
A semantics for positive abductive logic programs with
implicative integrity constraints

Paolo Mancarella and Francesca Toni
Università di Pisa, Italy Imperial College London, UK
paolo@di.unipi.it ft@imperial.ac.uk

Abstract

We propose a novel semantics for positive abductive
logic programs with implicative integrity constraints,
namely integrity constraints in the form of implica-
tions. We show that this semantics is better suited to
deal with several applications of abductive logic pro-
gramming. Moreover, we prove that, in the proposi-
tional case, the existing abductive proof procedure IFF
is sound and “strongly” complete w.r.t. the proposed
semantics. Thus, we improve upon the existing “weak”
completeness results for IFF.

Introduction
Abduction is a powerful mechanism for hypothetical
reasoning with incomplete knowledge, that has found
broad applications in artificial intelligence (Kakas,
Kowalski, and Toni 1998; Denecker and Kakas 2002).
This form of reasoning is handled by labeling some
pieces of information as abducibles, i.e. as possible hy-
potheses, that can be assumed to hold provided that
they are compatible with the available knowledge.

Abductive Logic Programming (ALP) combines ab-
duction with standard logic programming, by assum-
ing that the available knowledge is modelled as a logic
program and abducibles are atoms not defined by the
logic program. A number of abductive proof proce-
dures have been proposed in the literature, e.g. (Kakas
and Mancarella 1990; Console, Dupre, and Torasso
1991; Denecker and Schreye 1998; Fung and Kowalski
1997; Mancarella et al. 2009), to compute hypothe-
ses/abducibles to explain observations seen as standard
logic programming queries. These proof procedures al-
low the use of integrity constraints to restrict the range
of possible hypotheses. Abductive proof procedures
compute abductive answers to queries Q, meant to pro-
vide explanations for these Q: answers specify which
abducibles have to be assumed to hold for Q to hold as
well, while also validating the integrity constraints.

Integrity constraints can in principle be any logical
formulas, but are more conventionally assumed to be in
the form of “denials” and/or implications. ALP with

Copyright c© 2010, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

implicative integrity constraints has been advocated as
a useful knowledge representation mechanism to sup-
port several applications, including agents (Kowalski
and Sadri 1999; Sadri and Toni 1999; Mancarella and
Terreni 2003; Kakas et al. 2008), active databases
(Sadri and Toni 1999) and automated repairing of web
sites (Mancarella, Terreni, and Toni 2009). However,
the current notion of abductive answer is not suitable
to model implicative integrity constraints, when these
are used for these applications. Indeed, this current no-
tion allows to validate implicative integrity constraints
by arbitrarily enforcing their premises (and, as a con-
sequence, their conclusion) even when these premises
have no reason to be enforced. For example, the in-
tegrity constraint alarm → run, modeling the reac-
tive behaviour of an agent, with alarm and run both
abducible1, can be validated by arbitrarily abducing
alarm, and as a consequence run. The resulting ab-
ductive answer is counter-intuitive (in the absence of
other information) and gives unwanted behaviour. In-
terestingly, existing abductive proof procedures refrain
from computing these counter-intuitive abductive an-
swers. For instance, in the earlier example, IFF (Fung
and Kowalski 1997) would compute the empty abduc-
tive answer. Indeed, IFF is shown to be “weakly com-
plete” w.r.t. the current notion of abductive answer:
IFF is only guaranteed to compute a subset of every
such answer. Thus, the existing notion of abductive
answers can be deemed to be “weak”.

In this paper we give a novel notion of abductive
answer, overcoming the limitations of the existing no-
tion for implicative integrity constraints, and prove a
“strong” completeness result for IFF. Namely we prove
that IFF is guaranteed to compute every abductive an-
swer in our novel sense. Moreover, we prove that IFF
is still sound w.r.t. our new notion of abductive answer
(as it was w.r.t. the old notion).

Our new notion of abductive answer is given in terms
of a notion of computation, inspired by a correspond-
ing notion recently proposed in (Liu et al. 2010) to
understand answer set programming.

1When ALP is used to model agents, both observa-
tions and actions by agents are modelled as abducibles,
see (Kowalski and Sadri 1999).

The paper is organised as follows. First, we give back-
ground on ALP and its existing semantics. Then, we
discuss some examples, motivating the inadequacy of
the existing semantics for ALP for a class of applica-
tions. In the main part of the paper, we propose our
novel semantics for ALP, illustrate it for the motivating
examples and prove some properties of this semantics,
including a comparison with the existing semantics. We
then prove that the IFF proof procedure for ALP is
sound and complete w.r.t. our proposed semantics. Fi-
nally we conclude.

Background
An abductive logic program (ALP) (Kakas, Kowalski,
and Toni 1998) is a tuple 〈P, A, IC〉 where:
• P is a normal logic program, namely a set of clauses

of the form: p← l1 ∧ . . . ∧ ln (n ≥ 0)
where p is an atom and each li is a literal, i.e. an
atom a or the negation (as failure) ¬a of an atom a.
All variables in p, l1, . . . , ln are implicitly universally
quantified over p← l1 ∧ . . .∧ ln. We refer to p as the
head and to l1 ∧ . . . ∧ ln as the body of the clause.

• A is a set of (ground) atoms, referred to as abducibles.
The predicates of abducibles do not occur in the head
of any clause of P (without loss of generality, see
(Kakas, Kowalski, and Toni 1998)).

• IC is a set of implicative integrity constraints of the
form: 2 l1 ∧ . . . ∧ ln → p (n ≥ 0)
where p is an atom and each li is a literal. All vari-
ables in p, l1, . . . , ln are implicitly universally quanti-
fied over the implication. We refer to l1∧. . .∧ln as the
body and to p as the head of the integrity constraint.
We refer to the set of all predicates occurring in

〈P, A, IC〉 as the signature of 〈P, A, IC〉 and to all liter-
als that can be built from predicates in the signature of
〈P, A, IC〉 as the Herbrand base of 〈P, A, IC〉, denoted
HB〈P, A, IC〉. Clauses with an empty body (n = 0) will
be represented as p ← true, with true not already in
HB〈P, A, IC〉. Integrity constraints with an empty body
(n = 0) will be represented as true→ p.

A query Q to an ALP 〈P, A, IC〉 is a (possibly empty)
conjunction of literals whose predicates belong to the
signature of 〈P, A, IC〉. The variables in Q are implic-
itly existentially quantified, with scope the query. The
emtpy query is represented as true.

Informally, given an ALP 〈P, A, IC〉 and a query Q,
an “abductive answer” for a query Q is a set of (ground)
abducibles ∆ that, together with P , “entails” both Q
and IC, w.r.t. some notion of “entailment”. The no-
tion of “entailment” depends on the semantics associ-
ated with the logic program P (there are many different

2Note that in some approaches to ALP, e.g. (Kakas,
Kowalski, and Toni 1998), integrity constraints can also be
denials, namely p can be false. Also, in some approaches to
ALP, e.g. (Fung and Kowalski 1997), the head of integrity
constraints can be a disjunction of atoms. For simplicity, we
do not consider these other forms of integrity constraints.

possible choices for such semantics (Kakas, Kowalski,
and Toni 1998)). Formally, an abductive answer to a
query Q w.r.t. an ALP 〈P, A, IC〉 is a finite set ∆ of
abducibles such that, for some ground substitution σ
for the variables of Q:

• P ∪∆ |=LP Qσ and

• P ∪∆ |=LP IC

where |=LP stands for entailment w.r.t. the chosen
semantics for logic programming.

In the remainder we will focus on positive ALPs and
queries, where no negative literals occur. Note that in
this case |=LP is necessarily entailment under the least
Herbrand model, referred to below as |=lhm. Moreover,
as conventional in logic programming when defining se-
mantics, we will assume that any ALP 〈P,A, IC〉 stands
for its ground instantiation (w.r.t. HB〈P, A, IC〉), or,
equivalently, that 〈P, A, IC〉 is propositional.

Motivation

As mentioned in the introduction, ALP with implicative
constraints has been advocated as a useful knowledge
representation mechanism to support several applica-
tions. In this section, we show that the current notion
of abductive answer is not suitable to model implica-
tive integrity constraints, when these are used for the
aforementioned applications.

Example 1 Let 〈P, A, IC〉 be
P = {}; A = {a, b}; IC = {a→ b}

In line with (Kowalski and Sadri 1999; Sadri and Toni
1999; Kakas et al. 2008), this could be used to deter-
mine the reactive behaviour of a hardware agent (robot)
that, when a fire alarm goes off (a) should immediately
evacuate the building in which it is situated (b). In ad-
dition, in line with (Sadri and Toni 1999), it could be
used to represent an active rule over a database sanc-
tioning that every employee (a) should have a social
security number (b). Finally, in line with (Mancarella,
Terreni, and Toni 2009), it could be used to represent a
rule over a web site about books, that each book docu-
mented on the site (a) should have an author (b).

Consider three possible queries Q1 = true, Q2 = b,
Q3 = a. Then, given the earlier notion of abductive an-
swer, {a, b} is the only possible answer to Q3, whereas
{a, b} and {b} are alternative answers to Q2 and {a, b}
and {} are alternative answers to Q1. However, for the
applications mentioned earlier, {a, b} is not an appro-
priate answer to Q1 = true and Q2 = b. Indeed, this
answer unnecessarily and arbitrarily contains a.

Example 2 Let 〈P, A, IC〉 be
P = {p← b}; A = {a, b}; IC = {a→ p}

This simple 〈P, A, IC〉 could be used for example
to represent the reactive behaviour of a software agent
that should increase the amount held by a bank account
(p) when this amount goes below some threashold (a).
One way to do so may be to transfer some money from
another account (b).

Consider again queries Q1 = true, Q2 = p, Q3 =
a. Intuitively, the abductive answers should be for Q1:
{}; for Q2: {b}; for Q3: {a, b}. However, {a, b} is an
additional abductive answer for Q1 and Q2 according
to the earlier definition. This is counter-intuitive for
the intended application.

In the next section we give a novel notion of abductive
answer overcoming the limitations of the existing notion
when used with implicative integrity constraints.

Revised abductive answers
Throughout this section we take as given a (proposi-
tional) positive ALP 〈P, A, IC〉 and a (propositional)
positive query Q. We first give some preliminary def-
initions and notations, then define the notion of r-
abductive answer in terms of computations, illustrate
this notion, and give some properties for it.

Preliminary notions
We first define the notion of implicative integrity con-
straints “fired” by a set of abducibles. This notion is
given in terms of the following notation:

Notation 1 For any ∆ ⊆ A,

M(∆) =
{
x ∈ HB〈P, A, IC〉 | P ∪∆ |=lhm x

}
Definition 1 Given ∆ ⊆ A and a set of (implicative)
integrity constraints S, the integrity constraints in S
fired by ∆ are given by

firedS(∆) = {α→ β ∈ S|α ⊆M(∆) ∪ {true}}

As an illustration, given IC = {a → p} as in exam-
ple 2 and S = IC ∪ {true → a}, firedS({a}) = S and
firedS({}) = {true → a}. Also, given S = {a ∧ b →
p, c → p, d → e}, firedS({a, c, d}) = {c → p, d → e}
and firedS({a, b, c, d}) = S.

We then define the notion of relevant explanation
of a conjunction of atoms, used in the definition of r-
abductive answer both for given queries and heads of
fired implicative integrity constraints. This definition
is inspired by the notion of argument in (Dung, Kowal-
ski, and Toni 2009).

Definition 2 Given 〈P, A, IC〉 and a conjunction of
atoms X, E ⊆ A is a relevant explanation for X w.r.t.
〈P, A, IC〉 if and only if
• if X = true then E = {}
• if X is an atom, let TX be a tree with nodes labelled

by literals in HB〈P, A, IC〉 or by the symbol τ (not
already occurring in HB〈P, A, IC〉), such that the root
of TX is labelled by X and for every node N
– if N is a leaf then N is labelled either by an ab-

ducible or by τ ;
– if N is not a leaf and lN is the label of N , then

there is a clause lN ← b1, . . . , bm ∈ P and
either m = 0 and the child of N is τ
or m > 0 and N has m children, labelled by
b1, . . . , bm (respectively);

then E is the set of all abducibles labelling the leaves
of TX ;

• if X is a (non-empty) conjunction l1∧ . . .∧ ln (n > 0)
and Eli is a relevant explanation for li, then E =
El1 ∪ . . . ∪ Eln .
Note that integrity constraints play no role in the

definition of relevant explanation.
As an illustration, consider 〈P, A, IC〉 of example 2:

here, {b} is a relevant explanation of p, whereas {} and
{a, b} are not.
Example 3 Consider 〈P, A, IC〉 with P = {p ← a ∧
q, q ← b∧r, r ←, q ← b∧c} and A={a, b, c}. Both {a, b}
and {a, b, c} are relevant explanations of p.

Thus, relevant explanations may be non-minimal.
It is easy to see that relevant explanations correspond

to SLD derivations:
Lemma 1 If E ⊆ A is a relevant explanation for a con-
junction of atoms X then there exists a SLD derivation
for X from P ∪ E ∪ {true}.

Thus, by soundness of SLD resolution (and since true
is assumed to hold):
Lemma 2 If E is a relevant explanation of a conjunc-
tion of atoms X then P ∪ E |=lhm X.

Note that the converse of this lemma does not hold,
e.g., in example 3, P ∪ {a, b} |=lhm q but {a, b} is not a
relevant explanation of q. However, the following result
holds:
Lemma 3 If P ∪ ∆ |=lhm Q then there exists E ⊆ ∆
such that E is a relevant explanation of Q.

The following notation will be used to define the no-
tion of explanation of (heads of) implicative integrity
constraints (definition 3 below).
Notation 2 Given any x ∈ HB〈P, A, IC〉,

EP (x) = {E|E ⊆ A is a relevant explanation of x}
Note that, if x admits no relevant explanation, then

EP (x) is empty, and if x admits {} as a relevant expla-
nation, then {} belongs to EP (x). Moreover, if a ∈ A,
then EP (a) = {{a}}. As an illustrative example, given
〈P, A, IC〉 with P = {p ← a, p ← b, q ← c} and
A = {a, b, c}, then EP (p) = {{a}, {b}}, EP (q) = {{c}},
and EP (r) = {}.
Definition 3 Let α → β be an implicative integrity
constraint and S a set of implicative integrity con-
straints.
• explP (α → β) (explanation of α → β w.r.t. P) is

defined as:

explP (α→ β) =
{
E ∈ EP (β) if EP (β) 6= {}
undefined otherwise

• explP (S) (explanation of S w.r.t. P) is defined as:

explP (S) =

{ ⋃
x∈S

explP (x) if, ∀x ∈ S, explP (x)⊆A

undefined otherwise

Note that, if explP (x) = undefined for some x ∈
S, then explP (S) = undefined. Note also that explP
returns one single relevant explanation, if one exists, for
the head of each integrity constraint it receives in input.
Thus, there is a non-deterministic choice underlying the
definition of explP . As an illustration, in example 3,
assuming IC = {true → p}, both explP (IC) = {a, b}
and explP (IC) = {a, b, c} are acceptable.

Computations and r-abductive answers
Let ICQ = IC ∪ {true → q|q is a conjunct in Q}.
Trivially, the following statements are equivalent (for
the existing notion of abductive answer given in the
Background section)

1. ∆ is an abductive answer to Q w.r.t. 〈P, A, IC〉
2. ∆ is an abductive answer to true w.r.t. 〈P, A, ICQ〉

We will define the notion of r-abductive answer (see
definition 5) in the context of 〈P, A, ICQ〉.
Notation 3 Given a sequence ∆0, . . . ,∆i, . . . of sets of
abducibles (∆i ⊆ A, for i ≥ 0), we denote ∆∞ =

⋃
i≥0

∆i.

Definition 4 A computation (for 〈P, A, ICQ〉) is a se-
quence ∆0, . . . ,∆i, . . . such that ∆i ⊆ A, for i ≥ 0,
∆0 = {}, and the following properties are fulfilled:

• Monotonicity:
∆i−1 ⊆ ∆i for each i > 0

• Groundedness:
∆i = explP (firedICQ

(∆i−1)) for each i > 0
• Convergence:

∆∞ = explP (firedICQ
(∆∞))

Definition 5 A finite ∆ ⊆ A is a revised abductive an-
swer (r-abductive answer in short) of a positive Q given
〈P, A, IC〉 if and only if ∆ = ∆∞ for some computation
∆0, . . . ,∆i, . . . for 〈P, A, ICQ〉.

Groundedness of the computation ensures that the
head of each integrity constraint that is fired “so far”
can be derived from the r-abductive answer, specifically
from a subset of this that is a relevant explanation for
the head (by definition of explP). Convergence guaran-
tees that all heads of integrity constraints that are fired
can be derived from the r-abductive answer. Monotonic-
ity of the computation guarantees that relevant expla-
nations for (the heads of) integrity constraints already
fired “so far” can only be enlarged during the compu-
tation. This is illustrated by the following example.

Example 4 Consider P = {p ← a, p ← a ∧ b, p ← d},
A = {a, b, c, d}, IC = {c→ p} and Q = c or p. Then,

{}, {a}, {a}, . . .
{}, {a, b}, {a, b}, . . .
{}, {a}, {a, b}, {a, b}, . . .

are all computations, whereas
{}, {a}, {d}, {d}, . . .
{}, {a}, {a, b}, {a}, {a}, . . .

corresponding to changing relevant explanation for p
from {a} to {d} and from {a, b} to {a}, respectively, are

not, since they do not fulfil the property of monotonic-
ity. Moreover, {}, {a}, {a, d}, {a, d}, . . . is not a compu-
tation, as it does not fulfil the property of groundedness
(since {a, d} is not a relevant explanation for p).

Illustration
Let us illustrate the notion of r-abductive answer for
the motivating examples given earlier in the paper.

Example 1 (revisited) Q1 = true and Q2 = b
admit r-abductive answers {} and {b} respectively,
with computations (respectively):

{}, {}, . . .
{}, {b}, {b}, . . .

To see why {a, b} is not a r-abductive answer for Q2,
observe that, in any computation for Q2, ∆1 = {b} nec-
essarily (since this is the only possible relevant explana-
tion of b). Since firedICQ

({b}) = {}, then ∆i = ∆1 for
all i > 1, Thus, ∆∞ = {b} and {a, b} cannot possibly
be a r-abductive answer.

Finally, {a, b} is a r-abductive answer for Q3 = a
since {}, {a}, {a, b}, {a, b}, . . . is a computation.

Example 2 (revisited) {a, b} is a r-abductive
answer for Q3 = a since {}, {a}, {a, b}, {a, b}, . . . is
a computation. Instead, {a, b} is not a r-abductive
answer for Q2 = b since the only possible computation
in this case is {}, {b}, {b}, . . .

If we extend P in example 2 to also include p ← c
with c added to A, then Q3 = a admits two r-abductive
answer: {a, b} and {a, c}. However, ∆ = {a, b, c} is
not a r-abductive answer for Q3, since the only possible
computations in this case are

{}, {a}, {a, b}, {a, b}, . . .
{}, {a}, {a, c}, {a, c}, . . .

Properties of r-abductive answers
Every r-abductive answer is guaranteed to be an abduc-
tive answer in the old sense. Formally:

Theorem 1 Let ∆ be a r-abductive answer for a posi-
tive query Q given a positive 〈P, A, IC〉. Then ∆ is an
abductive answer for Q given 〈P, A, IC〉 (w.r.t. |=lhm).

Proof. By definition of r-abductive answer, there exists
a computation ∆0 = {},∆1, . . . , with ∆ = ∆∞. Then
there exists ∆Q ⊆ ∆1 that is a relevant explanation
for Q (since integrity constraints with a true body are
all fired by {}), and, by lemma 2, P ∪ ∆Q |=lhm Q.
Thus, by monotonicity of |=lhm, P ∪ ∆ |=lhm Q. To
prove that P ∪ ∆ |=lhm IC we need to check that
P ∪ ∆ |=lhm h for each h such that B → h ∈ IC
and P ∪ ∆ |=lhm B. But if P ∪ ∆ |=lhm B then
B → h ∈ firedICQ

(∆i) for some i > 0 and some
∆B→h ⊆ ∆i+1 is a relevant explanation for h. As a
consequence, by lemma 2, P ∪ ∆B→h |=lhm h and, by
monotonicity of |=lhm, P ∪∆ |=lhm h. qed

Notice that an abductive answer may not be a r-
abductive answer. For instance, in example 1, {a, b}

is an abductive answer but not a r-abductive answer
for Q1. However, if an abductive answer exists, a r-
abductive answer is guaranteed to exist too. Formally:
Theorem 2 If there exists an abductive answer, w.r.t.
|=lhm, for a positive query Q given a positive 〈P, A, IC〉,
then there exists a r-abductive answer for Q given
〈P, A, IC〉.

We have seen, in example 4, that relevant explana-
tions for heads of fired integrity constraints can “grow”
in computations. We now define a notion of “per-
sistent” computation where such explanations cannot
“grow” over computations. Naturally, these kinds of
computations lend themselves better to be constructed
by proof procedures for ALP, and indeed we will see
that IFF constructs such computations.
Definition 6 A persistent computation (for
〈P, A, ICQ〉) is a computation (for 〈P, A, ICQ〉)
fulfilling the following property
• Persistence of explanations:

for each x ∈ firedICQ
(∆∞), there exists one Ex ∈

explP (x) such that Ex ⊆ ∆i for all i > k where k is
the least integer such that x ∈ firedICQ

(∆k).
For example 4, given either c or p as query:

{}, {a, b}, {a, b}, {a, b}, . . .
is a persistent computation whereas

{}, {a}, {a, b}, {a, b}, . . .
is a non-persistent computation.
Note that there could be multiple Ex fulfilling defini-

tion 6, as illustrated by the following example.
Example 5 Given P = {p ← a, p ← b, q ← a}, A =
{a, b}, IC = {} and Q = p ∧ q, the computation (w.r.t.
〈P, A, ICQ〉) {}, {a, b}, {a, b}, . . . is persistent. Here,
there are two relevant explanations ({a}, {b}) for (the
head p of) true→ p fulfilling definition 6.

The notion of persistent computation is sufficiently
expressive so that we can restrict r-abductive answers to
be obtained from persistent computations. Indeed, for
every non-persistent computation, there exists a per-
sistent computation from which the same r-abductive
answer can be obtained (and vice versa, trivially, since
persistent computations are computations). Formally:
Lemma 4 Let ∆0, . . . ,∆i, . . . be a non-persistent com-
putation. Then, there exists a persistent computation
∆′0, . . . ,∆

′
i, . . . such that ∆∞ = ∆′∞.

Proof (Sketch). If ∆0, . . . ,∆i, . . . is non-persistent
then there exist at least one x ∈ firedICQ

(∆∞) with
at least two different relevant explanations E1

x 6= E2
x ,

both in explP (x), such that E1
x ⊆ ∆k1 and E2

x ⊆ ∆k2

with ∆k1 ⊆ ∆k2 in the computation. Assume that
there is exactly one such x and exactly two such
explanations E1

x , E2
x . (The case with m > 1 such xs

and ki explanations for each x (ki≥ 2) is similar.) By
monotonicity of computations, E1

x ⊂ E2
x . We can then

obtain a persistent computation ∆′0, . . . ,∆
′
i, . . . by

replacing E1
x in ∆k1 with E2

x . Trivially, ∆∞ = ∆′∞. qed

Correctness of IFF
In this section we show that our newly defined notion of
r-abductive answer is a perfect fit for the existing IFF
proof procedure for ALP, in the sense that IFF is sound
and complete, in a “strong” sense, w.r.t. this notion.
We first we describe the procedure, and then prove our
soundness and completeness results.

The IFF proof procedure
We give here a simplified version, for ground and posi-
tive ALPs and queries, of the fully-fledged IFF proof
procedure of (Fung and Kowalski 1997; Fung 1996).
This procedure uses the selective completion of the logic
program P w.r.t. the abducibles A, denoted compA(P)
and defined as the union of the completions of all the
atoms in HB〈P, A, IC〉\A. As conventional, the comple-
tion of an atom p such that p← D1, . . . , p← Dk are all
the clauses in P with head p (k ≥ 1) is the iff-definition
p ↔ D1 ∨ . . . ∨ Dk, and the completion of an atom p
for which no clause in P has p as its head is p↔ false
(where false does not belong to HB〈P, A, IC〉).

Given 〈P, A, IC〉, an IFF derivation for a query Q is
defined as a sequence of “goals”, G1, . . . , Gk, such that
G1 = Q∧ IC. These goals are disjunctions of disjuncts,
which are conjunctions of the form 3

A1 ∧ . . . ∧An ∧ I1 ∧ . . . ∧ Im
where n,m ≥ 0, n+m > 0, the Ai are atoms, and the
Ii are implications, with the same syntax as implicative
integrity constraints. Each Gi+1 (1 ≤ i < k) is obtained
from Gi by application of one of the inference rules
defined below, using the notation G

[ϕ
/ψ
]

to denote the
goal obtained from goal G by replacing a conjunct ψ in
it with ϕ.

Unfolding an atomic conjunct: given p↔ D1∨. . .∨Dm

in compA(P) and an atom p which is a conjunct of
a disjunct G in Gi, then Gi+1 is Gi with G replaced

by
m∨

j=1

G
[Dj

/p

]
Unfolding an atom in the body of an implication:

given p ↔ D1 ∨ . . . ∨ Dm in compA(P) and an
implication [l1 ∧ . . . ∧ lj ∧ . . . ∧ lk → q] which is a
conjunct of a disjunct G of Gi with lj = p, then
Gi+1 is Gi with the implication in G replaced by the

conjunction
m∧

s=1
[l1 ∧ . . . ∧Ds ∧ . . . ∧ lk → q]

Propagation: given an atom p and an implication
[imp = l1 ∧ . . . ∧ lj ∧ . . . ∧ lk → q] with lj = p, both
conjuncts of the same disjunct G in Gi, if

imp′ =
{
l1 ∧ . . . lj−1 ∧ lj+1 ∧ . . . ∧ lk → q if k > 1
q if k=j=1

then Gi

[imp
/imp′

]
3These disjuncts are simplified versions of the simple dis-

juncts of the original IFF, that may also include disjunctions
as additional conjuncts. By merging splitting into other
rules, discussed below, we do not need general simple goals.

Logical simplification replaces, within disjuncts:
B ∧ true or true ∧B or true→ B by B
B ∧ false or false ∧B by false
false→ B by true

In this variant of IFF we do not explicitely use the
splitting rule, which distributes disjunctions over con-
junctions. In the original IFF (Fung and Kowalski
1997) splitting was introduced as a separate inference
rule, but, at the same time, its systematic use as a rule
with higher priority was suggested, in order to sim-
plify the overall procedure. In our variant, splitting
is directly incorporated into the unfolding rule which is
the only rule that can potentially introduce disjunctions
within disjuncts in the case of ground positive ALPs.

Note that we have not included the simplification
rules for disjunction, as disjunction never occurs in dis-
juncts, given that splitting is implicitly applied within
unfolding. Note also that we have not included the sim-
plification rules involving negation, nor the negation
elimination rule as we are considering positive ALPs
and queries. Further, we do not include inference rules
such as factoring and case analysis, since they have to
do with non-propositional ALPs and queries.

Finally, notice also that Fung and Kowalski define the
propagation rule so that Gi+1 is obtained by conjoining
imp′ to Gi (rather than replacing imp in Gi with imp′

as we have done), and associate a propagation history
with atoms in the body of implications in disjuncts, in
order to avoid applying the same propagation step to
the same implication and atom (see page 67 of (Fung
1996)). Our propagation rule renders this propagation
history unnecessary. Moreover, it prevents the same
integrity constraint to be propagated with several times
unnecessarily, as in the following example.

Example 6 Consider 〈P, A, IC〉 with P = {p ←
c, p ← d}, IC = {a ∧ b → p} and A = {a, b, c, d}.
Consider Q = a ∧ b. Our variant of IFF computes
G1 = Q ∧ IC
G2 = a ∧ b ∧ [a→ p] (by propagation)
G3 = a ∧ b ∧ p (by propagation)
G4 = [a ∧ b ∧ c] ∨ [a ∧ b ∧ d] (by unfolding).
Instead, the original formulation of IFF may compute
G′1 = Q ∧ IC
G′2 = a ∧ b ∧ IC ∧ [a→ p] (by propagation)
G′3 = a∧ b∧ IC ∧ [a→ p]∧ [b→ p] (by propagation)
G′4 = [a ∧ b ∧ IC ∧ [a→ p] ∧ [b→ p] ∧ p

(by propagation with a→ p)
G′5 = [a ∧ b ∧ IC ∧ [a→ p] ∧ [b→ p] ∧ p ∧ p

(by propagation with b→ p)
G′6 = [. . . c ∧ p] ∨ [. . . d ∧ p]

(by unfolding the first occurrence of p)
G′7 = [. . . c ∧ c] ∨ [. . . c ∧ d] ∨ [. . . d ∧ p]

(by unfolding p in the first disjunct)

Given an IFF derivation G1, . . . , Gn for a query Q,
let G be a disjunct of Gn. G is called

conclusive if no inference rule can be applied to G;
failed if false is a conjunct in G;

successful if G is conclusive and not failed.
Then, an IFF derivation G1, . . . , Gn is successful if

and only if there exists a successful disjunct G in Gn.
An answer extracted from a successful IFF-derivation
G1, . . . , Gn for a query Q is the set of all abducible
atoms in a successful disjunct G in Gn.

In the propositional case, our variant of IFF (notably
with the simplified propagation rule) is trivially equiva-
lent to the original IFF, in the sense that every answer
computed by our variant is also computed by the orig-
inal IFF, and (some subset of) every answer computed
by the original IFF is computed by ours.

Correctness results for IFF
Theorem 3 (Soundness of IFF)
Given 〈P, A, IC〉, let ∆ be an answer extracted from

a successful IFF-derivation for a query Q. Then ∆ is a
r-abductive answer for Q given 〈P, A, IC〉.
Proof (Sketch). We first define inductively a con-
struction from an IFF derivation G1 = Q ∧ IC, . . . , Gn

to a sequence S1, . . . , Sn where each Si is a set of
forests of trees, each forest corresponding to a disjunct
in Gi. We then define an order ≤ over trees in the
forest F corresponding to the node of Gn from which
∆ is extracted. All trees in F are “complete”, in that
they have abducibles or true as their leaves. Basically,
a tree is ordered before another if it has become
“complete” before the other in the construction of F
in the sequence S1, . . . , Sn. The resulting order has
a top element Tk (since the IFF derivation is finite).
Finally, we map F onto a computation ∆0, . . . ,∆i, . . .
such that ∆0 = {}, for 0 < i ≤ k, ∆i is the union of
all sets of abducibles at the leaves of trees with i-th
position w.r.t. ≤, and for j > k, ∆j = ∆k. qed

We illustrate this result in the case of example 6,
for the answer {a, b, c} extracted from the first disjunct
in G4, given derivation G1, . . . , G4. The corresponding
computation is {}, {a, b}, {a, b, c}, {a, b, c}, . . ., obtained
from S1, . . . , S4 where S4 consists of two forests, one
of which consists of three trees, Ta, Tb and Tp, with,
respectively: root (and leaf) a, root (and leaf) b, and
root p with child (and leaf) c. The order ≤ is such that
Ta=Tb < Tp (with Tp the top element). Note that the
resulting computation is persistent.

We prove completeness for persistent r-abductive an-
swer, namely r-abductive answer obtained from persis-
tent computations. Then, by lemma 4, completeness
holds for any computation.
Theorem 4 (Completeness of IFF)
Let ∆ be a persistent r-abductive answer for a query
Q, given 〈P, A, IC〉. Then, ∆ is an answer extracted
from a successful IFF-derivation for Q.
Proof (Sketch). If ∆ is a persistent r-abductive an-
swer for Q, then there exist a persistent computation
∆0, . . . ,∆i, . . . such that ∆ = ∆∞. It is easy to see that,
if ic is fired by ∆i, then there is an SLD derivation for
its body, from P ∪∆i∪{true}. Moreover, if the head of

ic can be explained, then by lemma 1, there is an SLD
derivation for this head, from P ∪∆i+1 ∪ {true}. It is
also easy to see that SLD derivations can be mapped
onto IFF derivations. All these IFF derivations can be
combined into a single successful IFF derivation (in-
cluding suitable steps corresponding to “firing”) from
which ∆ can be extracted. qed

Conclusions
We have defined a new notion of abductive answer
for positive ALPs with implicative integrity constraints
that is better suited to a class of applications of ALP
and provides a “better fit” than the existing notion for
the IFF abductive proof procedure. Our new notion is
defined in terms of relevant explanations, adapted from
the notion of argument in (Dung, Kowalski, and Toni
2009), and a notion of computation, adapted from a cor-
responding notion in answer set programming (Liu et
al. 2010). In particular, our monotonicity is the same
as the notion of “persistence of beliefs” in (Liu et al.
2010) and our groundedness corresponds to the notion
of “revision” in (Liu et al. 2010), but, whereas revision
there amounts to obtaining each element in the compu-
tation by applying the standard logic programming TP

operator to the previous element, in our case ground-
edness amounts to obtaining each element in the com-
putation by adding relevant explanations for the head
of newly fired integrity constraints. The notion of con-
vergence is also present in (Liu et al. 2010), but again
defined in terms of TP rather than explP (firedICQ

) as
in our case. Finally, our persistence of explanations cor-
responds to the “persistence of reasons” in (Liu et al.
2010), but there this notion amounts to making sure
that the same rules guarantee the derivation of atoms
over (their kind of) computations.

Inoue and Sakama (Inoue and Sakama 1996) also pro-
pose a fixpoint semantics for abductive logic program-
ming, based upon their rewriting as disjunctive logic
programs and the use of (a suitable) TP operator. Their
semantics agrees with ours in some example, e.g. exam-
ple 2, but does not enforce relevance of explanations (in
our sense) in general. The formal relationships between
our approach and the approach of (Inoue and Sakama
1996) deserves further study.

The applications that have inspired our approach
use implicative integrity constraints to determine be-
haviour (e.g. of agents, or database or web management
systems, see examples 1 and 2). It would be interest-
ing to study whether our approach would be suitable to
explain behaviour.

We have restricted attention to positive ALPs and
queries, and omitted (for lack of space) to consider
denials. Future work includes considering negation in
ALPs and queries and denials alongside implicative in-
tegrity constraints.

We have studied soundness and completeness of IFF
in the propositional case and for positive ALPs and
queries. Future work is needed to consider the non-
propositional case and negation, in particular the NAF

extension of IFF given in (Sadri and Toni 1999). More-
over, it would be interesting to consider other abduc-
tive proof procedures that use implicative integrity con-
straints, e.g. the variant (Mancarella and Terreni 2003)
of the procedure of (Kakas and Mancarella 1990).

References
Console, L.; Dupre, D. T.; and Torasso, P. 1991.
On the relationship between abduction and deduction.
Journal of Logic and Computation 1(5):661–690.
Denecker, M., and Kakas, A. C. 2002. Abduction in
logic programming. In Comp. Log.: LP and Beyond,
volume 2407 of LNCS, 402–436. Springer.
Denecker, M., and Schreye, D. D. 1998. SLDNFA: an
abductive procedure for abductive logic programs. J.
Log. Progr. 34(2):111–167.
Dung, P.; Kowalski, R.; and Toni, F. 2009.
Assumption-based argumentation. In Argumentation
in AI: The Book. Springer. 199–218.
Fung, T. H., and Kowalski, R. A. 1997. The IFF
proof procedure for abductive logic programming. J.
Log. Progr. 33(2):151–165.
Fung, T. H. 1996. Abduction by deduction. Ph.D.
Dissertation, Imperial College, University of London.
Inoue, K., and Sakama, C. 1996. A fixpoint charac-
terization of abductive logic programs. J. Log. Progr.
27(2):107–136.
Kakas, A. C., and Mancarella, P. 1990. Abductive
logic programming. In Proc. LPNMR, 49–61.
Kakas, A. C.; Mancarella, P.; Sadri, F.; Stathis, K.;
and Toni, F. 2008. Computational logic foundations
of KGP agents. J. of Artificial Intelligence Research.
Kakas, A.; Kowalski, R.; and Toni, F. 1998. The role
of abduction in logic programming. In Handbook of
Logic in AI and LP, volume 5. OUP. 235–324.
Kowalski, R. A., and Sadri, F. 1999. From logic
programming towards multi-agent systems. Annals of
Mathematics and AI 25(3/4):391–419.
Liu, L.; Pontelli, E.; Son, T. C.; and Truszczynski,
M. 2010. Logic programs with abstract constraint
atoms: The role of computations. Artificial Intelli-
gence. Forthcoming.
Mancarella, P., and Terreni, G. 2003. An abductive
proof procedure handling active rules. In Proc. AI*IA,
volume 2829 of LNCS, 105–117. Springer.
Mancarella, P.; Terreni, G.; Sadri, F.; Toni, F.; and
Endriss, U. 2009. The CIFF proof procedure for ab-
ductive logic programming with constraints: Theory,
implementation and experiments. TPLP 9:691–750.
Mancarella, P.; Terreni, G.; and Toni, F. 2009.
Web sites repairing through abduction. Electr. Notes
Theor. Comput. Sci. 235:137–152.
Sadri, F., and Toni, F. 1999. Abduction with negation
as failure for active and reactive rules. In Proc. AI*IA,
volume 1792 of LNCS, 49–60. Springer.

