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Toni

abstract. Assumption-Based Argumentation (ABA) is a form of
structured argumentation with roots in non-monotonic reasoning. As
in other forms of structured argumentation, notions of argument and
attack are not primitive in ABA, but are instead defined in terms of
other notions. In the case of ABA these other notions are those of rules
in a deductive system, assumptions, and contraries.

ABA is equipped with a range of computational tools, based on dis-
pute trees and amounting to dispute derivations, and benefiting from
equivalent views of the semantics of argumentation in ABA, in terms of
sets of arguments and, equivalently, sets of assumptions. These compu-
tational tools can also provide the foundation for multi-agent argumen-
tative dialogues and explanation of reasoning outputs, in various settings
and senses.

ABA is a flexible modelling formalism, despite its simplicity, allowing
to support, in particular, various forms of non-monotonic reasoning, and
reasoning with some forms of preferences and defeasible rules without
requiring any additional machinery. ABA can also be naturally extended
to accommodate further reasoning with preferences.

1 Introduction

Assumption-Based Argumentation (ABA) [Bondarenko et al., 1993; Bondarenko
et al., 1997; Dung et al., 2009; Toni, 2014] is a form of structured argumentation
[Besnard et al., 2014] with roots in non-monotonic reasoning [Brewka et al.,
1997]. Differently from abstract argumentation [Dung, 1995] but as in other
forms of structured argumentation, e.g. DeLP [Garćıa and Simari, 2014] and
deductive arguments [Besnard and Hunter, 2014], notions of argument and at-
tack are not primitive in ABA, but are instead defined in terms of other notions.
In the case of ABA these notions are those of rules in an underlying deduc-
tive system, assumptions and their contraries: arguments are supported by
rules and assumptions and attacks are directed against (assumptions deducible
from) assumptions supporting arguments, by building arguments for the con-
trary of these assumptions. Semantics of ABA frameworks can be charac-
terised in terms of sets of assumptions (or extensions) [Bondarenko et al., 1993;
Bondarenko et al., 1997; Dung et al., 2007] meeting desirable requirements, in-
cluding, but not limited to, the two core requirements of closedness (where a



2 Kristijonas Čyras, Xiuyi Fan, Claudia Schulz, Francesca Toni

set of assumptions is closed iff it consists of all the assumptions deducible from
it) and conflict-freeness (where a set of assumptions is conflict-free iff it does
not attack itself). The closedness requirement is guaranteed to be fulfilled au-
tomatically for all sets of assumptions for restricted kinds of ABA frameworks,
referred to as flat [Bondarenko et al., 1997]. The ABA semantics of admissible,
preferred, complete, well-founded, stable and ideal extensions [Bondarenko et
al., 1997; Dung et al., 2007] differ in which additional desirable requirements
they impose upon sets of assumptions, but can all be seen as providing argu-
mentative counterparts of semantics that had previously been defined for non-
monotonic reasoning, by appropriately instantiating (flat and non-flat) ABA
frameworks [Bondarenko et al., 1993; Bondarenko et al., 1997] to “match” ex-
isting frameworks for non-monotonic reasoning.

Flat ABA is equipped with a range of computational tools, based on dispute
trees [Dung et al., 2006; Dung et al., 2007] and amounting to dispute deriva-
tions [Dung et al., 2006; Dung et al., 2007; Toni, 2013], and benefiting from
equivalent views of the semantics of argumentation in flat ABA, in terms of sets
of arguments and, equivalently, sets of assumptions [Dung et al., 2007]. These
computational tools can also provide the foundation for inter-agent ABA dia-
logues in various settings and senses [Fan and Toni, 2011b; Fan and Toni, 2011a;
Fan and Toni, 2011c; Fan and Toni, 2012b; Fan and Toni, 2012a; Fan and Toni,
2012c; Fan et al., 2014; Fan and Toni, 2014b; Fan and Toni, 2016] and expla-
nations of reasoning outputs, in various settings and senses, e.g. to explain
(non-)membership in answer sets of logic programs [Schulz and Toni, 2016],
to explain “goodness” of decisions [Fan and Toni, 2014a; Fan et al., 2013;
Zhong et al., 2014] and, more generically, to explain admissibility of sentences
in any flat instance of ABA [Fan and Toni, 2015c].

ABA is a flexible modelling formalism, despite its simplicity, allowing to
support, in particular, reasoning with some forms of preferences and defeasible
rules without requiring any additional machinery [Kowalski and Toni, 1996;
Toni, 2008b; Thang and Luong, 2013; Fan et al., 2013], but accommodating
preferences at the “object-level”. ABA can also be naturally extended to ac-
commodate further reasoning with preferences, e.g. as in [Wakaki, 2014] or as
ABA+ in [Čyras and Toni, 2016a; Čyras and Toni, 2016b].

This chapter is organised as follows. In Section 2 we recap the basic def-
initions of ABA frameworks and semantics, focusing on semantics that have
been inspired by semantics for non-monotonic reasoning, and summarising
properties of semantics, distinguishing amongst generic and flat ABA frame-
works. In Section 3 we illustrate two instances of ABA, capturing autoepis-
temic logic and logic programming, and respectively requiring non-flat and flat
ABA frameworks. From Section 4 to Section 7 we focus on flat ABA frame-
works. In particular, in Section 4 we summarise how flat ABA frameworks
can be equivalently understood, for all semantics considered in this chapter,
as abstract argumentation frameworks [Dung, 1995], following the results in
[Dung et al., 2009], and, vice versa, abstract argumentation frameworks can
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be equivalently understood, for all semantics considered in this chapter, as
flat ABA frameworks, following the results in [Toni, 2012]. In Section 5 we
provide an overview and illustration of the basis of all computational ma-
chinery for ABA, in the flat case, namely dispute trees [Dung et al., 2006;
Dung et al., 2007] and dispute derivations [Dung et al., 2006; Dung et al., 2007;
Toni, 2013]. In this section we also illustrate how this machinery can be
adapted to provide a foundation for inter-agent ABA dialogues [Fan and Toni,
2014b]. In Section 6 we overview various uses of (flat) ABA to provide ex-
planations of reasoning outputs [Schulz and Toni, 2016; Fan and Toni, 2014a;
Fan et al., 2013; Zhong et al., 2014; Fan et al., 2014; Fan and Toni, 2015c].
In Section 7 we overview various existing approaches to accommodating pref-
erences in (flat) ABA [Kowalski and Toni, 1996; Toni, 2008a; Toni, 2008b;
Thang and Luong, 2013; Fan et al., 2013] or extending ABA to accommodate
reasoning with preferences [Wakaki, 2014; Čyras and Toni, 2016a; Čyras and
Toni, 2016b]. Finally, in Section 8 we conclude, emphasising, in particular,
omissions and future work.

This chapter complements other earlier surveys of ABA [Dung et al., 2009;
Toni, 2012; Toni, 2014]. In particular, all earlier surveys focused exclusively
on flat ABA frameworks. These are powerful knowledge representation mech-
anisms, as, for example, they fully capture logic programming (see Section 3)
and default logic [Reiter, 1980] (see [Bondarenko et al., 1997]), both widely
used formalisms for non-monotonic reasoning and knowledge representation
and reasoning, as well as, for instance, some forms of decision-making (see
Section 7). However, non-flat frameworks allow to capture additional forms of
reasoning, including the kind of non-monotonic reasoning encapsulated by au-
toepistemic logic (see Section 3), as well as circumscription [McCarthy, 1980],
amongst others (see [Bondarenko et al., 1997]). For example, in non-flat ABA
one can represent beliefs as assumptions that can be deduced via rules from
other assumptions.

Moreover, differently from earlier surveys, this chapter summarises uses of
ABA for non-monotonic reasoning (Section 3) and defeasible reasoning (Sec-
tion 7) as well as the explanatory power of ABA (Section 6) afforded by its
computational machinery. At the same time, this chapter ignores other aspects
of ABA, emphasised instead in the earlier surveys, such as the equivalence be-
tween different presentations of ABA in the literature, e.g. alternative views of
arguments (as trees [Dung et al., 2009] rather than as forward [Bondarenko et
al., 1997] or backward [Dung et al., 2006] deductions).

This chapter is related to a number of other chapters in this handbook.
In particular, it takes for granted notions from abstract argumentation, as
overviewed in the chapter on Abstract Argumentation Frameworks and Their
Semantics in this handbook. Moreover, the chapter on Argumentation Based
on Logic Programming presents an approach to structured argumentation grounded
in logic programming, but different from the logic programming instance of
ABA, and the chapter on Argumentation, Nonmonotonic Reasoning and Logic
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overviews relationships between argumentation and non-monotonic reasoning
more in general; the chapter on Computational Problems in Formal Argumen-
tation and Their Complexity deals with computational complexity issues, that
we neglect in this chapter for ABA (but we briefly consider in Section 8);
finally, the chapter on Foundations of Implementations for Formal Argumen-
tation overviews implementations of argumentation, including ones for ABA,
that we ignore in this chapter (but again we briefly mention in Section 8).

2 ABA frameworks and semantics

In this section we introduce ABA frameworks [Bondarenko et al., 1993; Bon-
darenko et al., 1997; Dung et al., 2009; Toni, 2014] and their standard semantics
of admissible, preferred, complete, well-founded (called grounded in the specific
case of flat ABA frameworks), stable and ideal extensions [Bondarenko et al.,
1993; Bondarenko et al., 1997; Dung et al., 2007] as sets of assumptions. All
the semantics considered have counterparts in logic programming, in the sense
that they correspond to semantics of logic programs in the logic programming
instance of ABA (see Section 3).

Definition 2.1 An ABA framework is a tuple 〈L,R,A, 〉 where

• 〈L,R〉 is a deductive system, with L a language (a set of sentences) and
R a set of (inference) rules, each with a head and a body, where the
head is a sentence in L, and the body consists of m ≥ 0 sentences in L;

• A ⊆ L is a (non-empty) set, with elements referred to as assumptions;

• is a total mapping from A into L; a is referred to as the contrary of
a, for a ∈ A.

Rules in R can be written in different formats, e.g. a rule with head σ0 and
body σ1, . . . , σm may be written as

σ0 ← σ1, . . . , σm or
σ1, . . . , σm

σ0
.

Note that ← is not to be interpreted as logical implication, when used to
represent rules in ABA as above. In the remainder of this paper, we will use
these two syntactic conventions for writing rules interchangeably. Moreover,
unless specified otherwise, we will assume as given a generic ABA framework
〈L,R,A, 〉. Note also that sentences have a contrary if, and only if, they are
assumptions. This contrary is not to be confused with negation, which may or
may not occur in L.

Rules in ABA frameworks can be chained to form deductions. These can
be defined in several ways, notably in a forward [Bondarenko et al., 1997], a
backward [Dung et al., 2006] or a tree-style manner [Dung et al., 2009]. We
use here the latter style, as follows:
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Definition 2.2 A deduction for σ ∈ L supported by S ⊆ L and R ⊆ R,

denoted S
R

` σ (or simply S ` σ), is a (finite) tree with

• nodes labelled by sentences in L or by τ ,1

• the root labelled by σ,

• leaves either τ or sentences in S,

• non-leaves σ′ with, as children, the elements of the body of some rule in
R with head σ′, and R the set of all such rules.

Example 2.3 Consider an ABA framework 〈L,R,A, 〉 with R = {x ← c,

z ← y, b, y ← , a ← b} and A = {a, b, c}.2 The following are examples
of deductions, denoted as indicated (first with the supporting rules and then
without):

a a z y z

b y b τ y b

τ

{a}
{}
` a {b}

{a←b}
` a {y, b}

{z←y,b}
` z {}

{y←}
` y {b}

{z←y,b, y←}
` z

{a} ` a {b} ` a {y, b} ` z {} ` y {b} ` z

Note that deductions for assumptions have a non-empty rule support only if
they occur as head of rules, and sentences occurring as head of rules with an
empty body are always supported by an empty set of sentences (and a singleton
set of rules).

Semantics of ABA frameworks are defined in terms of sets of assumptions
meeting desirable requirements. One such requirement is being closed under
deduction, defined as follows:

Definition 2.4 The closure of a set of sentences S ⊆ L is

Cl(S) = {σ ∈ A | ∃ S′
R

` σ, S′ ⊆ S, R ⊆ R}.

A set of assumptions A ⊆ A is closed iff A = Cl(A).

In Example 2.3, {a, b} is closed whereas {b} is not.

1τ /∈ L represents “true” and stands for the empty body of rules. In other words, each
rule with empty body can be interpreted as a rule with body τ for the purpose of presenting
deductions as trees.

2Throughout, we often omit to specify the language L, as it is implicit from the rules and
assumptions. Also, if the contraries of assumptions are not explicitly defined, then they are
assumed to be different from each other and any other explicitly mentioned sentences.
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Note that, in some ABA frameworks, sets of assumptions are guaranteed to
be closed. These ABA frameworks are referred to as flat and, as we will see
later, exhibit additional properties than generic ABA frameworks.

Definition 2.5 An ABA framework 〈L,R,A, 〉 is flat iff for every A ⊆ A,
A is closed.

The ABA framework in Example 2.3 is not flat, whereas the following is an
example of a flat ABA framework.

Example 2.6 An ABA framework with R = {r ← b, c, q ← , p ← q, a}
and A = {a, b, c} is guaranteed to be flat. Here, as in all flat ABA frameworks,
deductions for assumptions can only be supported by an empty set of rules,
e.g. there is a single deduction for a:

{a}
{}
` a .

It is easy to see that if no assumption is the head of a rule, then an ABA
framework is flat [Dung et al., 2006]. However, an ABA framework can be flat
even if some assumptions are heads of rules. For instance, in an ABA framework
with R = {a← x} and A = {a}, the assumption a appears as the head of the
rule a ← x, but since x is not deducible from any set of assumptions, all sets
of assumptions in this ABA framework are guaranteed to be closed, and so the
framework is flat. Note, however, that “dummy” rules such as a ← x above,
whose body is not deducible from any set of assumptions, could without loss of
generality be deleted from ABA frameworks, as they generate no conclusions.
On the other hand, the ABA framework in Example 2.3 has no such “dummy”
rules and is not flat (as, indeed, {b} is not closed).

The remaining desirable requirements met by sets of assumptions, as seman-
tics for ABA frameworks, are given in terms of a notion of attack between sets
of assumptions, defined as follows:

Definition 2.7 A set of assumptions A ⊆ A attacks a set of assumptions
B ⊆ A iff there are A′ ⊆ A and b ∈ B such that A′ ` b.

The following definitions of semantics for ABA are adapted from [Bon-
darenko et al., 1993; Bondarenko et al., 1997; Dung et al., 2007].

Definition 2.8 A set of assumptions (or extension) is conflict-free iff it does
not attack itself. A set of assumptions/extension A ⊆ A is

• admissible iff it is closed, conflict-free and, for every B ⊆ A, if B is
closed and attacks A, then A attacks B;

• preferred iff it is maximally (w.r.t. ⊆) admissible;
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• complete iff it is admissible and contains all assumptions it defends,
where A defends a iff for every B ⊆ A, if B is closed and attacks {a},
then A attacks B;

• stable iff it is closed, conflict-free and, for every a 6∈ A, A attacks {a};

• well-founded iff it is the intersection of all complete extensions;

• ideal iff A is maximal (w.r.t. ⊆) such that

(i) it is admissible, and

(ii) for all preferred extensions P ⊆ A, A ⊆ P .

Note that ideal sets of assumptions were originally defined, in [Dung et al.,
2007], in the context of flat ABA frameworks only. The original definition
naturally generalises to general, possibly non-flat, ABA frameworks as given
above. Note also that, in the case of flat ABA frameworks, the term grounded
is conventionally used instead of well-founded (e.g. in [Dung et al., 2007]): we
will adopt this convention too later in the chapter.

Example 2.9 Consider a non-flat ABA framework with rules R = {x ← c,
z ← b, a ← b}, A = {a, b, c} and a = x, b = y, c = z. Then, {c} is closed
and conflict-free. It is attacked by {b}, which cannot be counter-attacked but is
not closed and thus can be disregarded; it is also attacked by the closed {a, b},
which is counter-attacked by {c}. Thus, {c} is admissible, as well as preferred
and complete. {} is also admissible and complete, and thus well-founded, but
not preferred. {b} is not admissible, because it is not closed. Moreover, the
closed {a, b} is admissible because it is conflict-free and {b} counter-attacks the
closed {c} which attacks {a, b}. Finally, {a, b} is preferred and complete, and
thus {} is ideal.

Note that a set of assumptions/extension can be seen as characterising the
set of all sentences in the given ABA framework for which deductions exist
supported by (subsets of) the extension:

Definition 2.10 The consequences of an extension A ⊆ A is

Cn(A) = {σ ∈ L | ∃ A′ ` σ, A′ ⊆ A}.

As an illustration, in Example 2.9, Cn({c}) = {c, x}.
In the remainder of the paper, when a sentence belongs to the consequences

of an admissible / preferred / stable / complete / well-founded / ideal extension
we will say that it is admissible / preferred / stable / complete / well-founded
/ ideal, respectively. Thus, in Example 2.9, x is admissible.

The following properties on relationships amongst extensions according to
various semantics hold for generic (possibly non-flat) ABA frameworks:
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Theorem 2.11 Let A ⊆ A be a set of assumptions.

(i) If A is stable, then it is preferred.

(ii) If A is admissible, then there is some P ⊆ A such that P is preferred and
A ⊆ P .

(iii) If A is stable, then it is complete.

(iv) If A is ideal and S ⊆ A is the intersection of all preferred extensions,
then A ⊆ S.

(v) If A is the intersection of all preferred extensions and admissible, then it
is ideal.

(vi) If A is ideal, then for each set of assumptions B attacking A there exists
no admissible set of assumptions B′ ⊆ A such that B′ ⊇ B.

(vii) If A is well-founded, then for every S ⊆ A, if S is stable, then A ⊆ S.

Proof.

(i) See proof of Theorem 4.6 in [Bondarenko et al., 1997].

(ii) See proof of Theorem 4.9 in [Bondarenko et al., 1997].

(iii) See proof of Theorem 5.5 in [Bondarenko et al., 1997].

(iv) By definition, A ⊆ P for every preferred P ⊆ A, so A ⊆ S.

(v) The intersection of all preferred extensions A is a ⊆-maximal set of as-
sumptions that is contained in every preferred extension, so if A is in
addition admissible, then it is by definition ideal.

(vi) Assume A is ideal and let B attack A. By contradiction, assume there
exists an admissible B′ ⊇ B. Then, by (ii) above, there is a preferred
set of assumptions P such that B′ ⊆ P . By definition of ideal extension,
A ⊆ P , hence P is not conflict-free, contradicting its admissibility.

(vii) By definition, the well-founded extension is contained in every complete
extension. Also, by (iii) above, every stable extension is complete. There-
fore, the well-founded extension must be contained in every stable exten-
sion.

�

Note that item (v) was given and proven in [Dung et al., 2007] (as Theo-
rem 2.1(iv)) in the case of abstract argumentation frameworks [Dung, 1995].

The following properties on existence of extensions according to various se-
mantics hold for generic (possibly non-flat) ABA frameworks.
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Theorem 2.12

(i) If there is an admissible extension, then there is at least one preferred
extension.

(ii) If the empty set of assumptions is closed, then there is at least one pre-
ferred extension.

(iii) If the empty set of assumptions is closed, then there exists an ideal ex-
tension.

Proof.

(i) Directly from Theorem 2.11(ii) (see also comments after the proof of
Theorem 4.9 in [Bondarenko et al., 1997]).

(ii) Directly from (i) above, as the empty set, if closed, is necessarily admis-
sible (see also comments after the proof of Theorem 4.9 in [Bondarenko
et al., 1997]).

(iii) If {} is closed, then it is admissible. So by (i) above, there is a preferred
extension. Hence, the intersection S of preferred extensions exists too.
Given that {} is admissible, there must then be a ⊆-maximal admissible
subset of S, i.e. an ideal extension.

�

For a simple example of a (necessarily non-flat) ABA framework in which
the empty set is not closed, consider 〈L,R,A, 〉 with R = {a← , x← a},
A = {a} and a = x: here, {} ` a, so that {} is not closed; note also that no
set is admissible, because any admissible set needs to be a closed superset of
the empty set, and since there are deductions {} ` a as well as {} ` x, where
x is the contrary of a, no closed superset of {} is conflict-free.

Flat ABA frameworks fulfil the following property, often referred to as the
Fundamental Lemma (see e.g. [Dung, 1995; Bondarenko et al., 1997]):

Theorem 2.13 Let 〈L,R,A, 〉 be a flat ABA framework, and let A ⊆ A be
an admissible set of assumptions that defends assumptions a, a′ ∈ A. Then
A ∪ {a} is admissible and defends a′.

Proof. See proof of Theorem 5.7 in [Bondarenko et al., 1997]. �

Note that non-flat ABA frameworks need not in general fulfil the Funda-
mental Lemma: consider 〈L,R,A, 〉 with R = {c ← a, b}, A = {a, b, c} and

a = x, b = y, c = z; it is non-flat, because {a, b} ` c; observe that both
{a} and {b} are closed and unattacked, so, for instance, {a} is admissible and
defends b; however, {a, b} is not closed, and so not admissible.

Flat ABA frameworks also fulfil additional properties concerning relation-
ships between semantics, as follows:
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Theorem 2.14 Let 〈L,R,A, 〉 be a flat ABA framework, and let A ⊆ A be
a set of assumptions.

(i) If A is preferred, then it is complete.

(ii) If A is grounded, then it is minimally (w.r.t. ⊆) complete.

(iii) If A is grounded, then for every P ⊆ A, if P is preferred, then A ⊆ P .

(iv) If A is ideal, then it is complete.

(v) If A is ideal and G ⊆ A is grounded, then A ⊇ G.

(vi) If A is maximally (w.r.t. ⊆) complete, then it is preferred.

(vii) If A is admissible, then it is ideal iff for each set of assumptions B at-
tacking A there exists no admissible set of assumptions B′ ⊆ A such that
B′ ⊇ B.

Proof.

(i) Directly from Theorem 5.7 in [Bondarenko et al., 1997], see Corollary 5.8
in [Bondarenko et al., 1997].

(ii) See proof of Theorem 6.2 in [Bondarenko et al., 1997].

(iii) See proof of Theorem 6.4 in [Bondarenko et al., 1997].

(iv) Let I be ideal and suppose it defends a ∈ A. Due to flatness, I ∪ {a} is
admissible, and hence contained in every preferred extension. So a ∈ I
by ⊆-maximality of I.

(v) Directly from (iv) and (ii) above.

(vi) If A was ⊆-maximally complete but not preferred, then, by Theorem 1(ii),
there would be some preferred yet not complete P such that A ( P ⊆ A,
contrary to (i) above.

(vii) See Theorem 3.3 in [Dung et al., 2007].

�

Note that items (iv) and (v) were given and proven in [Dung et al., 2007]

(as items (ii) and (iii) respectively in Theorem 2.1), in the case of abstract
argumentation frameworks. Also, (vii) was given and proven as Lemma 4(a)
in [Dunne, 2009].

The following examples show that the properties in Theorem 2.14 may not
hold, in general, for non-flat ABA frameworks.
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Example 2.15 Consider an ABA framework 〈L,R,A, 〉 with R = {d← c},
A = {a, b, c, d} and a = p, b = a, c = b, d = d. Then {a} is preferred and
ideal, but not complete, as it defends c. (Cf. Theorem 2.14(i), (iv).) Note that
{a, c} is not admissible, as it is not closed whereas {a, c, d} is closed, but not
admissible as not conflict-free.

In this example, there is no complete extension and thus no well-founded
extension, and thus the ideal extension is not a superset of the well-founded
extension.

Example 2.16 Consider an ABA framework 〈L,R,A, 〉 with R = {p ← a,

p ← b, c ← }, A = {a, b, c, d} and a = b, b = a, c = d, d = p. Here, the
complete extensions are {a, c} and {b, c}, and thus {c} is well-founded, but it
is not (minimally) complete, as it does not defend itself against (the attacking)
{d}. (Cf. Theorem 2.14(ii).) This also shows that even if there is an admissible
extension, there need not be an ideal extension.

Example 2.17 Consider an ABA framework 〈L,R,A, 〉 with R = {d ← c,

f ← e, p ← d, p ← e}, A = {a, b, c, d, e, f} and a = f, b = a, c = b, d =
p, e = q, f = a. Then {e, f, b} is the only complete extension, and thus
the well-founded extension. Moreover {a} and {e, f, b} are (the only) preferred
extensions, and {e, f, b} 6⊆ {a}. Therefore, there exists a preferred extension
that does not contain the well-founded extension. (Cf. Theorem 2.14(iii).)

Example 2.18 Consider an ABA framework 〈L,R,A, 〉 with R = {q ← a,

r ← b, c ← q, r, z ← a, z ← b, z ← c}, A = {a, b, c} and a = c, b = c,
c = z. Here, every A ⊆ A containing c is not conflict-free, so not admissible.
Also, {a, b} is not closed, so not admissible. However, {a} is admissible, but
not complete, as it defends b. Likewise {b} is admissible, but not complete.
Indeed, both {a} and {b} are preferred, yet not complete. Therefore, {} is
⊆-maximally complete, yet not preferred. (Cf. Theorem 2.14(vi).)

Example 2.19 Consider an ABA framework 〈L,R,A, 〉 with R = {z ← c,

c ← a, b}, A = {a, b, c} and a = x, b = y, c = z. Then {a} is admissible (and
preferred) and unattacked. Observe that {a, x} is not closed, and {a, c}, {x, c},
{a, x, c} are not conflict-free. So {b} is preferred, yet {a} * {b}, so that A is
not ideal. (Cf. Theorem 2.14(vii).)

Flat ABA frameworks fulfil additional properties concerning existence of
extensions w.r.t. various semantics, as follows:

Theorem 2.20 Let 〈L,R,A, 〉 be a flat ABA framework.

(i) There is at least one preferred extension.

(ii) There is a unique ideal extension.
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(iii) There is at least one complete extension.

(iv) There is a unique grounded extension and it is the least fixed point of Def,
where, for A ⊆ A, Def(A) = {a ∈ A | A defends a}.

Proof.

(i) Directly from the second item of Theorem 2.12, as, in the case of flat
ABA frameworks, the empty set (like any other set of assumptions) is
guaranteed to be closed (see also [Bondarenko et al., 1997]).

(ii) Follows from Theorem 2.12(iii).

(iii) Directly from (i) above and Theorem 2.14(i).

(iv) See proof of Theorem 6.2 in [Bondarenko et al., 1997].

�

Note that (ii) above was given and proven in [Dung et al., 2007] in the case
of abstract argumentation frameworks.

The following examples show that the properties in Theorem 2.20 may not
hold, in general, for non-flat ABA frameworks.

Example 2.21 Consider an ABA framework 〈L,R,A, 〉 with R = {a← },
A = {a} and a = a. Here, {} is not closed and {a} is not conflict-free. Thus,
no set of assumptions is admissible. Hence, there is no preferred, complete,
ideal or well-founded extension.

Finally, consider an example which shows that, differently from flat ABA
frameworks, in general, an ideal extension need not be unique for non-flat
ABA frameworks.

Example 2.22 Consider an ABA framework 〈L,R,A, 〉 with assumptions

A = {a, a′, b, b′, c, d}, rules R = {c ← a, a′, c ← d, d ← a, b, d ← a′, b′,
a′ ← a, b, c, a ← a′, b, c, a′ ← a, b′, c, a ← a′, b′, c}, and contraries
b = b′, b′ = b.3 Here, {} is closed, so admissible. There are two preferred
extensions: {a, a′, b, c} and {a, a′, b′, c}. Their intersection {a, a′, c} is not ad-
missible, because it cannot defend against (the closed attacking) {d}. Likewise,
{a, c} and {a′, c} are not admissible. Also, {a, a′} is not closed. However, both
{a} and {a′} are admissible, and hence ideal extensions.

Note that additional properties hold for (generic and/or flat) ABA frame-
works of restricted kinds, for instance, where “cycles” are not allowed (e.g. strat-
ified and order-consistent ABA frameworks, see [Bondarenko et al., 1997] for

3For readability, with an abuse of notation we may sometimes assume that the contraries
(in this case, c and d) of assumptions (in this case, c and d) are actually symbols in the
language (different from other explicitly mentioned sentences).
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details). Moreover, additional properties hold for other special classes of ABA
frameworks, in addition to flat ABA frameworks, namely normal [Bondarenko
et al., 1997] and simple [Dimopoulos et al., 2002] ABA frameworks (see [Bon-
darenko et al., 1997; Dimopoulos et al., 2002] for details).

3 ABA and non-monotonic reasoning

In this section we illustrate two instances of ABA for Non-Monotonic Reason-
ing, namely Autoepistemic Logic (AEL) [Moore, 1985] and Logic Programming
(LP). The formal definitions of these instances, as well as correspondence re-
sults between the semantics for ABA as given in Definition 2.8 and their original
semantics, can be found in [Bondarenko et al., 1997; Schulz and Toni, 2015]

For illustration, as well as a running example throughout the chapter, we will
use the following extract from the Nationwide4 building society’s 2016 policy
for UK/EU Breakdown Assistance:

COVERED FOR: UK/EU Breakdown Assistance for account holder(s)
in any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account
holder(s) unless the account holder(s) are in the vehicle at the time
of the breakdown

We consider a person, Mary (denoted simply as m), who is an account holder
travelling in a friend’s car (denoted as c) when the car breaks down somewhere
in the EU. In the remainder of this section we show how the application of the
policy above to Mary’s case can be represented in the AEL and LP instances
of ABA, as given in general in [Bondarenko et al., 1997]. In giving the concrete
instantiations below we will use the following abbreviations: ah stands for
“account holder”; tr stands for “travelling”; pr stands for “private vehicle”;
cov stands for “covered”; reg stands for “registered”; cov′ stands for “there is
an exception to being not covered”.

4www.nationwide.co.uk
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3.1 Breakdown Assistance policy in the AEL instance of ABA

The application of the Breakdown Assistance policy to Mary’s case can be rep-
resented in the AEL instance of ABA as follows:

L = a modal language containing a modal operator L

(where Lσ stands for “σ is believed”) as well as atoms

ah(m), tr(m, c), pr(c), cov(m, c), reg(c,m), cov′(m, c), in(m, c)

R = a complete set of inference rules of classical logic for L together with

the following inference rules (all with an empty body):

ah(m) ∧ tr(m, c) ∧ pr(c) ∧ ¬L¬cov(m, c)→ cov(m, c)

¬reg(c,m) ∧ ¬Lcov′(m, c)→ ¬cov(m, c)

in(m, c)→ cov′(m, c) ah(m) tr(m, c)

pr(c) ¬reg(c,m) in(m, c)

A = {Lσ,¬Lσ |σ ∈ L}
Lσ = ¬Lσ and ¬Lσ = σ for any σ ∈ L

Note that, in this ABA framework, R includes domain-independent rules, e.g.

σ1 ∧ σ2
σ1

for any σ1, σ2 ∈ L,

as well as domain-specific rules, e.g.

in(m, c)
.

Note also that this ABA framework (as well as any other AEL instance of
ABA) is not flat [Bondarenko et al., 1997], as, for instance, the set of assump-
tions {Lcov(m),¬Lcov(m)} is not closed, because it is classically inconsistent.
Nonetheless, for this instance, the empty set of assumptions is closed.

Given this representation in ABA, the problem of determining whether Mary
should be covered or not amounts to determining whether cov(m) is stable (fol-
lowing the conventional AEL approach of determining whether cov(m) belongs
to a consistent stable expansion [Moore, 1985] of the theory consisting of the
heads of the domain-specific part of R), or preferred, or well-founded etc. (by
adopting any of the other ABA semantics). In this particular example, all ABA
semantics agree that Mary should be covered, by assuming ¬L¬cov(m, c), in
agreement with the original semantics of AEL, as predicted by the general cor-
respondence Theorem 3.18 in [Bondarenko et al., 1997] and the fact that, in
this example, all ABA semantics agree with the semantics of stable extensions.
As an illustration, {¬L¬cov(m, c)} is admissible, since it is conflict-free, closed
and the (closed) set of assumptions {¬Lcov′(m, c)} attacking it, as well as all
its (closed) supersets, are attacked by the (closed) empty set of assumptions.
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Note that, in the AEL instance of ABA, beliefs, of the form Lσ or ¬Lσ, are
assumptions that may occur as heads of rules. For example, the earlier AEL
instance of ABA may be extended so that R includes also

Lah(m)

to represent that Mary is believed to be an account holder. This kind of
knowledge cannot be directly represented in flat ABA.

3.2 Breakdown Assistance policy in the LP instance of ABA

The application of the Breakdown Assistance policy to Mary’s case can be
represented in the LP instance of ABA as follows:

R = {cov(m, c)← ah(m), tr(m, c), pr(c), not ¬cov(m, c),

¬cov(m, c)← ¬reg(c,m), not cov′(m, c),

cov′(m, c)← in(m, c),

ah(m)←, tr(m, c)←, pr(c)←, ¬reg(c,m)←, in(m, c)←}
A = {not p(t1, t2), not q(t) | p ∈ {cov, tr,¬cov,¬reg, cov′, in},

q ∈ {ah, pr},
t1, t2, t ∈ {m, c}}

L = A ∪ {x | not x ∈ A}
not x = x for any not x ∈ A

So, L is the Herbrand base of (the logic program) R together with all negation
as failure (NAF) literals that can be built from this Herbrand base, and A is
the set of all these NAF literals. Note that in this illustration we treat ¬cov
and ¬reg as predicate symbols.

Given this representation in ABA, the problem of determining whether
Mary should be covered or not amounts to determining, for instance, whether
cov(m, c) is stable (following the stable model semantics [Gelfond and Lifs-
chitz, 1988] for R, seen as a logic program, by virtue of the correspondence
Theorem 3.13 in [Bondarenko et al., 1997]), or admissible/preferred (following
the preferred extension semantics [Dung, 1991] for R, by virtue of the corre-
spondence Theorem 4.5 in [Bondarenko et al., 1997]), or grounded (following
the well-founded model semantics [Gelder et al., 1991] for R, by virtue of the
correspondence Theorem 3.13 in [Bondarenko et al., 1997]), or ideal (following
the scenario semantics [Alferes et al., 1993] for R In this particular example, all
ABA semantics agree that Mary should be covered, by assuming not cov(m, c).
As an illustration, {not cov(m, c)} is admissible, since it is conflict-free and the
set of assumptions {not cov′(m, c)} attacking it, as well as all its supersets, are
attacked by the empty set of assumptions.
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4 ABA versus abstract argumentation

In this section we focus on the relationship between flat ABA frameworks and
Abstract Argumentation (AA) frameworks [Dung, 1995]. In particular, flat
ABA is an instance of AA, under all semantics considered in this paper and,
conversely, AA is an instance of (flat) ABA.

Flat ABA frameworks are instances of AA frameworks where arguments
are deductions supported by sets of assumptions and attacks are defined by
appropriately lifting the notion of attack between sets of assumptions to a
notion of attack between arguments [Dung et al., 2007; Toni, 2012].

Definition 4.1 Let ABA = 〈L,R,A, 〉 be a flat ABA framework.

• An argument for σ ∈ L supported by A ⊆ A and R ⊆ R, denoted A
R

`arg σ

(or simply A `arg σ), is such that there is a deduction A
R

` σ.

• An argument A `arg σ attacks an argument B `arg π iff there is b ∈ B
such that σ = b.

Then AA(ABA) = (Args, attack) is the corresponding AA framework of ABA
with Args the set of all arguments (as in the first bullet) and attack the set of
all pairs (a, b) such that a, b ∈ Args and a attacks b (as in the second bullet).

Note that Args contains an argument for every assumption in A as illus-
trated by the following example.

Example 4.2 Consider an ABA framework ABA with rules and assumptions
as in Example 2.6 and a = r, b = q, c = p. Then AA(ABA) is (Args, attack)
with Args = {a, b, c, p, q, r} where a = {a} `arg a, b = {b} `arg b, c =
{c} `arg c, p = {a} `arg p, q = {} `arg q, r = {b, c} `arg r, and attack =
{(p, c), (p, r), (q, b), (q, r), (r, a), (r, p)}.

The semantics of an AA framework corresponding to a flat ABA framework
can be determined using the standard AA semantics [Dung, 1995; Dung et
al., 2007]. For all ABA semantics considered in this paper, the semantics of
a flat ABA framework corresponds to the semantics of its corresponding AA
framework, as follows:

Theorem 4.3 Let ABA = 〈L,R,A, 〉 be a flat ABA framework and let
AA(ABA) be its corresponding AA framework.

(i) If a set of assumptions A ⊆ A is admissible / preferred / stable / complete
/ grounded / ideal in ABA, then the union of all arguments supported by
any A′ ⊆ A is admissible / preferred / stable / complete / grounded /
ideal, respectively, in AA(ABA).
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(ii) The union of all sets of assumptions supporting the arguments in an ad-
missible / preferred / stable / complete / grounded / ideal set of ar-
guments in AA(ABA) is admissible / preferred / stable / complete /
grounded / ideal, respectively, in ABA.

Proof. See the proof of Theorem 2.2 in [Dung et al., 2007] for admissible,
grounded and ideal extensions, the proof of Theorem 1 in [Toni, 2012]for stable
extensions5, and the proof of Theorem 6.1 and 6.3 [Caminada et al., 2015] for
complete and preferred extensions respectively. �

Note that for the preferred, stable, complete, grounded, and ideal semantics
the correspondence between the extensions of a flat ABA framework and the
extensions of the corresponding AA framework is one-to-one. For the admissible
semantics, instead, the correspondence is one-to-many, i.e. the union of all sets
of assumptions supporting the arguments in an admissible extension may be
the same for various admissible extensions of the corresponding AA framework,
as illustrated in the following example.

Example 4.4 The ABA framework from Example 4.2 has two admissible ex-
tensions: {} and {a}. In contrast, the corresponding AA framework has five
admissible extensions: A1 = {}, A2 = {q}, A3 = {p}, A4 = {p, q}, A5 = {p, a},
A6 = {q, a}, A7 = {p, q, a}. However, the union of all sets of assumptions
supporting the arguments in A1 and A2 is {}, so both correspond to the first
admissible extension of the ABA framework. Similarly, the union of all sets of
assumptions supporting arguments in the other admissible extensions (A3−−A7)
of the AA framework is {a}, so they all correspond to the second admissible
extension of the ABA framework.

Theorem 4.3 shows that, under the semantics considered therein, flat ABA
frameworks are an instance of AA frameworks and the semantics of ABA can
alternatively be defined in terms of extensions as sets of arguments, as in [Dung
et al., 2007], rather than in terms of extensions as sets of assumptions, as in
[Bondarenko et al., 1993; Bondarenko et al., 1997]. This implies, for exam-
ple, that existing machinery for computing extensions of AA frameworks can
be used to compute extensions of ABA frameworks whose corresponding AA
frameworks are finite. Conversely, as shown below, AA frameworks are an in-
stance of flat ABA frameworks, that is any AA framework can be translated
into a corresponding flat ABA framework such that their respective extensions
correspond [Toni, 2012]. This implies, in particular, that existing machin-
ery for determining whether sentences are admissible / preferred / complete /
grounded / ideal in flat ABA (see Section 5) can be used to determine whether
arguments in an AA framework belong to an admissible / preferred / complete
/ grounded / ideal extension. The ABA framework corresponding to an AA

5The proof of Theorem 1 in [Toni, 2012] actually considers a different notion of stable
extension, but can naturally be modified to prove the result indicated here.



18 Kristijonas Čyras, Xiuyi Fan, Claudia Schulz, Francesca Toni

framework has the arguments in the AA framework as (the only) assumptions
and appropriate notions of contraries of these assumptions and rules to encode
the attacks between the arguments in the original AA framework, as follows:

Definition 4.5 Let AA = (Args, attack) be an AA framework. The corre-
sponding ABA framework of AA is ABA(AA) = 〈L,R,A, 〉 with

• A = Args;

• L = A ∪ {ac | a ∈ A};

• for all a ∈ A: a = ac;

• R = {bc ← a | (a, b) ∈ attack}.

Note that clearly the corresponding ABA framework of any AA framework
is flat since assumptions never occur in the head of a rule, by construction.

Since the set of arguments in a given AA framework coincides with the
set of assumptions of the corresponding ABA framework, there is a straight-
forward one-to-one correspondence between all semantics of the AA and ABA
framework.

Theorem 4.6 Let AA = (Args, attack) be an AA framework and let ABA(AA)
be its corresponding ABA framework.

(i) If A ⊆ Args is admissible / preferred / stable / complete / grounded
/ ideal in AA, then A is admissible / preferred / stable / complete /
grounded / ideal, respectively, in ABA(AA).

(ii) If A ⊆ A is admissible / preferred / stable / complete / grounded / ideal
set of arguments in ABA(AA), then A is admissible / preferred / stable
/ complete / grounded / ideal, respectively, in AA.

Proof. See proof of Theorem 2 in [Toni, 2012] for admissible. As noted in
[Toni, 2012], the proof for other semantics is similar. �

Example 4.7 Consider the AA framework AA with Args = {a, b, c} and
attack = {(a, b), (b, a), (b, c)}. The corresponding ABA framework is ABA(AA)
with A = {a, b, c}, a = ac, b = bc, c = cc, and R = {bc ← a, ac ← b,
cc ← b}. The admissible extensions of AA are {}, {a}, {b}, and {a, c}, which
are exactly the admissible extensions of ABA(AA). Correspondence as dictated
by Theorem 4.6 hold for the other semantics considered therein too.
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5 Dispute trees, dispute derivations and ABA dialogues

In this section we overview the main existing computational machinery for
flat ABA frameworks, allowing to determine whether sentences are admissible
(and therefore preferred, by Theorem 2.11 (ii), and complete, by Theorem 2.11
(ii) and Theorem 2.14 (i)), grounded, or ideal.6 This machinery is based on
the computation of dispute trees (overviewed in Section 5.1), using dispute
derivations (illustrated in Section 5.2) that, in particular, can be executed
amongst agents to form ABA dialogues (illustrated in Section 5.3).

5.1 Dispute trees

Dispute trees [Dung et al., 2006; Dung et al., 2007] provide an abstraction of
the problem of determining whether arguments in AA frameworks belong to an
admissible / grounded / ideal extension. Since flat ABA frameworks correspond
to special instances of AA frameworks (see Section 4), dispute trees can be used
to determine whether sentences are admissible / grounded / ideal, respectively,
as well as identifying assumptions in admissible / grounded / ideal extensions
for ABA, respectively, supporting arguments for these sentences. Dispute trees
can be defined abstractly for any abstract argumentation framework as follows:

Definition 5.1 Let (Args, attack) be any abstract argumentation framework.
A dispute tree for a ∈ Args is a tree T such that:

(i) every node of T is of the form [L :x], with L ∈ {P, O}, x ∈ Args: the node
is labelled by argument x and assigned the status of either proponent (P)
or opponent (O);

(ii) the root of T is a P node labelled by a;

(iii) for every P node n, labelled by some b ∈ Args, and for every c ∈ Args
such that c attacks b, there exists a child of n, which is an O node labelled
by c;

(iv) for every O node n, labelled by some b ∈ Args, there exists exactly one
child of n which is a P node labelled by some c ∈ Args such that c attacks
b;

(v) there are no other nodes in T except those given by 1–4.

The defence set of a dispute tree T , denoted by D(T ), is the set of all arguments
labelling P nodes in T .

6In general, this machinery cannot be used to determine whether a sentence is stable, as
this requires the computation of a full extension, as discussed in [Dung et al., 2002]. However,
for restricted types of flat ABA frameworks whose preferred extensions are guaranteed to be
stable, determining whether a sentence is admissible amounts to determining whether it is
stable, too.
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Example 5.2 Given the AA framework with Args = {a, b, c, d, e, f, g} and
attack = {(a, b), (b, c), (d, e), (d, f), (e, d), (e, f), (f, g), (g, f)}, consider the trees
in the figure below. The tree on the left is not a dispute tree since an oppo-
nent node is a leaf node, thus violating condition (iv) in Definition 5.1. In
contrast, the trees in the middle and on the right satisfy all conditions and are
thus dispute trees for c and d, respectively.

P : b

O : a

P : c

O : b

P : a

P : d

O : e

P : d

...

Figure 1. Only the middle and right of the three trees are dispute trees.

In order to help determine membership of arguments in admissible / grounded
/ ideal extensions of AA frameworks, dispute trees need to fulfil special require-
ments, as follows:

Definition 5.3 Let (Args, attack) be any abstract argumentation framework.
A dispute tree T (for some argument in Args) is

• admissible iff no argument in T labels both P and O nodes;

• grounded iff it is finite;

• ideal iff for no argument a in T labelling an O node there exists an ad-
missible dispute tree for a.

Example 5.4 Consider again the AA framework from Example 5.2. The dis-
pute tree shown in the middle of Figure 1 is admissible since no argument labels
both a proponent and an opponent node, as well as grounded since it is finite.
Furthermore, the dispute tree is ideal since its only opponent node is labelled
with b and there are no dispute trees for b, and thus there are no admissible
dispute trees for b. The dispute tree for d on the right of Figure 1 is admissible,
but not grounded since it is infinite. It is furthermore not ideal since there is
an admissible dispute tree for e (obtained by exchanging d and e in the dispute
tree for d on the right of Figure 1).

The left of Figure 2 gives an example of a dispute tree which is ideal but not
grounded. The opponent nodes of this dispute tree are all labelled by argument f.
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Since the only dispute tree for f is the one displayed in the middle of Figure 2,
which is not an admissible dispute tree since argument d (as well as e) labels
both an opponent and a proponent node, the dispute tree for g on the left of
Figure 2 is ideal. Note that there are other admissible dispute trees for g which
are not ideal. For example the one on the right of Figure 2 is not ideal since
there exists an admissible dispute tree for e.

P : g

O : f

P : g

...

P : f

O : d O : e O : g

P : fP : e P : d

O : eO : d

...
...

...

P : g

O : f

P : d

O : e

P : d

...

Figure 2. Three dispute trees constructed from the AA framework in Exam-
ple 5.2.

Theorem 5.5 Let (Args, attack) be any abstract argumentation framework.

(i) If T is an admissible dispute tree for an argument a then the defence set
of T is admissible.

If a ∈ A for some admissible set of arguments A ⊆ Args then there exists
an admissible dispute tree for a with defence set A′ such that A′ ⊆ A and
A′ is admissible.

(ii) If T is an ideal dispute tree for an argument a then the defence set A of
T is such that A is admissible and A ⊆ I with I the ideal extension of
(Args, attack).

If a ∈ I with I the ideal extension of (Args, attack), then there exists an
ideal dispute tree for a with defence set A and A ⊆ I.

(iii) If T is a grounded dispute tree for an argument a then the defence set A of
T is such that A is admissible and A ⊆ G with G the grounded extension
of (Args, attack).
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If a ∈ G with G the grounded extension of (Args, attack), then there
exists a grounded dispute tree for a with defence set A and A ⊆ G.

Proof.

(i) See proof of Theorem 3.2 in [Dung et al., 2007].

(ii) See proof of Theorem 3.4 in [Dung et al., 2007].

(iii) Follows directly from Theorem 3.7 in [Kakas and Toni, 1999].

�

Example 5.6 As discussed in Example 5.4, the dispute tree in the middle of
Figure 1 is admissible and grounded. As stated in Theorem 5.5 the defence
set, {a, c}, is admissible and is a subset of the grounded extension of the AA
framework from Example 5.2, in fact in this case it coincides with the grounded
extension. The ideal extension of the AA framework is {a, c, g} and we saw that
there exists an ideal dispute tree for g (on the left of Figure 2) whose defence
set is {g}, which is a subset of the ideal extension.

In order to determine whether a sentence is admissible / grounded / ideal,
given a flat ABA framework, a dispute tree for an argument for that sentence
can be used, by virtue of the correspondence results overviewed in Section 4 and
Theorem 5.5 above. For example, given the ABA framework in Section 3.2, the
dispute tree in Figure 3 for argument {not¬cov(m, c)} `arg cov(m, c) can be
used to determine that cov(m, c) is admissible, grounded and ideal. Indeed, this
is a dispute tree since the leaf node cannot be attacked and no other opponent
node can attack the root. Moreover, it is trivially admissible and, since it is
finite, it is grounded. Finally, it is ideal as no admissible dispute tree for its
only opponent node exists (as {} `arg cov′(m, c) cannot be attacked).

P : {not ¬cov(m, c)} `arg cov(m, c)

O : {not cov′(m, c)} `arg ¬cov(m, c)

P : {} `arg cov′(m, c)

Figure 3. A dispute tree for {not¬cov(m, c)} `arg cov(m, c) for the flat ABA
framework in Section 3.2.
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5.2 Dispute derivations

Dispute derivations [Dung et al., 2006; Dung et al., 2007; Toni, 2013; Craven
and Toni, 2016] are algorithms for determining whether a given sentence, in the
language of a flat ABA framework, is admissible, grounded or ideal. Different
kinds of dispute derivations can be defined for the different semantics, as in
[Dung et al., 2006; Dung et al., 2007], or the same template of dispute deriva-
tions can be instantiated differently for the different semantics, as in [Toni,
2013; Craven and Toni, 2016] and, for the LP instance of ABA, in [Kakas and
Toni, 1999]. Dispute derivations for determining whether a sentence is admissi-
ble can also be used to determine whether the sentence is complete or preferred
[Toni, 2013]. All given notions of dispute derivations are defined as games be-
tween (fictional) proponent (P) and opponent (O) players, as for dispute trees.
All given notions are sound and, for restricted types of flat ABA frameworks
(referred to as p-acyclic [Dung et al., 2006]), complete [Dung et al., 2006;
Dung et al., 2007; Toni, 2013]. The most recently defined types of dispute
derivations are complete in general [Craven and Toni, 2016], for the admissible
and grounded semantics. Different types of dispute derivations also differ in
the data structures they deploy as well as their outputs:

• the dispute derivations of [Dung et al., 2006; Dung et al., 2007] deploy
sets of assumptions and output admissible sets of assumptions in all cases,
and, in the case of grounded/ideal semantics, these sets of assumptions
are contained in the grounded/ideal extension, respectively;

• the dispute derivations of [Toni, 2013; Craven and Toni, 2016] deploy
a mixture of sets of assumptions and sets of potential arguments, i.e.
deductions supported by any sets of sentences (rather than assumptions)
and with sentences in the support possibly marked as “seen”, and output
admissible sets of assumptions in all cases, as for the previous types of
dispute derivations, as well as dialectical structures from which admissible
/ grounded / ideal dispute trees can be obtained.

We illustrate dispute derivations for the LP instance of ABA representation
of the Breakdown Assistance policy, in Section 3.2, and refer to the original
papers for formal definitions and results. In the illustration, we focus on the
dispute derivations of [Toni, 2013], since they are generalisations of the earlier
dispute derivations of [Dung et al., 2006; Dung et al., 2007] but still in the same
spirit. Instead, the dispute derivations of [Craven and Toni, 2016] are based on
a different conceptual model for ABA, where arguments and sets of arguments
are defined as graphs instead (see [Craven and Toni, 2016] for details).

The (flat) ABA framework of Section 3.2 can be used to determine whether
Mary should be covered, by determining whether cov(m, c) is admissible (and
thus, for this particular ABA framework, grounded, ideal etc.), i.e. if it belongs
to an admissible extension. This can be determined in turn by means of a
dispute derivation for cov(m, c). This dispute derivation starts with a potential
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argument by P:7

{} `p{cov(m,c)} cov(m, c),

namely a deduction {cov(m, c)} ` cov(m, c) with no sentence in the support
{cov(m, c)} marked as “seen” (and the sentence cov(m, c) in the support still
“unseen”). In the first step of the derivation, then, P needs to “expand” its
potential argument, while O is watching and can only put forward new poten-
tial arguments when P has sufficiently expanded its own potential arguments
so as to have identified assumptions in their “unseen” support that O can at-
tack (automatically rendering them “seen”). In this simple illustration, P will
necessarily expand the initial potential argument to

{} `p{ah(m),tr(m,c),pr(c),not¬cov(m,c)} cov(m, c)

and identify the assumption not¬cov(m, c) as an element of the defence set
of the dispute tree that the dispute derivation will output (if successful). At
this stage O may opt to eagerly attack this assumption or patiently wait for
P to carry on “expanding” its potential argument until it becomes an actual
argument. This choice for O (and, in an analogous situation, for P) is dictated
by the selection function, a parameter in the definition of dispute derivations.
Whichever this selection function, at some later stage in the derivation the
initial potential argument by P will become the actual argument

{not¬cov(m, c)} `p{} cov(m, c) (Pcov)

attacked by a potential argument by O

{not cov′(m, c)} `pU ¬cov(m, c) (O¬cov(U))

where, depending on the selection function, U may be as follows:

• U = {¬reg(c,m)}, or

• U = {}.

In both cases, at some earlier stage, P will have chosen not cov′(m, c), in the
“unseen” support of a potential argument by O, as a culprit, causing that as-
sumption to be marked as “seen” from that stage onwards. Note that O’s poten-
tial argument O¬cov(U), whichever U , is necessarily obtained by “expanding”
the potential argument

{} `p{¬cov(m,c)} ¬cov(m, c)

7In general, a potential argument is of the form A `pS σ, for A ⊆ A, S ⊆ L, and σ ∈ L,
where the superscript p stands for “potential”. Given A `pS σ, there is a deduction for σ
supported by A ∪ S (and some set of rules), with S the set of “unseen” sentences in this
support and A the set of “seen” assumptions, as illustrated later.
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put forward earlier by O to attack P’s defence set element not¬cov(m, c). Also,
when P “sees” not cov′(m, c) and chooses it as a culprit in O¬cov(U), it creates
a potential argument

{} `p{cov′(m,c)} cov
′(m, c)

which is later “expanded” to

{} `p{} cov
′(m, c). (Pcov′)

Since O cannot possibly attack this argument, the derivation terminates suc-
cessfully, returning, as output, the defence set {not¬cov(m, c)} as well as the
dialectical structure

Pcov

O¬cov′(U)

OO

Pcov′

OO

from which the dispute tree in Figure 3 is obtained.
In general, the defence set and the set of culprits are used to perform var-

ious kinds of filtering to save computation (to prevent players from attacking
assumptions they have already attacked) as well as to guarantee that the com-
puted defence set is conflict-free. Different semantics require different combi-
nations of these filtering mechanisms. Moreover, the ideal semantics requires
additional subcomputation to guarantee that the dispute tree is indeed ideal
(namely that there exists no admissible dispute tree for the argument held at
any opponent node).

5.3 ABA dialogues

ABA dialogues, as given in [Fan and Toni, 2014b; Fan and Toni, 2012a; Fan
and Toni, 2011a], can be viewed as a distributed computation of dispute trees
amongst agents, holding different ABA frameworks, but with the same un-
derlying language L.8 An ABA dialogue is a sequence of utterances. The
content of utterances may be a rule, an assumption, a contrary, or a claim
whose “acceptability” (under admissible / grounded / ideal semantics) needs
to be ascertained. The dialogue model can be used to support several dia-
logue types, e.g. information seeking and persuasion [Fan and Toni, 2011c;
Fan and Toni, 2012a; Fan and Toni, 2012c; Fan et al., 2014].

8Here, as in [Gaertner and Toni, 2008], we (equivalently) define the contrary of an as-
sumption as a total mapping from an assumption to a (non-empty) set of sentences, instead
of a mapping from an assumption to a sentence as in the original ABA. This lends itself
better to a dialogical setting, as agents may hold different sentences as contrary to the same
assumption.
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Syntactically, given two agents ai and aj , let ID be a (non-empty, possibly
infinite) set that is totally ordered, with the ordering given by <, and contains
a special element ID0 which is the least element w.r.t. <. Then, utterances are
denoted as tuples:

〈ai, aj , T, C, ID〉,

where

• ai is the agent making this utterance;

• aj is the recipient;

• C (the content) is of one of the following forms:

- claim(χ) for some χ ∈ L (a claim),

- rl(σ0 ← σ1, . . . , σm) for some σ0, . . . , σm ∈ L with m ≥ 0 (a rule),

- asm(α) for some α ∈ L (an assumption),

- ctr(α, σ) for some α, σ ∈ L (a contrary),

- a pass sentence π, such that π /∈ L.

• ID ∈ ID \ {ID0} (the identifier).

• T ∈ ID (the target); we impose that T < ID.

Through a dialogue δ, the participating agents construct a joint ABA frame-
work Fδ drawn from δ. This Fδ contains all information that the two agents
have uttered in the dialogue and gives the context for examining the “accept-
ability” of the claim of the dialogue. Conceptually, a dialogue is “successful”
if its claim is “acceptable” in Fδ. Note that the claim of a dialogue may be
a belief, and acceptability thereof an indication that the agents may legiti-
mately uphold the belief, or a course of actions, and acceptability thereof an
indication that the agents may legitimately choose to adhere to it. Indeed, “ac-
ceptability” has so far shown to be an important criterion for assessing the out-
come of various types of dialogues [Fan and Toni, 2011c; Fan and Toni, 2012a;
Fan and Toni, 2012c; Fan et al., 2014], and thus “successful” dialogues can
be seen as building blocks of a widely deployable framework for distributed
interactions in multi-agent systems.

Rather than checking “success” retrospectively, this can be guaranteed con-
structively by means of legal-move functions (see [Fan and Toni, 2011a; Fan and
Toni, 2014b] for details) guaranteed to generate “successful” dialogues if a lim-
ited form of retrospective checking by means of outcome functions succeeds [Fan
and Toni, 2011a; Fan and Toni, 2014b]. Dialogue goals, e.g. information-
seeking, inquiry or persuasion, can be modelled with strategy-move functions [Fan
and Toni, 2012a]. Given a dialogue, a legal-move function returns a set of
allowed utterances that can be uttered to extend the dialogue. Legal-move
functions can thus be viewed as dialogue protocols. Outcome functions are
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mappings from dialogues to true / false. Given a dialogue, an outcome func-
tion returns true if a certain property holds for that dialogue. From utterances
allowed by legal-move functions, strategy-move functions further select the ones
advancing dialogues towards their goals.

We illustrate ABA dialogues for information seeking, persuasion and inquiry
for the flat ABA framework in Section 3.2 again, and refer to the original papers
for formal definitions and results.

Informally, information seeking dialogues are dialogues with the inquirer
agent seeking some specific information from the inquiree agent. In an infor-
mation seeking dialogue, the inquirer agent does nothing but posing its query,
whereas the inquiree agent puts forward information it possesses in answering
the query. With the breakdown assistance policy example, suppose that the
inquirer agent a1 asks the inquiree agent a2 about the existence of argument
for the sentence cov′(m, c), as follows:

〈a1, a2, 0, claim(cov′(m, c)), 1〉
〈a2, a1, 1, rl(cov′(m, c)← in(m, c)), 2〉
〈a2, a1, 2, rl(in(m, c)←), 3〉

We can see that with a1 and a2 each using suitable strategy-move functions
[Fan and Toni, 2012a], a1 puts forward cov′(m, c) as the claim of this dialogue
and a2 puts forward utterances 2 and 3 establishing the argument (in the ABA
framework Fδ drawn from the dialogue) for cov′(m, c) supported by the empty
set of assumptions and the two rules:

cov′(m, c)← in(m, c) and in(m, c)←.

Persuasion dialogues are dialogues between two agents posing “incompatible”
views towards some topic with the persuader trying to “prove” the topic and
the persuadee trying to “disprove” it. Illustrating with the running example,
we may have (for a1 the persuader and a2 the persuadee):

〈a1, a2, 0, claim(not cov′(m, c)), 1〉
〈a1, a2, 1, asm(not cov′(m, c)), 2〉
〈a2, a1, 2, ctr(not cov′(m, c), cov′(m, c)), 3〉
〈a2, a1, 3, rl(cov′(m, c)← in(m, c)), 4〉
〈a2, a1, 4, rl(in(m, c)←), 5〉

Here, a1 tries to establish the acceptability of not cov′(m, c) by claiming it as
an assumption, thus forming the argument {not cov′(m, c)} ` not cov′(m, c),
whereas a2 puts forward the attacking argument {} ` cov′(m, c) with utterances
3, 4 and 5. The presented persuasion behaviours of both agents are formally
defined with strategy-move functions in [Fan and Toni, 2012c].

Inquiry dialogues are about two agents jointly “proving” or “disproving” the
acceptability of some claim. Both agents put forward information supporting
or attacking the claim. Again illustrated with the breakdown assistance policy
example, we may have:



28 Kristijonas Čyras, Xiuyi Fan, Claudia Schulz, Francesca Toni

〈a1, a2, 0, claim(cov(m, c)), 1〉
〈a1, a2, 1, rl(cov(m, c)← ah(m), tr(m, c), pr(c), not ¬cov(m, c)), 2〉
〈a1, a2, 2, rl(ah(m)←), 3〉
〈a1, a2, 2, rl(tr(m, c)←), 4〉
〈a1, a2, 2, rl(pr(c)←), 5〉
〈a1, a2, 2, asm(not ¬cov(m, c)), 6〉
〈a2, a1, 6, ctr(not ¬cov(m, c),¬cov(m, c)), 7〉
〈a2, a1, 7, rl(¬cov(m, c)← ¬reg(c,m), not cov′(m, c)), 8〉
〈a2, a1, 8, rl(¬reg(c,m)←), 9〉
〈a2, a1, 8, asm(not cov′(m, c)), 10〉
〈a2, a1, 10, ctr(not cov′(m, c), cov′(m, c)), 11〉
〈a2, a1, 11, rl(cov′(m, c)← in(m, c)), 12〉
〈a2, a1, 12, rl(in(m, c)←), 13〉

With utterances 1-6, the argument {not ¬cov(m, c)} ` cov(m, c) is formed.
Utterances 7-10 form an attacking argument {not cov′(m, c)} ` ¬cov(m, c),
which is attacked by {} ` cov′(m, c). The inquiry behaviour of agents is for-
mally defined in [Fan and Toni, 2012a].

6 ABA and explanation

It is widely acknowledged that there is a strong interplay between argumenta-
tion and explanation, as for example discussed in [Seselja and Straßer, 2013].
In this section we overview existing proposals [Fan and Toni, 2015c; Schulz and
Toni, 2016] using dispute trees in ABA (see Section 5) to provide (argumen-
tative) explanations for why sentences should be concluded. Dispute trees for
(flat) ABA can also serve as the basis for explanations in other settings, includ-
ing various forms of decision-making [Fan and Toni, 2014a; Fan et al., 2014;
Zhong et al., 2014; Fan et al., 2013] and case-based reasoning [Čyras et al., 2016]

(see the original papers for details). In particular, natural language explana-
tions can be drawn automatically from the dispute trees (see [Zhong et al., 2014;
Mocanu et al., 2016] for details).

6.1 Dispute trees as explanations in flat ABA

We have seen (in Section 5) that dispute trees can be used to determine whether
a sentence is admissible / grounded / ideal (and, as a consequence, preferred /
complete). These dispute trees can also provide a computational counterpart
for providing explanations for these sentences (being consequences of admis-
sible / grounded / ideal / preferred / complete extensions, respectively). For
example, the dispute tree in Figure 3 can be seen as providing an explanation
for cov(m, c), in the spirit of [Newton-Smith, 1981]:

. . . if I am asked to explain why I hold some general belief that p, I
answer by giving my justification for the claim that p is true.

Hence, if a belief q does not contribute to the justification of p, q should not
be in the explanation of p. Dispute trees are explanations for (the argument
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in their root supporting) a sentence in that everything in them contribute to
justifying the sentence. This informal notion can be formalised in terms of a
notion of related admissibility of ABA arguments [Fan and Toni, 2015c],9 in
turn defined using a notion of r-defence [Fan and Toni, 2015c], given as follows:

Definition 6.1 Given an ABA framework ABA = 〈L,R,A, 〉, let AA(ABA) =
(Args, attack) be the corresponding AA framework of ABA.

• Given a, b ∈ Args, a r-defends b iff:

(i) a = b, or

(ii) there exists c ∈ Args such that a attacks c and c attacks b, or

(iii) there exists c ∈ Args such that a r-defends c and c r-defends b.

• Given a ∈ Args and σ ∈ L, a r-defends σ iff there exists b ∈ Args such
that b supports σ and a r-defends b.

As an illustration, given the ABA framework in Section 3.2:

{} `arg cov′(m, c) r-defends {} `arg cov′(m, c),
{} `arg cov′(m, c) r-defends {not ¬cov(m, c)} `arg cov(m, c),
{} `arg cov′(m, c) r-defends cov′(m, c),
{not ¬cov(m, c)} `arg cov(m, c) r-defends cov(m, c),
{} `arg cov′(m, c) r-defends cov(m, c).

The notion of related admissibility is obtained by combining the r-defence
relation and standard admissibility as follows:

Definition 6.2 Given an ABA framework ABA, let AA(ABA) = (Args, attack)
be the corresponding AA framework of ABA. A set of arguments A ⊆ Args is
related admissible iff:

(i) A is admissible, and

(ii) there exists a topic sentence σ (of A) such that σ is supported by some
argument in A and for all b ∈ A, b defends σ.

Intuitively, for a related admissible set of arguments A with topic sentence
σ, no argument in A is “unrelated” to σ as all arguments in A r-defend σ.

As an illustration, given the ABA framework in Section 3.2,

{{} `arg cov′(m, c)}
9The notions defined in this section can be defined trivially for any AA framework too, as

in [Fan and Toni, 2015c]. The notions for AA frameworks corresponding to ABA frameworks,
given below, are an instantiation of the notions for any AA frameworks.
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is related admissible, with topic sentence cov′(m, c), and

{{} `arg cov′(m, c), {not ¬cov(m, c)} `arg cov(m, c)}

is related admissible, with topic sentence cov(m, c). Instead,

{{} `arg cov′(m, c), {not cov′(m, c)} `arg ¬cov(m, c)}

is not related admissible as it is not admissible; and

{{} `arg ah(m), {} `arg pr(c)}

is not related admissible as there does not exists a topic sentence σ such that
it is defended by both {} `arg ah(m) and {} `arg pr(c).

Dispute trees correspond to explanations in that their defence sets are related
admissible:

Theorem 6.3 Given an ABA framework ABA = 〈L,R,A, 〉, let AA(ABA) =
(Args, attack) be the corresponding AA framework of ABA. Let σ ∈ L.

(i) Let a = A `arg σ ∈ Args and T be a dispute tree for a. If T is admissible
/ grounded / ideal, then D(T ) is related admissible.

(ii) If A ⊆ Args is related admissible, with topic sentence σ, then there is an
admissible dispute tree T such that A′ = D(T ) and A′ ⊆ A.

Proof.

(i) By definition 6.1, all arguments labelling P nodes (D(T )) in a dispute
tree r-defend the argument labelling the root note. By Theorem 5.5, all
arguments labelling P nodes in an admissible / grounded / ideal dispute
tree are admissible. Thus, by Definition 6.2, D(T ) is related admissible.

(ii) If A is related admissible, by Definition 6.2, A is also admissible. By
Theorem 5.5, there exists an admissible dispute tree T such that A′ =
D(T ) and A′ ⊆ A.

�

6.2 Explanations for answer set programming

We have seen in Section 3.2 that a logic program can be encoded as an (equiva-
lent) ABA framework such that the semantics of the ABA framework coincide
with the semantics of the underlying logic program [Bondarenko et al., 1997],
for a wide range of semantics including the stable model (or answer set) se-
mantics [Schulz and Toni, 2016; Schulz and Toni, 2015; Caminada and Schulz,
2015]. Logic programs under the answer set semantics (or answer set program-
ming ) can be applied in a wide range of scenarios [Baral and Uyan, 2001;
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Lifschitz, 2002; Eiter et al., 2008; Delgrande et al., 2009; Ricca et al., 2010;
Gebser et al., 2011b; Boenn et al., 2011; Erdem, 2011; Ricca et al., 2012;
Terracina et al., 2013], thanks also to the availability of efficient solvers for
the computation of answer sets [Leone et al., 2006; Gebser et al., 2011a;
Alviano et al., 2015; Calimeri et al., 2016]. These however do not provide
any explanation of the answer sets computed. In particular, given one such an-
swer set, there is no indication as to why a literal is or is not part of an answer
set: this would instead be beneficial in human-computer interaction scenar-
ios where logic programming is used for example to support human decision
making.

As seen in Section 6.1, dispute trees do not only provide a way of determining
whether or not a sentence is, for instance, admissible, but also an explanation
as to why this is so.

Given that answer sets of a logic program correspond to stable extensions of
the ABA framework encoding this logic program [Bondarenko et al., 1997] and
that if an answer set is guaranteed to exist then it is preferred (See Theorem 2.11
(i)), dispute trees can be used to determine, for a computed answer set and
sentence in it, an explanation (in the form of a dispute tree) for why this is
so. However, for the purpose of extracting explanations for literals in terms of
other literals (rather than arguments, see [Schulz and Toni, 2016]), it is useful
to single out, from the set of rules supporting ABA arguments, the rules with
an empty body (referred to as facts in LP):

Definition 6.4 Given a flat ABA framework 〈L,R,A, 〉, we say that
(A,F ) `arg σ is a fact-based-argument for σ ∈ L supported by A ⊆ A

and F ⊆ {π ← | π ← ∈ R}, if there is an argument A
R

`arg σ such that
F = R ∩ {π ← | π ← ∈ R}.

A generalisation of dispute trees, which we call explanation trees [Schulz and
Toni, 2016], where nodes are labelled by fact-based-arguments10 can be used
to explain why a literal is contained in a given answer set.

As an example, consider the ABA framework in Section 3.2, and the logic
program amounting to its rules. This logic program has only one answer set:
{ah(m), tr(m, c), pr(c), ¬reg(c,m), in(m, c), cov(m, c), cov′(m, c)}.

The explanation tree in Figure 4 justifies why Mary is covered, i.e. why
cov(m, c) is contained in the answer set. It expresses that there is evidence
that Mary is covered (given by the argument with conclusion cov(m, c) in the
root proponent node) since Mary is the account holder and she is travelling in a
car which is a private vehicle (facts supporting the argument), and since it can
be assumed that there is no evidence that Mary is not covered (not¬cov(m, c)
is an assumption). Even though there is evidence against this assumption, i.e.
there is evidence that that Mary is not covered (given by the argument with
conclusion ¬cov(m, c) in the opponent node) because she is not registered on

10For better readability we will omit the symbol ← for all facts in the set F .
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P : ({not ¬cov(m, c)}, {ah(m), tr(m, c), pr(c)}) `arg cov(m, c)

O : ({not cov′(m, c)}, {¬reg(c,m)}) `arg ¬cov(m, c)

P : ({}, {in(m, c)}) `arg cov′(m, c)

Figure 4. An explanation tree justifying why Mary is covered in the running
example

the car, this evidence can be disregarded since Mary was in the car at the time
of the breakdown (given by the proponent argument with conclusion cov′(m, c),
which attacks the assumptions notcov′(m, c) of the opponent node). Note that
this explanation tree is the same as the dispute tree in Figure 3 except that it
uses fact-based-arguments.

In contrast to dispute trees which are used to justify only the containment of
an argument in an extension, explanation trees can also explain why a literal
is not in an answer set. In that case, explanation trees have an opponent node
as their root, as illustrated by the explanation tree below which justifies why
it is not the case that Mary is not covered (why ¬cov(m, c) is not part of the
answer set)

O : ({not cov′(m, c)}, {¬reg(c,m)}) `arg ¬cov(m, c)

P : ({}, {in(m, c)}) `arg cov′(m, c)

Note that this explanation tree is a sub-tree of the previous explanation tree
in Figure 4 justifying why cov(m, c) is contained in the answer set.

Since explanation trees whose root node is a proponent node are dispute
trees and since arguments which are in a stable extension are also in an ad-
missible extension (Theorem 2.11 (i)), it follows from the relationhip between
admissible extensions and admissible dispute trees given in Theorem 5.5 (i)
that explanation trees starting with proponent nodes are admissible dispute
trees. Thus, for literals contained in the answer set, explanation trees illustrate
that the literal is supported by an admissible subset of this answer set.

Explanation trees whose root node is an opponent node have an explanation
tree for a literal contained in the answer set as its direct sub-tree. Thus, this
direct sub-tree is an admissible dispute tree. This means that literals not
contained in the answer set are justified by illustrating that they are attacked
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by an admissible subset of the answer set.
In summary, explanation trees provide justifications of literals with respect

to an answer set in terms of admissible subsets of this answer set [Schulz and
Toni, 2016].

7 ABA and reasoning with preferences

Argumentation and preferences come a long way, see e.g. [Simari and Loui,
1992]. In general, preferences can be used to express, for instance, agents’ de-
grees of belief, imperatives (moral, legal, etc.), aims, wishes. There are numer-
ous methods in knowledge representation and reasoning to account for prefer-
ence information, see e.g. [Prakken and Sartor, 1999; Kakas and Moraitis, 2003;
Delgrande et al., 2004; Brewka et al., 2010; Domshlak et al., 2011], and, in par-
ticular, several argumentation formalisms handling preferences, see e.g. [Bench-
Capon, 2003; Modgil, 2009; Modgil and Prakken, 2014; Garćıa and Simari,
2014; Besnard and Hunter, 2014; Amgoud and Vesic, 2014; Baroni et al.,
2011], where preferences help to discriminate amongst information such as ex-
tensions, arguments, assumptions, rules, decisions and goals [Wakaki, 2014;
Besnard and Hunter, 2014; Čyras and Toni, 2016a; Modgil and Prakken, 2014;
Fan et al., 2013]. There are various ways to deal with preferences in ABA
too [Kowalski and Toni, 1996; Toni, 2008b; Thang and Luong, 2013; Fan et
al., 2013; Wakaki, 2014; Čyras and Toni, 2016a; Čyras and Toni, 2016b]. In
this section we illustrate (by way of examples) these latter approaches. At a
high-level, they can be divided in two groups: meta level approaches ([Wakaki,
2014; Čyras and Toni, 2016a; Čyras and Toni, 2016b], see Section 7.1), which,
roughly, account for preferences at the semantic level, and object level ap-
proaches ([Kowalski and Toni, 1996; Toni, 2008b; Thang and Luong, 2013;
Fan et al., 2013], see Section 7.2), which, roughly, encode preferences within
the existing ABA components (e.g. rules and assumptions) and avoid the need
to modify the semantics of ABA frameworks.

Note that the examples chosen for the illustrations in this section have been
selected for their simplicity, to give a high-level idea of the various approaches
overviewed, and may not convey the full sophistication and usefulness of these
approaches: the interested reader can find details as well as formal results in
the original papers.

7.1 Handling preferences in ABA at the meta-level

[Wakaki, 2014] follows the ideas of prioritized logic programming [Sakama and
Inoue, 2000] and equips ABA with explicit preferences by introducing a binary
preference relation 6 over the language L. (For a, b ∈ L, a 6 b expresses that ‘a
is less or equally preferred than b’.) This ordering 6 is then used to compute, by
comparing consequences of extensions, a preference ordering v over extensions
so as to select the most “preferable” extensions (i.e. the v-maximal ones) of the
underlying ABA framework. Such meta-level preference treatment can be well
illustrated via scenarios of decision making with preferences, as in the following
example.
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Example 7.1 Mary needs to decide what insurance policy to buy. Following
the approach of [Fan et al., 2013], information relevant to the decision making
is represented via two tables, TDA and TGA, as illustrated in Table 1, where

• TDA describes relations between decision candidates (Policy 1 (P1), Policy
2 (P2)) and attributes (£50, £70, no exceptions ( no ex));

• TGA describes relations between goals ( cheap and full coverage ( full)) and
attributes.

£50 £70 no ex
P1 0 1 1
P2 1 0 0

£50 £70 no ex
cheap 1 0 0

full 0 0 1

Table 1. TDA(left) and TGA(right), for Example 7.1.

Intuitively, each decision candidate has certain attributes (P1 has £70 and
no ex; P2 has £50); and each goal can be met by certain attributes ( cheap is
met by £50; full is met by no ex).

In addition, suppose that the goal full is preferred over cheap. In p ABA,
we can represent this information as a framework 〈L,R,A, ,6〉, with the
underlying ABA framework 〈L,R,A, 〉 with

R = {£70← P1, no ex ← P1, £50← P2, cheap ← £50,

full ← no ex , P2 ← P1, P1 ← P2},
A = {P1, P2}, and

cheap 6 full , cheap 6 cheap , full 6 full.

〈L,R,A, 〉 has two preferred / stable extensions {P1} and {P2}, with con-
clusions Cn({P1}) = {P1,£70, no ex, full } and Cn({P2}) = {P2,£50, cheap }.
We then find {P2} v {P1} and {P1} 6v {P2}, so that {P1} is a v-maximal ex-
tension, and is hence selected as the “preferable” one. Buying Policy 1 is thus
deemed the better decision to take.

Preferences in ABA can also be utilized to modify the attack relation between
sets of assumptions, akin to approaches to argumentation with preferences such
as [Bench-Capon, 2003; Modgil and Prakken, 2014; Amgoud and Vesic, 2014;
Besnard and Hunter, 2014]. For instance, ABA+ [Čyras and Toni, 2016a;
Čyras and Toni, 2016b] equips ABA with a binary preference relation 6 over
assumptions, and incorporates preferences directly into the attack relation so
as to reverse attacks that stem from sets containing assumptions less preferred
than the one whose contrary is deduced, as illustrated next.

Example 7.2 Suppose that Mary has decided to buy Policy 1, as suggested in
Example 7.1. However, Mary has also found some information on the Internet
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about the policy: source C says that under certain circumstances (c), the policy
applies only to citizens of certain specified countries; source B says that some-
times (say, assuming c), the policy applies only to UK residents (UK ← b, c);
source A says that sometimes (assuming c) the policy applies only to non-UK
residents (non UK ← a, c). Mary trusts the source A the least (i.e. a < b,
a < c). What is Mary justified believing in about the applicability of the policy,
given certain circumstances?

We can formalize this in ABA+ as follows: consider 〈L,R,A, ,6〉 with

A = {a, b, c},
R = {non UK ← a, c, UK ← b, c},
a = UK, b = non UK,

a < b, a < c,

where the assumptions stand for the possibility to trust the sources and prefer-
ences indicate their relative credibility, rules are drawn given that information
from sources A and B is applicable under certain circumstances (c), also given
that sources A and B are in conflict.

The underlying ABA framework 〈L,R,A, 〉 admits both {a, c} and {b, c}
as stable / preferred extensions. In ABA+, attacks from {a, c} to (any set of
assumptions containing) b are reversed, due to the a’s lower credibility in com-
parison with b. Hence, {b, c} is a unique stable / preferred extension, arguably
the desirable outcome. This can be seen clearly given the graph depicted below,
omitting, for readability, assumption sets {} and {a, b, c}, as well as attacks to
and from them:

{a}

{b}

{c}

{a, b}

{a, c}

{b, c}

7.2 Handling preferences in ABA at the object-level

Instead of equipping ABA frameworks with explicit preference relations as in
Section 7.1, and then modifying the semantics of ABA (by either comparing
extensions or modifying the attack relation), preferences can be encoded within
the existing components (rules, assumptions and contraries) without modifying
the semantics.

For instance, [Kowalski and Toni, 1996; Toni, 2008b] deal with preferences
between rules by adding conditions (i.e. assumptions) to the body of rules
expressing that the rules are not attacked by other higher preference rules,
by appropriately defining contraries of these assumptions. For illustration,
consider the following example:
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Example 7.3 In our breakdown policy example of Section 3, the rules in the
ABA instance for LP of section 3.2 can be modified by adding assumptions as
follows:

cov(m, c)← ah(m), tr(m, c), pr(c), not ¬cov(m, c), acov(m,c),

¬cov(m, c)← ¬reg(c,m), not cov′(m, c), a¬cov(m,c).

If a preference of the second rule over the first one is to be expressed, then one
could assign contraries

acov(m,c) = ¬cov(m, c), a¬cov(m,c) = ac,

where ac is new to L.
More generally (as in [Toni, 2008b]), one can assume a naming function

assigning distinguished names to elements (e.g. rules) of a given domain, and
given preferences over the elements of the domain, consider a language that in-
cludes sentences expressing those preferences. For example, the two rules above
can be given names r and r′ respectively, and the language L would contain a
“preference sentence” r < r′ expressing that the second rule is preferred over
the first one. Then, when mapping the domain into an ABA framework, a rule

¬cov(m, c)← r < r′, a¬cov(m,c),

could be added, so as to account for preferences, which could be stated e.g. via a
rule r < r′ ←. This way, ABA can also account for dynamic preferences (see
e.g. [Prakken and Sartor, 1999]), i.e. preferences that are themselves deducible
using rules, possibly from other assumptions.

Yet another way to deal with preferences in ABA on the object level is
used in [Thang and Luong, 2013] when translating Brewka’s preferred sub-
theories [Brewka, 1989] into ABA. To capture the interplay between classi-
cally inconsistent sentences and partial preference information among them,
[Thang and Luong, 2013] introduce assumptions for representing sentences
in the domain language as well as for determining their acceptance status in
the construction of preferred subtheories, and further introduce rules for: de-
riving sentences from their corresponding assumptions; deriving contraries of
the least preferred elements of minimally inconsistent subsets; enforcing (non-
)acceptance of an assumption iff the statuses more preferred assumptions are
determined. This is illustrated next.

Example 7.4 Let us rewrite the rules from Example 7.2 as

α, γ → ¬UK, β, γ → UK

(where → is material implication) to constitute the facts (world knowledge),
and let T = {α, β, γ} be the theory representing the defeasible knowledge, with
preferences α < β and α < γ. This partial order < admits two extensions to
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total orders, namely α < β < γ and α < γ < β, both of which result in the
same preferred subtheory of T , namely {β, γ}.

The domain can be mapped into an ABA framework 〈L,R,A, 〉 with (for
readability treating contraries of assumptions as symbols in the language)

A ={aα, aβ , aγ} ∪ {bα, bβ , bγ},
R ={α← aα, β ← aβ , γ ← aγ} ∪ {aα ← aβ , bβ , aγ , bγ}∪
{aα ← bα, aβ ← bβ , aγ ← bγ}∪
{bβ ←, bγ ←, bα ← aβ , bβ , aγ , bγ ,

bα ← aβ , bβ , aγ , bγ , bα ← aβ , bβ , aγ , bγ , bα ← aβ , bβ , aγ , bγ}.

This 〈L,R,A, 〉 has a unique stable extension {aβ , aγ}, corresponding to
the unique preferred subtheory of T .

Another example of preferences dealt with in ABA within the object-level
is to support decision making with preferences over goals. Differently from the
other approaches overviewed in this section, this method is specific to decision
making settings, and uses preferences over sentences (the goals) within decision
criteria (e.g. various kinds of “dominance”, see [Fan et al., 2013]) for choosing
“best” decisions. This can be illustrated in the context of the same decision
making setting of Example 7.1:

Example 7.5 Given the two tables, TDA and TGA, in Table 1, as well as the pref-
erence full > cheap, the problem of identifying the “best” decisions, namely
those “meeting the more preferred goals that no other decisions meet”, can be
represented in ABA with

R = { has(P1,£70)← , has(P1, no ex)← , has(P2, 50)← ,

satBy(cheap,£50)← , satBy(full)← no ex,

prefer(full, cheap)← } ∪
{ met(X,Y )← has(X,Z), satBy(Y,Z) | X ∈ {P1, P2},

Y ∈ {cheap, full}, Z ∈ {£50,£70, no ex } } ∪
{ sel(X)← met(X,Y ), noBetterThan(X,Y ) | X ∈ {P1, P2},

Y ∈ {cheap, full} } ∪
{ better(X,Y )← met(X ′, Y ′), prefer(Y ′, Y ), X 6= X ′ |

X,X ′ ∈ {P1, P2}, Y, Y ′ ∈ {cheap, full} }
A = { noBetterThan(X,Y ) | X ∈ {P1, P2}, Y ∈ {cheap, full} }

not x = better(X,Y ) for any x = noBetterThan(X,Y ) ∈ A

Then
{{noBetterThan(P1, full)} `arg sel(P1)}
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is admissible whereas

{{noBetterThan(P2, cheap)} `arg sel(P2)}

is not, as the latter is attacked by {} `arg better(P2, cheap). Indeed, Policy 1
is the “best” decision in this simple setting.

8 Conclusion

This chapter overviews research, spanning over more than two decades (from
[Bondarenko et al., 1993] onwards), on Assumption-Based Argumentation (ABA),
a framework for structured argumentation motivated by and emerging from
non-monotonic reasoning. We have focused on the semantic foundations of
ABA, in the general case as well as for the special case of flat ABA frameworks,
while also providing an overview of the computational machinery (flat) ABA
is equipped with as well as its uses for explaining argumentative conclusions.
Finally, we have overviewed, with the aid of examples, uses and generalisations
of ABA to support reasoning with preferences.

This chapter is meant as a taster of ABA rather than a comprehensive
technical presentation, and complements other earlier overviews [Dung et al.,
2009; Toni, 2012; Toni, 2014]. In particular, it focuses on the case of general
(possibly non-flat) frameworks rather than flat frameworks as in the earlier
overviews, and provides a taster of explanation and the treatment of preferences
in ABA.

We omitted to mention several aspects of ABA. For instance, there are sev-
eral other instances of ABA for non-monotonic reasoning (see [Bondarenko et
al., 1997]), and ABA has also been shown to admit Adaptive Logic and AS-
PIC+ without preferences as instances [Heyninck and Straßer, 2016]. Other
ABA semantics have been presented in the literature, e.g. the semi-stable
semantics [Caminada et al., 2015]. Moreover, formulation of (some) ABA se-
mantics in terms of labellings, in the spirit of those proposed for abstract
argumentation [Caminada and Gabbay, 2009], have been proposed [Schulz and
Toni, 2014; Schulz and Toni, 2015; Schulz and Toni, 2017]. Further, the com-
putational complexity of several reasoning problems in several instances of
ABA is known [Dimopoulos et al., 2002; Dunne, 2009], and several systems
for (flat) ABA are publicly available (see robertcraven.org/proarg/ and
www-abaplus.doc.ic.ac.uk). Recent work also shows that (sets of) argu-
ments in ABA can be re-interpreted as graphs, with conceptual and compu-
tational advantages [Craven and Toni, 2016]. We have seen in Section 7 that
ABA has been extended to accommodate reasoning with preferences: other
extensions of ABA also exist, notably the probabilistic ABA of [Dung and
Thang, 2010]. Finally, we have not delved into applications of ABA: these
are overviewed in earlier surveys [Dung et al., 2009; Toni, 2012; Toni, 2014]

or other papers [Gao et al., 2016; Fan and Toni, 2016]. In particular, [Gao et
al., 2016] uses related admissibility in ABA (see Section 6.1) to coordinate and
resolve conflicts amongst agents, while also guaranteeing that privacy is pre-
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served, in some sense, whereas [Fan and Toni, 2016] reinterprets the problem of
determining solutions in games in normal form in ABA, using ABA dialogues
(as summarised in Section 5.3) to determine these solutions in a distributed
fashion, without agents fully disclosing their preferences.

There are several open issues in ABA as well as several directions for future
work. We have seen, in Section 6.2, that explanations as to why sentences
are not “acceptable” may be useful [Schulz and Toni, 2016]. The concept of
“not-explanations” can be defined, in general, in abstract argumentation [Fan
and Toni, 2015b]: it would be useful to define this notion also for ABA. Other
forms of explanations have been defined, notably for explaining inconsisten-
cies in LP [Schulz et al., 2015]: it would be interesting to define a notion of
explanation for the lack of (e.g. stable) extensions in generic ABA. Some pre-
liminary work [Zhong et al., 2014; Mocanu et al., 2016] indicates that natural
language explanations can be naturally drawn from dispute trees computed by
dispute derivations: it would be interesting to develop this work further and
test the usefulness of the generated explanations in practice. Further, in multi-
agent settings, it would be interesting to further study strategic behaviour
of agents using ABA as their language of interaction [Fan and Toni, 2012c;
Fan and Toni, 2015a; Gao et al., 2016; Fan and Toni, 2016]. From a compu-
tational viewpoint, (flat) ABA is equipped with several (sound and complete)
algorithms for determining the “acceptability” of sentences (and compute ex-
tensions “supporting” them): it would be interesting to see how these algo-
rithms can be generalised to the case of any, possibly non-flat, ABA frameworks
and/or deployed when preferences are given, e.g. in the spirit of Gorgias (see
gorgiasb.tuc.gr/index.html) and dealt with at the meta-level (as in Sec-
tion 7.1). Moreover, it would be interesting to identify (sound and complete)
computational machinery for determining extensions of ABA, without having
to resort to implementations of abstract argumentation by using the mapping
described in Section 4.
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[Čyras and Toni, 2016b] Kristijonas Čyras and Francesca Toni. Properties of ABA+ for
non-monotonic reasoning. In Proceedings of the 16th International Workshop on Non-
Monotonic Reasoning (NMR’16), CoRR, volume abs/1603.08714, 2016.
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