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Abstract. Argumentation has the unique advantage of giving explana-
tions to reasoning processes and results. Recent work studied how to give
explanations for arguments that are acceptable, in terms of arguments
defending it. This paper studies the counterpart of this problem by for-
malising explanations for arguments that are not acceptable. We give
two different views (an argument-view and an attack-view) in explain-
ing the non-acceptability of an argument and show the computation of
explanations with debate trees.

1 Introduction

Argumentation (see e.g. [18, 20] for an overview) can be viewed as a process of
generating explanations. Indeed, an arguing process transparently explains the
procedure and the results of reasoning. Given a topic, the process of arguing can
be viewed as identifying related information and generating an explanation for
the topic, usually through some fictitious proponent and opponent debate game.
Hence, arguing for an argument can be deemed to explain it.

Recent work [14, 15] has proposed explaining the acceptability of an argument
a as a set of arguments defending a. However, this approach fails to address the
case when a is not acceptable; as, intuitively, an argument is not acceptable
because it lacks appropriate defences against some attackers.

We propose two alternative views for explaining why some argument a is not
acceptable. In the argument-view, we view an explanation for a with a defending
set S as a set of argument A attacking S such that if A is removed, then a
becomes acceptable. In the attack-view, we see an explanation for a as a set of
attacks such that, if removed, a becomes acceptable. We analyse the relations
between these two views of explanations.

We develop our notions of explanations in the context of Abstract Argumen-
tation (AA) [9] as AA is arguably the most widely used argumentation framework
with great simplicity. Also, the main approach we use in this work relies on a
proof theory developed for AA, namely, dispute trees [11, 10]. Moreover, most
other argumentation frameworks, e.g. Assumption-based Argumentation [11, 25]
and ASPIC+ [17], are instances of AA; hence results obtained in AA apply
to those frameworks as well. We will focus our discussion on the admissibility
semantics thus equate arguments’ acceptability with admissibility.

We motivate our approach with the following example on argumentation-
based decision making, adapted from [13]:



Example 1. An agent needs to decide on accommodation in London, amongst
three options: Imperial College Student Accommodation (ic), the John Howard
Hotel (jh), and the Ritz Hotel (ritz). The main decision criterion is whether the
accommodation is quiet. The agent believes that both ic and ritz are quiet, but
jh is not. The decision to not choose ic can be represented by the following AA
framework 〈A,R〉 (as conventional, represented as a directed graph with nodes
being arguments in A and arcs being attacks in R):
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a: Choose ic.
b: Why not jh?
d: Because it is not quiet.
c: Why not ritz?

Here, the argument a is not acceptable as it cannot defend against argument
c, even with the help of other arguments. Although b also attacks a, this attack is
countered by d. Thus, one may conclude that either the argument c or the attack
from c to a explains the non-acceptability of a, as by removing either the argu-
ment or the attack a is acceptable. Identifying the source of non-acceptability can
then help repairing the AA framework to ensure a’s acceptability, e.g. by adding
an attack against c. In this paper, we focus on characterising explanations, not
repairing AA frameworks.

The reminder of this paper is organised as follows. Section 2 reviews some back-
ground on AA and dispute trees. Section 3 introduces the two views of expla-
nations. We will see that they do not in general coincide (although they do
in Example 1). Section 4 gives the procedures of computing explanations with
dispute trees. Section 5 discusses several issues with the difference between the
two forms explanations and some other possible types of explanations. Section 6
reviews some related works. Section 7 concludes.

2 Background

Abstract Argumentation (AA) frameworks [9] are pairs AF = 〈A,R〉, con-
sisting of a set of arguments, A, and a binary attack relation, R. For any attack
(a, b) ∈ R, a is the attacking argument.

Given an AA framework AF = 〈A,R〉, an extension A ⊆ A is admissible (in
AF ) if and only if ∀a, b ∈ A, there is no (a, b) ∈ R (A is conflict-free) and for
any a ∈ A, if (c, a) ∈ R, then there exists some b ∈ A such that (b, c) ∈ R.

Given an AA framework AF = 〈A,R〉, we say that an argument a is in AF
if and only if a ∈ A; we also say that an attack (a, b) is in AF or that a attacks b
in AF if and only if (a, b) ∈ R. Finally, we say that an argument a is admissible
if and only if a is in some admissible extension.

Dispute Trees [11, 10] are used to compute our explanations. Given an AA
framework AF = 〈A,R〉, we will use the following version of dispute trees. A
dispute tree for a ∈ A is a (possibly infinite) tree T , such that:



1. every node of T is of the form [L :x], labelled by an argument x (in AF ) and
assigned the status of either proponent (P) or opponent (O) (thus L ∈ {P, O}),
but not both;

2. the root of T is [P :a];
3. for every node n of the form [P : b], for every argument c that attacks b in

AF , there exists a child of n of the form [O :c];
4. for every node n of the form [O :b], there exists at most one child of n of the

form [P :c] such that c attacks b in AF ;
5. there are no other nodes in T except those given by 1-4.

We say that a node of the form [L : x] is a L node. The set of all arguments
labelling P nodes in T is called the defence set of T , denoted by D(T ). A dispute
tree T is an admissible dispute tree if and only if:

1. every O node in T has a child, and
2. no argument in T labels both a P and an O node.

Theorem 3.2 in [12] states the following, given an AF and an argument a in AF :

1. If T is an admissible dispute tree for a, then D(T ) is admissible (in AF ).
2. If a ∈ A where A ⊆ A is an admissible extension (in AF ) then there exists

an admissible dispute tree for a with D(T ) = A′ such that A′ ⊆ A and A′ is
admissible (in AF ).

3 Two Different Notions of Explanation

We start with introducing the pruning operator, \, as follows.

Definition 1. Given an AA framework AF = 〈A,R〉 and a set of argument
A ⊆ A, the pruning operator, \, is defined as AF \A = 〈A′,R′〉, where

– A′ = A \A,
– R′ = {(x, y)|(x, y) ∈ R and x ∈ A′, y ∈ A′}.

Note that in this work we overload the operator \ in several ways. Indeed, this
operator is also used for the standard set difference operator and as defined later
in Definitions 5 and 7. In all cases, it removes the second input from the first
input.

We first introduce arg-explanations, giving explanations in the “argument-
view”.

Definition 2. Given an AA framework AF = 〈A,R〉, let a ∈ A be such that a
is not admissible in AF . Then, if there exists some A ⊆ A, such that:

1. a is admissible in AF \A, and
2. there is no A′ ⊂ A such that a is admissible in AF \A′,



then A is an arg-explanation of a. Otherwise, {a} is the arg-explanation of a.
Given an arg-explanation A of some argument a, we say that a is the topic

argument for A.

The intuition behind Definition 2 is that an arg-explanation of a non-admissible
argument a is a minimal (with respect to set inclusion) set of arguments A such
that if A is removed, then a becomes admissible. However, such A may not
always exist. In such case, we take the view that the reason for a being not
admissible is a itself. It is easy to see that this happens if and only if a attacks
itself.

Proposition 1. Given an AA framework AF = 〈A,R〉, let a ∈ A. The arg-
explanation of a is {a} if and only if (a, a) ∈ R.

A non-admissible argument can have multiple arg-explanations, as illustrated in
the following example.

Example 2. Given the AA framework in Figure 1, there are two arg-explanations
{b} and {e} for argument a. Indeed, removing either {b} or {e} from this AA
framework makes the argument a admissible.
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Fig. 1. AA framework for Example 2. Here the argument a has two arg-explanations
({b} and {e}).

Proposition 2. For any argument a in an AA framework AF = 〈A,R〉, if a is
not admissible, then there is a non-empty arg-explanation of a.

Proof. (Sketch.) By Proposition 1, if (a, a) ∈ R, then the arg-explanation of a
is {a}. Otherwise, since a is trivially admissible in the AA framework AF ′ =
〈{a}, {}〉, AF can always be reduced to AF ′ by removing arguments in A.

We can see that arguments in an arg-explanation are always “related to” the
argument being explained, formally given as follows.

Definition 3. Given an AA framework AF = 〈A,R〉, let x, y ∈ A. Then, x is
related to y (in AF ) if and only if:

1. x = y; or
2. (x, y) ∈ R; or



3. ∃z ∈ A, such that (x, z) ∈ R and z is related to y.

Definition 3 is given recursively with (1) and (2) the base cases. Note that each
argument is related to itself (by (1)). Note also that if there is no attack against
an argument then the only argument related to it is the argument itself.

Proposition 3. Let A be an arg-explanation for some non-admissible argument
a in some AA framework AF = 〈A,R〉. For all b ∈ A, b is related to a (in AF ).

Proof. (Sketch.) This proposition holds by the observation that for any (non-
admissible) argument a, arguments not related to a do not affect its admissibility.

We now turn our attention to att-explanations, which give explanations in the
“attack-view”.

Definition 4. Given an AA framework AF = 〈A,R〉let a ∈ A be such that a is
not admissible in AF . Then an att-explanation of a is a set of attacks R ⊆ R,
such that

1. a is admissible in 〈A,R \R〉;
2. there is no R′ ⊂ R such that a is admissible in 〈A,R \R′〉.

Given an att-explanation R of a, we say that a is the topic argument for R.

The intuition behind Definition 4 is that the att-explanation of an argument a
is a minimal (with respect to set inclusion) set of attacks such that a becomes
admissible if these attacks are removed. Note that such R always exists, as shown
by the following proposition.

Proposition 4. For any argument a in an AA framework, if a is not admissible,
then there is an att-explanation of a and every att-explanation of a is non-empty.

Proof. (Sketch.) Trivially, as if a is not attacked, then a is admissible. Thus, we
can always construct an att-explanation of a by including attacks of the form
( , a).1

Similarly to Proposition 3, the following holds.

Proposition 5. Let R be an att-explanation for a and (x, y) ∈ R. Then both x
and y are related to a.

Proof. (Sketch) This proposition holds as (1) if y is not related to a, then re-
moving (x, y) does not affect the admissibility of a; and (2) if y is related to a,
then x is.

One may hypothesise that arg-explanations and att-explanations of any argu-
ment a always coincide in the sense that the set formed by the attacking argu-
ments in an att-explanation is an arg-explanation for a. The following example
illustrates that this is not the case in general.

1 Here and after, denotes an anonymous variable as in Prolog.



Example 3. We illustrate the difference between arg-explanations and attacking
arguments in att-explanations. Consider the following AA framework AF :

a

b

DD

$$c

ZZ

dd

Here, a is not admissible as it is attacked by both b and c.
To make a admissible, we can either remove both b and
c (as removing only one of them is insufficient) hence the
arg-explanation for a is {b, c}; or we can remove either
the attack (b, a) or the attack (c, a). Thus, the attacking
arguments in att-explanations are either b or c.

One interpretation of this example is that both b and c are at odds with a; and b
and c are in mutual conflict. To make a admissible, we can either eliminate both
b and c (arg-explanation); or we can ally a with either b or c (att-explanation).

One may also hypothesise that for any argument a, its att-explanations are
always “more compact” than its arg-explanations in the sense that the set of
arguments formed by attacking arguments in an att-explanation is no bigger than
any arg-explanations, as in the case of Example 3. This is not true in general, as
illustrated below.

Example 4. Consider the following AA framework AF :
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Here, a is not admissible and {(b, a), (f, e)} is an att-
explanation for a. We can see that removing any of
these two attacks alone from AF is insufficient to ren-
der a admissible. The attacking arguments in this att-
explanation are b and f . However, it is easy to see that
the set formed by f alone is an arg-explanation. Thus,
removing f alone from AF renders a admissible.

The following proposition gives a formal link between arg-explanation and att-
explanation.

Proposition 6. Let A be an arg-explanation for some argument a in an AA
framework 〈A,R〉 and S = {(x, y) ∈ R|x ∈ A}. Then, there exists some att-
explanation R for a such that R ⊆ S.

Proof. (Sketch.) Trivially, as since A is an arg-explanation, removing A gives the
same effect, as far as a is concerned, as removing all attacks from A.

4 Obtaining Explanations from Dispute Trees

Both arg-explanations and att-explanations can be obtained from dispute trees.
Since admissible arguments correspond to admissible dispute trees (see Sec-
tion 2), given a non-admissible argument a, no dispute tree with root argument
a is admissible. We pose the question:

How do we turn a non-admissible dispute tree into an admissible dispute
tree by removing (some of) its nodes?



Answering this question effectively gives us arg-explanations for a. We provide
an answer with pruned trees.

In this section we assume as given a general AA framework AF = 〈A,R〉.

Definition 5. Given a dispute tree T , the pruned tree T ′ (of T ) with respect
to a set of arguments A ⊆ A (denoted with T ′ = T \ A) is a dispute tree such
that a node n = [L :x] is in T ′ if and only if the following three conditions hold:

1. n is in T ; and
2. x 6∈ A; and
3. let E = {y|[ :y] is an ancestor of n in T }; then E ∩A = {}.

The intuition behind Definition 5 is that given a dispute tree T and a set of
arguments A, pruning T with respect to A yields another tree T ′ such that
T ′ does not contain any node labelled by arguments in A or nodes that “hung
below” nodes labelled by arguments in A.

Later we will refer to some pruned tree T ′ = T \ A as (non-)admissible
without specifying in which AA framework. Implicitly, we will assume that this
framework is AF \A.

Example 5. (Example 3 continued.) An input dispute tree T for argument a is
shown in Figure 2 (left). Two pruned trees T ′ = T \ {c} and T ′′ = T \ {b, c} are
shown in the same figure (in the middle and on the right, respectively). We can
see that neither T nor T ′ are admissible dispute trees (in AF and in AF \ {c},
respectively). However, T ′′ is an admissible dispute tree (in AF \ {b, c}).

[P :a] [P :a] [P :a]

[O :b] [O :c] [O :b]

[P :c] [P :b]

[O :b] [O :c]

...
...

Fig. 2. Dispute tree T for argument a in Example 5 (left); a pruned tree T ′ = T \ {c}
(middle); a pruned tree T ′′ = T \ {b, c} (right).

Trivially, the following proposition holds, stating that pruning a dispute tree
with an empty set returns the same dispute tree.

Proposition 7. Let T be a dispute tree. Then T \ {} = T .

With pruned tree defined, we can identify arguments making a given dispute
tree non-admissible, as follows.



Definition 6. Given some argument a in AF , let T be a dispute tree for a. A
tree-arg-explanation (with respect to T ) is a set of arguments A such that

1. T \A is an admissible dispute tree (in AF \A); and
2. there is no A′ ⊂ A such that T \A′ is an admissible dispute tree (in AF \A′).

Intuitively, given a dispute tree T , a tree-arg-explanation is a minimal set of
arguments such that the pruned tree T \A is admissible. For the dispute tree T
in Example 5, {b, c} is the only tree-arg-explanation for T .

Note that, since we require arg-explanations to be minimal (see Definition 2,
condition 2), in general, tree-arg-explanations are not arg-explanations, as illus-
trated in the following example.

Example 6. Given the AA framework shown in Figure 1, consider the two dispute
trees, T1 and T2, for the argument a, shown respectively in the left and the right
in Figure 3. Although T1 \ {e, f} and T1 \ {b} are admissible, T1 \ {e} is not.
Indeed, both {e, f} and {b} are tree-arg-explanations with respect to T1.

Also, both T2 \ {e} and T2 \ {b} are admissible. Thus, both {e} and {b} are
tree-arg-explanations with respect to T2.

By Definition 2, {e} and {b} are arg-explanations for a and {e, f} is not an
arg-explanation, although it is a tree-arg-explanation with respect to T1.

[P :a] [P :a]

[O :b] [O :b]

[P :c] [P :d]

[O :e] [O :f ] [O :e]

Fig. 3. Two dispute trees T1 (left) and T2 (right) for a in the AA framework in Figure 1.

Proposition 8. Given an argument a ∈ A, for any A ⊆ A, if a is admissible
in AF \ A, then there is a dispute tree T for a in AF such that T ′ = T \ A is
an admissible dispute tree for a in AF \A.

Proof. If a is admissible in AF , then we let A = {}, by Proposition 7 and
Theorem 3.2 in [12], this proposition holds.

If a is not admissible in AF , we need to show that T can be constructed from
T ′. We let T be the limit of the sequence T1, T2, . . . , Tn constructed as follows:

1. T1 = T ′;
2. Ti+1 is Ti with a new node [L :x] as the child of some node [ :y] such that

(a) x ∈ A;



(b) (x, y) is in AF ;
(c) Ti+1 is a dispute tree.

With this construction, we know that Tn is a dispute tree for a as T1 is a dispute
tree for a. We can see that Tn \A = T ′ as the specified construction “reverses”
the pruning. Hence the proposition holds.

Proposition 8 sanctions that dispute trees give a “complete” approach for com-
puting arg-explanations. In other words, if a set of arguments is an arg-explanation
for some argument a (in some AA framework AF ), then it will not be missed
by looking at dispute trees for a (in AF ).

With Proposition 8, we are ready to show the main result for computing
arg-explanations with dispute trees, as follows.

Theorem 1. Given an argument a in AF , let TT = {T1, . . . , Tn, . . .} be the set
of all dispute trees for a and S = {A|A is a tree-arg-explanation with respect to
Ti, for any Ti ∈ TT}. For all A ∈ S, if there is no A′ ∈ S such that A′ ⊂ A,
then A is an arg-explanation for a.

Proof. To show that A is an arg-explanation for a is to show

1. a is admissible in AF \A; and
2. A is a minimal set (with respect to ⊆) satisfying 1.

Condition 1 holds as, since A ∈ S, A is a tree-arg-explanation. Thus, there is
some dispute tree Ti ∈ TT for a such that Ti \ A is an admissible dispute tree.
By Theorem 3.2 in [12], a is admissible in AF \A.

Condition 2 holds as there is no A′ ∈ S such that A′ ⊂ A; and by Proposi-
tion 8, there is no other set of arguments A∗ such that both of the following two
conditions hold:

1. a is admissible in AF \A∗; and
2. there does not exist Ai ∈ S for which Ai ⊆ A∗.

As both conditions hold, the theorem holds.

Thus far, we have shown how arg-explanations can be computed with dis-
pute trees (namely dispute trees are a ”sound” mechanism for obtaining arg-
explanations).In the rest of this section, we study obtaining att-explanations
from dispute trees. We start with defining pruned trees with respect to attacks,
as follows.

Definition 7. Given a dispute tree T , the pruned tree T ′ (of T ) with respect to
a set of attacks R is a dispute tree (denoted with T ′ = T \ R) such that a node
n = [L :x] (L ∈ {P, O}) is in T ′ if and only if the following three conditions hold:

1. n is in T ; and
2. if n is a child of n′ = [ :y] in T , then (x, y) 6∈ R; and
3. let S = {n′|n′ is an ancestor of n in T }; then for all n1 = [ : w] ∈ S,

n2 = [ :z] ∈ S such that n1 is a child of n2, we have (w, z) 6∈ R.



The intuition behind Definition 7 is that given a dispute tree T and a set of
attacks R, pruning T with respect to R yields another tree T ′ such that T ′ does
not contain any branch rooted at x with y the parent of x, where (x, y) ∈ R.

Example 7. (Example 5 continued.) Given the dispute tree T for argument a
shown in Figure 2 (left), the pruned tree T ∗ = T \ {(c, a)} is shown in Figure 4.
T ∗ is an admissible dispute tree.

[P :a]

[O :b]

[P :c]

[O :b]

...

Fig. 4. A pruned tree T ∗ = T \ {(c, a)} for Example 7.

Following the same idea behind Definition 6, we define tree-att-explanation as
follows.

Definition 8. Given a dispute tree T for some argument a, a tree-att-explanation
(with respect to T ) is a set of attacks R ⊆ R such that

1. T \R is an admissible dispute tree; and
2. there is no set of attacks R′ ⊂ R such that T \R′ is admissible.

In the same way that tree-arg-explanations are not always arg-explanations, tree-
att-explanations are not always att-explanations, as illustrated in the following
example.

Example 8. Given the AA framework shown in Figure 5 (left), there are two
dispute trees, T1 and T2, for argument a (shown respectively in the middle and
the right in Figure 5).

From T1, we see that {(h, c), (g, f)} is a tree-att-explanation. Yet, from T2
we see that {(g, f)} alone is also a tree-att-explanation. Thus, the former tree-
att-explanation is not an att-explanation and the latter is.

Similarly to Proposition 8, the following proposition for att-explanations holds,
sanctioning a form of “completeness” for obtaining att-explanations.

Proposition 9. Given an argument a in AF , for any set of attacks R in AF ,
if a is admissible in AF \R, then there is a dispute tree T for a in AF such that
T \R is an admissible dispute tree.
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[O :e] [O :h] [O :e]
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[P :f ] [P :f ]

g
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[O :g] [O :g]

Fig. 5. AA framework in Example 8 (left); a dispute tree T1 for argument a (middle);
another dispute tree T2 for a (right).

Finally, we are ready to show the main result for obtaining att-explanations with
dispute trees, as follows.

Theorem 2. Given an argument a in AF , let TT = {T1, . . . , Tn, . . .} be the set
of all dispute trees for a and S = {A|A is a tree-att-explanation with respect to
Ti, for any Ti ∈ TT}. For all R ∈ S, if there is no R′ ∈ S such that R′ ⊂ R,
then R is an att-explanation for a.

The proof of Theorem 2 is similar to the one of Theorem 1.

5 Discussion

In this paper, we have given two different notions of explanations, the “argument-
view” and the “attack-view”. Comparing the two, the following observations can
be made.

Firstly, arg-explanations are more suitable for identifying “fixes” for argu-
ments not being admissible. For instance, given an arg-explanation, to make the
topic argument admissible, one can just add new attacks to all arguments in the
arg-explanation. Thus, for dialectical applications such as persuasion in multi-
agent systems (e.g. see [19, 26]), identifying arg-explanations helps agents know
effective attacking points, i.e. arguments to attack to render the topic admissi-
ble. It is easy to see that att-explanations do not grant this ability, as inserting
new arguments attacking the attacking arguments in an att-explanation does
not necessarily change the admissibility of the topic. For instance, inserting a
new argument d attacking c in Example 3 does not make a admissible, though
{(c, a)} is an att-explanation and c is the attacking argument in (c, a).

Secondly, we have enforced minimality while defining both arg-explanations
and att-explanations in Definitions 2 and 4, respectively. As a consequence,
as illustrated in Examples 6 and 8, computing both arg-explanations and att-
explanations requires the construction of all dispute trees for the topic argument.



Constructing all dispute trees for an argument might be deemed to be too ex-
pensive computationally for certain applications. For both arg-explanations and
att-explanations, in addition to tree-arg/att-explanations, we can consider rel-
arg/att-explanations as alternatives, briefly discussed below.

The second conditions in Definition 2 and 4, where minimality is required,
can be relaxed to relatedness, i.e. for arg-explanations, informally:

A rel-arg-explanation for some non-admissible topic argument a is a set
of arguments A such that: (1) if A is removed, then a becomes admissible;
and (2) every argument in A is related to a as in Definition 3.

By Proposition 3, arg-explanations are rel-arg-explanations. Moreover, it is easy
to see that tree-arg-explanations are also rel-arg-explanations. We observe that
rel-arg-explanations are easy to obtain, e.g. the set of arguments labelling op-
ponent nodes in a dispute tree gives a rel-arg-explanation. However, it can be
viewed that such oversimplification renders rel-arg-explanation less useful for the
purpose of recognising the “true source” that triggers the non-admissibility of
the topic. Similar reasoning can be applied for att-explanations.

With rel-arg/att-explanations and arg/att-explanations at two extremes, one
may think that tree-arg/att-explanations give a good compromise between the
usefulness of such explanations and their computation complexity, i.e. obtaining
a tree-arg-explanation requires computing a dispute tree with a minimal set of
opponent arguments within the tree. Thus, for applications where computing
arg/att-explanations is too expensive to be affordable, computing tree-arg/att-
explanations could be a suitable alternative for understanding why the topic
argument is not admissible.

Thirdly, in this work, we made no distinction between different arg/att-
explanations. As illustrated in Example 2, in general, there are multiple arg-
explanations for a single topic argument. In Example 2, one may argue that {e}
is a more reasonable explanation for a as it is the “root of the cause” whereas b
is less suitable as it already has two “immediate responses”, arguments c and d.
However, such reasoning itself is unconvincing as it could be equally well argued
that “if the problem at b is addressed, then there is no need to worry about any-
thing else”. Similar reasoning can be applied to att-explanations as well. Thus,
we take the view that making further distinction between arg/att-explanations
is difficult and possibly application-dependent.

6 Related Work

[14, 15] have introduced the related admissibility argumentation semantics to
capture explanations for admissible arguments in both AA and Assumption-
based Argumentation. Given an admissible argument as the topic, they model
its explanations as a set of arguments defending the topic. They also use dispute
trees to compute explanations. Roughly speaking, arguments in proponent nodes
from an admissible dispute tree are an explanation for the argument in the root



of the tree. They have not studied explanations for non-admissible arguments or
explanations in the “attack-view”.

[3] have studied revising AA frameworks by adding new arguments which
may interact with existing arguments. They have studied the behaviour of the
extensions of the augmented argumentation frameworks, taking also into account
possible changes of the underlying semantics. Our work is orthogonal to theirs.
We are interested in finding explanations for non-admissible arguments and the
forms of explanations we study in this paper are concerned with removing argu-
ments or attacks.

[22] have introduced dynamic argumentation frameworks and allowed various
revision operators being applied. Their work is performed at a “meta-level” in the
sense that both the underlying logic for arguments and argumentative semantics
are left unspecified. Their work is focused on understanding dynamic changes
represented in argumentation frameworks and defining operators modelling these
changes. Our work differs from theirs as we focus on abstract argumentation and
generating explanations.

[16] have studied the minimal changes needed to make some arguments ac-
ceptable in an argumentation framework. They have considered two types of
changes: adding or removing attacks. Their work is motivated by agents in per-
suasion. However, in their setting, the set of arguments in the argumentation
framework is fixed and only certain attacks can be added or removed. Our study
of att-explanations is closely related to their work. However, we have relied on
different approaches (with dispute trees) for finding att-explanations whereas
they have used a set of rewriting rules.

[6] have studied the impact of adding a new argument to an AA frame-
work, particularly on the set of its extensions. The authors have studied several
properties for this type of changes under the grounded and preferred semantics.
They are not concerned with giving explanations to the (non-) acceptability of
arguments. Comparing with their work, ours is not about revising AA frame-
works, but identifying arguments and attacks that affect the non-acceptability
of arguments.

[4] have studied the impact of removing a single argument from an AA frame-
work on the set of extensions. Their work is situated in a legal context. Our work
is different as we are not concerned with changes to all extensions when a partic-
ular argument is removed. Rather, half of our paper concerns which arguments
are responsible for the non-admissibility of arguments.

[2] have studied different types of expansions, that is, different ways to modify
an existing AA framework. In their work, they allow the addition of new argu-
ments, as well as the addition/removal of attacks. The problem studied there is:
given an argumentation system and a “goal set” E, find a minimal expansion
such that E belongs to at least one extension of the modified system. Though
related, they are clearly solving a different problem as we are not concerned with
adding arguments or attacks.

[5] use the notion of explanation dialogues to represent dialogical proof pro-
cedures for abductive argumentation framework. Their notion of explanations



is closer to the ones introduced in [14, 15], i.e. focus on explanations for sen-
tences (arguments) that are in certain extensions (acceptable), instead of non-
acceptable arguments.

[23] also study explanations of arguments as two sets of arguments, a “re-
moval set” and an “addition set”. Roughly speaking, an argument can be made
acceptable by removing arguments from the removal set and inserting arguments
from the addition set. Though their notion of explanation is similiar to our arg-
explanations, their computation is not based on debate trees or forests. They
have not considered att-explanations.

[1] present a work on explanation for failure query in inconsistent knowledge
base with argumentation. Their work focuses on using argumentation dialogue
to explain a single type of query whereas ours aims at introducing a general
theory of explanation for unacceptable arguments.

The literature on human-computer interaction includes a considerable amount
of work on explanation in various contexts, e.g. for recommender systems [24],
and on evaluating empirically various explanatory tools according to various cri-
teria such as effectiveness and transparency [24]. We have focused on defining
various notions of explanation for abstract argumentation, and in particular for
non-membership of arguments in admissible extensions. It would be interesting
in the future to evaluate empirically our techniques, and in particular the rela-
tive merits of the various notions of explanation we have defined according to
criteria identified in the HCI literature.

We have defined tree-att-explanations (see Definition 8) in terms of a pruning
operator over dispute trees. Other forms of pruning have been defined in the
literature, e.g. in [8], but for different tasks and frameworks, e.g., in the case of
[8], for improving query answering in Possibilistic Defeasible Logic Programming.
It would be nonetheless interesting to study whether other forms of pruning could
provide other notions of explanation for abstract argumentation, and whether
our form of pruning could serve the purpose of defining explanatory methods in
other frameworks.

7 Conclusion

Argumentation has its unique advantage in explaining the process and results
of its computation. To fully exploit this advantage, [14, 15] study explanations
for admissible arguments. In short, that work considers explanations for an ad-
missible argument as arguments defending it. In this work, we shift our focus to
explanations for arguments that are not admissible. We aim to be able to explain
why some argument is not admissible. We take the view that an argument a is
not admissible because of the presence of some arguments A or attacks R, such
that if A or R are removed, then a becomes admissible. Thus, an explanation
in the “argument-view” (arg-explanation) of a is A and an explanation in the
“attack-view” (att-explanation) of a is R.



We have shown that, although exhibiting similarities, arg-explanations and
att-explanations for the same argument do not always coincide. We have used
dispute trees for obtaining both forms of explanations.

Explanations studied in this work are based on the admissibility semantics
in abstract argumentation. In the future, we would like to explore explanations
with other semantics and other argumentation formalisms. Note that in this
paper we have already implicitly addressed explanations for arguments not be-
longing to any preferred extension [9], since preferred extensions are maximally
admissible and every admissible extension is contained in some preferred exten-
sion; therefore, if an argument does not belong to any preferred extension then
it does not belong to any admissible extension either. In addition, we plan to
study other types of explanations, e.g. based on relatedness rather than mini-
mality. The computation approach introduced in this work is based on dispute
trees. It will be interesting to see if other approaches, e.g. labelling-based, can
be developed. Moreover, explanations are studied in this work from a theoretical
viewpoint. It would be very useful if experiments of our notions of explanations
could be conducted with real users from a human-computer interaction perspec-
tive, e.g. along the lines of [21, 24, 7]. Finally, it would be interesting to study the
various notions of explanation we have defined from a computational complexity
perspective, to determine their computational viability.
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