
Assumption-Based Argumentation for Communicating Agents

Adil Hussain and Francesca Toni
Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ, UK

{ah02, ft}@imperial.ac.uk

Abstract

Assumption-Based Argumentation (ABA), and to a large ex-
tent argumentation in general, up to now has been considered
in a single-agent setting. ABA, in particular, is such that an
agent engages in a dispute (dialectic proof procedure) with it-
self (an imaginary opponent) to decide whether a claim is ac-
ceptable according to some acceptability criteria. We present
in this paper a generalised proof procedure for the admissibil-
ity semantics of ABA, which is still a dispute by an agent with
itself but such that the outcome can be readily communicated
to other agents. This is important for applications in multi-
agent systems wherein agents may differ in the knowledge
they have and may need to communicate their arguments be-
tween one another to convince each other of the acceptability
or not of a given claim.

1. Introduction

Assumption-based argumentation (ABA) (Dung, Kowalski,
and Toni 2009) is a general-purpose framework for argu-
mentation, where arguments are defined as backward deduc-
tions (using sets of rules in an underlying logic) supported
by sets of assumptions, and the notion of attack amongst
arguments is reduced to that of contrary of assumptions. In-
tuitively, assumptions are sentences that can be assumed to
hold but can be questioned and disputed (as opposed to ax-
ioms that are instead beyond dispute), and the contrary of an
assumption stands for the reason why that assumption may
be undermined and thus may need to be dropped.

Existing computational models (dispute derivations) for
ABA, e.g. (Dung, Mancarella, and Toni 2007), allow to de-
termine the “acceptability” of claims under the semantics of
credulous, admissible extensions as well as under two scep-
tical semantics (of grounded and ideal extension). The dis-
pute derivations find a set of assumptions, to defend a given
claim, by starting from an initial set of assumptions that sup-
ports an argument for the claim and adding defending as-
sumptions incrementally to counter-attack all attacks.

It is important to note that the dispute derivations
of (Dung, Mancarella, and Toni 2007) take place within
the mind of a single agent, between fictional proponent and
opponent. Also, the resulting arguments (sets of assump-
tions) are not built to be communicated to other agents,

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

but rather for an agent to determine within itself whether
a claim is acceptable. In this paper, we focus on general-
ising the computational model for admissibility, called AB-
dispute derivations (Dung, Mancarella, and Toni 2007). The
computational model we present is still a dispute deriva-
tion within the mind of a single agent but such that the
resulting arguments can be readily communicated, as en-
thymemes (Hunter 2007), to other agents. The benefits
of allowing agents to exchange arguments can be found in
many different types of dialogues, e.g. inquiry (Black and
Hunter 2008), negotiation (Rahwan et al. 2003; Amgoud,
Parsons, and Maudet 2000; Hussain and Toni 2008), delib-
eration (Mcburney, Hitchcock, and Parsons 2002) as well as
of course persuasion (Amgoud, Maudet, and Parsons 2000;
Prakken 2005). Thus a computational model that can gener-
ate communicable, acceptable arguments is clearly needed.

The paper is structured as follows: Section 2 presents
background on ABA and admissibility. Section 3 presents
our generalised ABA framework. Section 4 introduces an
example that will be referred to throughout the paper. Sec-
tions 5 and 6 describe our generalised dispute derivation pro-
cedure used to build communicable arguments for a claim.
Section 7 demonstrates how exchanging communicable ar-
guments can be useful in dialogue between agents. Section
8 gives theoretical results. Lastly, Section 9 concludes.

2. Background

An ABA framework as defined in (Dung, Kowalski, and
Toni 2009) is a tuple 〈L, R, A, c〉 where

• (L,R) is a deductive system, consisting of a language L
and a setR of inference rules,

• A ⊆ L, referred to as the set of assumptions,

• c is a (total) mapping from A into L, where c(x) is re-
ferred to as the contrary of x.

We adopt a generalisation of ABA frameworks in this paper,
as in (Gaertner and Toni 2008), whereby assumptions allow
multiple contraries (i.e. c is a (total) mapping from A into
℘(L) − {∅}, where any y ∈ c(x) is referred to as a con-
trary of x). We assume that the inference rules in R have
the syntax l0 ← l1, . . . ln (for n ≥ 0) where li ∈ L. We
represent l0 ← simply as l0, and refer to this as a fact. As
in (Dung, Mancarella, and Toni 2007) we restrict attention



to flat ABA frameworks, such that if l0 ∈ A, then there ex-
ists no inference rule of the form l0 ← l1, . . . , ln ∈ R, for
any n ≥ 0.

Our focus in this paper is the admissibility semantics and
its computation. Firstly, an argument in favour of a sentence
p ∈ L supported by A ⊆ A, denoted A ⊢ p, is a (back-
ward) deduction from p to A, obtained by applying back-
wards the rules inR. In (Dung, Mancarella, and Toni 2007)
the notion of admissibility is formalised using a notion of
“attack” among sets of assumptions whereby X1 ⊆ A at-
tacks X2 ⊆ A iff, for some x is in X2, there is an argument
in favour of some y ∈ c(x) supported by (a subset of) X1.
A set of assumptions is admissible iff it can counter-attack
every attack (and does not attack itself). A claim is admis-
sible then if it is the conclusion of an argument that is sup-
ported by a set of assumptions that can be extended to an
admissible set of assumptions. The AB-dispute derivations
of (Dung, Mancarella, and Toni 2007) prove that a claim is
admissible by building an admissible set of assumptions.

3. Agent ABA Framework

In (Hunter 2007), it is argued that arguments presented by
real-world agents normally only explicitly represent some
of the premises for entailing their claim and/or they do not
explicitly state their claim. It is argued that this is because
there is some common knowledge that can be assumed by a
proponent of an argument and the recipient of it. This allows
the proponent of an argument to encode it by ignoring the
common knowledge, and it allows a recipient of an argument
to decode it by drawing on the common knowledge.

In the spirit of (Hunter 2007), with the view of allowing
agents to exchange arguments and assuming that all agents
in an agent system use the same common knowledge, we
partitionR intoRc andRp (i.e. Rc ∩R

p = ∅,Rc ∪R
p =

R) and propose an agent assumption-based argumentation
(AABA) framework 〈L, Rc, R

p, A, c〉, whereRc is meant
to contain knowledge common to all the agents and Rp is
meant to contain personal knowledge of an agent not neces-
sarily shared by other agents.

Definition 1 An AABA framework 〈L, Rc, R
p, A, c〉 is

such thatRc ∩R
p = ∅, and 〈L, Rc ∪R

p, A, c〉 is an ABA
framework.

In what follows, we use AF to refer to an ABA framework
〈L, Rc ∪ R

p, A, c〉 and AFAgent to refer to an AABA
framework 〈L, Rc, R

p, A, c〉 for some Agent. We restrict
Rp to containing facts only and refer to these as personal
facts. Extending Rp to include inference rules of the form
l0 ← l1, . . . , ln (for n > 0) will be the subject of future
work. Note thatA∩Rp = ∅, since we work with flat frame-
works.

The generalised procedures for building arguments,
which we present in Sections 5 and 6, are such that the nec-
essary personal facts of an agent are accumulated, as well
as the necessary assumptions. In standard ABA instead,
only the assumptions are accumulated as arguments are con-
structed for internal consumption rather than to be commu-
nicated to other agents.

Note that we assume L (as well as A and c) is com-
mon to all agents in an agent system as communication (or,
rather, arguments) exchanged between the agents in the sys-
tem would consist of sentences in L.

4. Example

We introduce in this section an example to be used through-
out this paper to demonstrate our AABA framework. The
example represents situations where agents may need to ex-
change appointments, e.g. on behalf of patients, and provid-
ing arguments would be useful for coming to agreement on
whether to exchange an appointment or not.

Consider two AABA frameworks AFx =
〈L, Rc, R

p
x, A, c〉 and AFy = 〈L, Rc, R

p
y, A, c〉

for agents x and y respectively.
The language L\A consists of all ground instances of the

following schemata:

• sa(Ag1, Ag2, App1, App2), i.e. agents Ag1 and Ag2 should
swap appointments App1 and App2;

• r(Ag, G), i.e. agent Ag requires G to be fulfilled;

• fr(App, G), i.e. appointment App fulfils requirement G;

• l(Ag, App), i.e. agent Ag likes appointment App;

• h(Ag, App), i.e. agent Ag has appointment App;

• ¬cs(Ag, App1, App2), i.e. agent Ag cannot swap appointment

App1 for App2.

The set of assumptionsA consists of all ground instances of
the following schemata:

• ¬l(Ag, App), i.e. agent Ag does not like appointment App;

• cs(Ag, App1, App2), i.e. agent Ag can swap appointment

App1 for App2.

The contraries are as follows:

• c(¬l(Ag, App)) = {l(Ag, App)};

• c(cs(Ag, App1, App2)) = {¬cs(Ag, App1, App2)}.

In general, agents have incomplete information about their
environment, other agents, and so on. In this example, an
agent may have incomplete information about what appoint-
ments other agents have or what they require, as well as
which appointments fulfil which requirements. Assump-
tions allow an agent to reason under the uncertainty due to
incomplete information. In particular, an agent can make
assumptions about an agent (itself or another) not liking a
certain appointment or being able to swap appointments un-
til/unless it is told or knows otherwise.
Rc consists of inference rules R1–R3 below. There, Ag,

Ag1 and Ag2 can be any agents.
R1: sa(Ag1, Ag2, App1, App2)← h(Ag1, App1),

l(Ag1, App2), ¬l(Ag1, App1), cs(Ag2, App2, App1)
Namely, Ag1 and Ag2 should swap App1 and App2 if, it is
believed, Ag1 has App1 and Ag1 likes App2, and, it is as-
sumed, Ag1 dislikes App1 and Ag2 can swap App2 for App1.
R2: l(Ag, App)← r(Ag, G), fr(App, G)

Namely, Ag likes App if, it is believed, Ag requires G to be
fulfilled and App fulfils G.
R3: ¬cs(Ag, App1, App2)

← h(Ag, App1), l(Ag, App1), ¬l(Ag, App2)



Namely, Ag cannot swap App1 for App2 if, it is believed, Ag

has and likes App1, and, it is assumed, Ag dislikes App2.

We could include additional inference rules, for example,
for the case that an agent cannot swap an appointment it
does not have or to allow agents to have multiple require-
ments, but the above three inference rules will be sufficient
to demonstrate the AABA framework as is the focus of the
paper.

The personal facts of agents x and y are as follows:
Rp

x = {h(x, app1), h(y, app2), r(x, seeDrAli),
fr(app1, fridayApp), fr(app2, seeDrAli)}

Rp
y = {h(y, app2), r(y, fridayApp),

fr(app2, fridayApp), fr(app2, seeDrAli)}

We assume here, for the sake of simplicity of demonstration,
that agents have correct beliefs about the appointments allo-
cated to themselves and other agents. In general, agents may
have incorrect, out of date, or inconsistent beliefs. This will
be the subject of future work. Our focus in this example are
agents that have incomplete information. Indeed, e.g. y has
no knowledge of x’s appointments and goals.

5. Fact-supported Arguments

We generalise the notion of an argument that has a support
consisting of assumptions only as in conventional ABA for
our AABA framework. We define arguments as a deduction
from a sentence p with a support consisting of assumptions
as well as personal facts. Following (Dung, Kowalski, and
Toni 2009), we define fact-supported arguments (abbrevi-
ated ‘f-arguments’) for a claim p with support S as finite
trees with p at the root and S at the leaves. Nodes in this tree
are connected by the inference rules, with sentences match-
ing the conclusion of an inference rule connected as parent
nodes to sentences matching the premises of the inference
rule as children nodes. The leaves in this tree are assump-
tions, personal facts or the special extra-logical symbol τ .
We define first finite (deduction) trees and then f-arguments
as a specific kind of such trees.

Definition 2 Given an AABA framework AFAgent, a finite
(deduction) tree T for p ∈ L (the conclusion or claim) is as
follows:

• the root of T is labelled by p and denoted root(T )

• for every node N of T

– if N is a leaf then N is labelled by a sentence in L or
by τ ;

– if N is not a leaf and lN is the label of N , then there is
an inference rule lN ← b1, . . . , bm (m ≥ 0) inRc and

either m = 0 and the child of N is labelled by τ
or m > 0 and N has m children, labelled by
b1, . . . , bm (respectively)

• the set of sentences, not including τ , labelling the leaves
of T is denoted leaves(T ).

Definition 3 Given an AABA framework AFAgent, a f-
argument for p ∈ L (the conclusion or claim) with sup-
port S ⊆ A ∪ Rp is a finite (deduction) tree T where
root(T ) = p and leaves(T ) = S.

l(x, app2)

�� @@
r(x, seeDrAli) fr(app2, seeDrAli)

Figure 1: A f-argument for l(x, app2) with support

{r(x, seeDrAli), fr(app2, seeDrAli)} wrt AFx as defined in

Section 4..

We illustrate in Figure 1 a finite tree that is a f-argument. F-
arguments for a claim can be captured by means of backward
deductions defined as follows.

Definition 4 Given an AABA frameworkAFAgent and a se-

lection function 1 f : 2L → L, a backward deduction of
S ⊆ A∪Rp for a claim p ∈ L is a finite sequence of tuples

〈C0, S0〉, . . . , 〈Ci, Si〉, . . . , 〈Cn, Sn〉
where n ≥ 1, C0 = {p}, S0 = Cn = ∅, Sn = S, and, for
every 0 ≤ i < n, if f(Ci) = σ, then

1. If σ is such that σ ∈ Rp or σ ∈ A, then

• Ci+1 = Ci − {σ}

• Si+1 = Si ∪ {σ}

2. Otherwise, choose σ ← b1, . . . , bm ∈ Rc and

• Ci+1 = (Ci − {σ}) ∪ {b1, . . . , bm}

• Si+1 = Si

We write S ⊢f
AFAgent

p if there exists a backward deduction

of S for p. 2

Backward deductions are a generalisation of SLD resolu-
tion, which is the basis of proof procedures for logic pro-
gramming. As in SLD, if there is a backward deduction
using one selection function for picking sentences in Ci,
then there is a backward deduction using any other selection
function. Thus, different selection functions are simply dif-
ferent but equivalent ways of generating the same argument
for a claim.

The following example illustrates the notion of backward
deduction.

Example 1 Given the AABA framework AFx from Section
4, a backward deduction

{r(x, seeDrAli), fr(app2, seeDrAli)} ⊢AFx l(x, app2)

built by x affirming that it likes app2 is obtained as shown
in Table 1. At step i = 0, R2 ∈ Rc is chosen in applying
Case 2 of Definition 4. At step i = 1, Case 1 is applied since
r(x, seeDrAli) ∈ Rp

x. At step i = 2, Case 1 is applied
since fr(app2, seeDrAli) ∈ Rp

x.

In Definition 4, we use the word “choose” to identify back-
trackable points in the search for a backward deduction. The
need for this is illustrated by the following example:

Example 2 Consider an AABA framework AFAgent with

L = {p, q, r}, A = ∅,Rc = {p← q} ∪ {p← r},Rp = {r}

1A selection function f takes as input a set of sentences Ci and
returns a single element σ from Ci.

2We write ⊢AFAgent
instead of ⊢f

AFAgent
where the particular

selection function is unimportant in the given context.



i Ci Si Apply. . .

0 {l(x, app2)} {} Case 2

1 {r(x, seeDrAli), {} Case 1

fr(app2, seeDrAli)}

2 {fr(app2, seeDrAli)} {r(x, seeDrAli)} Case 1

3 {} {r(x, seeDrAli),

fr(app2, seeDrAli)}

Table 1: Backward deduction for l(x, app2) in AFx. The under-

lined atoms are picked by the selection function.

If in the search for a backward deduction for p, p ← q ∈
Rc is chosen when applying case 2 of Definition 4, then,
since q /∈ Rp, q /∈ A and there is no inference rule
q ← b1, . . . , bm ∈ Rc, the search for a backward deduc-
tion needs to backtrack and choose p ← r ∈ Rc, leading
eventually to {r} ⊢AFAgent

p.

We end this section by proving the relationship between f-
arguments and backward deductions.

Lemma 1 If, for some selection function f , there is a back-

ward deduction S ⊢f
AFAgent

p, then there is a f-argument

for p with support S wrt AFAgent.

Lemma 2 If there is a f-argument for p with support S wrt

AFAgent, then there is a backward deduction S ⊢f
AFAgent

p

for any selection function f .

The proofs of Lemmas 1 and 2 can be found in an accompa-
nying technical report (see Section 9).

6. Computation of Admissible Arguments

The AB-dispute derivations (which we abbreviate ‘dds’)
of (Dung, Mancarella, and Toni 2007) can be used to con-
struct an admissible set of assumptions supporting a claim.
We generalise this for AABA frameworks and present a
new computational model, which we call fact-inclusive AB-
dispute derivations (abbreviated ‘fdds’), that constructs an
admissible defence for a claim as well as personal facts used
during the construction. These derivations, similar to dds,
can be seen as a game between two fictional players - a pro-
ponent and an opponent. The rules of the game are roughly
as follows: the proponent puts forward a f-argument for a
claim; the opponent disputes the proponent’s argument by
presenting f-arguments attacking assumptions of the pro-
ponent’s argument; the proponent in turn defends its argu-
ment by counter-attacking the opponent’s attacks with other
f-arguments, which the opponent in turn attacks, and so on,
until the proponent has defended itself against all attacks.

As for dds, in conducting this game, the proponent can-
not attack any of its own assumptions, nor does it need to
counter-attack any assumption it has attacked previously,
nor does it need to defend any assumption it has already
defended. Differently from dds, in fdds, f-arguments are
fully constructed before being attacked. Thus only actual
f-arguments are manipulated (rather than “potential”, see
(Gaertner and Toni 2008)). Also, in fdds unlike dds, the pro-
ponent keeps track of personal facts used in its arguments.

Together, the assumptions and personal facts used by the
proponent make up its defence for a claim.

We define a fdd as a sequence of tuples of the form
〈Pi,Oi,Di, Ci〉. Such a tuple represents the state of the
derivation at the ith step and is to be read as follows: Pi

is a set of sentences, the claims of the proponent to be ex-
panded and defended; Oi are the sets consisting of personal
facts and assumptions that support attacks of the opponent
on the assumptions of the proponent, and each such set is
to be attacked by the proponent; Di (Defences) is the set
of personal facts and assumptions encountered so far in the
derivation sequence that support the claims of the proponent;
Ci (Culprits) is the set of assumptions of the opponent that
have already been attacked by the proponent.

Definition 5 Given an AABA framework AFAgent, and se-

lection functions f : 2L → L and g : 22L

→ 2L, 3 a fdd of
a defence set D ⊆ A∪Rp for a set of sentences P ⊆ L is a
finite sequence of tuples

〈P0,O0,D0, C0〉, . . . , 〈Pi,Oi,Di, Ci〉, . . . , 〈Pn,On,Dn, Cn〉

where P0 = P , D0 = P ∩ (A∪Rp),O0 = C0 = ∅, Pn =On

= ∅, Dn =D, and, for every 0 ≤ i < n, only one f(Pi) = σ
or one g(Oi) = Σ is picked 4 and

1. If f(Pi) = σ is picked, then

(a) if σ ∈ Rp, then

• Pi+1 = Pi − {σ}
• Oi+1 = Oi

• Di+1 = Di

• Ci+1 = Ci
(b) if σ ∈ A, then

• Pi+1 = Pi − {σ}

• Oi+1 =Oi ∪ {S | σ
′ ∈ c(σ), S ⊢f

AFAgent
σ′, S∩Ci =

∅ } (filtering of culprits by culprits)

• Di+1 = Di

• Ci+1 = Ci
(c) if σ /∈ A ∪ Rp, choose a backward deduction

S ⊢f
AFAgent

σ such that S ∩ Ci = ∅ (filtering of de-

fences by culprits), then

• Pi+1 = (Pi − {σ}) ∪ ((S ∩ A) − Di) (filtering of
defences by defences)

• Oi+1 = Oi

• Di+1 = Di ∪ S
• Ci+1 = Ci

2. If g(Oi) = Σ is picked, then

(a) if Σ ∩ Ci 6= ∅ (filtering of culprits by culprits), then

• Pi+1 = Pi

• Oi+1 = Oi − {Σ}
• Di+1 = Di

• Ci+1 = Ci

3f takes as input a set of sentences Pi and returns a single ele-
ment σ ∈ Pi, while g takes as input a set of sets of sentences Oi

and returns a single element Σ ∈ Oi.
4Depending on the player choice, as discussed later.



(b) if Σ ∩ Ci = ∅, choose σ ∈ Σ such that σ ∈ A and
σ /∈ Di (filtering of culprits by defences), and choose
σ′ ∈ c(σ), then

• Pi+1 = Pi ∪ {σ
′}

• Oi+1 = Oi − {Σ}
• Di+1 = Di ∪ ({σ′} ∩ (A ∪Rp))
• Ci+1 = Ci ∪ {σ}

We writeD |=f,g
AFAgent

P if there exists a fdd ofD for P . We

write D |=f,g
AFAgent

p if P = {p}. 5

Similarly to Definition 4, we use the word “choose” in Defi-
nition 5 above to identify backtrackable points in the search
for a fdd.

Intuitively, two choices (at least) have to be made at each
step in a derivation. First, a (fictional) player must be cho-
sen: either the proponent (Pi) or the opponent (Oi). If the
proponent is chosen, then a sentence σ in Pi is picked and
one of three cases (1a, 1b or 1c) apply. If the opponent is
chosen, then a set Σ inOi is picked and one of two cases (2a
or 2b) apply.

In case 1a, the proponent plays and σ is a personal fact:
this is simply removed from the proponent’s set. Indeed, σ
will have been added to the defence set previously.

In case 1b, the proponent plays and σ is an assumption:
this is removed from the proponent’s set and all (suppports
of) f-arguments that attack σ and contain no culprit assump-
tions are added to the opponent’s set.

In case 1c, the proponent plays and σ is neither a personal
fact nor an assumption: σ is removed from the proponent’s
set and, choosing a support S for σ that contains no culprit
assumptions, replaced by the assumptions of S after the de-
fence assumptions have been filtered.

In case 2a, the opponent plays and Σ contains a culprit
assumption: Σ is simply removed from the opponent’s set,
as it has already been counter-attacked.

In case 2b, the opponent plays and Σ contains no culprit
assumptions: Σ is removed from the opponent’s set. A non-
defence (trivially non-culprit) assumption σ in Σ is chosen
and added to the set of culprits. Also, a contrary σ′ of σ is
chosen, added to the proponent’s set and, if σ′ is a personal
fact or assumption, also added to the defence set.

We demonstrate in Examples 3 and 4 below a successful
and a failed (respectively) fdd. Here and in the remainder of
the paper, “fdd ofD for p” will stand for “fdd ofD for {p}”.

Example 3 Given the AABA framework AFx of Section 4,
a fdd S |=AFx

sa(x, y, app1, app2) is obtained as shown in
Table 2. The fdd here coincides with the f-argument. At step
i = 0, sa(x, y, app1, app2) ∈ P0 is picked and S ⊢AFx

sa(x, y, app1, app2) chosen in applying Case 1c. At step
i = 1, ¬l(x, app1) ∈ P1 is picked and Case 1b applied.
Note that c(¬l(x, app1)) = {l(x, app1)} and l(x, app1)
has no support in AFx, hence O2 = O1. At step i = 2,
cs(y, app2, app1) ∈ P2 is picked and Case 1b applied.
Note that c(cs(y, app2, app1)) = {¬cs(y, app2, app1)}
and ¬cs(y, app2, app1) has no support in AFx, hence

5We write |=AFAgent
instead of |=f,g

AFAgent
where the particu-

lar selection functions are unimportant in the given context.

i Pi Oi Di Ci Case. . .

0 {sa(x, y, app1, app2)} {} {} {} 1c

1 {¬l(x, app1), {} S {} 1b

cs(y, app2, app1)}

2 {cs(y, app2, app1)} {} S {} 1b

3 {} {} S {}

Table 2: fdd for sa(x, y, app1, app2) in AFx.

S = {h(x, app1), r(x, seeDrAli), fr(app2, seeDrAli),

¬l(x, app1), cs(y, app2, app1)}. The underlined atoms are

picked by f .

i Pi Oi Di Ci Case

0 {sa(x, y, app1, app2)} {} {} {} 1c

1 {¬l(x, app1), {} S {} 1b

cs(y, app2, app1)}

2 {¬l(x, app1)} {S′} S {} 2b

3 {¬l(x, app1), {} S {¬l(y, app1)}

l(y, app1)}

Table 3: Attempt to build a fdd for sa(x, y, app1, app2) in AFy .

S is as defined in Table 2. S′ = {has(y, app2), r(y, fridayApp),

fr(app2, fridayApp), ¬l(y, app1)}. The underlined elements

are picked by f and g.

O3 = O2. Note that S includes facts to be communicated,
which would not be accumulated by the dd procedure.

Example 4 Given the AABA framework AFy of Section 4
but such that additionally h(x, app1), r(x, seeDrAli) ∈
Rp

y , a fdd for sa(x, y, app1, app2) cannot be found as

shown in Table 3. At step i = 0, sa(x, y, app1, app2) ∈
P0 is picked and S ⊢AFy

sa(x, y, app1, app2) cho-
sen in applying Case 1c of Definition 5. At step
i = 1, cs(y, app2, app1) ∈ P1 is picked and
Case 1b applied. Note that c(cs(y, app2, app1)) =
{¬cs(y, app2, app1)} and S′ is the only support for
¬cs(y, app2, app1) in AFy , hence O2 = O1 ∪ {S

′}. At
step i = 2, S′ ∈ O2 is picked and in applying Case 2b, (the
only assumption) ¬l(y, app1) ∈ S′ and (the only contrary)
l(y, app1) ∈ c(¬l(y, app1)) chosen. At step i = 3, picking
l(y, app1) ∈P3, the fdd fails since none of the cases 1a to 1c
are applicable for l(y, app1) according to AFy . In partic-
ular, l(y, app1) /∈ Rp

y nor is there a support for l(y, app1)
in AFy . Further, there are no points in the derivation se-
quence where backtracking can be successfully applied.

7. An Application: Arguments in Dialogue

Fdds, giving D |=AFAgent
p, can be seen as a means of

generating “communicable arguments” for claims p to be
exchanged between communicating agents. Note that typi-
cally these are not f-arguments as they could include in D
additional facts and assumptions needed to defend the claim
against attacks. We refer to these “arguments” as fdd argu-
ments.

We demonstrate in this section how exchanging fdd ar-
guments between agents can be useful in dialogue. Note
that this section is solely for illustration and not intended to



define a dialogue game for argumentation. Whilst frame-
works have been presented for argumentation-based dia-
logue games, e.g. (Prakken 2005), our work is orthogonal
and presents instead a means of representing and generating
arguments that could be fed into such frameworks.

Given the AABA frameworks AFx and AFy of Sec-
tion 4 and ignoring details of the communication proto-
col and policy, we demonstrate how, by exchanging argu-
ments, agents x and y could come to an agreement that
sa(x, y, app1, app2) is an acceptable action. Informally, the
dialogue between the two agents proceeds as follows:

x: We should swap app1 and app2 because . . .

. . . and I assume you can swap app2 for app1.

y: I cannot swap app2 for app1 because . . .

. . . and I assume app1 is no good for me.

x: Ah, but app1 is good for you because . . . ,

hence we should swap app1 and app2.

y: Ok. I agree to the swap.

We show in Table 4 and explain here the fdd arguments ut-
tered by the agents and the beliefs each agent adds to its
personal facts as a result of the dialogue. The dialogue takes
place over time points 1–4. Time 0 is prior to the dialogue.
t=0: There is a fdd S |=AFx

sa(x, y, app1, app2) (as
derived in Table 2). However, there is no fdd for
sa(x, y, app1, app2) according to AFy .
t=1: x communicates its fdd argument S |=AFx

sa(x, y, app1, app2) to y and y revises Rp
y to include

has(x, app1) and r(x, seeDrAli), given in S. Then, y
knows what x has and requires.
t=2: y can now build S ⊢AFy

sa(x, y, app1, app2). How-
ever, a fdd for sa(x, y, app1, app2) according to AFy still
does not exist, as shown in Table 3. The successfully at-
tacking argument in the failed fdd sequence is S′ |=AFy

¬cs(y, app2, app1). Then, y communicates this fdd argu-
ment to x and x revisesRp

x to include r(y, fridayApp) and
fr(app2, fridayApp), given in S′.
t=3: x can now build a f-argument S′ ⊢AFx

¬cs(y, app2, app1). However, this is not an acceptable ar-
gument in AFx since the (only) assumption ¬l(y, app1) in
S′ has a contrary l(y, app1) for which there is an acceptable
fdd S′′ |=AFx

l(y, app1). By means of this defending argu-
ment, a fdd S∪S′′ |=AFx

sa(x, y, app1, app2) exists. Then
x communicates this fdd argument to y and y revises Rp

y to

include fr(app1, fridayApp), given in S′′.
t=4: y is now able to build a f-argument S′′ ⊢AFy

l(y, app1)
as well as an acceptable fdd for sa(x, y, app1, app2) accord-
ing to AFy . Hence the agents end in agreement.

8. Theoretical Results

In this section, we state the following main results for any
ABA framework AF and corresponding AABA framework
AFAgent:

• fdds correspond to (a variant of) the dds of (Dung, Man-
carella, and Toni 2007) (see Theorems 1 and 2, and Corol-
lary 1);

• fdds are correct in that the assumptions in the support of
the input claims they compute is indeed admissible (see
Corollary 2);

t x utters. . . y utters. . .

1 S |=AFx sa(x, y, app1, app2)

2 S′ |=AFy ¬cs(y, app2, app1)

3 S′′′ |=AFx sa(x, y, app1, app2)

4 S′′′ |=AFx sa(x, y, app1, app2)

t Rp
x plus. . . Rp

y plus. . .

1 has(x, app1), r(x, seeDrAli)

2 r(y, friApp),fr(app2, friApp)

3 fr(app1, fridayApp)

4

Table 4: Arguments exchanged between x and y regarding the ac-

ceptability of sa(x, y, app1, app2), and respective changes to each

agent’s personal facts. S and S′ are as defined in Tables 2 and 3

(resp). S′′ = {r(y, fridayApp), fr(app1, fridayApp)}. S′′′ =

S ∪ S′′.

• fdds are complete for p-acyclic ABA frameworks (see
Corollary 3).

The variant of dds we use is as defined in (Gaertner 2009).
The cases 2ic.1 and 2ic.2 of the dds of (Dung, Mancarella,
and Toni 2007) are combined into one single case 2ic which
states:
Pi+1 = Pi ∪ {c(σ)}; Oi+1 = Oi − S;

Di+1 = Di ∪ (A ∩ {c(σ)}); Ci+1 = Ci ∪ {σ}.
The variant is proven in (Gaertner 2009) to be correct, and
to be equivalent to the original version under the restriction
that, when the contrary of an assumption is an assumption,
its original contrary is the original assumption. This restric-
tion also held (implicitly) in (Dung, Mancarella, and Toni
2007). We prove our results for ABA frameworks where
the contrary of every assumption is a singleton set. This
can be done without loss of generality since there is a one-
to-one correspondence between such ABA frameworks and
ABA frameworks with multiple contraries (Gaertner and
Toni 2008). When c(σ) is a singleton set {σ′}, we denote
c(σ) simply as σ′, i.e. c(σ) = σ′.

Theorem 1 If, using some selection functions f and g,

D |=f,g
AFAgent

p, then, using some selection function f ′, there

is a dd of D ∩A for p.

Theorem 2 If, using some selection function f , there is a
dd of a defence set A ⊆ A for a claim p, then, for some

selection function g, A ∪ F |=f,g
AFAgent

p for some F ⊆ Rp.

The proofs of Theorems 1 and 2 can be found in an accom-
panying technical report (see Section 9).

Corollary 1 If Rp = ∅, then there is a fdd of a defence set
D for p iff there is a dd of D for p.

The proof of Corollary 1 follows straightforwardly from
Theorems 1 and 2 above.

Corollary 2 For every fdd of a defence set D = A ∪ F
(A ⊆ A, F ⊆ Rp) for p ∈ L, the set of assumptions A is
admissible and there exist some A′ ⊆ A and F ′ ⊆ F such
that A′ ∪ F ′ ⊢AFAgent

p.

The proof of Corollary 2 follows straightforwardly from
Theorem 1 above and the soundness theorem for dds (i.e.



Theorem 4.3 of (Dung, Mancarella, and Toni 2007), as
formulated in (Gaertner 2009)).

We define a positively acyclic (or p-acyclic for short) ABA
framework as in (Dung, Mancarella, and Toni 2007). By
AF+ we denote the ABA framework obtained by deleting
all assumptions appearing in the premises of the inference
rules of AF . The dependency graph of AF+ is a directed
graph where:

• the nodes are the atoms occurring in AF+;

• a (directed) arc from a node p to a node q is in the graph if
and only if there exists an inference rule p ← B in AF+

such that q occurs in B.

Definition 6 An ABA framework AF is p-acyclic if the de-
pendency graph of AF+ is acyclic. An AABA framework
〈L, Rc, R

p, A, c〉 is p-acyclic iff 〈L, Rc ∪R
p, A, c〉 is p-

acyclic.

Definition 7 A partial deduction for a claim p, given a se-
lection function f , is a sequence 〈C0, S0〉, . . . , 〈Cj , Sj〉
where j ≥ 0, C0 = {p}, S0 = ∅ and each 〈Ci+1, Si+1〉
(0 ≤ i < j) is constructed from 〈Ci, Si〉 by picking f(Ci) =
σ and applying case 1 or 2 of Definition 4.

Theorem 3 Given a p-acyclic framework, there exists no in-
finite partial deduction.

The proof of Theorem 3 is trivial since there is a well-
ordering of all sentences in the language of the p-acyclic
framework, i.e. whenever a sentence belongs to the premise
of an inference rule, then the sentence is lower in ordering
than the conclusion of the inference rule.

Theorem 3 guarantees that the search for a f-argument al-
ways terminates (either successfully, finding such an argu-
ment, or not). In the case of p-acyclic frameworks with a
finite underlying language L the fdds are complete, in the
following sense:

Corollary 3 Let AFAgent be a p-acyclic AABA framework
such that L is finite. Then, for each sentence l ∈ L, if l is an
admissible claim then

• there exists a fdd for l;

• for each admissible set A ⊆ A, if, for some A′ ⊆ A
and F ⊆ Rp, A′ ∪ F ⊢AFAgent

l, then there is a fdd
D |=AFAgent

l such that A′ ∪ F ⊆ D.

The proof of Corollary 3 follows straightforwardly from
Theorem 2 above and the completeness theorem for dds
for p-acyclic ABA frameworks (i.e. Theorem 4.4 of (Dung,
Mancarella, and Toni 2007)).

9. Conclusion

We have proposed an extension to the ABA frame-
work (Dung, Kowalski, and Toni 2009) for multi-agent sys-
tem settings where agents have some common knowledge
but may also have some personal knowledge not necessar-
ily shared by all agents. This is complementary of work
in (Hunter 2007). In exchanging arguments between one an-
other, agents in such an agent system would need to include

personal beliefs that the recipient agent may be unaware of.
Such arguments can be seen as enthymemes (Hunter 2007).

We have proposed a revised notion of ABA argument
that accumulates an agent’s personal beliefs as well as its
assumptions. Accordingly, we have proposed a computa-
tional model for generating admissible arguments, called
fact-inclusive AB-dispute derivations (fdds), which accumu-
lates an agent’s personal facts as well as its assumptions.
We have demonstrated how such outcomes of fdds could be
usefully exchanged between agents in dialogue. We plan to
generalise our AABA framework and the associated compu-
tation models to allow in Rp general inference rules rather
than just facts. Also, we plan to apply our framework and the
exchange of arguments in the context of concrete inter-agent
communication. We also aim to address situations where
agents have inconsistent (as well as incomplete) beliefs.

We have implemented the backward deduction and fdd
procedures in Prolog, and have used these in the implemen-
tation of the negotiation policies of (Hussain and Toni 2008).
The implementations of the procedures and negotiation poli-
cies, as well as the accompanying technical report, can be
downloaded from www.doc.ic.ac.uk/∼ah02.

References

Amgoud, L.; Maudet, N.; and Parsons, S. 2000. Modelling
dialogues using argumentation. In ICMAS’00. IEEE Press.

Amgoud, L.; Parsons, S.; and Maudet, N. 2000. Argu-
ments, dialogue, and negotiation. In ECAI’00, 338–342.
IOS Press.

Black, E., and Hunter, A. 2008. Using enthymemes in an
inquiry dialogue system. In AAMAS’08, 437–444. ACM
Press.

Dung, P. M.; Kowalski, R. A.; and Toni, F. 2009.
Assumption-based argumentation. In Argumentation in Ar-
tificial Intelligence. Springer. 199–218.

Dung, P. M.; Mancarella, P.; and Toni, F. 2007. Com-
puting ideal sceptical argumentation. Artificial Intelligence
171(10–15):642–674.

Gaertner, D., and Toni, F. 2008. Hybrid argumentation and
its properties. In COMMA’08, 183–195. IOS Press.

Gaertner, D. 2009. Argumentation and Normative Reason-
ing. Ph.D. Dissertation, Imperial College.

Hunter, A. 2007. Real arguments are approximate argu-
ments. In AAAI’07, 66–71. MIT Press.

Hussain, A., and Toni, F. 2008. On the benefits of argumen-
tation for negotiation (preliminary version). In EUMAS’08.

Mcburney, P.; Hitchcock, D.; and Parsons, S. 2002. The
eightfold way of deliberation dialogue. International Jour-
nal of Intelligent Systems 22(1):95–132.

Prakken, H. 2005. Coherence and flexibility in dialogue
games for argumentation. Journal of Logic and Computa-
tion 15(6):1009–1040.

Rahwan, I.; Ramchurn, S. D.; Jennings, N. R.; McBurney,
P.; Parsons, S.; and Sonenberg, L. 2003. Argumentation-
based negotiation. The Knowledge Engineering Review
18(4):343–375.


