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Abstract. Cumulative Transitivity and Cautious Monotonicity are widely con-
sidered as important properties of non-monotonic inference and equally as re-
gards to information change. We propose three novel formulations of each of
these properties for Assumption-Based Argumentation (ABA)—an established
structured argumentation formalism, and investigate these properties under a va-
riety of ABA semantics.
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1 Introduction

In the 1980s, several non-monotonic reasoning formalisms were proposed (see [2] for
an overview). Systemic investigations into aspects of Cautious Monotonicity and Cu-
mulative Transitivity of non-monotonic inference followed (e.g. [24, 25]). Those works
also contribute to the well-studied area of analysing non-monotonic reasoning with re-
spect to information change (see e.g. [29]).

Since the early 1990s, argumentation (as overviewed in [28]) has emerged as a
generic framework for non-monotonic reasoning, admitting existing non-monotonic
reasoning formalisms as instances (see e.g. [7, 16]). Recently, some forms of struc-
tured argumentation (see [5] for an overview) have been investigated in terms of non-
monotonic inference (see Sect. 4). Contributing to this area of research, we here analyse
a well-established structured argumentation formalism, Assumption-Based Argumen-
tation (ABA) [7, 30], against the non-monotonic inference properties of Cumulative
Transitivity and Cautious Monotonicity in the spirit of [24, 25]. Since ABA is an in-
stance of a well-known structured argumentation framework ASPIC+ (see [26] for a
tutorial), this work is potentially applicable to a wider array of argumentation systems.

Originally, the non-monotonic inference properties in question were defined with
respect to non-monotonic entailment. Yet, ABA (as well as a significant portion of
other structured argumentation formalisms) is defined in terms of extensions (e.g. sets of
arguments). We thus first reformulate the properties to be applicable to extension-based
non-monotonic reasoning formalisms (but see e.g. [11, 15] for different approaches).
The essential idea is to characterize what happens to extensions when a certain change
in knowledge occurs. The following will serve as an abstract pattern for producing the
concrete instances of the properties (from now on, CUT and MON stand for Cumulative
Transitivity and Cautious Monotonicity, respectively):



2 Kristijonas Čyras and Francesca Toni

Let K be a knowledge base. Suppose that an ‘entity’ ψ ‘belongs’ to an extension
E of K, and let E′ be an extension of the knowledge base K′, which is obtained by
‘adding’ ψ to K. Then

CUT : E ‘contains’ E′; MON : E′ ‘contains’ E.

These properties concern what happens when a conclusion that is reached—which
could have been already present as a hard fact, or inferred defeasibly—is added to the
knowledge base and reasoned with anew. Arguably, there are many ways to interpret
both properties, e.g. as checking that accepting a conclusion does not yield overwhelm-
ing changes in reasoning. One of our contributions is to provide three instantiations of
both CUT and MON applicable to ABA. We will also discuss some possible interpreta-
tions of those instantiations.

The abstract formulation above, aiming to be universal, is informal: notions like
‘entity’ act as placeholders for alternative formal concepts (e.g. conclusion of an argu-
ment); ‘containment’ need not be understood in set-theoretic terms. For ABA, we will
provide rigorously defined instances of the abstract formulation.

To ease the intuition behind the properties, consider the following illustration.

Example 1. Three prospective academic partners—Al, Ben and Dan—invite you to dine
at a new restaurant. On the eve of the dinner it turns out that no one has booked a table
in advance and, unfortunately, you will have to sit in pairs at two separate tables. You
are the one invited, so you will have to choose whom to sit with. In a playful manner,
your associates start competing for your company: both Ben and Dan claim that Al is
antisocial, while Al retorts that Ben is back-stabbing. Somewhat puzzled, you casually
inquire about the restaurant. Ben replies that it is a gourmet place. You then recall that
Dan is a disagreeable person over fancy food. It is high time to decide, so what will be
the verdict?

The reasoning may unfold as follows. Ben defends himself against Al by insisting
that the latter is antisocial. Meanwhile, Al has nothing against his attacker Dan. The
latter is not a good option, assuming that Ben is right about gourmet food. No more
hesitating, and you decide to go for Ben.

Now, how would the information that you are really in a gourmet place change your
reasoning, if at all? One can argue that, knowing as a matter of fact it is a gourmet
restaurant immediately discards Dan as an option. So if Dan is out of consideration,
then Al is attacked only by Ben, and in turn attacks him back. Thus, both Ben and Al
defend themselves, and hence are acceptable choices. In terms of non-monotonic infer-
ence, CUT insists you should not draw any new conclusions, while MON demands not to
lose previous inferences. Sticking to your first choice would satisfy both requirements,
whereas choosing Al over Ben would violate both properties, indicating a revision of
your previous decision.

In this work we investigate how ABA (background in Sect. 2) behaves when em-
ployed to formalize this sort of situations. In particular, in Sect. 3 we provide three in-
stantiations of each of CUT and MON, and analyse their satisfaction under six extension-
based ABA semantics. After discussing related work (Sect. 4), we conclude in Sect. 5.
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2 Background

In this section, we provide background on ABA, following [30].
An ABA framework is a tuple (L,R,A,̄ ¯̄) consisting of the following elements.

(L,R) is a deductive system with a language L and a set R of rules: rules inR are as-
sumed to be of the form ϕ0 ← ϕ1, . . . , ϕm withm ≥ 0 and ϕi ∈ L for i ∈ {0, . . . ,m};
ϕ0 is referred to as the head, and ϕ1, . . . , ϕm is referred to as the body of the rule; if
m = 0, then the rule is said to have an empty body and we write it as ϕ0 ← >. The
set A ⊆ L is non-empty, referred to as assumptions. The so called contrary mapping
¯̄̄ : A → L is a total function and for α ∈ A, the L-formula α is referred to as the
contrary of α.

We restrict the discussion to the so called flat ABA frameworks, where no assump-
tion α ∈ A can be the head of any rule fromR.

A deduction for ϕ ∈ L supported by S ⊆ L and R ⊆ R, denoted by S `R ϕ,
is a finite tree with the root labeled by ϕ, leaves labeled by > or elements from S, the
children of non-leaf nodes ψ labeled by the elements of the body of some rule from R
with the head ψ, and R being the set of all such rules. An argument A with conclusion
ϕ ∈ L and support A ⊆ A, written as A : A ` ϕ, is a deduction for ϕ supported by A
and some R ⊆ R. We say that A′ : A′ ` ϕ′ attacks A : A ` ϕ (on some α ∈ A) just in
case ϕ′ is the contrary α of some α ∈ A.

Given an ABA framework (L,R,A,̄ ¯̄), we denote the set of constructible argu-
ments by Args, the attack relation by , and the corresponding argument framework by
(Args, ). For a set S ⊆ Args, we say that: S attacks an argument A′, written S  A′,
if some A ∈ S attacks A′; S attacks a set S′ ⊆ Args of arguments, written S  S′, if S
attacks some A′ ∈ S′; S is conflict-free if S 6 S; and S defends A ∈ Args if for each
A′  A we have S  A′. For an argument A, let Cn(A) be the conclusion of A and
asm(A) the support of A. We extend this notation so that for a set S ⊆ Args of argu-
ments, Cn(S) = {Cn(A) : A ∈ S} and asm(S) = {α ∈ A : α ∈ asm(A), A ∈ S}.

ABA semantics are defined as follows. A setE ⊆ Args, also called an extension (of
(L,R,A,̄ ¯̄) or (Args, )), is: admissible, if E is conflict-free and defends all A ∈ E;
preferred, ifE is⊆-maximally admissible; sceptically preferred, ifE is the intersection
of all the preferred extensions; complete, if E is admissible and contains all arguments
it defends; grounded, if E is ⊆-minimally complete; stable, if E is admissible and
E  A for all A ∈ Args \ E; and ideal, if E is ⊆-maximal such that E is admissible
and contained in all the preferred extensions.

Grounded, sceptically preferred and ideal semantics fall into the category of scep-
tical reasoning, whereby conclusions are drawn from a unique extension. Meanwhile
stable, preferred and complete semantics represent credulous reasoning, in that multiple
conflicting extensions can be present.

We also recall (see e.g. [16]) that the grounded extension G of any (L,R,A,̄ ¯̄)
always exists and is unique, and can be constructed inductively asG =

⋃
i≥0Gi, where

G0 is the set of arguments that are not attacked at all, and for every i ≥ 0, Gi+1 is the
set of arguments that are defended by Gi.

To simplify proofs of our results, we restrict to finite argument frameworks, as is
common in literature.
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3 Inference Properties for ABA

In this section we formulate and analyse non-monotonic inference properties regarding
ABA. There will be three different settings of instantiations of CUT and MON. Each
property will also have a strong and a weak version. The strong properties will quantify
over all extensions, indicating the necessity to preserve the previously accepted con-
clusions after a change in information. Meanwhile, the weak properties, by quantifying
existentially over extensions, will insist on the possibility, rather than necessity, to pre-
serve the previously accepted conclusions. When referring to a property, we will have
in mind its strong version, unless specified otherwise.

Throughout this section we use the following notation, unless stated otherwise. We
take as given a fixed, but otherwise arbitrary (flat) ABA framework F = (L,R,A,̄ ¯̄),
and its corresponding argument framework (Args, ). To instantiate the abstract for-
mulations of CUT and MON given in the Introduction, we replace a knowledge base
K with F , fix an argumentation semantics σ and let E be an extension of F under
σ ∈ {grounded, ideal, sceptically preferred, stable, preferred, complete}. An ‘entity’ ψ
will come from the set Cn(E) of conclusions of E. By default, the knowledge base
K′ will be represented by F ′, which will be the ABA framework obtained by ‘adding’
(to be formalized) ψ to F . The corresponding argument framework of F ′ will be de-
noted by (Args′, ′). Still further, E′ will denote an extension of F ′ under the same
fixed semantics σ. To avoid trivialities, we consider cases only where under a particular
semantics σ, each of F and F ′ admits at least one extension, E and E′, respectively.

3.1 Strict Cumulative Transitivity and Cautious Monotonicity

We now rigorously formulate the first type of properties for ABA. (Recall that E is an
extension of F under a fixed semantics σ.) Initially, given some ψ ∈ Cn(E) \A, define
F ′ = (L,R ∪ {ψ ← >},A,̄ ¯̄). The following then are the first concrete instances of
non-monotonic inference properties that we consider.

STRONG STRICT CUT : For all extensions E′ of F ′ we have Cn(E′) ⊆ Cn(E);

WEAK STRICT CUT : There is an extension E′ of F ′ with Cn(E′) ⊆ Cn(E);

STRONG STRICT MON : For all extensions E′ of F ′ we have Cn(E) ⊆ Cn(E′);

WEAK STRICT MON : There is an extension E′ of F ′ with Cn(E) ⊆ Cn(E′).

STRICT CUT and STRICT MON concern what happens when a conclusion (not it-
self an assumption) is reached and then considered as a fact (i.e. a rule with empty body)
to reason again. The conclusion may be learned as an objective truth, e.g. verifying that
you are in a gourmet restaurant. In essence, STRICT properties regard strengthening
of information and what effect it has on different ABA semantics in terms of exten-
sions. A reasoner employing ABA semantics can utilize these properties to anticipate
its behaviour regarding changes that strengthen knowledge.

The following remarks are in place. First, satisfaction of a strong property will al-
ways imply satisfaction of the corresponding weak property. Second, under sceptical
semantics, weak and strong formulations actually coincide, because the extension is



Non-Monotonic Inference Properties for ABA 5

unique. Further, as grounded, ideal, stable and preferred extensions are complete [16,
18], a strong property satisfied under complete semantics holds for the other four. Sim-
ilarly, if a strong property is violated under stable semantics, then it fails under both
preferred and complete semantics, because stable extensions are also preferred [7].

Our first result shows that grounded semantics fulfils (the strong versions of) both
CUT and MON in the STRICT setting.

Proposition 2. Grounded semantics satisfies both STRICT CUT and STRICT MON.

Proof. LetG be the grounded extension of F . IfG = ∅, then F ′ = F , so the properties
are trivially satisfied. Otherwise, pick a conclusion ψ ∈ Cn(G) \ A and suppose that
B1 : B1 ` ψ, . . . , Bn : Bn ` ψ are all the arguments in G that have conclusion ψ.
Let G′ be the grounded extension of F ′ = (L,R∪ {ψ ← >},A,̄ ¯̄).

We prove G ⊆ G′ by induction on the construction of G.
For the basis step, let G0 ⊆ G be the set of arguments not attacked in F . Since

Cn(Args′) = Cn(Args), arguments from G0 are unattacked in F ′, so we get G0 ⊆ G′.
For the inductive step, let Gi+1 ⊆ G be the set of arguments attacked in F but

defended by Gi ⊆ G, assuming Gi ⊆ G′ as an induction hypothesis. Suppose that
A′ : A′ ` ϕ attacks Gi+1 in F ′. We split into cases.

– If A′ ∈ Args, then A′  Gi+1, so that Gi  A′, and so G′  ′ A′ too.
– Else, if A′ 6∈ Args, then there is some A : A ` ϕ ∈ Args from which A′ can be

obtained by replacing occurrences of the deduction Bj `Rj ψ (for some j) in A
with the deduction ∅ `{ψ←>} ψ. (Such A′ and A are called counterpart arguments
and satisfy asm(A) = asm(A′) ∪ Bj .) We then have A  Gi+1, so that Gi  A
on some α ∈ A \Bj = A′ (because Bj ⊆ asm(G)), which yields G′  ′ A′.

In any event, G′ defends Gi+1, so that Gi+1 ⊆ G′.
By induction it holds that Gi ⊆ G′ for every i ≥ 0, so that G ⊆ G′, and hence

Cn(G) ⊆ Cn(G′), giving STRICT MON.
For STRICT CUT, given that we already have G ⊆ G′, it suffices to show that

Cn(G′ \G) ⊆ Cn(G). We prove this by induction on the construction of G′.
For the basis step, let G′0 ⊆ G′ \ G be the set of arguments from Args′ \ Args

unattacked inF ′. Pick A′ ∈ G′0, if any. Consider a counterpart A ∈ Args with asm(A) =
asm(A′)∪Bj (for some j) and Cn(A) = Cn(A′) (so every occurrence of the deduction
∅ `{ψ←>} ψ in A′ is replaced with the deduction Bj `Rj ψ in A). Such an A can be
attacked in F only on some β ∈ Bj , whereby G defends A, because Bj ⊆ asm(G).
Consequently, Cn(A′) ∈ Cn(G), and therefore, Cn(G′0) ⊆ Cn(G).

For the inductive step, let G′i+1 ⊆ G′ \ G be the set of arguments attacked in F ′
but defended by G ∪G′i, assuming Cn(G′i) ⊆ Cn(G) as an induction hypothesis. Pick
A′ ∈ G′i+1, if any, and consider a counterpart A ∈ Args with asm(A) = asm(A′) ∪ Bj
(for some j) and Cn(A) = Cn(A′). Then A can be attacked in F in two ways:

– either on some β ∈ Bj , whence G defends A in F ;
– or on some α ∈ asm(A) \Bj , whence A′ is attacked in F ′ (on α), and so defended

in F ′ by G ∪G′i, so that G defends A in F , because Cn(G ∪G′i) ⊆ Cn(G).
In any case, A ∈ G, and so Cn(G′i+1) ⊆ Cn(G).

By induction, Cn(G′) ⊆ Cn(G) holds as required to satisfy STRICT CUT. ut
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So we know that strong, and hence weak, STRICT CUT and STRICT MON hold
for grounded semantics. What is more, weak versions of both properties are satisfied
under complete semantics, as we see next.

Proposition 3. Complete semantics satisfies both WEAK STRICT CUT and WEAK
STRICT MON.

Proof. We prove that for each complete extension E of F , and for each conclusion
ψ ∈ Cn(E) \ A, there is a complete extension E′ of F ′ = (L,R ∪ {ψ ← >},A,̄ ¯̄)
such that Cn(E′) = Cn(E).

So let E be a complete extension of F and fix ψ ∈ Cn(E) \ A. Suppose that
B1 : B1 ` ψ, . . . , Bn : Bn ` ψ are all the arguments in E with conclusion ψ. Now,
Args′ \ Args consists of arguments A′ : A′ ` ϕ which are constructed from arguments
A : A ` ϕ in Args that use some deduction(s) of the form Ψ `R ψ, by replacing (some)
such deduction(s) with ∅ `{ψ←>} ψ. (Such A and A′ are said to be corresponding to
each other.) Let E+ be the collection of A′ ∈ Args′ \ Args whose corresponding A is in
E. We claim that E′ = E ∪ E+ is the required complete extension of F ′.

– First, E′ is conflict-free, as Cn(E+) ⊆ Cn(E).
– Second, E′ defends every argument it contains: if A′ ∈ Args′ \ Args attacks E′ in
F ′, but E′ 6 ′ A′, then a counterpart (as in the proof of Proposition 2) argument A
attacks E in F , but E 6 A, contradicting admissibility of E.

– Finally, for completeness, assumeE′ defends A′ ∈ Args′. Then there are two cases.
• If A′ ∈ Args, then, as Cn(E+) ⊆ Cn(E), we have that E defends A′ in F ′.
• Else, if A′ 6∈ Args, then assume A′ 6∈ E+ for a contradiction. Then a counter-

part A ∈ Args is not in E, and so some C attacks A in F , but E 6 C. As E
defends all Bjs, we have C ′ A′, but E′ 6 ′ C, which is a contradiction.

In any event, A′ ∈ E′. Hence, E′ is complete.
Since clearly Cn(E′) = Cn(E), E′ is the required complete extension of F ′. ut

We can actually extend the proof above to be applicable to both preferred and stable
semantics, as follows.

Proposition 4. Preferred and stable semantics satisfy both WEAK STRICT CUT and
WEAK STRICT MON.

Proof. We first prove that for every preferred extension E of F , there is a preferred
extension E′ of F ′ with Cn(E′) = Cn(E). Since preferred extensions are complete, it
suffices to show that the corresponding complete extension E′ = E∪E+ (as defined in
the proof of Proposition 3) is preferred in F ′. And indeed, if E′ were not ⊆-maximally
admissible, then some A′ ∈ Args′ \E′ could be added to E′ without sacrificing admis-
sibility. But then a counterpart A ∈ Args (possibly A = A′, if A′ does not use ψ) could
be added to E without losing its admissibility, whence E would not be preferred in F .

Likewise, we show that if E is stable, then E′ is also stable. Suppose A′ 6∈ E′. If
A′ ∈ Args, then A′ 6∈ E, so E  A′, and hence E′  ′ A′. Else, if A′ 6∈ Args, then
a counterpart A is not in E and E  A, so that E′  ′ A′ too. Consequently, E′ is a
stable extension of F ′. ut

Having the results above, we conclude with the following.



Non-Monotonic Inference Properties for ABA 7

Corollary 5. Sceptically preferred and ideal semantics satisfy STRICT CUT.

Proof. Using notation from the proof of Proposition 3, let S =
⋂
iEi be the intersection

of all the preferred extensions Ei of (L,R,A,̄ ¯̄). Pick ψ ∈ Cn(S) \ A and consider
F ′ = (L,R∪ {ψ ← >},A,̄ ¯̄). Let S′ =

⋂
j E
′
j be the intersection of all the preferred

extensions E′j of F ′. We show Cn(S′) ⊆ Cn(S). According to Proposition 4, for every
preferred extension E of F , there is a preferred extension E′ of F ′ such that Cn(E′) =
Cn(E). Therefore, S′ cannot contain arguments with conclusions not in Cn(S). So
STRICT CUT holds under sceptically preferred semantics.

Likewise, for the ideal extension I of F and ψ ∈ Cn(I) \A, if I ′ is the ideal exten-
sion of F ′ = (L,R∪{ψ ← >},A,̄ ¯̄), then, being contained in all preferred extensions
of F ′, it has Cn(I ′) ⊆ Cn(I). Thus, STRICT CUT holds under ideal semantics. ut

The following formalization of the example from the Introduction reveals that nei-
ther of the (strong) properties holds for credulous reasoning. This violation is intuitive,
as credulous semantics allow for multiple extensions, with different conclusions.

Example 6 (STRICT CUT and STRICT MON violations).
LetL = {α, β, δ, a, b, d, ψ}, where:α, β, δ are the assumptions of choosing Al, Ben and
Dan (resp.); a, b and d stand for ‘antisocial’, ‘back-stabbing’ and ‘disagreeable’ (resp.);
and ψ expresses that we are in a gourmet place. So A = {α, β, δ}, with contraries
α = a, β = b, δ = d. ThenR = {b← α, a← δ, a← β, ψ ← β, d← ψ} completes
the formalization: e.g. the rule b← α represents Al’s claim about Ben; the rule d← ψ
indicates that Dan is a disagreeable company in a gourmet place. (In further examples,
both L and A will be omitted, as they are implicit from R and the contrary relation.)
The corresponding argument framework (Args, ) can be represented graphically as
follows (nodes hold arguments and directed edges indicate attacks):

A : {α} ` b

Ψ : {β} ` ψ

B : {β} ` a

Bβ : {β} ` β Aα : {α} ` α

Bd : {β} ` dDδ : {δ} ` δ D : {δ} ` a

Here, F = (L,R,A,̄ ¯̄) has a unique preferred (also stable and ideal) extension E =
{B,Bβ ,Bd, Ψ} (gray arguments) with Cn(E) = {a, β, d, ψ}. Now suppose that af-
ter deciding to sit with Ben, you check the menu and realize you are indeed in a
gourmet restaurant. As knowledge changes—your belief that this is a gourmet place
being strengthened—you wonder whether you would make the same decision now.

Consider thus F ′ = (L,R ∪ {ψ ← >},A,̄ ¯̄). In Args′, we get two new argu-
ments: Ψ ′ : {} ` ψ and B′ : {} ` d. While Ψ ′ neither attacks, nor is attacked by any-
thing, B′ is unattacked but attacks both Dδ and D. So (Args′, ′) has two preferred ex-
tensions (which are also stable): E1 = {B,Bβ ,Bd,B′, Ψ, Ψ ′} (with Cn(E1) = Cn(E))
and E2 = {Aα,A,B′, Ψ ′}. Taking E2 with Cn(E2) * Cn(E) * Cn(E2) yields vio-
lations of STRICT CUT and STRICT MON under credulous reasoning. We also have
Cn(E) * Cn({B′, Ψ ′}) = Cn(E1 ∩E2), so STRICT MON is violated under both ideal
and sceptically preferred semantics.
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We see that a reasoner using ABA could find itself in a situation where adding cred-
ulously inferred information leads to a multitude of extensions. Even if the extension
to begin with is unique, as in Example 6, strengthening some of its conclusions can
result in more than one acceptable extension. Whether or not this behaviour is desirable
depends on the application, anticipated changes in information and intended flexibil-
ity of the reasoner. For instance, one may wish for the reasoner to be credulous and
try many different scenarios in order not to fixate on one particular decision. In con-
trast, sceptical semantics (except grounded) provide insurance that no new conclusions
are attained—fulfil STRICT CUT, while ensuring that some are dropped (e.g. β, d).
However, a sceptical reasoner may completely lose some previously acceptable choices
(such as β in Example 6).

Example 6 also reveals contrast between STRICT CUT and STRICT MON under
sceptically preferred and ideal semantics: adding a previously attained conclusion as
a fact leaves all the original preferred extensions intact, yet allows for new ones, thus
possibly shrinking their intersection. Hence, the sceptically preferred extension E′ (as
well as the ideal extension) of the ABA framework F ′ after the change in information
will satisfy STRICT CUT; indeed, we have Cn(E1 ∩ E2) = Cn({B′, Ψ ′}) ⊆ Cn(E)
in Example 6. For the same reason, STRICT MON is violated under both sceptically
preferred and ideal semantics, as illustrated in Example 6.

We observe that under credulous semantics, the strong properties gain importance in
settings where there is a unique credulous extension to begin with, such as in Example 6.
Indeed, while the weak properties merely ask for the existence of an extension E′ (of
the framework F ′ after the knowledge change) with the same conclusions as the chosen
extension E of the framework F to begin with, the strong properties require all new
extensions to commit to the conclusions of E. The two properties together essentially
insist that the new framework F ′ should admit a unique extension E′ having the same
conclusions as the original extension E.

The following table summarizes this subsection’s results (as indicated, strong and
weak versions coincide under sceptical reasoning, and for credulous semantics the sta-
tus of the weak property is indicated in parentheses).

STRICT Cumulative Transitivity and Cautious Monotonicity
Property Grounded Ideal Sceptically pref. Stable Preferred Complete

STRICT CUT X X X X (X) X (X) X (X)
STRICT MON X X X X (X) X (X) X (X)

Only grounded semantics allows for safely strengthening information. However, as
the grounded extension of a given ABA framework can be empty (e.g. Example 6),
other semantics may be needed to make decisions. In that case, ideal and sceptically
preferred semantics, for instance, guarantee that no new conclusions will be attained
after strengthening information, yet some important ones may be lost: in Example 6,
neither semantics allows to decide whom to dine with, because α, β, δ 6∈ Cn(E1 ∩E2).
Credulous semantics provide even less certainty (or more flexibility—depending on the
way one intends to use it) unless one has a procedure allowing to pick the extension with
the same conclusions as the extension to begin with (such an extension is guaranteed to
exist due to satisfaction of the weak properties).
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3.2 Defeasible Cumulative Transitivity and Cautious Monotonicity

We now formulate another type of variants of CUT and MON. Given ψ ∈ Cn(E) \ A,
define F ′ = (L ∪ {y},R \ {r ∈ R : head of r is ψ},A ∪ {ψ},̄ ¯̄).1 Then

STRONG DEF CUT : For all extensions E′ of F ′ we have Cn(E′) ⊆ Cn(E);

WEAK DEF CUT : There is an extension E′ of F ′ with Cn(E′) ⊆ Cn(E);

STRONG DEF MON : For all extensions E′ of F ′ we have Cn(E) ⊆ Cn(E′);

WEAK DEF MON : There is an extension E′ of F ′ with Cn(E) ⊆ Cn(E′).

Unlike the STRICT setting, DEF CUT and DEF MON regard situations where a
previously accepted conclusion (inferred possibly defeasibly using assumptions) is con-
verted into an assumption itself, and can afterwards be drawn only defeasibly. For in-
stance, instead of relying on Ben’s claim about gourmet food, you may initially guess
that you are in a gourmet place.

The same results (as in Sect. 3.1) hold in the defeasible (DEF) setting, and proofs
follow a similar pattern.

Proposition 7. Grounded semantics satisfies both DEF CUT and DEF MON.

Proof. LetG be the grounded extension of F . IfG = ∅, then F ′ = F , so the properties
are trivially satisfied. Otherwise, pick ψ ∈ Cn(G) \ A and let B1 : B1 ` ψ, . . . ,
Bn : Bn ` ψ ∈ G be all the arguments in G that conclude ψ. Let G′ be the grounded
extension ofF ′ = (L∪{y},R\{r ∈ R : head of r is ψ},A∪{ψ},̄ ¯̄) (where ψ = y).

We first prove Cn(G) ⊆ Cn(G′) by induction on the construction of G.
For the basis step, let G0 ⊆ G be the set of arguments that are not attacked in F

and pick A ∈ G0. There are two cases, as follows.
– If A ∈ Args ∩ Args′, then it is not attacked in F ′, because Cn(Args′) = Cn(Args).
– If A ∈ Args \ Args′, then it uses some deduction(s) of the form Ψ `R ψ. Hence,

there is a corresponding argument A′ ∈ Args′ \ Args (having Cn(A′) = Cn(A))
with (all) the deduction(s) Ψ `R ψ replaced by the deduction {ψ} `∅ ψ. Note that
A′ cannot be attacked in F ′ on ψ, since ψ = y is new to the language.

In any case, we get that Cn(A) ∈ Cn(G′).
For the inductive step, let Gi+1 ⊆ G be the set of arguments that are attacked in

F but defended by Gi ⊆ G, where Cn(Gi) ⊆ Cn(G′) is assumed as an induction
hypothesis. Pick A ∈ Gi+1, if any. We split into cases.

– If A ∈ Args∩Args′, then it is defended byGi in F . So, on the one hand,G′ defends
A in F too, as Cn(Gi) ⊆ Cn(G′). On the other hand, if C′ ∈ Args′ \ Args attacks
A in F ′ and is not attacked by G′, then a counterpart argument C ∈ Args \ Args′

(which uses some fixed deduction Bj `Rj ψ instead of {ψ} `∅ ψ) attacks A in F
and is not attacked by Gi (because Cn(Gi) ⊆ Cn(G′) and Bj ⊆ asm(G)), which
is a contradiction.

1 The modification of the rules in F ′ is required to preserve flatness. We also slightly abuse the
notation by using¯̄̄ for both contrary mappings: the implicit presumption is that the original
contrary mapping¯̄̄ is extended with the assignment ψ = y, where y is new to L.
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– Else, if A ∈ Args \ Args′, then like in the basis case, a corresponding argument
A′ ∈ Args \ Args (with deduction(s) Ψ `R ψ replaced by the deduction {ψ} `∅ ψ)
satisfying Cn(A′) = Cn(A) is defended in F ′ by G′ (as asm(A′) \ {ψ} ⊆ asm(A),
Gi defends A in F , Cn(Gi) ⊆ Cn(G′) and ψ = y is new).

In any event, Cn(Gi+1) ⊆ Cn(G′).
By induction, Cn(G) ⊆ Cn(G′), as required for DEF MON.
For the satisfaction of DEF CUT under grounded semantics, we next show that

Cn(G′ \G) ⊆ Cn(G) holds by induction on the construction of G′.
For the basis step, let G′0 ⊆ G′ be the set of arguments from Args′ that are not

attacked in F ′, and pick A′ ∈ G′0, if any.
– If A′ ∈ Args′ ∩ Args, then it is not attacked in F either, so A ∈ G.
– If A′ ∈ Args′\Args, then a counterpart argument A ∈ Args\Args′ (having Cn(A) =

Cn(A′) and every occurrence of the deduction {ψ} `∅ ψ in A′ replaced by some
deduction Bj `Rj ψ in A) is defended by G in F , because Cn(Args) = Cn(Args′)
(so that A cannot be attacked in F on asm(A) \ Bj) and Bj ⊆ asm(G) (so that G
defends A in F from attacks on Bj).

In any case, Cn(A′) ∈ Cn(G), and so Cn(G′0) ⊆ Cn(G).
For the inductive step, let G′i+1 ⊆ G′ be the set of arguments from Args′ that are

attacked in F ′ but defended by G′i, where Cn(G′i) ⊆ Cn(G). Pick A′ ∈ G′i+1, if any.
– If A′ ∈ Args′ ∩ Args, then G defends it in F .
– If A′ ∈ Args′ \ Args, then a counterpart argument A ∈ Args \ Args′ can be attacked

in F in two ways:
• either on some β ∈ Bj : such attacks G defends against;
• or on some α ∈ asm(A) \Bj , in which case A′ is attacked in F ′ (on α), and so

defended by G′i, so that G defends A in F .
In any event, Cn(A′) ∈ Cn(G), and so Cn(G′i+1) ⊆ Cn(G).
By induction, Cn(G′) ⊆ Cn(G), as required for DEF CUT. ut

Proposition 8. Complete semantics satisfies WEAK DEF CUT and WEAK DEF MON.

Proof. We show for every complete extensionE ofF , for each ψ ∈ Cn(E)\A, there is
a complete extension E′ of F ′ = (L∪{y},R\{r ∈ R : head of r is ψ},A∪{ψ},̄ ¯̄)
(where ψ = y) such that Cn(E′) = Cn(E).

Let E be a complete extension of F and fix ψ ∈ Cn(E) \ A (assuming again that
B1 : B1 ` ψ, . . . , Bn : Bn ` ψ ∈ E are all the arguments in E concluding ψ). Now,
Args′ \ Args consists of arguments A′ : A′ ` ϕ constructed from the corresponding
arguments A : A ` ϕ ∈ Args that use some deduction Ψ `R ψ. Let E+ be the set of
all such arguments A′ for which A ∈ E, and put E′ = (E ∩ Args′) ∪E+ (note that the
argument {ψ} ` ψ is in E′ too, because Bj ∈ E for all j). Then Cn(E) = Cn(E′), so
it suffices to prove that such E′ is a complete extension of F ′.

– First, E′ is conflict-free, because Cn(E+) ⊆ Cn(E) and ψ = y 6∈ L.
– Second, E′ defends itself. Indeed, any C ∈ Args ∩ Args′ that attacks E′ in F on

some α ∈ asm(E′) \ {ψ} ⊆ asm(E) is attacked by E′, because Cn(E′) = Cn(E)
and E is complete. On the other hand, if C′ ∈ Args′ \ Args attacks E′ in F ′,
but E′ 6 ′ C′, then a counterpart argument C with Cn(C) = Cn(C′) and some
deduction Bj `Rj ψ replacing (all) the deduction(s) {ψ} `∅ ψ attacks E in F , and
we have E 6 C (because Bj ⊆ asm(E)), contradicting admissibility of E.
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– Finally, E′ is complete. For suppose towards a contradiction that E′ defends some
A′ ∈ Args′\Args, but A′ 6∈ E+ (as in the proof of Proposition 3, we do not consider
A′ ∈ Args, for it would be defended by E and hence would belong to E). Consider
thus a corresponding argument A ∈ Args of A′. Then there are two cases.
• Either A has some deduction(s) Bj `Rj ψ replacing (all) the deduction(s)
{ψ} `∅ ψ (so A is also a counterpart of A′) and A 6∈ E, in which case A is not
defended by E against some attack C  A. As E defends Bj (for all j), we
have C′  ′ A′, for a counterpart C′ of C. But as E 6 C and ψ ∈ asm(E′),
we get E′ 6 ′ C′, which is a contradiction to A′ being defended by E′.

• Or else, A uses deduction(s) of the form Ψ `R ψ, where Ψ 6= Bj for any j. But
then E  A, and so E′, being conflict-free, cannot defend A.

We obtain a contradiction in any case, so that A′ ∈ E+ after all.
Consequently, E′, as defined above, is the required complete extension. ut

Like with Proposition 4 and Corollary 5 (resp.), we have the following results.

Proposition 9. Preferred and stable semantics satisfy WEAK DEF CUT and WEAK
DEF MON.

Proof. The proof is verbatim to the proof of Proposition 4, withE′ = (E∩Args′)∪E+

as in the proof of Proposition 8. ut

Corollary 10. Sceptically preferred and ideal semantics satisfy DEF CUT.

The following example exhibits a violation of both DEF CUT and DEF MON under
the remaining semantics.

Example 11 (DEF CUT and DEF MON violations. Based on Example 6).
Suppose that instead of relying on Ben about the restaurant (remove ψ ← β), you guess
it to be a gourmet place to begin with (add ψ to assumptions). Reason then according
to (L ∪ {y},R \ {ψ ← β},A ∪ {ψ},̄ ¯̄) (where ψ = y), with (Args′, ′) as follows:

A : {α} ` b

Ψψ : {ψ} ` ψ

B : {β} ` a

Bβ : {β} ` β Aα : {α} ` α

C : {ψ} ` dDδ : {δ} ` δ D : {δ} ` a

There are two preferred extensions (which are also stable):E′1 = {B,Bβ ,C, Ψψ} (gray)
and E′2 = {Aα,A,C, Ψψ} (dashed). The sceptically preferred (also ideal) extension is
E′ = {C, Ψψ} with Cn(E′) + {a, β, ψ, d} = Cn(E), where E is as in Example 6.
So DEF MON fails under both sceptically preferred and ideal semantics. DEF CUT and
DEF MON fail in credulous reasoning, as Cn(E) * Cn(E′2) * Cn(E).

We see that even when starting with a unique credulous extension, assuming a previ-
ously defeasibly inferred conclusion opens up space for multiple credulous extensions.
This may be desirable in situations where revision of decisions based on defeasible as-
sumptions (β in Example 11) is important. At the same time, such behaviour results into
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possibly losing conclusions in sceptical reasoning (except, as before, under grounded
semantics). This nevertheless may be sensible, if, for instance, differentiating defeasible
information is needed (e.g. ψ versus ψ ← β).

Below is a summary of results in this subsection (using the same notational conven-
tions as at the end of Sect. 3.1).

DEFEASIBLE Cumulative Transitivity and Cautious Monotonicity
Property Grounded Ideal Sceptically pref. Stable Preferred Complete
DEF CUT X X X X (X) X (X) X (X)
DEF MON X X X X (X) X (X) X (X)

Conclusions drawn using grounded semantics can be safely turned into assumptions
and inferred defeasibly instead. However, such a change would not allow for new con-
clusions under the other two sceptical semantics, yet could lead to a decision vacuum:
neither of α, β, δ belongs to Cn(E′) in Example 11. Credulous semantics, meanwhile,
allow for greater dynamicity, which could be desirable: if independently from what Ben
says a reasoner believes to be in a gourmet place and thus does not care about Dan, then
Al can be as likely a choice as Ben, and so the conclusions may need revision.

Naturally, somewhat different formulations of the properties in the defeasible setting
could be investigated. For example, the contrary of the new assumption ψ could instead
be one of the existing symbols inL, based on the rules and contraries of the assumptions
that allowed to deriveψ in the first place. However, such behaviour need not be desirable
in general: if you assume to begin with that you are about to dine in a gourmet place,
then, arguably, this assumption should not be contingent on the objections against Ben.
We chose the formulation above, readily applicable to all ABA frameworks, as the first
step in our analysis. Different and more complex settings are left for future work.

3.3 Assumption Cumulative Transitivity and Cautious Monotonicity

Previously discussed properties focused on non-assumption conclusions. We now turn
to conclusions that are also assumptions, as follows. Given ψ ∈ Cn(E) ∩ A, define
F ′ = (L,R∪ {ψ ← >},A \ {ψ},̄ ¯̄).2 Then

STRONG ASM CUT : For all extensions E′ of F ′ we have Cn(E′) ⊆ Cn(E);

WEAK ASM CUT : There is an extension E′ of F ′ with Cn(E′) ⊆ Cn(E);

STRONG ASM MON : For all extensions E′ of F ′ we have Cn(E) ⊆ Cn(E′);

WEAK ASM MON : There is an extension E′ of F ′ with Cn(E) ⊆ Cn(E′).

ASM CUT and ASM MON focus on previously accepted assumptions being con-
firmed and made into facts to reason again. For instance, you might have guessed that
you are in a gourmet restaurant, and after deciding whom to sit with you may check the
menu to confirm your guess and scrutinize your decision.

As for satisfaction of the properties, the same results (as in Sect. 3.1, 3.2) hold with
proofs following the same pattern.

2 Again, for brevity reasons, the same symbol¯̄̄ is used for both contrary mappings: in F ′, the
original contrary mapping¯̄̄ is implicitly restricted to a diminished set of assumptions.
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Proposition 12. Grounded semantics satisfies ASM CUT and ASM MON.

Proof. LetG be the grounded extension of F . IfG = ∅, then F ′ = F , so the properties
are trivially satisfied. Otherwise, pick ψ ∈ Cn(G) ∩ A and let G′ be the grounded
extension of F ′ = (L,R∪ {ψ ← >},A \ {ψ},̄ ¯̄).

First show Cn(G) ⊆ Cn(G′) by induction on the construction of G.
For the basis step, let G0 ⊆ G be the set of arguments that are not attacked in F .

Pick A ∈ G0, if any. We split into two cases.
– If ψ 6∈ asm(A), then A remains unattacked in F ′. Hence A ∈ G′.
– Otherwise, if ψ ∈ asm(A), then in Args′, A is replaced by its counterpart A′ with

asm(A) = asm(A′) ∪ {ψ} and Cn(A′) = Cn(A) (the deduction ∅ `{ψ←>} ψ
replaces (all) the deduction(s) {ψ} `∅ ψ). Since there were no attacks against A in
F , the counterpart A′ is unattacked in F ′ either. Hence, A′ ∈ G′.

In any case, we have Cn(G0) ⊆ Cn(G′).
For the inductive step, let Gi+1 ⊆ G be the set of arguments that are attacked in

F but defended by Gi, where Cn(Gi) ⊆ Cn(G′). Suppose that in F ′, an argument
A′ ∈ Args′ attacks the set G′i+1 ⊆ Args′ of arguments which are obtained from Gi+1

by replacing the assumption ψ with the rule ψ ← >.3 We split into cases.
– If A′ ∈ Args, then Gi  A′, so that G′  ′ A′ too.
– Otherwise, if A′ 6∈ Args, then A′ is constructed from the counterpart A ∈ Args such

that A  Gi+1. Now, if G′ 6 ′ A′, it means that Gi  A on ψ. This effectively
yields G G, contradicting conflict-freeness of G. Hence, G′  ′ A′.
Thus, Cn(Gi+1) ⊆ Cn(G′), and so Cn(G) ⊆ Cn(G′) by induction, as required.
To show ASM CUT holds under grounded semantics, prove Cn(G′) ⊆ Cn(G) by

induction on the construction of G′.
For the basis step, let G′0 ⊆ G′ be the set of arguments that are not attacked in F ′,

and pick A′ ∈ G′0, if any. We split into cases.
– If A′ ∈ Args, then A′ can be attacked in F only on ψ. But since ψ ∈ Cn(G), we

would then have A′ defended by G, so that A′ ∈ G.
– Otherwise, if A′ 6∈ Args, then the counterpart A ∈ Args can be attacked in F only

on ψ ∈ Cn(G), and so is defended by G.
In any case, Cn(A′) ∈ Cn(G) holds true.

For the inductive step, let G′i+1 ⊆ G′ be the set of arguments attacked in F ′ but
defended by G′i, where Cn(G′i) ⊆ Cn(G). Pick A′ ∈ G′i+1, if any. We split into cases.

– If A′ ∈ Args, then A′ can be attacked in F either on any α ∈ asm(A′) \ {ψ}, or on
ψ itself. Consider each case separately.
• Suppose first that B  A′ on some α ∈ asm(A′) \ {ψ}. Then either B or its

counterpart B′ ∈ Args′ (if such can possibly be obtained from B) attacks A′ in
F ′ on α. In any event, G′i defends against this attack, and since it holds that
Cn(G′i) ⊆ Cn(G) by induction hypothesis, we get either G B, or G B′.
• In the latter case, if B A′ on ψ, then since ψ ∈ Cn(G), we have G B.

In any event A′ ∈ G.

3 Deduction(s) Φ `R ϕ with ψ ∈ Φ are replaced with the deduction(s) Φ \ {ψ} `R
′∪{ψ←>} ϕ

such that R′ ⊆ R is the set of rules from R that do not contain ψ in their bodies.
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– Otherwise, suppose A′ 6∈ Args. Then consider its counterpart A ∈ Args and assume
B A on some α ∈ asm(A). Then, like before:
• either α = ψ, in which case G B, so that A ∈ G;
• or α 6= ψ, whence either B (or its counterpart B′ ∈ Args′) attacks A′ in F ′, but

as G′i defends against this attack, we get G B (or G B′), and so A ∈ G.
Consequently, Cn(A′) ∈ Cn(G), and by induction, Cn(G′) ⊆ Cn(G), as required. ut

Proposition 13. Complete semantics satisfies WEAK ASM CUT and WEAK ASM MON.

Proof. Show for every complete extension E of F , for each ψ ∈ Cn(E) \ A, there is a
complete extension E′ of F ′ = (L,R∪{ψ ← >},A\{ψ},̄ ¯̄) with Cn(E′) = Cn(E).

LetE be a complete extension ofF . Now, Args′\Args consists of arguments A′ that
are counterpart to A ∈ Args with ψ ∈ asm(A). Let E− ⊆ E be the set of arguments
from E that use the assumption ψ and let E+ ⊆ Args′ be the set of all the counterparts
of arguments in E−. Put E′ = (E \ E−) ∪ E+. The following then hold.

– E′ is conflict-free, because Cn(E+) ⊆ Cn(E).
– E′ defends itself: if A′ ∈ Args′ \ Args attacks E′ in F ′, but E′ 6 ′ A′, then the

counterpart argument A ∈ Args attacks E; yet, E 6 A (because ψ ∈ Cn(E)),
contradicting admissibility of E.

– E′ is complete. Suppose for a contradiction that E′ defends A′ ∈ Args′ \ Args, but
A′ 6∈ E+ (as in the proof of Proposition 3, we do not consider A′ ∈ Args). Then
the counterpart argument A ∈ Args of A′ does not belong to E, and hence is not
defended by E against some attack C  A. As ψ ∈ Cn(E), we have C′  ′ A′,
for the counterpart C′ of C. But since E 6 C and ψ ∈ Cn(E′), we get E′ 6 ′ C′,
which is a contradiction to E′ defending A′.

Then Cn(E′) = Cn(E) yields that E′ is the required complete extension of F ′. ut

The next two results follow from the ones above, as with the other properties.

Proposition 14. Preferred and stable semantics satisfy WEAK ASM CUT and WEAK
MON.

Corollary 15. Sceptically preferred and ideal semantics satisfy ASM CUT.

To show that the properties are violated under the remaining semantics, we consider
a situation where, in contrast to Examples 6 and 11, one argument depends on two
assumptions, one of which is to be turned into a fact, as follows.

Example 16 (ASM CUT and ASM MON violations).
ConsiderR = {d← α, a← β, b← α, δ} with α = a, β = b, δ = d. This yields the
following (Args, ):

Aα : {α} ` α

B : {β} ` a

A : {α} ` d

C : {α, δ} ` b

Dδ : {δ} ` δ Bβ : {β} ` β

Here, E = {B,Bβ ,Dδ} (gray) is a unique preferred (also stable and ideal) extension of
(Args, ). Taking δ ∈ Cn(E) ∩ A results in F ′ = (L,R ∪ {δ ← >},A \ {δ},̄ ¯̄) in
which C and Dδ are replaced by their counterparts C′ : {α} ` b and D′δ : {} ` δ:
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Aα : {α} ` α

B : {β} ` a

A : {α} ` d

C′ : {α} ` b

D′δ : {} ` δ Bβ : {β} ` β

Therefore, F ′ admits two preferred extensions: E′1 = {B,Bβ ,D′δ} (gray) and E′2 =
{Aα,C′,D′δ,A} (dashed) with Cn(E) * Cn(E′2) * Cn(E). The sceptically preferred
and ideal extension is E′ = {D′δ} with Cn(E) * Cn(E′).

Compared to sceptical semantics, credulous ones are more dynamic. Here, confirm-
ing δ results in retracting β (as well as a) under both ideal and sceptically preferred
semantics. Meanwhile, the same change effectively removes A’s attack on C, still leav-
ing C defeasible, yet rendering B to lose its position as the sole defender against A,
hence enabling mutual acceptability of α and δ, under, say, complete semantics. This
allows for a possibly desirable revision of conclusions.

The following is a summary of this subsection’s results (notation as before).

ASSUMPTION Cumulative Transitivity and Cautious Monotonicity
Property Grounded Ideal Sceptically pref. Stable Preferred Complete
ASM CUT X X X X (X) X (X) X (X)
ASM MON X X X X (X) X (X) X (X)

Confirmation of some defeasible information can lead to an increased number of op-
tions in credulous reasoning. This could be desirable if, for instance, one of the choices
(like C with conclusion b in Example 16) depends on an assumption (δ) and is not
considered acceptable to begin with (C has no defense against A), but becomes viable
(via C′) as soon as the assumption is confirmed (δ ← >) and ceases to be questioned
(D′δ). Meanwhile, if confirming information widens the array of credulous choices, then
a sceptical reasoner could opt for fewer—more certain—conclusions, as witnessed by
the sceptical (bar grounded) semantics satisfying ASM CUT but failing ASM MON.

4 Related Work

The two most related works to ours are Hunter’s [23] and Dung’s [17]. The former
investigates non-monotonic inference properties with respect to argument–claim entail-
ment in logic-based argumentation systems. Given various base logics, Hunter defines
argument construction-mimicking entailment operators to produce claims from knowl-
edge bases, and examines those operators against non-monotonic inference properties
(Cumulative Transitivity and Cautious Monotonicity among them). Meanwhile, Dung
analyses, among other aspects of argumentation dynamics, Cumulativity (i.e. Cumula-
tive Transitivity plus Cautious Monotonicity) of ASPIC+ under stable extension seman-
tics. The main concern there is that confirmation of some conclusions in an extension
should strengthen other conclusions in that extension. To formalize this, Dung intro-
duces two axioms—a variant of Cumulativity and another one regarding attack mono-
tonicity. Stable extension semantics with respect to either of the main four ASPIC+ at-
tack relations are shown not to satisfy at least one of those axioms.
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Other related works can be seen to fall under two broad research topics in argumen-
tation: (i) analysing desirable properties of argumentation formalisms, and (ii) relating
belief change and argumentation. Regarding (i), with the exceptions of [17] and [23],
existing works on properties of argumentation disregard the issues of argumentation
dynamics: for example, [12] propose rationality postulates for rule-based argumenta-
tion systems; [19] provide guidelines for argumentation-based practical reasoning; [22]
postulate and examine properties of attack relations (and the corresponding extensions
under alternative semantics) over classical logic–based argument graphs. As far as (ii) is
concerned, argumentation dynamics has recently been studied with respect to Abstract
Argumentation [16] and some other argumentation-based approaches to non-monotonic
reasoning, such as DeLP [21] (see e.g. [3, 8, 13, 14, 20]). To the best of our knowledge,
[17] is the only work in the direction of investigating structured, extension-based argu-
mentation with regards to non-monotonic inference properties á la [24].

Our work differs from [17] in several aspects. First, we consider Cumulative Transi-
tivity and Cautious Monotonicity as two separate properties, rather than one. Also, our
reformulations of the properties are not restricted to one particular semantics (stable),
but allow for any semantics. Still further, we consider three types of information change,
including strengthening (STRICT) and confirmation (ASM), and analyse their influence
to argumentation processes in ABA. Finally, we do not insist that properties have to be
necessarily fulfilled, but maintain that their satisfaction is conditional on applications.

5 Conclusions

This paper researches extension-based structured argumentation dynamics in the spirit
of non-monotonic inference properties of [24, 25]. To this end, we offer reformulations
of non-monotonic inference properties in terms of extensions. Particularly, we introduce
(strong and weak versions of) six properties applicable to the well-known structured ar-
gumentation formalism Assumption-Based Argumentation (ABA) and investigate their
satisfaction under six key ABA semantics. Three pairs of properties reflect different
modifications of knowledge in ABA frameworks, and each item of a pair concerns ei-
ther Cumulative Transitivity (CUT) or Cautious Monotonicity (MON) of extension-based
non-monotonic inference. While conceptually the three types of information change
are different, we show that technically they lead to the same outcomes in the sense of
a property being satisfied in either all or none of the three settings, under a particular
semantics. Consequently, irrespective of the knowledge representation in ABA and the
nature of the anticipated changes in information, one can choose semantics best suited
for the application, depending on the desirable properties of the reasoner.

Credulous semantics violate the strong properties. This is expected, due to presence
of choice between extensions that share conclusions. Meanwhile, the weak properties
are satisfied under credulous semantics. This essentially says that ABA frameworks do
not lose the extension based on which a change in knowledge occurs. As for further
results on credulous reasoning, we can also identify a certain provocative aspect of our
findings: even when a stable/preferred extension to begin with is unique, changing (even
strengthening) information in ABA can lead to more than one stable/preferred extension
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afterwards (Examples 6, 11, 16). We believe this phenomenon deserves further study in
terms of characterization of ABA frameworks and/or semantics for which it occurs.

In terms of sceptical reasoning, intuitively, the most sceptical (grounded) seman-
tics satisfies all the properties. This is because grounded extensions commit to the most
certain conclusions to begin with, and changing the way they are represented in ABA
frameworks does not influence their (and other arguments’) acceptance. Somewhat sur-
prisingly, the other two sceptical semantics—sceptically preferred and ideal—fail MON,
yet fulfill CUT. Such a behaviour is present because changes in information can increase
the number of, particularly, preferred extensions, whence their intersection shrinks, re-
sulting in violation of MON, at the same time satisfying CUT.

The results can serve as guidelines regarding argumentation dynamics for modeling
common-sense reasoning using ABA. Due to the same property satisfaction outcomes,
irrespective of knowledge representation in ABA, one has a range of differently behav-
ing semantics to choose among, contingent on the intended behaviour of the reasoner.
Depending on application, one may wish to rely on the static grounded semantics to
prevent overwhelming changes in reasoning, or use a much more dynamic credulous
semantics to be flexible about revising decisions.

This work serves as one of the first steps towards investigating extension-based
structured argumentation dynamics. Current results cover ABA, and hence (by virtue
of results in [27]) ASPIC+ without preferences, with regards to CUT and MON. Future
work directions include different formulations of the properties, as well as analysis of
extension-based formalisms of argumentation with preferences against variants of the
non-monotonic inference properties in question. As to the latter, ABA Equipped with
Preferences (known as p ABA [31]) is of particular interest, as well as other formalisms,
such as ASPIC+, Value-Based Argumentation [4] or PAFs [1]. It may also be possible
to use the abstract formulations of the properties to analyse other non-monotonic rea-
soning formalisms, such as default logic and logic programming (see e.g. [9, 10]), from
a slightly different perspective than in the existing work (e.g. [6, 11, 15]).
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