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Abstract

Recent work proposed Anhomomorphic Logic, characterized in algebraic terms via answering maps on a
Boolean algebra of propositions, as a logical framework appropriate for physics, including both classical and quan-
tum theory. In this paper we study how another type of logic, called Argumentation Logic, generalizing classical
logic to accommodate various forms of commonsense reasoning, exhibits properties of Anhomomorphic Logic.

1 Introduction
Argumentation Logic (AL) captures entailment in classical logic as well as forms of defeasible com-
monsense reasoning [4, 5, 6]. AL-entailment is defined through argumentation, in terms of the least
fixed points of ‘acceptability’ and ‘non-acceptability’ operators, for a given (possibly empty) theory in a
propositional language equipped with an underlying notion of ‘direct derivation’. This is some fragment
of derivability in classical logic, but excluding reductio ad absurdum.

Anhomomorphic Logic (AnhomL) was developed to deal with the modified rules of inference that
may be needed for quantum physics [7, 10, 1]. It is framed in terms of a Boolean algebra of propositions
about a system and a set of allowed answering maps. A Scheme for AnhomL is a set of conditions the
allowed answering maps must satisfy which define the type of inferences allowed in the logic. It remains
an open question which Scheme – if any – will successfully account for the physics we know.

The central feature of both AnhomL and AL is that they “tolerate contradiction” without collapsing
into triviality, so it is interesting to explore the possible connections between them. We make a start in
this direction by defining an answering map, χT , corresponding to AL-entailment, and show that χT

has algebraic properties that can be compared to those of answering maps in AnhomL.
The paper is organised as follows: we first briefly recall essentials of AnhomL (in section 2) and AL

(in section 3); we then define and study χT (in section 4), illustrating it with the 3-slit example from
quantum physics (in section 5), and conclude in section 6.

2 Anhomomorphic Logic
Anhomomorphic Logic [7, 10, 1] pertains to a collection, U , of propositions about a (physical) system.
U is a Boolean algebra and closed under the propositional logical connectives of ∧,∨,¬. Elements of
U are also referred to as events. This structure naturally arises in physics where there is an underlying
set, Ω, of spacetime histories of the system such that elements of U are subsets of Ω. Then ∧,∨,¬ are
defined in the canonical way through the intersection, union and complement set operations. A possible
world is an answering map, φ : U → Z2 = {0,1} (called a co-event in the literature, since φ maps
events to a set of scalars), and if φ(A) = 1 (respectively φ(A) = 0) we say A is affirmed (respectively
denied) by the world φ . A Scheme is a set of conditions that an allowed answering map must satisfy. We
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define here some conditions on φ that may or may not hold within any given Scheme. First it is useful
to define the logical connective ‘exclusive or’, ⊕, on events in U : A⊕B := (A∨B)∧¬(A∧B). Then φ

is additive if φ(A⊕B) = φ(A)+φ(B) for all A and B in U . φ is multiplicative if φ(A∧B) = φ(A)φ(B)
for all A and B in U . φ is a homomorphism if φ 6= 0 (namely there is some A such that φ(A) 6= 0) and
is both additive and multiplicative.

The rules of logical inference are determined by the Scheme conditions. For example, if the Scheme
condition is that φ is a homomorphism then the rules of inference are those of classical logic [7]. Hence
the term Anhomomorphic Logic to denote the framework: in a Scheme with less restrictive conditions,
allowed worlds will not be homomorphisms and the rules of inference about the world will not be
classical. The Multiplicative Scheme (MS) for AnhomL [7] is defined by the conditions that φ is mul-
tiplicative and not constant, together with a minimality condition and a dynamical condition known
as preclusion (see the triple slit example below in section 5). In the MS scheme the rule of inference
(φ(A) = 1⇒ φ(¬A) = 0)∀A ∈ U holds but the rule of inference (φ(A) = 0⇒ φ(¬A) = 1)∀A ∈ U
does not.

3 Argumentation Logic
Argumentation Logic (AL) [4, 5, 6] defines entailment in terms of notions of acceptability and non-
acceptability of arguments, seen as sets of propositional formulae in a given language L , equipped
with a notion of direct derivation based on a subset of standard inference rules in Natural Deduction
(see appendix A). When a formula A in L is directly derived (using the chosen inference rules) from a
theory T in L , we write T `DD A. Whereas in [4, 5, 6] the chosen inference rules, and therefore `DD, are
fixed, and amounting to all inference rules in appendix A except RA (Reduction ad Absurdum), in this
paper we do not commit to a specific `DD, and leave it instead as a parameter for AL, while imposing
that it does not include RA. We say that a theory T in L is directly inconsistent if T `DD ⊥, where
⊥ stands for inconsistency and amounts to A∧¬A for any A in L . We say that a theory is directly
consistent if it is not directly inconsistent. Throughout this paper we will assume as given a directly
consistent theory T .

The notions of (non-)acceptability are defined in terms of notions of attack and defence amongst
arguments (i.e. T extended by sets of formulae), as follows, for ∆,Γ sets of formulae in L :

• argument a = T ∪∆ attacks argument b = T ∪Γ, with Γ 6= /0, iff a∪b `DD ⊥;

• argument d defends against argument a = T ∪∆, iff
1. d = T ∪{¬A} (d = T ∪{A}) for some A ∈ ∆ (respectively ¬A ∈ ∆), or
2. d = T ∪ /0 and a `DD ⊥.

(Non-)Acceptability is defined as the least fixed point of an operator: given the set of binary relations
R over all sets of arguments in L ,

• the acceptability operator AT :R→R is defined as follows: for any acc ∈R and arguments a,a0:
(a,a0) ∈AT (acc) iff

– a⊆ a0, or
– for any argument b such that b attacks a,

- b 6⊆ a0∪a, and
- there is argument d that defends against b such that (d,a0∪a) ∈ acc.

• the non-acceptability operator NT : R→R is defined as follows: for any nacc∈R and arguments
a,a0: (a,a0) ∈NT (nacc) iff

– a 6⊆ a0, and



– there is argument b such that b attacks a and
- b⊆ a0∪a, or
- for any argument d that defends against b, (d,a0∪a) ∈ nacc.

ACCT and NACCT denote the least fixed points of AT and NT respectively. We say that a is accept-
able wrt a0 in T iff ACCT (a,a0), and a is not acceptable wrt a0 in T iff NACCT (a,a0).

The definition of entailment in AL is given as follows:

• a formula A in L is AL-entailed (from T , given `DD), written |=DD(T )
AL A, iff ACCT ({A}, /0) and

NACCT ({¬A}, /0).

In the remainder of the paper we often omit T from arguments and say that a formula A is acceptable
(non-acceptable, respectively) when ACCT ({A},{}) holds (NACCT ({A},{}) holds, respectively).

4 An algebraic view of AL-entailment
Here and in the remainder of this section we assume `DD and (a directly consistent theory) T in L as
given, and that A,B are formulae in L . (Note that T may be classically inconsistent).

We define χT : L →Z2 corresponding to AL-entailment, as follows:

χ
T (A) = 1 iff |=DD(T )

AL A

The following basic property of χT follows directly from the property of AL-entailment, that T `DD
A implies ACCT ({A}, /0) and NACCT ({¬A}, /0):

Lemma 1. If T `DD A then χT (A) = 1.

The map χT satisfies axiomatic properties of φ depending on the inference rules in the underlying
`DD. This correspondence follows from the following closure property of AL (see appendix B for a
sketch of the proof):

Lemma 2. if |=DD(T )
AL A and T ∪{A} `DD B, then |=DD(T )

AL B.

This result essentially indicates that AL respects its underlying basic inference rules (`DD). As a
consequence, depending on the choice of `DD, χT satisfies various corresponding algebraic properties
as considered in AnhomL. For example:

• if `DD includes the ∧E rule then
if χT (A∧B)=1 then χT (A)=1 and χT (B) = 1.

• if `DD includes the ∧I rule then
if χT (A)=1 and χT (B) = 1 then χT (A∧B)=1.

Hence when `DD includes both of the standard inference rules for conjunction then AL satisfies the
multiplicative property:

Proposition 1. χT (A∧B) = χT (A)χT (B).

With respect to negation the properties of χT are:

• if χT (A)=1 then χT (¬A)=0.

This follows since non-acceptability of ¬A makes it impossible for ¬A to be AL-entailed. Note
though that the reverse property, i.e. if χT (A)=0 then χT (¬A)=1, does not hold. This is similar to the
properties of φ in the MS Scheme for AnhomL.

Similarly, if we include the ∨I rule in `DD then the algebraic semantics of AL has the property:



• if χT (A)=1 then χT (A∨B)=1.

In AnhomL the similar condition on φ holds in the MS Scheme due to the Boolean algebra structure
of U : we have A∧ (A∨B) = A and so φ(A)φ(A∨B) = φ(A), and thus if φ(A) = 1 then φ(A∨B) = 1.

4.1 χT is anhomomorphic
Note that when ¬(A∧B) holds in AL, i.e. χT (¬(A∧B))=1, then χT (A)=0 or χT (B)=0 (as they cannot
both take the value 1). Does this impose that only one of the disjuncts will take the value 0 and hence
the other will take the value 1 (i.e. that one of A or B will hold)? In other words, as in the AnhomL
approach, is the map χT homomorphic in the full algebra of Z2, i.e. satisfying the additive property:
χT (A⊕B) = χT (A)+χ(B)?

For disjoint formulae A, B, i.e. such that χT (¬(A∧B))=1, given, additionally, that χT (A∨B)=1 this
homomorphic property (wrt + in Z2) forces one of A and B to take the value 1: the disjunction can hold
and yet neither disjunct holds.

When we take `DD to contain also the ∨E inference rule (i.e. reasoning by cases) and the theory
T is classically consistent then this property is satisfied (as AL and classical logic coincide in this
case [4, 5, 6]) and hence χT is a homomorphism. However, in general, the answer to the questions
above is no, as this property does not always hold in AL: the disjunction can hold and yet neither
disjunct holds.

For the case of directly consistent theories that we are considering, if we exclude the ∨E inference
rule from `DD then a simple example shows how this property is violated:

Example 1. Let T = {α ∨β ,α →⊥,β →⊥}. Then, χT (α)=0 and χT (β )=0 although χT (α ∨β )=1.

Note that the well known “Barber of Seville” paradox is a concrete variant of this example:
TBS = {SBarber∨SHimsel f ,¬(SBarber∧SHimsel f ),SBarber↔ SHimsel f}.
The last formula in TBS makes both SBarber and SHimsel f non-acceptable and hence both take the

value 0 under χT
BS and yet SBarber∨SHimsel f and SBarber⊕SHimsel f take the value 1 under χT

BS as
they are directly derivable from the theory.

The following example shows that even when ∨E is present in `DD, χT is not homomorphic:

Example 2. T = {α ∨β ,¬(α ∧ γ),¬(α ∧¬γ),¬(β ∧δ ),¬(β ∧¬δ )}.
Again, both χT (α)=0 and χT (β )=0 although χT (α ∨β )=1.

We see that in general, AL gives rise to an answering map on L that shares properties comparable
to the properties of the co-events in the MS Scheme for AnhomL. Through this, AL avoids classical
logic paradoxes, that arguably do not exist in common sense reasoning. Since AnhomL was proposed
as a logical framework for physics motivated by the need to encompass results in quantum mechanics
that seem to many paradoxical by the lights of classical reasoning, it is interesting to investigate and
compare how both AnhomL and AL treat an example from Quantum Physics.

5 An illustrative example from Quantum Physics
In the 3-slit experiment [8], particles (photons say) are incident on a barrier in which there are three
equally spaced, parallel slits, labelled A, B and C. Beyond the barrier is a screen on which the particles
are detected if they make it through the slits. The experiment is run and a particle is detected at a
particular position P on the screen. The distance from the barrier to the screen and the slit spacing are
such that the amplitude for the particle to pass through slit B and arrive at P is equal to the amplitude for
the particle to pass through slit C and arrive at P, and minus the amplitude for the particle to pass through



slit A and arrive at P. There are three atomic propositions which are, “the particle passed through slit A”,
“the particle passed through slit B” and “the particle passed through slit C”. Treating this experiment in
AnhomL, the event algebra is U = { /0,A,B,C,A∨B,B∨C,C∨A,A∨B∨C} where we use A to denote
“the particle passed through slit A” etc.

Quantum destructive interference – cancellation of equal and opposite amplitudes – means that the
quantum measure [8] of each event A∨B and A∨C is zero and the preclusion condition [3, 8] implies
that those events are denied by every allowed co-event: φ(A∨B) = φ(A∨C) = 0. Multiplicativity
in AnhomL then implies also that φ(A) = φ(B) = φ(C) = 0. The minimality condition [7] in the MS
Scheme means that there is exactly one allowed co-event, φ , in this example: φ(B∨C) = φ(A∨B∨C) =
1 are the only affirmations, all other events are denied by φ .

In AL, we represent this experiment and the quantum dynamics by T = {A∨B∨C,¬(A∨B),¬(A∨
C)} and `DD given by ∧I, ∧E and ∨I. Here, T is a directly consistent theory (since ∨E is not included
in `DD).

Then A,B and C on their own are non-acceptable and hence χT (A) = χT (B) = χT (C) = 0. Yet
χT (A∨B∨C) = 1.

We can also see that ¬A is acceptable as there are no attacks against this apart from T ∪{A}, de-
fended by T ∪{¬A} trivially, and apart from attacks that contain the negation of some direct conse-
quence, D, of ¬A. But then the attack can be defended by T ∪ {D} which is acceptable wrt {¬A}.
Hence χT (¬A) = 1. Similarly, χT (¬B) = 1 and χT (¬C) = 1 hold.

Regarding B∨C this can be shown to be acceptable for the same reason as above, i.e. that there are
no attacks against this except those that contain the negation of a direct consequence of B∨C. The same
holds for ¬(B∨C). Therefore χT gives 0 for both. Here we see a difference with the MS Scheme in
AnhomL in which φ(B∨C) = 1.

6 Conclusions
We have initiated a comparison of two attempts to address the limitations of classical logic, one in the
realm of commonsense reasoning and logical paradoxes and the other in quantum physics. In Argu-
mentation Logic the central notion of acceptability of a formula gives a logical framework where the
so called “tetralemma” [9] is naturally accommodated. In the future we will seek to understand better
the relationship between AL and AnhomL by studying further quantum examples such as the Kochen-
Specker theorem in AnhomL [2]. Quantum mechanics is sometimes described as “counter-intuitive”
and “paradoxical”: it would be striking if understanding it requires an approach to logic that is actually
closer to human, commonsense reasoning than the rigid rules of classical logic.
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A Natural Deduction
We use (some of) the following inference rules, for any propositional formulae A,B,C in L :

∧I :
A,B

A∧B
∧E :

A∧B
A

∧E :
A∧B

B
∨I :

A
A∨B

∨I :
B

A∨B
→ I :

dA . . .Bc
A→ B

⊥I :
A,¬A
⊥

¬E :
¬¬A

A
¬I/RA :

dA . . .⊥c
¬A

∨E :
A∨B,dA . . .Cc,dB . . .Cc

C
→ E :

A,A→ B
B

where dζ , . . .c is a (sub-)derivation with ζ referred to as the hypothesis. ¬I is also called Reduction ad
Absurdum (RA). ⊥ stands for inconsistency.

B Sketch of proof of lemma 2
We need to show that (i) ACCT ({B}, /0) and (ii) NACCT ({¬B}, /0).

(i) Any attack, T ∪ {C}, against {B} is also an attack against {A} since T ∪ {A} `DD B. Then
the defence against C given from ACCT ({A}, /0) will also form a defence for the acceptability of {B}.
Otherwise, there will be an attack A′ against some defence D′ in the acceptability tree of A such that A′ ⊆
Branch(D′)∪{B} where Branch(D′) is the union of defences up to and including D′ in the acceptability
tree of A. But then A′′ = (A′−{B})∪{A} will also be an attack against D′ (since T ∪{A} `DD B) such
that A′′ ⊆ Branch(D′), thus contradicting the acceptability of A.
(ii)The set {A} is an attack against {¬B} (since T,A `DD B). Then because ACCT ({A}, /0) holds it
follows that T ∪A 6`DD⊥ and hence the only possible defence against A is {¬A}. From NACCT ({¬A}, /0)
then (when B 6= A as is our case here) NACCT ({¬A},{¬B}) would also hold. Otherwise, if it does not
hold then in the non-acceptability proof of {¬event} there will be some defence equal to {¬B} and
so NACCT ({¬B},{¬A}) will hold. But then from this we have that NACCT ({¬B}, /0) also holds, as
required, since if NACCT ({¬B},{¬A}) comes from an attack containing ¬A then (when this is not part
of the branch) its possible defence {A} is attacked by {¬B} (since T ∪{A} `DD B) and therefore this
defence will also be non-acceptable in the non-acceptability proof of {¬B} wrt the empty set.
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