solver for
the time interval 0.36→ 0.63 seconds.
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Chapter 9

Local Assembly Construction and

Optimisation

In this chapter I describe how Excafé performs local assembly, the construction of small

dense matrices from cell-local information that are used to form the full sparse linear system of

equations. I also discuss the space of optimisations that Excafé’s expression capture enables

us to explore and compare them to those performed by the FEniCS Form Compiler [36] (FFC),

a code generator for variational forms.

In Section 9.1 we provide an overview of the process of local assembly and introduce the notation

we use. In Section 9.2 we compare the approaches taken by other finite element libraries to

implementing and optimising local assembly to our own. In Sections 9.3 and 9.4 we describe

how we construct and optimise a representation of the local assembly matrix in Excafé. In

Section 9.5 we compare our approach to the assembly optimisations developed in FFC [38],

which are the subject of ongoing research. In Sections 9.6 and 9.7, we present future work then

conclude.

163
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9.1 Local Assembly Overview

The finite element method involves rewriting our problem into the weak formulation. This can

be described as follows where both u and v are functions of the global co-ordinate x:

find u ∈ X such that

a(u, v) = L(v), ∀v ∈ V (9.1)

where a and L are bilinear and linear forms respectively. The function spaces X and V are

called the trial and test spaces, respectively. Both X and V contain an infinite set of functions.

We approximate them with the discrete function spaces X δ and Vδ using the basis sets Φ and

Ψ, respectively. Our problem now reads:

find uδ ∈ X δ such that

a(uδ, vδ) = L(vδ), ∀vδ ∈ Vδ (9.2)

Our solution uδ is expressed in terms of a linear combination of basis functions as follows:

uδ(x) =

|Φ|∑
j=0

ûjΦj(x) (9.3)

We define our discrete linear system as follows:

Ax = b (9.4)

A and b are the discretised versions of a and L respectively, defined as a matrix and vector as

follows:

Aij = a(Φj(x),Ψi(x)) (9.5)

bi = L(Ψi(x)) (9.6)
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and the unknown x is the vector of basis function coefficients so that:

xj = ûj (9.7)

Fortunately, in order to compute A we do not need to evaluate each integral over the entire

domain. Our basis functions are defined so that they are only non-zero over neighbouring

cells. Hence, it is possible to compute A from a set of cell-local contributions. Calculating the

contribution of a single cell is called local assembly.

Before we can define the local contribution, called the local assembly matrix, we must first

define the following:

K, the set of cells that our domain Ω is partitioned into.

χk(ξ), a function that transforms a local co-ordinate ξ on the reference cell to the global co-

ordinate x on the cell k.

ιk(i), a function that returns the global numbering of the local basis function i defined on cell

k.

φ and ψ, the local versions of the basis function sets Φ and Ψ respectively. For all local basis

functions 1 ≤ p ≤ |φ|, 1 ≤ q ≤ |ψ| on any cell k ∈ K:

Φιk(p)(χ
k(ξ)) = φp(ξ) (9.8)

Ψιk(q)(χ
k(ξ)) = ψq(ξ) (9.9)

We define our local assembly matrix for cell k as follows:

Mk
qp = a(Φιk(p),Ψιk(q)) (9.10)
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The functional a corresponds to an integral over cell k. However, via a change of variables, it

is possible to rewrite a so that the integration occurs over a reference cell, Ωst. The integration

is now performed w.r.t local co-ordinates and references the local basis sets φ and ψ instead of

the global ones Φ and Ψ.

The change of variables requires that the integrand be multiplied by the term |J(χk(ξ))|. This

is the determinant of the Jacobian of the co-ordinate transformation from the reference cell to

cell k, which acts as a scaling factor.

The functionals a and L may also contain derivatives of the basis functions with respect to

global co-ordinates. Handling these requires use of the chain rule:

d

dx
=

d

dξ

dξ

dx
(9.11)

This allows us to compute derivatives of our global basis functions with respect to global co-

ordinates in terms of local ones:

∇Φιk(p)(χ
k(ξ)) = (∇χk(ξ))−1 · ∇φp(ξ) (9.12)

∇Ψιk(p)(χ
k(ξ)) = (∇χk(ξ))−1 · ∇ψp(ξ) (9.13)

Rewriting the integral so that it is performed over the reference cell means that evaluating it

only requires knowledge of how to compute values and derivatives of functions contained in the

local basis sets rather than the global ones.

Lastly, we need a method to evaluate our integrals. Typically, this is done numerically rather

than analytically, through the use of quadrature. A quadrature rule defines an approximation

of an integral as a finite summation:

∫
Ωst

u(ξ) dξ ≈
Q−1∑
i=0

wiu(ξi) (9.14)
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The function is evaluated at Q points over the integration region and a weighted sum is con-

structed. In practice, Gaussian quadrature is almost always used since it permits construction

of rules that will exactly integrate a polynomial of a given order.

9.2 Implementation Approaches to Local Assembly

We briefly describe the different approaches taken to performing local assembly, including

those taken by the FEniCS Form Compiler and Excafé. We consider how to evaluate the

local assembly matrix for the Laplacian operator:

a(u, v) =

∫
Ω

∇u(x) · ∇v(x) dx (9.15)

9.2.1 Quadrature

The standard approach to local assembly is through the use of quadrature [26]. We compute

our local assembly matrix for some cell k as follows:

Mk
qp =

Q−1∑
i=0

wi(∇χk)−1 · ∇φp · (∇χk)−1 · ∇ψq|J(χk)| (9.16)

The values of ∇φp(ξ) and ∇ψp(ξ) are only dependent on the local co-ordinate ξ and so can

be tabulated at the quadrature points and reused for all cell integrals. The gradient transform

(∇χk)−1 and the scaling factor |J(χk)| are cell-dependent and therefore need to be re-computed

for each cell being integrated over. However, if the local to global co-ordinate transform is affine,

these values do not vary across the element and can be computed only once for each cell, instead

of at every quadrature point.
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9.2.2 Tensor Representation (FEniCS)

The FEniCS project has investigated the representation of local assembly as a tensor contrac-

tion [36] between a geometry independent reference tensor A0 and a geometry tensor Gk which

is computed for each cell k. Assembly (for affine elements) is performed using a double inner

product between these two tensors:

Mk = A0 : Gk (9.17)

In the case of our Laplacian operator, the tensors can be defined as follows:

A0
qpαβ =

∫
Ωst

∂φp
∂ξα

∂ψq
∂ξβ

dξ (9.18)

Gαβ
k = |J(χk)|

d∑
γ=0

∂ξα
∂xγ

∂ξβ
∂xγ

(9.19)

Here, α, β and γ are co-ordinate directions that we take partial derivatives with respect to.

Our trial and test basis function numberings are p and q respectively. It is possible to extend

this representation to non-affine mappings if the rank of the reference and geometry tensors are

increased.

The cost of assembly is the number of operations required to evaluate the geometry tensor and

the contraction between the reference and geometry tensors. In some cases, this is a significant

improvement.

Further work on performing assembly using tensor representation has looked at reducing the

operation count required to perform the contraction between the geometry and reference ten-

sors [38]. The optimisations involve forming a complexity reducing relation based on Hamming

distance and co-linearity between vectors in the reference tensor.

Both tensor and quadrature based assembly have been implemented in FFC, the FEniCS Form
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Compiler [36]. FFC is the result of ongoing development and research and provides a basis for

comparison with our work.

9.2.3 Excafé

The approach to optimising assembly in Excafé is inspired by the numerous patterns and

redundancies observed in the assembly of forms in different finite element implementations.

These include:

1. Tensor-valued basis functions constructed from repeating scalar-valued basis functions

leading to sparse tensors.

2. Basis functions defined over a one-dimensional region multiplied together to form basis

functions for higher dimensions.

3. Quadrature over a one-dimensional region multiplied together to form quadrature for

higher dimensions.

4. Variations in when different terms may be partially evaluated based on whether the

element is affine.

5. The use of the same basis functions for trial and test functions (always the case in Galerkin

methods).

6. The use of the same basis functions to discretise fields as used for the trial and test

functions.

To exploit these patterns (if they are exploitable) requires a representation in which they can be

exposed. These representations are often specific to the particular optimisation being performed

so it is unclear what a general representation for exploring these optimisations should look like.

In Excafé, we use expression capture to construct a representation of assembly that can be

analysed symbolically (as opposed to numerically). We observe that there are opportunities
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for optimisations at the levels of bilinear forms, and within and between basis functions at the

assembly level.

Our optimisation framework is based around representing each element of the local assembly

matrix as a scalar-valued function. Therefore, we lose the loop structure that characterises

many operations in local assembly. However, we have a representation that should allow any

redundancies and form-specific optimisations to be detected.

We expect that such a representation should enable detection of form-specific optimisations

that would typically have needed hand coding. Such optimisations would usually have come at

the cost of the structure of the written code, as this would also be highly form-specific.

9.3 Assembly in Excafé

An assembly matrix in Excafé is represented by a matrix of scalar-valued expressions. Each

expression may contain symbolic values whose actual values are unknown because they are

either not yet calculated (e.g. scalar expressions from the discrete expression DAG) or are

cell-dependent (e.g. vertex co-ordinates and basis function co-efficients). Further information

on Excafé’s scalar expression representation can be found in Section D.5.

We describe how Excafé constructs this set of expressions from a bilinear form and basis

function representations. Again, we consider the Laplacian operator:

a(u, v) =

∫
Ω

∇u · ∇v dx (9.20)

where u is the trial function, v is the test function and both are scalar valued. We assume we

wish to form the assembly matrix for a two-dimensional triangular cell.
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9.3.1 Assembly matrix overview

We choose to represent our set of scalar trial and test functions over the reference cell with the

symbols φ and ψ respectively. We use the linear Lagrange basis functions over the reference

triangle, of which there are three. Therefore our assembly matrix is 3x3 where each element

corresponds to an integral over the cell using different basis functions. Using Φ and Ψ to

represent the global versions of our trial and test functions we wish to compute the following

matrix of expressions:

M =


∫
k
∇Φιk(0) · ∇Ψιk(0) dx

∫
k
∇Φιk(1) · ∇Ψιk(0) dx

∫
k
∇Φιk(2) · ∇Ψιk(0) dx∫

k
∇Φιk(0) · ∇Ψιk(1) dx

∫
k
∇Φιk(1) · ∇Ψιk(1) dx

∫
k
∇Φιk(2) · ∇Ψιk(1) dx∫

k
∇Φιk(0) · ∇Ψιk(2) dx

∫
k
∇Φιk(1) · ∇Ψιk(2) dx

∫
k
∇Φιk(2) · ∇Ψιk(2) dx

 (9.21)

Unlike Mk, the local assembly matrix for a given cell k, M is a matrix of expressions that can

be used to compute Mk, the local assembly matrix for any cell k. Each row corresponds to a

different test function and each column to a different trial function. To evaluate Mk from M for

some cell k, the actual values of all symbolic values in M must be known. Before we consider

integration, we first form a matrix of expressions that represent the value of the bilinear form

at some arbitrary point on the cell k in terms of the local co-ordinate system ξ. We name this

matrix of expressions E so that:

Mqp =

∫
k

Eqp(ξ)|J(χk)| dξ (9.22)

where |J(χk)| is the scaling factor from our co-ordinate transformation. We can decompose E

into the trial and test contributions as follows:

Eqp = (Ap ·Bq) (9.23)

where A and B are vectors of expressions defined as:
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A =


∇Φιk(0)

∇Φιk(1)

∇Φιk(2)

 B =


∇Ψιk(0)

∇Ψιk(1)

∇Ψιk(2)

 (9.24)

and the elements of both vectors are tensor-valued expressions for the trial and test portions

of the bilinear form to be integrated.

9.3.2 Bilinear form expression construction

We recall the basis function definitions from Section 6.6 which we use to define φ and ψ, the

basis functions defined over our reference cell:

φ0(ξ1, ξ2) = ψ0(ξ1, ξ2) = 1− ξ1 − ξ2 (9.25)

φ1(ξ1, ξ2) = ψ1(ξ1, ξ2) = ξ1 (9.26)

φ2(ξ1, ξ2) = ψ2(ξ1, ξ2) = ξ2 (9.27)

We now show how we construct the vector A of expressions corresponding to ∇Φ. We start

with the vector of expressions representing φ:


φ0

φ1

φ2

 =


1− ξ1 − ξ2

ξ1

ξ2

 (9.28)

To compute ∇φ, we analytically differentiate each entry. We write the result as a vector of

rank-1 tensors:
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
∇φ0

∇φ1

∇φ2

 =


(−1,−1)

(1, 0)

(0, 1)

 (9.29)

We note that all references to the local co-ordinates ξ1 and ξ2 have vanished. This is often not

the case if we do not take derivatives (e.g. a mass-matrix) or use higher order basis functions

(e.g. quadratic Lagrange).

Before we can transform our gradients to the global cell, we first need to define our local to

global co-ordinate transformation χ. χ is defined using the already captured linear Lagrange

basis functions:

χ(ξ1, ξ2) =

(1− ξ1 − ξ2)v0
x + ξ1v

1
x + ξ2v

2
x

(1− ξ1 − ξ2)v0
y + ξ1v

1
y + ξ2v

2
y

 (9.30)

where vαx and vαy represent the x and y components, respectively, of vertex α of some arbitrary

cell. As they are cell-dependent, they are also manipulated symbolically.

Applying the gradient operator to find ∇χ:

∇χ(ξ1, ξ2) =

v1
x − v0

x v1
y − v0

y

v2
x − v0

x v2
y − v0

y

 (9.31)

Our local co-ordinates have vanished due to the fact that our transformation is affine, and

therefore constant across the entire cell. We invert to find (∇χ)−1:



174 Chapter 9. Local Assembly Construction and Optimisation

(∇χ(ξ1, ξ2))−1 =
1

(v1
x − v0

x)(v
2
y − v0

y)− (v1
y − v0

y)(v
2
x − v0

x)

v2
y − v0

y v0
y − v1

y

v0
x − v2

x v1
x − v0

x

 (9.32)

=

 v0y−v2y
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

v1y−v0y
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

v2x−v0x
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

v0x−v1x
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

 (9.33)

We can now form ∇Φ by transforming ∇φ since:

∇Φ = (∇χ)−1 · ∇φ (9.34)

We take the inner product between each element∇φp of our vector of gradients and the gradient

of the inverse co-ordinate transformation (∇χ)−1:

Ap =

 v0y−v2y
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

v1y−v0y
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

v2x−v0x
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

v0x−v1x
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

 ·


(−1,−1)

(1, 0)

(0, 1)


p

(9.35)

A =


(

v2y−v1y
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

, −v2x+v1x
(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)

)

(
v0y−v2y

(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)
, v2x−v0x

(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)
)

(
v1y−v0y

(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)
, v0x−v1x

(v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x)
)

 (9.36)

Each element Ap, of A, is the expression for the rank-1 tensor representing the gradient of

φp w.r.t. global co-ordinates, ∇Φp. Since the Laplacian operator is symmetric, and we use

the same set of basis functions for our trial and test spaces, we know that A = B. For this

reason we do not show the derivation of B. We can form the matrix of scalar expressions

Eqp = Ap ·Bq = Ap · Aq:
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E =


(v2y−v1y)2+(−v2x+v1x)2

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2

(v2y−v1y)(v0y−v2y)+(−v2x+v1x)(v2x−v0x)

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2

(v2y−v1y)(v1y−v0y)+(−v2x+v1x)(v0x−v1x)

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2

(v2y−v1y)(v0y−v2y)+(−v2x+v1x)(v2x−v0x)

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2

(v0y−v2y)2+(v2x−v0x)2

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2

(v0y−v2y)(v1y−v0y)+(v2x−v0x)(v0x−v1x)

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2

(v2y−v1y)(v1y−v0y)+(−v2x+v1x)(v0x−v1x)

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2

(v0y−v2y)(v1y−v0y)+(v2x−v0x)(v0x−v1x)

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2

(v1y−v0y)2+(v0x−v1x)2

((v1x−v0x)(v2y−v0y)−(v1y−v0y)(v2x−v0x))
2


(9.37)

The matrix of expressions E represents the evaluation of the Laplacian at an arbitrary location

on the reference cell. It needs to be integrated in order to form the set of expressions that

constitute our representation of the local assembly matrix.

9.3.3 Integration

Integration involves two steps. First, we need to multiply by the determinant of the Jacobian of

our co-ordinate transform |J(χ)|. Then we need to integrate our expressions over the reference

element. Since we have no references to the local co-ordinates ξ1 and ξ2, this is simply a

multiplication by the area of the reference triangle, 0.5.

M =


(v2y−v1y)2+(−v2x+v1x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)

(v2y−v1y)(v0y−v2y)+(−v2x+v1x)(v2x−v0x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)

(v2y−v1y)(v1y−v0y)+(−v2x+v1x)(v0x−v1x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)

(v2y−v1y)(v0y−v2y)+(−v2x+v1x)(v2x−v0x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)

(v0y−v2y)2+(v2x−v0x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)

(v0y−v2y)(v1y−v0y)+(v2x−v0x)(v0x−v1x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)

(v2y−v1y)(v1y−v0y)+(−v2x+v1x)(v0x−v1x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)

(v0y−v2y)(v1y−v0y)+(v2x−v0x)(v0x−v1x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)

(v1y−v0y)2+(v0x−v1x)

2(v1x−v0x)(v2y−v0y)−2(v1y−v0y)(v2x−v0x)


(9.38)

Multiplication by the determinant of the Jacobian actually reduces the order of the quotient

in our example. This is due to the fact that the transformation of the basis function gradients

involved a multiplication by the inverse of the determinant of the Jacobian. Our resulting

matrix of expressions M is a representation of the local assembly matrix for the Laplacian

operator for an arbitrary element. In order to evaluate it, we simply need to substitute cell

co-ordinate values.

In our example, the local co-ordinates ξ1 and ξ2 vanished due to taking the gradient of the basis



176 Chapter 9. Local Assembly Construction and Optimisation

functions. In other forms this is not the case so we need to have a way to integrate our matrix

of expressions with respect to the local co-ordinate system ξ.

Integration over the reference cell can either be done entirely symbolically, or via the substitu-

tion of quadrature points and weights. Symbolic integration is preferred as our local assembly

optimiser is also entirely symbolic. Quadrature based integration is less likely to work well with

our symbolic framework, since the partial evaluation of expressions after quadrature substitu-

tion may result in different floating point coefficients (due to floating point inaccuracies) for

terms that were symbolically identical.

We note that both integration techniques, symbolic integration and partially evaluating ex-

pressions after quadrature substitution, cause the cost of evaluating the assembly matrix for

an arbitrary linear cell to become constant. As with FEniCS’s tensor representation, the cost

of computing an integral over a linear cell becomes independent of the polynomial degree of

the basis functions used (but not the number of basis functions). This is a consequence of the

Jacobian of the local to global co-ordinate transformation being constant for linear cells.

9.3.4 Referencing other fields and scalars

In many finite element problems, it is necessary to be able to reference other fields. For

example, in the case of our incompressible Navier-Stokes problem from Chapter 8, we construct

bilinear forms that include the velocity field from the previous time-step, as well as multiple

approximations to the velocity at the current time-step due to linearisation of the convective

acceleration term using the Picard iteration.

When we reference other tensor fields from our bilinear forms, we also possess complete knowl-

edge about how they have been discretised. Therefore, we can also incorporate the basis func-

tions used to approximate these fields and their coefficients directly into our assembly matrix

expressions.

For example, say we have some vector field f represented using linear Lagrange basis functions,

designated φ, on a 2D triangular element. The three linear basis functions are repeated for
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each element of f giving 6 basis functions. The expression for f is derived as follows:

f(ξ1, ξ2) =
5∑
p=0

f̂pφp(ξ1, ξ2) (9.39)

=

(1− ξ1 − ξ2)f̂0 + ξ1f̂1 + ξ2f̂2

(1− ξ1 − ξ2)f̂3 + ξ1f̂4 + ξ2f̂5

 (9.40)

where f̂α represents basis function co-efficient α for field f . Note that we automatically exploit

the sparsity of our basis functions as only three of the six basis functions are non-zero for each

vector component.

Lastly, in addition to basis function coefficients, we can also reference any scalar computed

inside our discrete expression DAG. This may be useful if one wants to dynamically adjust

time-step duration, for example. Like basis function coefficients, references to scalar values are

incorporated as symbolic values in our expressions.

9.3.5 Summary

In this section we described the construction of a local assembly matrix in which each ele-

ment is represented by a scalar-valued rational expression. We construct our expressions using

captured basis function representations and apply gradient transformations using co-ordinate

transformations constructed from linear basis functions.

We form a set of expressions that have variables corresponding to the local co-ordinates, cell

vertex positions and possibly discrete field basis function coefficients and scalar expressions

referenced from the discrete expression DAG.

We perform integration on this set of rational expressions over the reference cell. This eliminates

all references to our local co-ordinates and gives a recipe for the local assembly matrix over an

arbitrary cell in terms of cell vertex positions and any referenced discrete field coefficients or
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scalar values from our discrete expression DAG.

In the next section, I explain our approach to optimising this representation.

9.4 Optimisation

After constructing our representation of a local assembly matrix for an arbitrary cell, we need

to find an optimised strategy for evaluating it. Each element of our local assembly matrix is

represented by a rational function (i.e. the quotient of two multivariate polynomials).

We were unable to find any relevant work into the efficient evaluation of multivariate rational

functions. In contrast, there has been much work on the efficient evaluation of multivariate

polynomials [50, 51, 52]. Therefore we choose to optimise the polynomial expressions we use

to form our rational functions. Unfortunately, there has been significantly less work on how to

optimise sets of independent polynomial expressions, which is our goal here. Our optimiser is

based on the work of Hosangadi et al. [1]. We present improvements to the Hosangadi et al.

common sub-expression elimination and factorisation scheme in Chapter 10.

It is important to note that our work on optimising assembly matrix expressions is currently

a work in progress and we do not yet have an effective optimisation strategy. We discuss the

current state of this work and observations about what needs to be done to produce an efficient

evaluation strategy.

9.4.1 Expression Representation and Complexity

We currently represent rational expressions as a quotient between two expanded polynomials.

For our Navier-Stokes assembly matrices, this leads to large expansions in the size of the ex-

pressions for the numerator and denominator. In order to counter this, we use the rational

function normalisation routines in GiNaC [45] to simplify the local assembly matrix expres-

sions. Unfortunately, multivariate greatest common divisor is a particularly computationally

expensive process for large expressions and must often performed heuristically [53].
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Our local assembly matrix evaluator currently makes use of the non-factorised rational expres-

sions for each matrix entry when evaluating. We observed significant numerical differences

between the computed values of local assembly matrices depending on whether we performed

rational function simplification before evaluation (using 64-bit double precision). In particular,

our linear solver did not converge on the resulting global system of equations when constructed

from local assembly matrices evaluated using non-simplified expressions. We confirmed these

issues were entirely numerical by evaluating the same expressions using an arbitrary precision

floating point library.

Normalising the local assembly expressions appears to be a requirement for numerical accuracy,

but is so computationally expensive we wish to avoid it. In addition, rational functions cannot

be simplified by our factorisation pass as it only works on the component polynomials. As a

consequence, we intend to modify our polynomial representation so that we can choose when

to expand the numerator and denominator of our captured fractions into a sum-of-monomials

representation. By doing this, it should be trivial to spot common multipliers on the top and

bottom of the fraction before expansion.

Despite fraction simplification, the size of our expressions has led to a need for algorithms that

can scale to large sizes and still perform effectively. In particular, in Chapter 10 we present

improvements to part of the Hosangadi et al. algorithm for finding an efficient evaluation

strategy for a set of polynomials, that enables scaling to larger sets of more complex expressions.

9.4.2 Polynomial Factorisation Effectiveness

Our optimisation of polynomial evaluations is based on the work of Hosangadi et al. [1]. We take

the weighting function for factorisations given in [1] and improve its behaviour. In addition,

we present a branch and bound algorithm for the matrix covering problem problem presented

by Hosangadi et al., in the form of an algorithm for solving a variant of the maximal biclique

problem.

Our algorithm successfully scales to the problem sizes we encounter in our Navier-Stokes solver
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whilst still finding the optimal matrix covering. In contrast, Hosangadi et al. do not present an

algorithm for finding the best matrix covering, simply stating that they choose the “best prime

rectangle”. We describe our weighting function and search algorithm in detail in Chapter 10.

Although, the matrix coverings we find are optimal with respect to the factorisation weighting

function, the algorithm is still greedy. This is due to the fact that it chooses the highest scoring

matrix covering at each iteration, which is only a locally optimal choice.

The factorisations produced by our optimisation algorithm are not yet competitive with FFC

with respect to floating point operation count. Since the optimisation algorithm is greedy, it is

unlikely to be able to find a particularly efficient evaluation strategy when provided with such

a large search space.

Our strategy to handle this has not yet been implemented and is part of future work. Our aim is

to avoid fully expanding our polynomials, instead explicitly factorising out our geometry related

terms before performing common sub-expression elimination. This is not a dissimilar strategy

from FEniCS which applies optimisations to the structure of the reference tensor independent

from the geometry tensor, which does not possess enough complexity to be a candidate for

optimisation. Hence our common sub-expression elimination pass will work mostly on the

basis function terms, without the additional complexity of the expanded geometry terms. This

search space should be significantly smaller, enabling the factorisation algorithm to perform

more effectively.

9.5 Comparison with the FEniCS Form Compiler

Given that the development of our optimisations are still in progress, we cannot yet make

an effectiveness based comparison with FFC. However, since the optimisations available in

FFC such as tensor contraction based assembly [36] and topological optimisation of assembly

matrices [38] are at the leading edge of finite element research, we consider it important to relate

the similarities and differences between our approach and the FEniCS approach to assembly

optimisation.
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We consider the tensor formulation of local matrix assembly to be a particular choice of fac-

torisation influenced by the structure of the computation. We can represent (and intend to

implement) a similar factorisation that enables us to analyse the structure of the assembly

matrix whilst mainly ignoring the structure of the geometry transformation.

In a similar manner, we consider the transformation to remove quadrature an instance of partial

evaluation of the assembly matrix. We effectively eliminate quadrature in Excafé when we

integrate our matrix of bilinear expressions.

In contrast, Excafé loses the structure of assembly when it flattens its expressions. As a

consequence, the code we generate for assembly will have a rather arbitrary structure, even

if it shares the same floating point operation count as a FFC generated assembly. As FFC

particularly targets this optimisation and its structure, the code to evaluate an assembly matrix

using FEniCS’s tensor contraction representation will be extremely succinct.

Our search for assembly optimisations in Excafé is done without prior knowledge of a specific

structure to exploit. Hence, we consider FEniCS’s topological optimisations of the reference

tensor to have more in common with our approach than the representation of assembly as a

tensor inner product, as it is dependent on the bilinear form being assembled for.

The FEniCS topological optimisations make use of the structure of the tensor contraction

between the reference and geometry tensor. It can be considered as a set of Euclidean inner

products between a single vector formed from the geometry tensor and a number of vectors

formed from the reference tensor.

If two vectors from the reference tensor v and w are scaled versions of the other such that

v = αw, the inner product of one with the geometry vector g can be derived from the inner

product with the other simply by multiplying the result by a constant value e.g. v ·g = α(w ·g).

This is called the co-linearity optimisation.

If two vectors v and w are identical except for ρ entries, the value of the inner product of

one with the geometry vector can be computed from the other by subtracting a partial inner

product using only ρ entries. This is called the Hamming distance optimisation.



182 Chapter 9. Local Assembly Construction and Optimisation

Both the co-linearity and Hamming distance optimisations can be considered special cases of

factorisation on scalar expressions representing an inner product. Hence, we have the ability to

represent each in our framework. We do not need to restrict ourself to these optimisations and

can exploit factorisations that might correspond to a co-linearity optimisation with a partial

inner product, for example. However, our detection of factorisations is purely symbolic.

We believe we can represent a superset of the FEniCS topological optimisations. However, Kirby

et al. state that their use of a minimal spanning tree results in an optimal computation [38]

with respect to the optimisations they can represent. This may be problematic to improve

upon since we currently use a greedy algorithm for our search.

Work by Ølgaard and Wells [54] shows examples where the operation count to evaluate a

variational form using a tensor representation can use hundreds of times more operations than

a quadrature one as well as vice-versa. This suggests that there is still significant scope for

improvement of local assembly strategies.

Both quadrature and tensor based evaluation of local assembly matrices enforce a certain struc-

ture on evaluation strategy. We theorise that this structure comes at the cost of certain lower

bounds on operation count that make evaluating certain classes of variational forms inefficient.

By searching for an evaluation strategy without enforcing any other structure, we hope to be

able to find evaluation strategies that are not representable with other approaches.

9.6 Future Work

We have an optimiser for a local assembly expression matrix that optimises evaluation of

the elements by performing CSE and factorisation on the numerator and denominators of all

constituent rational expressions simultaneously.

Currently, both the numerator and the denominator of these expressions are represented as

expanded polynomials. We intend to modify our expression representation to perform selective

expansion so that we can avoid expanding out geometry related terms and move them into
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separate variables.

Once this is complete, we expect to be able to collect results comparing the number of floating

point operations required to evaluate common forms using quadrature, tensor and Excafé

approaches to assembly. We may also investigate the behaviour of our factorisations with

respect to the problem cases described by Ølgaard et al. [54]

9.7 Conclusion

In this chapter, we have described how we can construct a representation of an assembly

matrix as a set of rational scalar functions of vertex co-ordinates, discrete field coefficients and

referenced scalar values.

Our research into optimising this representation is still being developed. We have a framework

that performs common sub-expression elimination and factorisation on the polynomials that

make up these expressions, described in further detail in Chapter 10.

Currently, our results are not competitive with code generated by the FEniCS form compiler.

We have identified why we believe this is the case and have a strategy for reducing the complex-

ity of the expressions we pass to our optimiser, which we hope will produce improved results

on the smaller search space.

We have compared our optimisation approach to that taken by the FEniCS project for opti-

mising tensor-based evaluation. We have chosen an approach that enforces less structure on

the representation being optimised, which should enable us to find optimisations not repre-

sentable in other frameworks. However, it also requires that we implement algorithms capable

of handling the size of the search space we create, and generate a result of acceptable qual-

ity. Therefore, our future research may also involve improving the algorithms described in

Chapter 10.
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Chapter 10

Polynomial Common Sub-expression

Elimination and Factorisation

In Chapter 9, we mentioned that we search for an optimised evaluation strategy for the set

of rational expressions representing local matrix assembly. To do this, we construct of an

optimised evaluation strategy for the set of polynomial expressions used within those rational

expressions.

To optimise evaluation of our set of polynomial functions, we extend the work of Hosangadi

et al. [1]. The work by Hosangadi et al. was chosen as a basis for our optimisations as

it was particularly tailored to polynomial expressions and could handle multiple polynomials

simultaneously. As this work is applicable outside of the finite element method, we have chosen

to cover it in a dedicated chapter.

10.1 The algorithm

We start by giving an overview of the factorisation algorithm presented by Hosangadi et al. [1]

for the optimising the evaluation of sets of polynomial expressions.

We require the following definitions:

185
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Literal A constant value (e.g. 2.6) or variable (e.g. x).

Cube A product of variables raised to a non-negative integer power (e.g. x2y). This is the

terminology used by Hosangadi et al., and we continue to use it here despite the fact that

a Cube appears to correspond to the conventional definition of a monomial.

SOP An expression represented as a sum of cubes (e.g. 3a2b+ 2ac2).

Cube-Free A SOP is cube-free if the only cube of that can divide every cube in the sum is

the cube “1.0” (e.g. a2b+ cd is cube-free however, a2b+ ac is not as it is divisible by the

cube a).

Kernel For some polynomial P and cube c, an expression P/c is a kernel if it is cube-free and

it has at least two terms. (e.g. letting P = a2bc+ ac makes P/(ac) = ab+ 1 a kernel).

Co-Kernel The cube dividing the polynomial in a kernel expression. In the above example,

this is ac.

We present the algorithm using a worked example. Suppose we wish to optimise simultaneous

evaluation of the following two polynomials (the subscripts denote term numberings):

ab (1) + ac (2) (10.1a)

a2
(3) + ab (4) + d (5) (10.1b)

The first algorithm step computes all kernels of each polynomial:

(ab+ ac)/1 = ab+ ac (10.2a)

(ab+ ac)/a = b+ c (10.2b)

(a2 + ab+ d)/1 = a2 + ab+ d (10.2c)

(a2 + ab+ d)/a = a+ b (10.2d)
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a a2 ab ac b c d

1 0 0 1(1) 1(2) 0 0 0

a 0 0 0 0 1(1) 1(2) 0

1 0 1(3) 1(4) 0 0 0 1(5)

a 1(3) 0 0 0 1(4) 0 0

Figure 10.1: The Kernel Co-Kernel Matrix (KCM) corresponding to the kernels in Equation
List 10.2. Each one in the matrix corresponds to a particular way of evaluating the cube
identified by the subscript in brackets.

Each kernel represents a factorisation of a polynomial P into the form C ∗ F1 + F2 where C is

a cube and F1 and F2 are sums of cubes (F1 must be non-zero). Equation 10.2d, for example,

corresponds to the factorisation a2 + ab+ d = a(a+ b) + d.

We do not describe the algorithm for kernel and co-kernel extraction here, instead we refer

the reader to [1] for full details. Hosangadi et al. show that all minimal factorisations of

a polynomial expression can be obtained from the kernels and co-kernels of the expressions.

Hosangadi et al. define a factorisation as minimal if F1 is cube-free.

The next algorithm step reformulates the list of kernels and co-kernels in matrix form. This is

called the Kernel-Cube matrix or KCM. Each row corresponds to a co-kernel and each column

to a unique cube. The same co-kernel may appear multiple times, if present in kernels from

different polynomials. A matrix entry is equal to one if multiplying the entry’s associated cube

and co-kernel results in a term from the original set of expressions. All other entries are zero.

We show the KCM for our example polynomials in Figure 10.1. Each one in the matrix

corresponds to the term in the original set of polynomials denoted by the subscript in brackets.

The term can be calculated by multiplying the cubes in the row and column labels. Hence, the

KCM matrix describes the different ways in which each term may be evaluated.

A valid factorisation is any sub-matrix formed from a subset of rows and columns of the KCM

matrix, where every entry in the sub-matrix is equal to one. Alternatively, we can imagine a

factorisation as any block of ones in the KCM matrix that can be formed through an arbitrary

permutation of its rows and columns.
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a a2 ab ac b c d

1 0 0 1(1) 1(2) 0 0 0

a 0 0 0 0 1(1) 1(2) 0

1 0 1(3) 1(4) 0 0 0 1(5)

a 1(3) 0 0 0 1(4) 0 0

(a) A KCM covering

The rewritten polynomials:

e+ ac

a2 + e+ d

where:

e = ab

(b) The corresponding factorisation

Figure 10.2: A factorisation of our example polynomials from Equations 10.1 that avoids eval-
uating ab twice.

Having chosen a block of ones, a new variable is defined as the sum of all the cubes (columns)

the block covers. This new variable multiplied by the appropriate co-kernel is substituted into

every polynomial associated with each kernel (row) the block covers.

We show the sub-matrix in Figure 10.2 that corresponds to the factorisation of our example

polynomials. Terms 1 and 4 are replaced by the common expression e.

In order to select the best matrix covering, Hosangadi et al. provide a scoring function for

intersections that attempts to describe the number of multiplications and additions saved.

score =m ∗

(
(C − 1) ∗

(
R +

R∑
i=0

M(Ri)

)
+ (R− 1) ∗

C∑
j=0

M(Cj)

)
+

(R− 1) ∗ (C − 1)

(10.4a)

where:

m is a weighting factor for the number of multiplies,

R is the number of rows (kernels),

C is the number of columns (cubes),

M(Ri) is the number of multiplications in co-kernel i,

M(Cj) is the number of multiplications in cube j



10.2. Optimised branch and bound algorithm 189

We describe our improvements to this scoring function in Section 10.3.

In order to find the best factorisation, a search must be performed to find the covering that

scores the highest with respect to the presented scoring function. Hosangadi et al. do not

describe an algorithm for achieving this, only stating that “we pick the best prime rectangle

in each iteration”. This is then used in an algorithm which greedily extracts intersections

from the KCM and removes the factorised terms, only rebuilding the KCM when no further

intersections can be found from the current one. We present a branch and bound algorithm for

finding intersections that appears to scale effectively to large numbers of cubes and kernels in

Section 10.2.

The final step of the algorithm performs single-term common sub-expression elimination (i.e.

CSE between individual cubes). This is required because the KCM-based optimisation can only

find multiple-term common sub-expressions. This optimisation problem is extremely similar to

that faced by conventional compiler CSE frameworks and does not have the same scaling issues

as multiple-term CSE. Therefore we have not expended effort on attempting to optimise it.

10.2 Optimised branch and bound algorithm

We present the branch and bound algorithm that we use to find the maximum scoring covering

of the KCM matrix.

Firstly, we observe that it is possible to represent the KCM in undirected graph form, treating

the KCM as if it were an adjacency matrix. The rows (kernels with co-kernels) and columns

(cubes) become vertices of the graph and the ones in the matrix become edges. We show the

graph representation of the KCM from Figure 10.1 in Figure 10.3.

As the graph is derived from an adjacency matrix, it is bipartite. Our problem of finding the

maximum scoring covering translates to one of finding the maximum scoring complete bipartite

graph, or biclique. This type of problem is known as a maximum biclique problem.

The complexity of finding a maximal biclique is directly dependent on the function used to
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(ab+ ac)/1

(a2 + ab+ d)/1

(ab+ ac)/a

(a2 + ab+ d)/a

ab

a2

a

ac

b c

d

1

2

1

2

3

4
5

3

4

Figure 10.3: The KCM from Figure 10.1 expressed as a graph. Rectangular nodes denote row-
vertices (kernels) and circular nodes denote columns (cubes). The edges are annotated with
their corresponding term numbers.

.

score the biclique. For example, for a bipartite graph, if the aim is simply to maximise the

number of vertices in the biclique, the algorithm is polynomial time [55]. Finding the biclique

with the maximum number of edges in a bipartite graph is NP-complete [56].

10.2.1 Definitions and Propositions

Before we describe our search algorithm, we require a number of propositions and definitions.

We use the those provided by Liu et al. [57] in their paper on mining large maximal vertex

bicliques.

We use the following definitions:

Undirected graph We define an undirected graph G as as a pair (V,E) where V is a set of

vertices and E is a set of edges between the vertices.

Adjacent Two vertices are adjacent if there exists an edge between them.
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Adjacency List The adjacency list of a vertex v in G = (V,E) is designated as Γ(v,G). It

is defined as the set of vertices adjacent to v {u ∈ V : (u, v) ∈ E}. We also define the

adjacency list of a set of vertices X in G(V,E) such that Γ(X,G) = {u ∈ V : ∀v ∈

X, (u, v) ∈ E}. This requires that each vertex u in Γ(X,G) is adjacent to every vertex in

X. As a consequence the adjacency list has an anti-monotone property.

Bipartite Graph A graph G = (V,E) is bipartite if its vertex set V can be partitioned into

two disjoint non-empty sets V1 and V2 such that no edge in E connects two vertices in V1

or V2. We denote this G = (V1, V2, E).

Biclique A bipartite graph G = (V1, V2, E) is biclique if for every v1 ∈ V1 and v2 ∈ V2 there

exists an edge between them. As all edges can be determined from the graph vertices, we

also denote a biclique G as G = (V1, V2).

We state the following propositions:

Proposition 1. If V1 and V2 are both sets of vertices in G = (V,E) and V1 ⊆ V2 then Γ(V2) ⊆

Γ(V1). This is a consequence of the anti-monotone property of the adjacency list operator.

Proposition 2. If G = (V1, V2, E
′) is a biclique subgraph of G = (V,E) then V1 ⊆ Γ(V2, G)

and V2 ⊆ Γ(V1, G).

10.2.2 Problem Definition

We first quantify our search problem as follows:

• We have a bipartite graph G = (K,C, T ) which is the adjacency list representation of our

KCM. K represents all kernel vertices, C represents all cube vertices, and T represents

the edges corresponding to terms.

• We have a weight function W which given a biclique (V1, V2) computes a score as function

of the vertex set sizes |V1|, |V2| and the multiplication costs of the vertices in each set
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M(v) for v in V1 ∪ V2. Our weight function corresponds to the number of numerical

operations saved so we wish to maximise it. The function W is monotonically increasing

so that given two bicliques B1 = (V1, V2) and B2 = (V3, V4) where B1 ⊆ B2 we have

W (B1) ≤ W (B2).

• We wish to find a biclique subgraph B = (V1, V2) of G such that W (B) is greater than or

equal to any other biclique subgraph of G.

We observe that:

1. Given a set of vertices V ⊆ V1 or V ⊆ V2, where the bipartite graph G = (V1, V2),

(V,Γ(V )) is a biclique subgraph by construction.

2. The biclique subgraph (V1,Γ(V1)) is a superset of all other biclique subgraphs (V1, V2) for

any valid V2.

3. Due to the monotonicity property of W , W ((V1,Γ(V1))) will be greater than or equal to

W ((V1, V2)) for any valid V2.

As a consequence, if (V1, V2) is a maximally scoring biclique then (V1,Γ(V1)) will be a biclique

of the same score. Hence, we can specify our search problem as the search for the vertex set V1

where the value of V2 is implied.

The set of vertices we need to find could either be from the kernels or cubes of our bipartite

graph. We have chosen to search for the set of cube vertices that imply our biclique as we

find it more intuitive although there is no reason why we could not search for a set of kernels

instead.

Given our KCM in adjacency list form G = (K,C, T ), our search space is all sets of vertices

C ′ ⊆ C. Hence, we have an exponentially-sized search space of 2|C| possible bicliques.
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10.2.3 Algorithm

Our search algorithm is a best-first search similar to A* [58] with an admissible heuristic. We

maintain a priority queue of search spaces being explored.

We require that a total ordering be defined on the cube vertices so that v1 < v2 or v2 < v1 for

any two non-identical vertices v1, v2.

We define a search space as a triple:

< C,K, S >

where C is a set of cube vertices.

K is a set of kernel vertices and (C,K) is always the maximal biclique derivable from C. As we

stated earlier, K can always be derived as the value of Γ(C) however, we maintain K explicitly

for efficiency reasons.

S is a cube vertex that we refer to as a split-point. We call it such because this vertex describes

how the triple will be split into two new search spaces when expanded.

Our biclique search algorithm is presented in Algorithm 10.1. For each cube c in our KCM

graph, we construct an initial priority queue of biclique search spaces using c and Γ(c). Our

search algorithm functions by adding more cube-vertices to each maximal biclique candidate,

which in turn reduces the number of kernel-vertices in the biclique. To keep track of our

progress exploring the search space, we also need a way to represent which cube-vertices we

have considered adding to the biclique and which ones are still candidates.

The KCMs produced by our finite-element local assembly optimiser can contain in excess of

tens of thousands of cubes. As our priority list of search spaces may also grow quite large, we

cannot afford to explicitly store the set of cubes that may be added to our biclique and those

we have discounted. Instead, we handle this implicitly:

1. Cube-vertices are considered for addition to the biclique in the order specified by the total

ordering defined earlier on cube-vertices.
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Algorithm 10.1 find maximal biclique(kcm graph)

(K,C, T )← kcm graph
search spaces← empty priority queue()
for all c ∈ C do
search space = (c,Γ(c), find split point(Γ(c), c))
maximum score = find maximum score(search space)
insert into priority queue(search spaces, search space, maximum score)

end for
best biclique← (∅, ∅)
while search spaces is not empty do
search space← pop(search spaces)
if find maximum score(search space) > score(best biclique) then

if splittable(search space) then
(C,K, S)← search space
C ′ ← C ∪ {S}
K ′ ← K ∩ Γ(S)
new space1 ← (C,K, find split point((K,S))
new space2 ← (C ′, K ′, find split point((K ′, S))
new max score1 ← find maximum score(new space1)
new max score2 ← find maximum score(new space2)
if K ′ 6= K then

insert into priority queue(search spaces, new space1, new max score1)
end if
insert into priority queue(search spaces, new space2, new max score2)

end if
if score(best biclique) < score((C,K)) then
best biclique← (C,K)

end if
end if

end while
return best biclique
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2. Cube-vertices less than the split-point vertex are assumed to have already been considered

for addition to the biclique. Cube-vertices greater than or equal to the split point are

candidates for addition to the biclique.

Hence, we only need to store a single cube-vertex, the split-point, in order to know which

cube-vertices are candidates for addition to a given biclique. Each time we examine a biclique

we form two new bicliques, one where the split-point has been added to the biclique, and one

where it isn’t. Each time we add a new cube-vertex c to our biclique’s cube-vertex set C, we

do not need to recalculate Γ(C) to find our set of kernel-vertices K. Instead K can be updated

incrementally, by taking the intersection with Γ(c).

Due to the anti-monotone property of Γ, each cube-vertex added to a biclique causes the set

of kernel-vertices to either remain the same size, or grow smaller. If adding a cube-vertex c

to a biclique B does not cause the set of kernel-vertices to become smaller, we do not need

to consider the search space for bicliques derived from B where we choose not to add c. This

is due to the fact that adding c to to the biclique does impose any additional restrictions on

our search space, and we always prefer to form the larger biclique. In matrix-covering terms, if

adding a column to an existing covering doesn’t reduce the number of rows, there is no need to

consider excluding that column. Algorithm 10.1 shows how the choice of adding a cube-vertex

to a biclique may result in either one or two new search spaces.

The KCM graphs we generate in some of our finite-element problems have tens or hundreds of

thousands of kernel and cube vertices but sparse connectivity. Hence, even though there may be

thousands of candidate cube-vertices for addition to a given biclique, only a significantly smaller

proportion of them will not cause the biclique’s set of kernel-vertices to collapse. Considering

the cube-vertices that do cause the biclique to collapse is computationally inefficient.

The only cube-vertices that can be added to a biclique without causing it to collapse are cube-

vertices already adjacent to at least one vertex in the biclique’s kernel-vertex set. Hence, the

only cube vertices worth considering are those that are a member of Γ(k) for some k ∈ K

where K is the biclique’s set of kernel-vertices. In Algorithm 10.2 we show how we traverse
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each cube-vertex greater than the split-point and adjacent to at least one kernel-vertex when

finding the next split-point. In this way, we trim our biclique search spaces of cubes that cause

them to collapse.

Algorithm 10.2 find split point(kernels, old split point)

split point← null vertex
for all kernel ∈ kernels do

for all cube ∈ Γ(kernel) do
if split point = null vertex or old split point = null vertex or (c < split point and
c > old split point) then
split point = c

end if
end for

end for
if split point 6= null vertex then

return split point
else

error “search space exhausted”
end if

Our find maximum score function is the equivalent of an admissible heuristic in an A*

search. We need to always exactly or over-estimate the score of the biclique we may derive

from a biclique being grown in order for our algorithm to find the maximal biclique. We also

want this estimate to be as close to the true value as possible so we can prune search spaces

if the maximum possible score we can obtain is smaller than that of a biclique we’ve already

found.

In order to estimate the maximum score of the biclique that can be derived from an existing

biclique, we require the sizes of the kernel-vertex and cube-vertex sets, and the multiplication

costs of those vertices. By definition, our kernel-vertex sets either remain the same size or

grow smaller as the biclique is grown, so they provide a sufficient upper bound for those values.

As for the cube-vertex set, any cube-vertex adjacent to one of the vertices in the biclique’s

kernel-vertex set could be present in the final biclique.

We already observed that the only cube-vertices worth adding to the biclique are adjacent to at

least one of the biclique’s kernel-vertices. In addition, we observe that for some biclique (C,K)

C = {c | ∀k ∈ K, c ∈ Γ(k)}
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i.e. the cube-vertex set is equal to the intersection of the adjacency sets of each kernel-vertex

(the reciprocal is also true). This implies that for any biclique (C ′, K ′) derived from (C,K),

there is at least one k ∈ K such that C ′ ⊆ Γ(k) as K ′ ⊆ K. As we do not know which members

of K will be in the final biclique, we estimate C ′ as:

C ∪ {c | c ∈ Γ(k), c ≥ S}

where S is the split-point of the biclique being grown. We do this for each k ∈ K and take the

maximum value. We show this in Algorithm 10.3.

Algorithm 10.3 find maximum score(search space)

maximum score← 0
(C,K, S)← search space
for all kernel ∈ K do
candidate cubes← {c | c ∈ Γ(kernel), c ≥ S}
local score← score(C ∪ candidate cubes,K)
if local score > maximum score then
maximum score← local score

end if
end for

10.3 Improved weighting function

In this section we describe how the weight function presented by Hosangadi et al. [1] can be

improved further. We start by describing the construction of the original weight function from

Equation 10.4.
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. . . c1 c2 . . . cC . . .
... . . . . . . . . . . . . . . . . . .

k1 . . . c1k1 c2k1 . . . cCk1 . . .

k2 . . . c1k2 c2k2 . . . cCk2 . . .
... . . .

...
...

. . .
... . . .

kR . . . c1kRc2kR . . . cCkR. . .
... . . . . . . . . . . . . . . . . . .

Figure 10.4: An abstract Kernel Co-Kernel matrix with a covering of R co-kernels (rows) and
C cubes (columns). The computed expressions are shown inside the intersection.

10.3.1 The original weighting function

We consider the KCM in Figure 10.4. The biclique represents a number of subexpressions of

an expanded polynomial:

c1k1 + c2k1 + . . .+ cC−1k1 + cCk1 (10.5a)

c1k2 + c2k2 + . . .+ cC−1k2 + cCk2 (10.5b)

. . . (10.5c)

c1kR + c2kR + . . .+ cC−1kR + cCkR (10.5d)

extracting the common factor as f gives:

k1f (10.6a)

k2f (10.6b)

. . . (10.6c)

kRf (10.6d)

f = c1 + c2 + . . .+ cC−1 + cC (10.6e)
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We can see that the evaluation of the non-factorised version requires:

R∑
i=0

M(ki) multiplies to evaluate all co-kernels, repeated for every column giving C ∗
R∑
i=0

M(ki)

multiplies.

C∑
j=0

M(cj) multiplies to evaluate all cubes, repeated for each row giving R∗
C∑
j=0

M(cj) multiplies.

R ∗ C multiplies to multiply each cube by each co-kernel.

C − 1 additions for each row giving R ∗ (C − 1) additions in total.

giving:

flopsunfactorised = C ∗ (R +
R∑
i=0

M(ki)) +R ∗
C∑
j=0

M(cj) +R ∗ (C − 1)

floating point operations to evaluate the non-factorised intersection. After factorisation, we

require:

R∑
i=0

M(ki) multiplies to evaluate all co-kernels, only performed once.

C∑
j=0

M(cj) multiplies to evaluate all cubes, only performed once.

R multiplies to multiply the value of f by each co-kernel.

C − 1 additions to evaluate the new term f .

giving:

flopsfactorised = R +
R∑
i=0

M(ki) +
C∑
j=0

M(cj) + (C − 1)

The score function represents the number of floating point operations saved:

score = flopsunfactorised − flopsfactorised

10.3.2 Improving the weighting function

In this section, I show the problems with the weighting function presented by Hosangadi et al.

and how it may be improved.
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a b

1.0 1 1

Figure 10.5: The KCM for the expression a + b. The covering corresponds to the useless
factorisation 1.0(a+ b) as it is impossible to reduce the operation count of this expression.

a2 ab a b

1.0 1 1 0 0

a 0 0 1 1

Figure 10.6: The KCM for the expression a2 + ab. The covering shown corresponds to the
factorisation a(a+ b).

We consider the non-factorisable expression a+b. We show a covering corresponding to factori-

sation in Figure 10.5. Clearly, this factorisation will not reduce the operation count. However,

according to the weight function presented by Hosangadi et al., it reduces the operation count

by one.

The problem is that according to our weight function, the factorisation reduces the operation

count by avoiding one multiplication with the co-kernel, 1.0. Instead, the factorisation will

simply create a new variable equal to the original expression. Furthermore, the weight function

will also show that it can reduce the operation count of this expression, and factorisation will

continue forever.

There are two obvious ways to solve this problem:

1. Avoid considering co-kernels whose value is 1.0.

2. Adjust our weighting function for this case so that it reflects the true number of operations

saved, 0.

The first solution is problematic since it prevents factorisations involving any kernels whose

co-kernel is one, resulting in missed factorisations. We will show that second solution is also

problematic, since fixing the scoring function for this case will also result in missed factorisa-

tions.
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Kernel
one constant variable

Co-Kernel
one 0 0 0

constant 0 0 1
variable 0 1 1

Figure 10.7: Number of multiples required to evaluate a term from its cube and co-kernel when
they are either 1.0, any other constant value or a variable.

We show the KCM for the expression a2 + ab in Figure 10.6. This time, we have a desirable

factorisation. However, the covering has an identical score to that from Figure 10.5. Any

modification to the scoring function that prevents infinite factorisations on the expression a+ b

will miss the factorisation of a2 + ab.

It is impossible to construct any scoring function that meets these criteria unless the terms

1.0 and a are treated differently. The Hosangadi et al. algorithm treats them identically (i.e.

literals that require no multiplies to evaluate). By distinguishing between the 1.0 literal and

other cases, we can construct a weighting function that more accurately reflects the number

of multiplies saved. However, we can take this even further by identifying cases where the

cube and co-kernel are both constant values. The majority of compilers will perform this at

compile-time (or the expression can be rewritten) so that no multiply operation is performed

at all.

In order to fix the weighting function, we can no longer assume that evaluating a term from its

cube and co-kernel always requires one multiply. Figure 10.7 shows the number of multiplies

required to evaluate a term from its cube and co-kernel. By comparison, the Hosangadi et al.

weighing function is equivalent to all entries in the table being equal to 1.

In unfactorised form, we assumed that the number of multiplies required to evaluate our terms

from their kernels and co-kernels was C ∗ R (the number of entries in the covering). Instead,

we approximate this as:

Cvariable ∗Rvariable + Cconstant ∗Rvariable + Cvariable ∗Rconstant

In factorised form, we assumed that R multiplies were required to multiply the factorised term

f by each co-kernel. Instead, this becomes:
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Rconstant +Rvariable

Our improved weight function:

scoreimproved =(C − 1) ∗
R∑
i=0

M(Ri) + (R− 1) ∗
C∑
j=0

M(Cj)+

(R− 1) ∗ (C − 1)+

Rvariable(Cvariable + Cconstant − 1) +Rconstant ∗ (Cvariable − 1)

(10.7)

10.4 Experimental Results

As the performance of our factorisation pass is highly dependent on the structure of the expres-

sions operated on, we do not currently have a way of objectively quantifying its performance.

Instead, we present a rough idea of its performance behaviour using the local assembly matrices

we have generated in our Navier-Stokes solver.

Our Navier-Stokes assembly matrix is for a coupled system using a quadratic velocity field (6

nodes x 2 dimensions = 12 DOFs) and a linear pressure field (3 DOFs) giving an assembly matrix

of 15x15=225 elements. Each element is a rational function represented using two polynomials,

giving 450 polynomials to factorise initially. We note that many of the denominators will be

identical.

Our initial set of expressions has 1611 literals, 21 of which are variables, the rest being constants.

Of the 21 variables, 6 are vertex positions, 3 are scalars and 12 are basis function coefficients

from the previous velocity field.

We present statistics in Table 10.1 for our factoriser. We show the number of kernels, cubes

and non-zero values (terms) in the KCM matrix at each iteration. We also show the number of

floating point operations required to evaluate our polynomials before factorisation, the number

of floating point operations saved by our choice of factorisation and the time taken to find it.

Each factorisation results in a new term being added to the set of polynomials, causing the
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Iteration Poly-
nomial
Count

Kernels
in
KCM

Cubes
in
KCM

Terms
in
KCM

Total FLOPs
to evaluate
polynomials

FLOPs saved
by factorisa-
tion

Time to find
factorisation
(seconds)

1 450 50787 87466 333241 80834 8484 1.02835
2 451 41137 90504 271729 72350 8104 0.91792
3 452 33439 93545 217639 64246 3776 0.754398
4 453 30392 95091 195233 60470 3754 0.693411
5 454 27173 96690 173100 56716 3698 0.634616
6 455 22687 98202 149460 53018 3698 0.504207
7 456 19680 99718 130144 49320 3434 0.46729
8 457 17088 101414 113189 45886 3154 0.421542
9 458 15109 103034 100422 42732 1321 0.389409

10 459 14413 103056 97187 41411 755 0.41561
11 460 13682 103078 91054 40656 657 0.416083
12 461 13527 103080 89166 39999 657 0.411966
13 462 13372 103082 87287 39342 643 0.410865
14 463 13218 103084 85640 38699 636 0.405262
15 464 13060 103086 84026 38063 629 0.397605

Table 10.1: Time taken for our algorithm to find the maximum scoring covering for the first
15 iterations of our factoriser. We also present statistics on the dimensions and sparsity of the
kernel cube matrix (KCM) and the reduction in floating point operations each iteration.

number of polynomials to increase each iteration. We present a graph showing the decrease in

FLOP count for the first 500 iterations of the factoriser in Figure 10.8.

For our Navier-Stokes assembly matrix, total time to execute the factoriser including overheads

(such as rebuilding the KCM each iteration) was 225 seconds. Factorisation finishes on iter-

ation 1287 giving 1736 polynomials for this instance and a final FLOPs value of 8147. This

might seem surprising given that it is a reduction of almost 10x over the initial FLOPs value of

80834, however, we note that expanded polynomial form is an extremely inefficient way to eval-

uate expressions. We also note that since our vertex numbering is non-deterministic, different

factorisations may occur on different runs when two bicliques score the same value.

Our test system had a 3.6 Ghz Pentium 4 processor with 2MB L2 cache and 2GB RAM. It was

running Ubuntu 10.04 (Lucid Lynx), 32-bit. Our factoriser (as well as the rest of Excafé) was

compiled with g++ 4.4.3 with ‘-O2’ optimisation.
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Figure 10.8: The number of floating point operations required to evaluate the local assembly
matrix polynomials generated by the Excafé Navier-Stokes solver, for the first 500 iterations
of our polynomial CSE pass. It does not include the division operations required to evaluate
the rational functions from their constituent polynomials (225).

10.5 Conclusion

We have presented an extension to the work of Hosangadi et al. for performing common sub-

expression and factorisation on sets of polynomial expressions. We show how the covering

scoring function presented by Hosangadi et al. may lead to infinite recursion due to misestima-

tion of expression operation count and that a truly representative function requires the ability

to distinguish between different types of literal.

We also describe an algorithm for finding a maximum scoring covering of the kernel cube

matrix. It reformulates the covering problem by representing the KCM as a bipartite graph

and searching for the maximal scoring biclique. Properties of bipartite graphs are used to place

bounds on the maximum score an existing biclique may be grown to and the candidate vertices

to be added to the biclique, allowing the search space to be pruned.
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10.6 Future Work

Despite our improvements to the covering scoring function and biclique search algorithm, the

Hosangadi et al. algorithm is still greedy. Further work is required to see if it is possible to

produce an algorithm with better heuristics or guarantees on the quality of factorisation. Such

as algorithm might be derived from the Hosangadi et al. work, or a generalisation of other

work on developing efficient evaluation strategies for individual polynomials.
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Chapter 11

Conclusion

We conclude in this chapter by examining how this thesis supports the contributions it claims,

followed by a discussion of what we consider important and novel about our investigation and

the insights that can be drawn. We close with a discussion of future work.

11.1 Summary of Thesis Achievements

We review our contributions from Section 1.3.

• We present the extension of our delayed-evaluation runtime code-generation library “Des-

ola” to sparse linear algebra.

We present our extension of Desola to sparse linear algebra in Section 3.8. In Sec-

tion 3.8.2 we present two variants of code generation for performing iteration over the

elements of a sparse matrix stored in CSR format. Desola was modified to generate

both these variants. We also explore specialisation of our generated code to the most

frequent matrix row lengths.

• We show that some of the important optimisations applied to our dense linear iterative

solvers are also applicable to our sparse ones. We also show that these optimisations

207
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are beyond the automatic optimisation capabilities of modern compilers and require a

generative approach in order to be implemented effectively.

In Section 3.8.2 we show a code fragment to illustrate the effect of our SUIF-level loop

fusion pass on two parse matrix-vector multiplies. The pass successfully fuses the outer

loop, but is unable to handle the inner loop as it has non-constant bounds.

We discuss the implementation of an optimisation pass specifically designed to fuse

matrix-vector multiplies together and a new node type in the Desola expression DAG

designed to represent them. After applying this pass, we can generate code for the fused

sparse matrix-vector multiplies directly, showing how we have used knowledge of sparse

matrix iteration to generate code containing optimisations beyond that of a conventional

compiler.

• We present new performance results of sparse linear iterative solvers implemented using

the Intel Math Kernel Library against our extended Desola implementation.

We present results from our set of sparse linear iterative solvers running on matrices from

the University of Florida sparse matrix collection in Section 3.8.4. We collect results for

multiple variants of code-generation as well as for the same Iterative Template Library

solvers using the Intel Math Kernel Library for all computational kernels. As solver

performance is directly dependent on sparse matrix structure, we require different graphs

for each solver-matrix combination. We provide full results in Appendix B.

• We present the design and implementation of a C++ finite element library that performs

expression capture of multiple aspects of the finite element method.

We provide an overview of Excafé in Chapter 4 and describe in detail the more novel

aspects of Excafé’s expression capture in Chapter 6. We discuss Excafé’s handling of

local assembly in detail in Chapter 9. We also discuss some of Excafé’s design decisions

in Appendix C and document some of the data structures it uses in Appendix D.

• We show that expression capture of certain aspects of the finite element method enables

analyses and optimisations not possible in other finite element implementations. We
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present an optimisation framework for the evaluation of local assembly matrices and com-

pare against the state of the art.

We describe Excafé’s optimisation strategy and implementation for local assembly ma-

trices in Chapter 9. Our expression capture has allowed us to analyse local assembly

matrices in terms of rational scalar functions of cell vertices and other independent vari-

ables as well as observing the effect our basis functions have on this representation. We

also compare the optimisations we expect should be possible with this framework to those

explored by the FEniCS project [38]. We have not yet identified any optimisations unique

to this framework however, research is ongoing.

• We extend the work of Hosangadi et al. [1] for common sub-expression elimination of

polynomials. We present improvements to the original factorisation weighting function

that further reduce the operation count of our factorised expressions. We reformulate

the primary problem of finding a maximally weighted matrix covering as a graph biclique

search problem and present a branch-and-bound algorithm optimised for the presented

weight function through insights into the graph structure.

We present our work on extending polynomial factorisation and common sub-expression

elimination of polynomials as the mostly self-contained Chapter 10. Hosangadi et al. did

not present an algorithm for finding the maximal KCM matrix covering so we constructed

one that remains optimal but also scales to the problem sizes we wish to deal with. We

give some idea of those sizes and our algorithm’s performance in Section 10.4.

We also show that the covering scoring function presented by Hosangadi et al. can lead

to infinite recursion. We present a new scoring function that more accurately reflects

the number of floating point operations saved by a factorisation and show that it is only

possible to define this function if additional information about whether the expression

literals are actually variables or constant values is known.
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11.2 Discussion

One insight from extending Desola to support sparse code generation was the importance of

the representation at which optimisations are performed. From a more abstract perspective, it

is obvious that two or more matrix-vector multiplies using the same matrix should be able to

be carried out simultaneously with reuse of matrix elements regardless of its storage format.

However, when performing these optimisations at lower level, that of the code generator, finding

these optimisations becomes harder. The dense matrix-vector multiply is trivial for our SUIF

pass to optimise, but it was unable to completely fuse a sparse matrix-vector multiply. Given

some other matrix representation, it might have been impossible. This provides evidence that

a generative approach is required for effectively achieving optimisations using active libraries.

A major distinction between the design of Desola and Excafé is that Excafé explicitly

makes it clear that it is performing expression capture. In trying to remain transparent, Desola

was forced to work with incomplete information about the problem being solved, and could only

use low-overhead analyses. By explicitly capturing all the information needed to specify a finite

element problem, Excafé inherits none of these restrictions.

Another notable distinction is Excafé’s declarative loop syntax. Many C++ embedded ex-

pression capture schemes will tend to resemble code that could have been written directly in

C++ to do the same thing, albeit less efficiently. In contrast, Excafé’s declarative loop syn-

tax provides an abstraction that otherwise would completely exist outside the scope of a C++

program. Hence, Excafé has used expression capture not just to obtain a description of a

computation, but as a tool to provide a level of abstraction that would otherwise be impossible.

It is debatable whether we have chosen an appropriate level of representation for our investi-

gation into the optimisation of local assembly matrix computation. After all, by representing

each element as an independent scalar rational function, we have lost all loop structure related

to the various tensor products that are used during the computation of the bilinear forms.

However, work by Ølgaard and Wells [54] seems to show that the structures of tensor-based

and quadrature-based computations inhibit optimisations in certain instances.
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Kirby et al. [38] demonstrate an algorithm that is optimal in some sense with respect to the

optimised execution strategy it can produce for evaluating a local assembly matrix. Yet, work

by Ølgaard and Wells shows that tensor based evaluation may require hundreds of times more

operations than a quadrature based assembly in some cases.

In choosing such a flexible representation, we have set ourselves the opposite problem. We

should be able to represent a superset of other optimisations in our representation, but as

it is so unstructured, the challenge is the construction of an algorithm that can effectively

restructure the representation to an efficient evaluation plan.

We consider how this investigation should progress in the next section.

11.3 Future Work

The declarative loop syntax provided by Excafé is sufficient for our Navier-Stokes problem, but

should be tested for other examples to gauge applicability. We also intend to extend Excafé

so that the declarative iteration syntax can also be used for time-stepping. Additionally, we see

no reason why the same syntax cannot be used for the specification of iterative linear solvers.

Although we have shown algorithms for inferring loop nesting, and detecting invalid iteration

specifications, we do not have a formal specification of how the syntax should behave nor proofs

of correctness. These would be of great benefit towards providing confidence that the inferred

loop structure is actually the one desired.

Our other future work revolves around optimisation of the evaluation of the local assembly ma-

trix. We have theorised that by reducing the size of of our local assembly expressions, through

avoiding the full expansion of cell-geometry related terms, we can reduce our optimisation

search space. If our factorisation algorithms perform effectively on this representation, we have

a basis with which to investigate further optimisations.

Should our factorisation algorithms not perform effectively, it is possible that further improve-

ments can be made to increase the quality of the result, or that existing optimisation algorithms
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for evaluating single multi-variate polynomials can be extended.

Lastly, we would like to consider a more structured approach to optimisation, that still provides

more flexibility than basing evaluations around a particular rearrangement of variational forms.

It may be possible to apply techniques and models from the Tensor Contraction Engine [59],

which can synthesise high-performance code for evaluating tensor contractions, to the tensor

operations used to evaluate local assembly terms.
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Appendix A

Desola Dense Performance Results

The benchmark architectures were:

1. Intel Xeon “Clovertown” processor running at 2.66GHz, 4096 KB L2 cache with 4 GB

RAM running 64-bit Ubuntu 8.10.

2. Pentium IV “Prescott” processor running at 3.2GHz with Hyper-threading disabled, 2048

KB L2 cache with 2 GB RAM running 32-bit Ubuntu 8.10.
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Figure A.1: Throughput of different implementations of the BiConjugate Gradient solver on
our test architectures.



223

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000

M
F

L
O

P
s

Matrix Size

DESOLA with fusion, contraction
MTL

ATLAS
IMKL

(a) architecture 1

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000

M
F

L
O

P
s

Matrix Size

DESOLA with fusion, contraction
MTL

ATLAS
IMKL

(b) architecture 2

Figure A.2: Throughput of different implementations of the BiConjugate Gradient Stabilised
solver on our test architectures.
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Figure A.3: Throughput of different implementations of the Conjugate Gradient Squared solver
on our test architectures.
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Figure A.4: Throughput of different implementations of the Quasi-Minimal Residual solver on
our test architectures.
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Figure A.5: Throughput of different implementations of the Transpose-Free Quasi-Minimal
Residual solver on our test architectures.
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Desola Sparse Performance Results

The benchmark architectures were:

1. Intel Xeon “Clovertown” processor running at 2.66GHz, 4096 KB L2 cache with 4 GB

RAM running 64-bit Ubuntu 8.10.

2. Pentium IV “Prescott” processor running at 3.2GHz with Hyper-threading disabled, 2048

KB L2 cache with 2 GB RAM running 32-bit Ubuntu 8.10.

B.1 BiConjugate Gradient Solver
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Figure B.1: Time to execute 256 iterations of the BiConjugate Gradient solver with matrix
rajat26 on our test architectures.
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Figure B.2: Time to execute 256 iterations of the BiConjugate Gradient solver with matrix
rajat31 on our test architectures.
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Figure B.3: Time to execute 256 iterations of the BiConjugate Gradient solver with matrix
ex11 on our test architectures.
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Figure B.4: Time to execute 256 iterations of the BiConjugate Gradient solver with matrix
torso1 on our test architectures.
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Figure B.5: Time to execute 256 iterations of the BiConjugate Gradient solver with matrix
Chebyshev4 on our test architectures.
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Figure B.6: Time to execute 256 iterations of the BiConjugate Gradient solver with matrix
ASIC 680k on our test architectures.



234 Appendix B. Desola Sparse Performance Results

B.2 BiConjugate Gradient Stabilised Solver
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Figure B.7: Time to execute 256 iterations of the BiConjugate Gradient Stabilised solver with
matrix rajat26 on our test architectures.



236 Appendix B. Desola Sparse Performance Results

0

100

200

300

400

500

600

T
im

e
(s

ec
on

d
s)

identity bicgstab on matrix rajat31 (nnz=20316253, rows=4690002, nnz/row=4.3318)

F=fusion, HLF=high-level fusion, C=contraction, S=specialisation, L=liveness
Compilation overhead

Desola (inner-while)
Desola (inner-for)

Desola (inner-for) w. F
Desola (inner-for) w. HLF

Desola (inner-for) w. HLF, C
Desola (inner-for) w. HLF, C, S

Desola (inner-for) w. HLF, C, S, L
MTL

Intel MKL

(a) architecture 1

0

50

100

150

200

250

300

350

T
im

e
(s

ec
on

d
s)

identity bicgstab on matrix rajat31 (nnz=20316253, rows=4690002, nnz/row=4.3318)

F=fusion, HLF=high-level fusion, C=contraction, S=specialisation, L=liveness
Compilation overhead

Desola (inner-while)
Desola (inner-for)

Desola (inner-for) w. F
Desola (inner-for) w. HLF

Desola (inner-for) w. HLF, C
Desola (inner-for) w. HLF, C, S

Desola (inner-for) w. HLF, C, S, L
MTL

Intel MKL

(b) architecture 2

Figure B.8: Time to execute 256 iterations of the BiConjugate Gradient Stabilised solver with
matrix rajat31 on our test architectures.
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Figure B.9: Time to execute 256 iterations of the BiConjugate Gradient Stabilised solver with
matrix ex11 on our test architectures.
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Figure B.10: Time to execute 256 iterations of the BiConjugate Gradient Stabilised solver with
matrix torso1 on our test architectures.
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Figure B.11: Time to execute 256 iterations of the BiConjugate Gradient Stabilised solver with
matrix Chebyshev4 on our test architectures.
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Figure B.12: Time to execute 256 iterations of the BiConjugate Gradient Stabilised solver with
matrix ASIC 680k on our test architectures.
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B.3 Conjugate Gradient Squared Solver



242 Appendix B. Desola Sparse Performance Results

0

1

2

3

4

5

6

T
im

e
(s

ec
on

d
s)

identity cgs on matrix rajat26 (nnz=249302, rows=51032, nnz/row=4.8852)

F=fusion, HLF=high-level fusion, C=contraction, S=specialisation, L=liveness
Compilation overhead

Desola (inner-while)
Desola (inner-for)

Desola (inner-for) w. F
Desola (inner-for) w. HLF

Desola (inner-for) w. HLF, C
Desola (inner-for) w. HLF, C, S

Desola (inner-for) w. HLF, C, S, L
MTL

Intel MKL

(a) architecture 1

0

1

2

3

4

5

6

7

T
im

e
(s

ec
on

d
s)

identity cgs on matrix rajat26 (nnz=249302, rows=51032, nnz/row=4.8852)

F=fusion, HLF=high-level fusion, C=contraction, S=specialisation, L=liveness
Compilation overhead

Desola (inner-while)
Desola (inner-for)

Desola (inner-for) w. F
Desola (inner-for) w. HLF

Desola (inner-for) w. HLF, C
Desola (inner-for) w. HLF, C, S

Desola (inner-for) w. HLF, C, S, L
MTL

Intel MKL

(b) architecture 2

Figure B.13: Time to execute 256 iterations of the Conjugate Gradient Squared solver with
matrix rajat26 on our test architectures.
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Figure B.14: Time to execute 256 iterations of the Conjugate Gradient Squared solver with
matrix rajat31 on our test architectures.
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Figure B.15: Time to execute 256 iterations of the Conjugate Gradient Squared solver with
matrix ex11 on our test architectures.
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Figure B.16: Time to execute 256 iterations of the Conjugate Gradient Squared solver with
matrix torso1 on our test architectures.
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Figure B.17: Time to execute 256 iterations of the Conjugate Gradient Squared solver with
matrix Chebyshev4 on our test architectures.
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Figure B.18: Time to execute 256 iterations of the Conjugate Gradient Squared solver with
matrix ASIC 680k on our test architectures.
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B.4 Quasi-Minimal Residual Solver
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Figure B.19: Time to execute 256 iterations of the Quasi-Minimal Residual solver with matrix
rajat26 on our test architectures.
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Figure B.20: Time to execute 256 iterations of the Quasi-Minimal Residual solver with matrix
rajat31 on our test architectures.
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Figure B.21: Time to execute 256 iterations of the Quasi-Minimal Residual solver with matrix
ex11 on our test architectures.
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Figure B.22: Time to execute 256 iterations of the Quasi-Minimal Residual solver with matrix
torso1 on our test architectures.
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Figure B.23: Time to execute 256 iterations of the Quasi-Minimal Residual solver with matrix
Chebyshev4 on our test architectures.
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Figure B.24: Time to execute 256 iterations of the Quasi-Minimal Residual solver with matrix
ASIC 680k on our test architectures.
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Figure B.25: Time to execute 256 iterations of the Transpose-Free Quasi-Minimal Residual
solver with matrix rajat26 on our test architectures.
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Figure B.26: Time to execute 256 iterations of the Transpose-Free Quasi-Minimal Residual
solver with matrix rajat31 on our test architectures.
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Figure B.27: Time to execute 256 iterations of the Transpose-Free Quasi-Minimal Residual
solver with matrix ex11 on our test architectures.
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Figure B.28: Time to execute 256 iterations of the Transpose-Free Quasi-Minimal Residual
solver with matrix torso1 on our test architectures.
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Figure B.29: Time to execute 256 iterations of the Transpose-Free Quasi-Minimal Residual
solver with matrix Chebyshev4 on our test architectures.
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Figure B.30: Time to execute 256 iterations of the Transpose-Free Quasi-Minimal Residual
solver with matrix ASIC 680k on our test architectures.
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Appendix C

Excafé Library Design Notes

C.1 Introduction

One aim of my thesis is to explore the optimisation space present in the implementation of

finite element solvers. In order to do this, I decided to construct a library for expressing and

solving partial differential equations using the finite element method.

My work with Desola demonstrated the importance of being able to optimise components

within a given context. This is especially important when providing usable abstractions to

the user as these abstractions tend to expose elemental operations which cannot be optimised

effectively in isolation.

My library has the following design goals:

• Capture as much information as possible about the steps involved in specifying and solving

a finite element problem.

• Provide abstractions to the library user that correspond naturally to the abstractions

used in specifying and solving finite-element problems in the mathematical domain.

In this context, capture has an extremely specific meaning. If a library provides facilities to

express a computation using domain-specific abstractions, one could consider the essence of

263
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that computation to have been captured in that code. However, the computation itself may

still be opaque to that library. When we capture an expression, we mean that the computation

has been exposed to the library in such as way that it has the ability to analyse and optimise

that expression.

I will describe the various considerations weighed during the design of the library. Unsur-

prisingly, there is considerable overlap between these considerations and those involved in the

development of other finite element libraries. However, the fact we want to capture certain

operations rather than simply execute them leads to differing requirements. For a discussion of

the requirements for data structures for hp adaptive finite element methods we refer the reader

to Bangerth et al. [60]. For my investigation, I do not consider adaptivity, but other aspects of

the analysis are relevant.

C.2 Problem Context

For our captured representation, it is important that we have a data structure that stores or

contains a reference to all information about the finite element problem being solved. This

structure should provide mechanisms to access all aspects of the finite element problem being

modelled, and provides an appropriate place to store results of analyses and optimisations.

Our problem context should contain:

A mesh This is the mesh on which all our partial differential equations will be spatially dis-

cretised.

Finite element function spaces Our discretised finite element function spaces consist of a

bounded subset of our mesh and a choice of basis functions.

Discretised tensor fields Discretised representations of tensor fields we use (e.g. a scalar

pressure field). We also wish to be able to represent composite fields (i.e. fields composed

from sub-fields). These are useful, for example, when solving for pressure and velocity

simultaneously in the coupled Navier-Stokes equations.
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Position field The position field defines mapping from a co-ordinate specified in terms of a

local position on a cell to a global co-ordinate. This transform itself can be described as

a vector-field defined over our mesh and we can use our finite element basis functions to

define it.

Boundary conditions For our problem to be well-posed, it is often necessary to provide

boundary conditions. These are typically described as a subset of the boundary of our

domain and a function specifying the value a field should take on the boundary.

Field update operations These refer to any operations that update the value of our dis-

cretised fields. In a time-dependent simulation, these would typically be the operations

required to calculate the value of our fields at a new time-step. However, we may wish

to capture operations required for setting up the initial fields, or multiple techniques for

advancing our system.

Capturing field update operations will involve the capture of:

1. Linear and bilinear forms used to assemble discrete fields and operators.

2. Linear algebra between discretised fields and operators (represented as vectors and

matrices).

3. Iteration required by the solution step. For example, in the Navier-Stokes equations,

Picard iteration can be used to linearise the convective acceleration term.

C.3 Mesh Representation

We identify the following requirements for our mesh representation. None of these are particular

to our expression capture. In this context, the term mesh entity refers to elements of our mesh

such as cells, facets, vertices or edges.

Global mesh entity iteration We frequently need to iterate over all entities of a particular

type in our mesh. For example, iteration over all cells or facets in a mesh to evaluate cell
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and facet integrals for global assembly. When we render a mesh, we require the ability

to iterate over every vertex in our mesh.

Local mesh entity iteration We also require the ability to iterate over all mesh entities

adjacent to a given mesh entity. For example, when we define a continuous field, we need

to determine which cells share degrees-of-freedom. If we associate degrees-of-freedom with

particular mesh entities, we can work out which cells share them by iterating over all cells

adjacent to that entity.

Logg describes a representation for meshes that supports efficient implementation of these

abstractions [61].

C.4 Finite Element

The finite element representation is the most important part of our design. All fields used in

our solver will be discretised as coefficients of basis functions defined by the finite element.

We identify the following requirements for our finite element class.

True tensor-valued elements We observe that in many instances, vector and tensor-valued

basis functions have been built by duplicating scalar basis functions for each tensor ele-

ment. Restricting basis functions to this form enable certain sparsity related optimisations

when evaluating local assembly matrices.

However, we wish to be able to support arbitrary vector and tensor valued elements such

as the Raviart-Thomas [48] element.

Expression-capture of basis functions We wish to be able to perform expression capture

of basis functions. In a conventional finite element library, this is impossible. Typically,

the library will only support evaluating the basis function and derivatives at specified

points.
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As we wish to optimise local assembly and evaluation of these functions, it is important

that we can analyse the underlying formulae used to compute the basis function values.

Shared degree-of-freedom resolution If our basis functions are used to define a continuous

field, then the degrees-of-freedom that are co-efficients for our basis functions will be

shared between cells. Given local degrees-of-freedom specified on adjacent cells, our finite

element class must be able to determine which degrees of freedom are shared.

Degree-of-freedom location querying Boundary conditions constrain the degrees of free-

dom of a field on our mesh. As we only wish to constrain values at the edge of our domain,

we require a mechanism to determine which degrees-of-freedom on a cell affect values of

the field at that edge and not constrain all degrees-of-freedom on that cell.

C.5 Reference Cell

Many aspects of the finite element can be defined in terms of operations over a reference cell,

and then generalised to the global case. For example, basis functions are typically defined in

terms of co-ordinates on the reference cell.

Our reference cell consists of:

1. A list of vertices, with co-ordinate values usually defined in the range 0 to 1 or -1 to 1 so

that defining basis function over the reference cell is as simple as possible.

2. A local numbering scheme for all mesh entities in the cell.

We identify the following requirements for our reference cell.

Global-to-local entity lookup We require a mechanism to map between global mesh entity

numberings and our local one. For example, to determine the degrees-of-freedom on a

particular facet, we need to:
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1. Determine the cell(s) that contain the particular facet.

2. Use the reference cell to resolve the global facet identifier to a local facet identifier.

3. Query the finite element for the local numbering of the degrees-of-freedom located

on that facet.

Geometry queries We need to be able to query the reference cell about the co-ordinates of

its vertices. For example, to evaluate a field at a given mesh vertex, we need to:

1. Determine a cell that contains that vertex.

2. Determine the local identifier i of the vertex on that cell.

3. Query the reference cell for the local co-ordinate of vertex i.

4. Evaluate the field using the containing cell, and the local co-ordinate on that cell.

Topology queries We need a mechanism to query the reference cell about the number of

mesh entities it has (e.g. number of vertices, edges) and the vertices contained in these

entities. Using this information, it is possible for the mesh class to identify all mesh

entities on a cell in a general manner. Hence, to add a cell to a mesh we need only supply

the cell vertices and the mesh class will use our reference cell abstraction to identify the

edges, facets and so on.

Co-ordinate field As mentioned before, the global co-ordinates of a position in our mesh can

itself be defined as a vector field over our mesh. Unless we are using curvilinear cells,

this can be represented as a linear interpolation between the cell vertices. Hence, our

reference cell can provide a set of linear scalar basis functions that are multiplied by the

cell vertices to form a position vector-field over the element.

Quadrature rules We need to be able to evaluate integrals over our reference element. Inte-

grals over our reference element can then be transformed to integrals over an arbitrary

element using the Jacobian of the position field. Given the polynomial order of the func-

tion we wish to integrate, our reference cell must be able to provide a quadrature rule to

evaluate that integral. A quadrature rule consists of a number of points within, or on the
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boundary of, the reference element to evaluate the function to be integrated and scaling

factors used to compute a weighted sum.

Reference region transform Instead of using quadrature rules specific to a particular cell,

it is possible to define quadrature only over the reference line, square or cube. In order to

integrate over cells with different topologies (e.g. triangles) our reference cell can provide

a transform from the reference region to local cell co-ordinates. Hence, to evaluate our

cell integrals we have to handle two co-ordinate transformations, one from the reference

region to our reference cell, and one from our reference cell to the arbitrary cell on our

mesh.

Facet descriptions When handling boundary conditions, we need evaluate integrals defined

over the facets of our cells. The description of cell facets is represented as a variable

substitution.

For example, on a triangular mesh, our position field defines a function to calculate the

global position (gx, gy) from a local co-ordinate (x, y). Given a local edge identifier and

a new variable r, we can define a variable substitution such that both x and y are defined

in terms of r. The value of r describes a position along that edge.

C.6 Local-to-global mapping

The local-to-global mapping is an important part of our discretisation. Each cell of our mesh

has degrees-of-freedom associated with it. When modelling a continuous field, cells will share

certain degrees-of-freedom. The local-to-global map provides a mapping from the degrees-of-

freedom as defined locally to a cell to a global degree-of-freedom identifier.
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C.7 Discretised fields and operators

Our solution steps involve performing operations between discretised fields and operators. Dis-

cretised fields are typically represented by vectors, and discretised operators by sparse matrices.

In general, most of the operations we want to perform can be represented by linear algebra

operations, however, we want to impose additional requirements so that those operations are

valid. We do this by associating our matrices and vectors with the local-to-global mapping

used for their column and row entries.

We require the following operations involving fields and operators:

Operator assembly The assembly of the discrete operator using a global matrix approach

requires that integrals are evaluated over every cell in the domain and added to our matrix.

This corresponds to a standard sub-matrix addition, but we require our local-to-global

mapping to determine which rows and columns each cell contribution needs to be added

to.

Field addition Field addition is equivalent to a vector addition provided that the fields have

the same local-to-global mapping.

Operator application Operators transform a field defined in one function space to one in

another space. In the finite element method, this is usually a transformation from the

trial space to the test space. Implementation is usually equivalent to a matrix-vector

multiply. It is valid so long as the function space for the field being transformed is the

same function space the operator transforms.

Operator solve Given an operator and a field defined in function space the operator trans-

forms to, we wish to find the source field. Implementation usually corresponds to the

solution of a sparse linear system. However, we also require a way to apply Dirichlet

boundary conditions during the solution process.

Sub-field extraction and assignment We require the ability to extract and assign sub-

fields. For example, after solving the coupled Navier-Stokes equations, we often want
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to extract the velocity and pressure components of the resulting composite field. To do

this requires use of the local-to-global mapping to determine which entries to extract and

how to arrange them.

C.8 Discretised operation description and implicit-loop

syntax

As operations between discretised fields and operators resemble linear algebra, it makes sense

for the library client to describe them in a similar fashion. However, one major barrier to this

is the requirement for iteration.

We take the example of the convective acceleration term in the Navier-Stokes equations. This

term is non-linear, and must be linearised if we are to use a linear solver to solve the resulting

system. Picard iteration is one such technique for doing so.

Picard iteration requires that we iterate until our linearised term meets some convergence

criteria. Rather than have the library client explicitly declare a loop, it is preferable that the

library client can specify this iteration in a manner similar to subscript notation.

C.9 Form description

The assembly of discrete operators and fields requires that they be expressed using bilinear and

linear forms, respectively. These are integrals over our cells, expressed in terms of our basis

functions.

These forms typically have an extremely succinct mathematical expression and we wish to di-

verge from it as little as possible. The Unified Form Language describes a syntax for expressing

variational forms that can be embedded in Python. We base our form description on UFL.
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C.10 Expression representation

We wish to analyse and optimise the representation of local matrix (and vector) assembly. A

complete description of the local assembly matrix combines a large number of expressions and

values.

• Descriptions of the basis functions and derivatives used in the bilinear form, position field,

and any discretised fields referenced from the bilinear form.

• The inverse of the Jacobian of the position field, used to transform gradients from the

reference cell to a general cell.

• The determinant of the Jacobian of the position field, used in the calculation of the inverse

Jacobian and as a scaling factor in the cell integral.

• Coefficients for the basis functions of any referenced discretised fields.

• Quadrature points, at which the basis functions are evaluated. These may be unnecessary

if the local assembly matrix can be integrated symbolically.

• Tensor products, which are used to combine almost all operands.

For our investigation, we assume that all basis functions can be represented by polynomials.

Our captured expressions will involve unknown cell vertices and discretised field coefficients so

our expressions will be multivariate. Also, due to the presence of the inverse Jacobian in the

local assembly matrix description, our expression representation will need to be able to handle

rational functions, rather than plain polynomials.

Our representation should also preserve the tensor product structure of the original computation

if possible.
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Excafé Architecture

In this appendix, we provide additional information about Excafé’s data structures. We

cover the mesh related types in Section D.1 followed by the types Excafé uses to represent

discretised values in Section D.2. We then describe the types related to Excafé’s expression

capture of discretised expressions, variational forms and scalar expressions in Sections D.3, D.4

and D.5, respectively.

D.1 Geometry-related types

We present a UML diagram of Excafé’s mesh related classes in Figure D.1. Our mesh repre-

sentation is based on the data structures described by Logg [61].

D.1.1 MeshGeometry class

The MeshGeometry class is responsible for storing the physical locations of vertices in the mesh.

As our vertices are contiguously numbered from 0, the mapping from vertex IDs to vertices can

be implemented using single array of vertices. The MeshGeometry class is templated by the

dimension of the mesh.
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Figure D.1: A UML class diagram of Excafé’s geometry-related classes.

D.1.2 MeshConnectivity class

The MeshConnectivity class stores the adjacency relationship between all topological entities

of the mesh of two specified dimensions (e.g. edges and cells). Its implementation closely

resembles a compressed sparse row (CSR) matrix representation.

D.1.3 MeshTopology class

The MeshTopology class permits retrieval of any topological adjacency relationship of the mesh.

For a mesh of dimension n, there are (n + 1)2 possible adjacency relationships. When an

adjacency relationship is requested, it may either return a reference to a precomputed Mesh-

Connectivity object or build it on-demand. In order to compute an arbitrary adjacency

relationship, the MeshTopology class must be supplied with an initial cell-to-vertex adjacency

relationship, and a MeshCell instance describing the local topology of the chosen cell type.
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D.1.4 MeshFunction class

The MeshFunction class associates values with entities of the mesh of a given dimension. It

is templated by the type of the value it associates. A MeshFunction<bool> is used to store

whether or not a facet is on a boundary. Also, a MeshFunction<int> is used to store facet

labellings for applying boundary conditions.

D.1.5 MeshCell interface

The MeshCell interface provides a mechanism used by the MeshTopology class to query a

topological description of the reference cell. This information enables the MeshTopology class

to compute topological adjacency relationships without being hard coded to a specific cell-type

(e.g. rectangular, tetrahedral). For further details, consult Logg [61].

D.1.6 GeneralCell interface

This is the complete interface for all types that represent a reference cell. It is templated

by the dimension of the cell. It provides methods for accessing local cell vertex co-ordinates,

generating quadrature rules and retrieving a symbolic description of local-to-global cell co-

ordinate transformation.

D.1.7 Mesh class

The Mesh class contains both geometric and topological information, held by instances of

the MeshGeometry and MeshTopology classes, respectively. The mesh also contains a Mesh-

Connectivity instance which describes which vertices are located within each cell. This re-

lationship, combined with the information provided through the MeshCell interface, provides

sufficient information to derive all other topological adjacency relationships.
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Figure D.2: A UML class diagram of Excafé’s classes used to store discretised fields, operators
and associated information.

The Mesh class also contains two MeshFunction instances that associate values with the facets

of the mesh. One is a boolean function that is true only for facets that are located on the mesh

boundary. The other is an integer valued function that returns the labels assigned to the mesh

facets by the mesh generator.

D.2 Discretisation-related types

We present a UML diagram of the classes used by Excafé to handle finite element discretisation

in Figure D.2.

D.2.1 FiniteElement interface

The FiniteElement interface is implemented by classes that represent a particular finite el-

ement discretisation. It provides methods to retrieve symbolic representations of the basis

functions, information about the degrees of freedom located on the reference cell and deter-
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mine which degrees of freedom are shared between neighbouring cells. Two implementations of

this interface exist in Excafé, LagrangeTriangleLinear and LagrangeTriangleQuadratic

which provide continuous linear and quadratic bases, respectively, over the reference triangle.

D.2.2 DofMap class

The DofMap class represents the global numbering of a discretised field’s degrees of freedom. A

degree of freedom local to a cell is defined as a tuple of the cell ID, FiniteElement and a local

index. This tuple is mapped to a single number which is used to index rows and columns in

discretised fields and vectors. This also expresses which degrees of freedom are shared between

neighbouring cells. The DofMap can reference multiple FiniteElement instances, permitting it

to represent composite fields (e.g. a combined velocity and pressure field).

D.2.3 PETScVector and PETScMatrix classes

These classes wrap the C PETSc [47] vector and matrix application programming interface

(API) and provide a more object-oriented interface.

D.2.4 DiscreteField and DiscreteOperator classes

The DiscreteField and DiscreteOperator classes are used to hold discretised representa-

tions of fields and operators, respectively. The DiscreteField class holds a vector containing

the discrete field coefficients and a DofMap which describes the discretisation. Similarly, the

DiscreteOperator class holds a sparse matrix and references to two DofMap instances, which

describe the discretisation of the operand and result of the operator.

Since the DiscreteField and DiscreteOperator classes hold information about their discreti-

sations, they can detect when they are used inappropriately. The DiscreteOperator class also

contains functionality that enables it to perform local and global assembly when provided with

a bilinear form and a mesh.
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D.3 Discrete Expression Capture

We show a UML class diagram of the types used to perform expression capture of discretised

expressions in Figure D.3.

D.3.1 Field, Operator and Scalar handle classes

The Field, Operator and Scalar classes provide handles to the DAG built by the Excafé

client representing the result of a sequence of operations involving discretised fields, discretised

operators and scalars.

D.3.2 IndexedField, IndexedOperator and IndexedScalar handle classes

The IndexedField, IndexedOperator and IndexedScalar classes provide handles to indexed

fields, operators and scalars, respectively, used by the Excafé client. All three handle classes

are implemented by the IndexedHolder templated class, instantiated with different template

parameters.

Each handle holds a reference to a IndexableValue instance, again instantiated with different

template parameters, dependent on the type of the value. The IndexableValue is responsi-

ble for maintaining references to all expressions assigned to the indexed value, and also for

maintaining a reference to the TemporalIndexValue corresponding to the variable it is indexed

by.

Within the discrete expression DAG, references to an indexed field, operator or scalar are rep-

resented by the DiscreteIndexedField, DiscreteIndexedOperator and DiscreteIndexed-

Scalar classes respectively.

D.3.3 Function space related classes

Excafé has a very basic syntax for the manipulation of function spaces. The handle type
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Figure D.3: A UML class diagram of the Excafé types related to capturing a description of
operations performs between discretised fields, discretised operators and scalars. The handle
types held by the Excafé client have been shaded.
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FunctionSpace is exposed to the Excafé client. A function space DAG can currently represent

the construction of of function space for a single FiniteElement over the entire mesh, and the

addition of these spaces. This is sufficient for constructing a function space to represent a

composite field.

The FunctionSpaceUndefined type is used to detect incorrect use of the handle. Further

development of this syntax will allow subtraction and construction over mesh subsets (such as

the boundaries) to provide better support for boundary conditions.

D.3.4 The Discrete Expression DAG Classes

All classes that represent nodes in the discrete expression DAG implement the DiscreteExpr

interface. The extended interfaces DiscreteFieldExpr, DiscreteOperatorExpr and Scalar-

Expr are implemented by nodes representing fields, operators and scalars, respectively.

The DiscreteExpr contains methods to enable visitor based traversal and determination of

which index variables are associated with a node. The extended interfaces allow determination

of properties such which function space the node’s value is in.

We briefly describe the purpose of each node type. The ScalarUndefined, DiscreteField-

Undefined and DiscreteOperatorUndefined nodes are used to detect incorrect handle usage.

The other discrete field valued nodes have the following purpose:

DiscreteFieldApplyBC Represents the application of Dirichlet boundary conditions to a

field.

DiscreteFieldElementWise Represents addition and subtraction of identically discretised

fields.

DiscreteFieldPersistent Represents a reference to a discretised field that persists across

different solution steps of the problem being solved (e.g. the velocity in a fluid simulation).

DiscreteFieldProjection Used to project fields onto a superset or subset function space.
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DiscreteFieldZero Used to construct a zero-valued field in a specific function space.

OperatorApplication Represents the result of the application of a discrete operator to some

field.

LinearSolve Represents the solution field from a linear solve.

DiscreteIndexedField Represents a reference to an indexed field.

The operator valued nodes have the following purpose:

OperatorAssembly Represents the construction of an operator from a set of integrals of

bilinear forms.

OperatorApplyBC Represents the application of Dirichlet boundary conditions to an oper-

ator.

OperatorAddition Represents the addition of two identically discretised operators. This is

not currently used in our implementation and was provided to enable experimentation

with reusing previously assembled terms.

DiscreteIndexedOperator Represents a reference to an indexed operator.

The scalar valued nodes have the following purpose:

ScalarLiteral A constant scalar value.

DiscreteFieldTwoNorm Represents the l2 norm of a discretised field.

ScalarBinaryOperator Represents a binary operator between two scalars such as addition

or comparison.

DiscreteIndexedScalar Represents a reference to an indexed scalar.
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Figure D.4: A UML class diagram of the Excafé types related to capturing a description of
variational forms used to perform assembly. The handle types held by the Excafé client have
been shaded.

D.4 Variational Form Capture

We show a UML class diagram of the types used to perform expression capture of variational

forms in Figure D.4.

D.4.1 Handle Types

We provide the handle types LinearForm and BilinearForm to represent expressions that com-

pute scalar valued expressions (given a particular trial and/or test function). The Bilinear-

FormIntegral type represents bilinear form integrated over a specific mesh region. The

BilinearFormIntegralSum is used to represent a sum of bilinear forms, which may be in-

tegrated over the entire mesh, internal mesh facets or boundary facets.
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D.4.2 Form Expression DAG Types

All nodes types that form the variational form expression DAG represent tensor-valued expres-

sions and implement the FieldExpr interface. We briefly describe the purpose of each node

type:

FieldDiscreteReference Hold a reference to a field defined somewhere in the discrete ex-

pression DAG.

FieldScalar Holds a reference to a scalar value defined somewhere in the discrete expression

DAG. Can be considered a scalar field that takes a constant value over the entire mesh.

FacetNormal Represents the outward facing normal of a mesh facet. This node can only be

used in forms integrated over interior or exterior mesh facets.

FieldOuterProduct The outer product of two tensor fields.

FieldInnerProduct The inner product of two tensor fields.

FieldColonProduct The colon product of two tensor fields.

FieldAddition The addition of two identical-rank tensor fields.

FieldGradient The gradient of a tensor field.

FieldDivergence The divergence of a tensor field.

FieldBasis A place-holder that refers to a basis function defined over the local cell. The same

form will be evaluated with different choices of basis function during local assembly.

D.5 Scalar Expression Representation

Excafé currently has three mechanisms for representing scalar expressions. Each expression

class is templated by the type of unknown that will be used in the expressions. Their relation-

ships are shown in Figure D.5.
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Figure D.5: A class diagram of Excafé’s different scalar expression representations.

We briefly describe each one:

Polynomial This type represents a polynomial expression stored in expanded polynomial form

(i.e. a sum of monomials). This format is helpful for representing expressions before

performing our common subexpression elimination pass.

PolynomialFraction This type represents a rational function as a quotient between two

Polynomial instances. It is currently not ideal for our purposes since addition and mul-

tiplication between expressions in this form may cause them to grow in complexity and

obscure simplifications.

GinacExpression This type is a wrapper for expressions handled using the GiNaC [45] sym-

bolic manipulation library. GiNaC maintains a tree of expressions that can be evaluated

(or partially evaluated) on demand as well as providing algorithms such as greatest com-

mon divisor (GCD) that can be used to simplify rational expressions.

When provided with a mapping of unknowns to scalar values, all expression classes can evaluate

their values. All expression classes also implement the NumericExpression<V> interface. The

interfaces provides a representation-independent visitation mechanism that enables conversion

between expression types.

We also use our expression classes to represent the elements of our local assembly matrix

during construction. To do this, we instantiate our chosen expression class with a variable
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Figure D.6: A class diagram of the variable type Excafé uses to represent unknowns in its
symbolic representation of a local assembly matrix.

type, ScalarPlaceholder, that represents the possible unknowns in a local assembly matrix.

We show the class diagram of this type in Figure D.6.

The value describing the unknown is stored inside the ScalarPlaceholder class so that Scalar-

Placeholder can be treated as a standard value type. We describe each of the types that can

be held inside a ScalarPlaceholder

PositionComponent Represents the components of the position variable on the local cell. It

occurs during construction of our bilinear forms, but is removed when we symbolically

integrate (as these are the variables we integrate over).

CellVertexComponent This represents a component of the global position of one of the

vertices of the local cell. It may be removed from Excafé when the vertex locations are

instead represented by a vector field.

ScalarAccess This represents a scalar value referenced from the discrete expression DAG.

BasisCoefficient This represents a basis function coefficient that is defined on the local cell.

It is this type that allows us to incorporate fields from previous time-steps by referencing

fields from the discrete expression DAG.

ScalarConstant A scalar constant. Variables of this type are opaque to the expression classes

and therefore do not get multiplied out. This may be useful in order to maintain more

information about the structure of expressions.
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Appendix E

Excafé Heat Solver Source

# include <cstddef>

# include <sstream>

# include <boost / format.hpp>

# include <simple_cfd / capture / scenario.hpp>

# include <simple_cfd / capture / solve_operation.hpp>

# include <simple_cfd / petsc_manager.hpp>

# include <simple_cfd / triangular_mesh_builder.hpp>

# include <simple_cfd / lagrange_triangle_linear.hpp>

# include <simple_cfd / lagrange_triangle_quadratic.hpp>

# include <simple_cfd / capture / scenario.hpp>

# include <simple_cfd / capture / fields / fields.hpp>

# include <simple_cfd / capture / forms / forms.hpp>

# include <simple_cfd / mesh.hpp>

# include <simple_cfd / exception.hpp>

# include <simple_cfd / boundary_condition_list.hpp>

# include <simple_cfd / boundary_condition_trivial.hpp>

using namespace cfd;
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template<std::size_t D>

class HeatSolver

{

private:

static const std::size_t dimension = D;

Mesh<dimension> mesh;

Scenario<dimension> scenario;

Element temperature;

FunctionSpace temperatureSpace;

NamedField temperatureField;

BoundaryCondition boundaryConditions;

SolveOperation solve;

BoundaryCondition buildBoundaryConditions()

{

Tensor<dimension> zero(0);

zero = 0;

Tensor<dimension> source(0);

source = 1.0;

BoundaryConditionList<dimension> boundaryConditionList(0);

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(1, source));

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(2, zero));

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(3, zero));
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boundaryConditionList.add(BoundaryConditionTrivial<dimension>(4, zero));

boundaryConditionList.add(BoundaryConditionTrivial<dimension>(5, source));

return scenario.addBoundaryCondition(temperatureSpace, boundaryConditionList);

}

public:

HeatSolver(Mesh<dimension>& _mesh) : mesh(_mesh), scenario(mesh)

{

temperature = scenario.addElement(new LagrangeTriangleLinear<0>());

temperatureSpace = scenario.defineFunctionSpace(temperature, mesh);

temperatureField = scenario.defineNamedField("temperature", temperatureSpace);

BoundaryConditionList<dimension> boundaryConditionList(0);

boundaryConditions = buildBoundaryConditions();

solve = constructSolve();

}

SolveOperation constructSolve()

{

using namespace forms;

SolveOperation s = scenario.newSolveOperation();

Scalar c = 1e-4;

Scalar k = 10.0;

Operator massMatrix(temperatureSpace, temperatureSpace);
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massMatrix = B(temperature, temperature)*dx;

const forms::BilinearFormIntegralSum lhsForm =

B(temperature, temperature)*dx +

B(k*c*grad(temperature), grad(temperature))*dx;

Field rhs = massMatrix * temperatureField;

LinearSystem system = assembleGalerkinSystem(temperatureSpace,

lhsForm,

rhs,

boundaryConditions,

temperatureField);

s.setNewValue(temperatureField, system.getSolution());

s.finish();

return s;

}

void step()

{

solve.execute();

}

void outputFieldsToFile(const std::string& filename)

{

scenario.outputFieldsToFile(filename);

}
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};

int main(int argc, char** argv)

{

try

{

PETScManager::instance().init(argc, argv);

static const std::size_t dimension = TriangularMeshBuilder::cell_dimension;

static const double maxCellArea = 1.0/5000;

static const double polySize = 0.1;

static const std::size_t polyEdges = 4;

static const double polyLabel = 5;

static const double polyRotation = 0.0;

TriangularMeshBuilder meshBuilder(1.0, 1.0, maxCellArea);

const Polygon poly(vertex<2>(0.5, 0.5), polyEdges, polySize, polyRotation);

meshBuilder.addPolygon(poly, polyLabel);

Mesh<dimension> mesh(meshBuilder.buildMesh());

HeatSolver<dimension> solver(mesh);

for(int i=0; i<200; ++i)

{

std::cout << "Starting timestep " << i << "..." << std::endl;

solver.step();

std::ostringstream filename;

filename << "./heat_" << boost::format("%|04|") % i << ".vtk";

solver.outputFieldsToFile(filename.str());
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}

}

catch(const CFDException& e)

{

std::cerr << "A simple_cfd specific exception was generated: " << std::endl;

std::cerr << e.what() << std::endl;

}

}
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Excafé Incompressible Navier-Stokes

Solver Source

# include <cstddef>

# include <sstream>

# include <boost / format.hpp>

# include <simple_cfd / capture / scenario.hpp>

# include <simple_cfd / capture / solve_operation.hpp>

# include <simple_cfd / petsc_manager.hpp>

# include <simple_cfd / triangular_mesh_builder.hpp>

# include <simple_cfd / lagrange_triangle_linear.hpp>

# include <simple_cfd / lagrange_triangle_quadratic.hpp>

# include <simple_cfd / capture / scenario.hpp>

# include <simple_cfd / capture / fields / fields.hpp>

# include <simple_cfd / capture / forms / forms.hpp>

# include <simple_cfd / mesh.hpp>

# include <simple_cfd / exception.hpp>

# include <simple_cfd / boundary_condition_list.hpp>

# include <simple_cfd / boundary_condition_trivial.hpp>
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using namespace cfd;

template<std::size_t D>

class NavierStokesSolver

{

private:

static const std::size_t dimension = D;

Mesh<dimension> mesh;

Scenario<dimension> scenario;

Element velocity;

Element pressure;

FunctionSpace velocitySpace;

FunctionSpace pressureSpace;

FunctionSpace coupledSpace;

NamedField velocityField;

NamedField pressureField;

BoundaryCondition velocityConditions;

SolveOperation coupledSolve;

BoundaryCondition buildBoundaryConditions()

{

const Tensor<dimension> zero(1);
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Tensor<dimension> inflow(1);

inflow(0) = 5.0;

BoundaryConditionList<dimension> velocityConditionList(1);

velocityConditionList.add(BoundaryConditionTrivial<dimension>(1, zero));

velocityConditionList.add(BoundaryConditionTrivial<dimension>(3, zero));

velocityConditionList.add(BoundaryConditionTrivial<dimension>(4, inflow));

velocityConditionList.add(BoundaryConditionTrivial<dimension>(5, zero));

return scenario.addBoundaryCondition(velocitySpace, velocityConditionList);

}

public:

NavierStokesSolver(Mesh<dimension>& _mesh) : mesh(_mesh), scenario(mesh)

{

velocity = scenario.addElement(new LagrangeTriangleQuadratic<1>());

pressure = scenario.addElement(new LagrangeTriangleLinear<0>());

velocitySpace = scenario.defineFunctionSpace(velocity, mesh);

pressureSpace = scenario.defineFunctionSpace(pressure, mesh);

coupledSpace = velocitySpace + pressureSpace;

velocityField = scenario.defineNamedField("velocity", velocitySpace);

pressureField = scenario.defineNamedField("pressure", pressureSpace);

BoundaryConditionList<dimension> velocityConditionList(1);

velocityConditions = buildBoundaryConditions();

coupledSolve = constructCoupledSolver();
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}

SolveOperation constructCoupledSolver()

{

using namespace forms;

SolveOperation s = scenario.newSolveOperation();

Scalar theta = 0.5;

Scalar k = 0.01;

Scalar kinematic_viscosity = 1.0/250;

Operator nonLinearRhs(velocitySpace, velocitySpace);

nonLinearRhs =

B(velocity, velocity)*dx +

B(-(1.0-theta)*k*kinematic_viscosity * grad(velocity), grad(velocity))*dx +

B(-(1.0-theta)*k*inner(velocityField, grad(velocity)), velocity)*dx;

Field velocityRhs = nonLinearRhs * velocityField;

Field load(project(velocityRhs, coupledSpace));

TemporalIndex i;

IndexedField unknownGuess(i);

unknownGuess[-1] = project(velocityField, coupledSpace) +

project(pressureField, coupledSpace);

const forms::BilinearFormIntegralSum lhsForm =

B(velocity, velocity)*dx +

B(theta*k * kinematic_viscosity * grad(velocity), grad(velocity))*dx +
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B(-1.0 * k * pressure, div(velocity))*dx +

B(div(velocity), pressure)*dx +

B(theta*k * inner(project(unknownGuess[i-1], velocitySpace),

grad(velocity)), velocity)*dx;

LinearSystem system = assembleGalerkinSystem(coupledSpace,

lhsForm,

load,

velocityConditions,

unknownGuess[i-1]);

Operator linearisedSystem = system.getConstrainedSystem();

unknownGuess[i] = system.getSolution();

Scalar residual = ((linearisedSystem * unknownGuess[i-1]) -

system.getConstrainedLoad()).two_norm();

i.setTermination(residual < 1e-3);

s.setNewValue(velocityField, project(unknownGuess[final-1], velocitySpace));

s.setNewValue(pressureField, project(unknownGuess[final-1], pressureSpace));

s.finish();

return s;

}

void step()

{

coupledSolve.execute();

}
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void outputFieldsToFile(const std::string& filename)

{

scenario.outputFieldsToFile(filename);

}

};

int main(int argc, char** argv)

{

try

{

PETScManager::instance().init(argc, argv);

static const std::size_t dimension = TriangularMeshBuilder::cell_dimension;

TriangularMeshBuilder meshBuilder(3.0, 1.0, 1.0/900.0);

meshBuilder.addPolygon(Polygon(vertex<2>(0.5, 0.5), 16, 0.15, 0), 5);

Mesh<dimension> mesh(meshBuilder.buildMesh());

NavierStokesSolver<dimension> solver(mesh);

for(int i=0; i<6000; ++i)

{

std::cout << "Starting timestep " << i << "..." << std::endl;

solver.step();

std::ostringstream filename;

filename << "./navier_stokes_" << boost::format("%|04|") % i << ".vtk";

solver.outputFieldsToFile(filename.str());

}
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}

catch(const CFDException& e)

{

std::cerr << "A simple_cfd specific exception was generated: " << std::endl;

std::cerr << e.what() << std::endl;

}

}
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