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ABSTRACT
We analyse scenarios in which self-interested agents negoti-
ate with each other in order to agree on deals to exchange
resources. We consider two variants of the framework, one
where agents can use money to compensate other agents for
disadvantageous deals, and one where this is not possible. In
both cases, we analyse what types of deals are necessary and
sufficient to guarantee an optimal outcome of negotiation.
To assess whether a given allocation of resources should be
considered optimal we borrow two concepts from welfare
economics: maximal social welfare in the case of the frame-
work with money and Pareto optimality in the case of the
framework without money. We also show how conditions for
optimal outcomes can change depending on properties of the
utility functions used by agents to represent the values they
ascribe to certain sets of resources.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; J.4 [Social and Behav-
ioral Sciences]: Economics; K.4.4 [Computers and So-
ciety]: Electronic Commerce

General Terms
Theory

Keywords
Negotiation, Resource allocation, Welfare economics

1. INTRODUCTION
We analyse negotiation scenarios where self-interested
agents exchange resources in order to increase their respec-
tive individual welfare. Negotiation in multiagent systems
may be studied at various levels. One important line of re-
search is concerned with the strategies that agents may use
to determine their next move during negotiation. Good ex-
amples of work in this area are, for instance, the books by
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Rosenschein and Zlotkin [10] or Kraus [6]. Another impor-
tant field of activity concerns the protocols agents may agree
on when conversing with each other and, more generally, the
broad area of agent communication languages as covered, for
instance, in the collection edited by Dignum and Greaves [4].

Here, we are not concerned with any specific protocols
or even strategies, but rather with the patterns of resource
exchanges agents could possibly agree on and to what ex-
tent these patterns are sufficient or necessary to guarantee
optimal outcomes of negotiations. One central assumption
that we do make with respect to the strategies that agents
follow is that they are individually rational in the sense that
they will never accept a disadvantageous deal. In the first
instance, we consider the outcome of a negotiation to be op-
timal whenever it results in an allocation of resources with
maximal social welfare. Here we adopt a utilitarian notion
of social welfare, that is, we identify the welfare enjoyed by
a society of agents with the sum of the values ascribed by
the individual agents in that society to the resources they
hold in a particular situation.

A similar framework has been studied by Sandholm in [12]
and elsewhere, mostly in the context of agents negotiating in
order to reallocate tasks. In fact, part of the present paper is
concerned with transferring the results of [12] to the domain
of resource allocation problems. One of the central aspects
of Sandholm’s framework is that agents can use money to
compensate other agents for accepting (otherwise) disadvan-
tageous deals. We extend this framework here to also model
negotiations over resources where no money changes hands.
(This is what Rosenschein and Zlotkin call negotiation with-
out “explicit utility transfer” [10].) A money-free framework
may be more appropriate for certain applications for at least
two reasons. Firstly, it could be the case that agents cannot
put a precise price tag on every set of resources they may
or may not hold, but they could still prefer certain sets of
resources over others. Such a scenario excludes exchanges
involving money, but money-free barter trade could still be a
beneficial option. Secondly, as will be made precise later on,
the framework described in [12] makes the implicit assump-
tion that agents have sufficiently large amounts of money
available to them to be able to agree on any contract that
seems beneficial. This assumption is not realistic for many
applications.

It is therefore important to investigate negotiation scenar-
ios without money. However, a downside of the money-free
approach is that we cannot always guarantee that a negotia-
tion will result in an allocation with maximal social welfare,
not even in theory. Instead, we are going to study neces-



sary and sufficient conditions for outcomes that are at least
Pareto optimal. (An outcome is Pareto optimal iff there
is no other allocation of resources that is better for some
agents without being worse for any of the other agents in
the society.)

Both Sandholm’s results for the framework with money
as well as our new results for the framework without money
are encouraging and daunting at the same time. On the
one hand, it is possible to show that, assuming there are no
limitations on time and computational resources, agents can
always negotiate an allocation of resources that is optimal
(in the sense appropriate for the respective framework). On
the other hand, one can also show that any type of deal (any
pattern of resource exchange), however complex, may be
required in order to actually reach these optimal allocations.
That is, we cannot assume that there are any limits on either
the number of agents or the number of resources involved in
a single deal. This second type of result, on the necessity of
all deal types, stems from the generality of the framework.
If we do not make any specific assumptions on the nature of
agents’ preferences (which we are going to model by means
of utility functions over sets of resources), then we cannot
exclude the need for potentially very complex types of deals.
We therefore discuss a number of possible restrictions on the
utility functions used by agents, which—at least in some
cases—lead to more favourable results.

The remainder of this paper is structured as follows. In
Section 2 we are going to formally introduce the resource
allocation problems studied in this paper, as well as discuss
the notion of a deal type in some detail and remark on the
utilitarian approach to welfare economics taken in this pa-
per. Section 3 analyses what deal types are sufficient and
necessary to guarantee an optimal outcome of a negotia-
tion process for scenarios with money, and Section 4 does
the same for scenarios without money. Results for specific
utility functions are discussed in Section 5. Finally, the con-
cluding section discusses a number of potential extensions
as well as applications of our frameworks.

2. RESOURCE ALLOCATION
The basic scenario we study in this paper is that of a soci-
ety inhabited by a number of agents, each of which initially
holds a number of resources. Agents will usually ascribe
different values to different sets of resources. They may
engage into a negotiation in order to agree on the reallo-
cation of some of the resources and thereby increase their
respective individual welfare. We assume that it is in the
interest of the system designer that these distributed nego-
tiation processes—somehow—also result in a positive payoff
for society as a whole.

We begin our analysis by giving formal definitions of the
various parameters relevant to such negotiation scenarios. In
the first instance, all definitions refer to the framework with
money. Necessary adjustments for the framework without
money will be discussed in Section 4.

2.1 Main Definitions
Negotiations over resources take place in a system (A,R),
where A is a finite set of (at least two) agents and R is a
finite set of (discrete) resources.

A particular allocation is a partitioning of the available
resources R amongst the agents in A.

Definition 1 (Allocations). An allocation of re-
sources for the system (A,R) is a function A from agents
in A to subsets of R such that A(i) ∩ A(j) = { } for i 6= j
and

⋃
i∈AA(i) = R.

The value an agent i ∈ A ascribes to a particular set of
resources R will be modelled by means of a utility function,
that is, a function from sets of resources (subsets of R) to
real numbers. This could really be any such function, that
is, the utility ascribed to a set of resources is not just the
sum of the values ascribed to its elements. The interesting
aspect of this is that we can model the fact that utility may
strongly depend on context, i.e. what other resources the
agent holds at the same time. (We are going to discuss
more specific classes of utility functions in Section 5.)

Definition 2 (Utility functions). Let R be a set of
resources and let i be an agent. The utility function ui for
agent i (over R) is a function from 2R to R.

We are now in a position to define a resource allocation
problem as consisting of a set of agents, a set of resources, a
collection of utility functions, and an initial allocation.

Definition 3 (Resource allocation problems).

A resource allocation problem is a quadruple (A,R,U , A0)
where A is a finite set of (at least two) agents, R is a finite
set of resources, U = {ui : 2R → R | i ∈ A} is a collection
of utility functions over R, and A0 is an initial allocation
of resources for the system (A,R).

Throughout this paper, A will stand for the set of agents
in the negotiation system under consideration and R for the
set of available resources. Furthermore, every agent i ∈ A is
assumed to be equipped with a utility function ui ranging
over subsets of R. Any specific allocations mentioned (such
as A or A′) are understood to refer to this system (A,R).

Agents can negotiate deals to exchange resources in order
to improve their respective welfare. An example would be:
“I give you r1 if you give me r2 and r3 to John”. In the most
general case, any numbers of agents and resources could be
involved in a single deal. From an abstract point of view, a
deal takes us from one allocation of resources to the next.
That is, we may characterise a deal as a pair of allocations.

Definition 4 (Deals). A deal is a pair δ = (A,A′)
where A and A′ are allocations of resources with A 6= A′.

The intended interpretation of this definition is that the
deal δ = (A,A′) is only applicable in situation A and will
result in situation A′. It specifies for each resource in the
system whether it is to remain where it is or where it is to
be moved to, respectively.

Our agents are self-interested in the sense that they will
only propose or accept deals that strictly increase their own
welfare. A deal may be accompanied by a payment to com-
pensate some of the partners for accepting a loss in utility.
Rather than specifying for each pair of agents how much
money the former pays to the latter, we simply say how
much money each single agent either pays or receives. This
will be modelled using a payment function.

Definition 5 (Payments). A payment function is a
function p from A to R such that

∑
i∈A p(i) = 0.



Here, p(i) > 0 means that agent i pays the amount of
p(i), while p(i) < 0 means that it receives the amount of
−p(i). By definition of a payment function, the sum of all
payments is 0, i.e. the overall amount of money present in
the society does not change.

We call a deal individually rational iff it increases the wel-
fare of all the agents involved in it. Recall that, given an
allocation A, A(i) is the set of resources held by agent i in
that situation. We are going to abbreviate ui(A) = ui(A(i))
for the utility value assigned to that set by agent i.

Definition 6 (Individual rationality). A deal δ =
(A,A′) is called individually rational iff there exists a pay-
ment function p such that ui(A

′)−ui(A) > p(i) for all i ∈ A,
except possibly p(i) = 0 for agents i with A(i) = A′(i).

That is, agent i will be prepared to accept δ iff it has to
pay less than its gain in utility or iff it will get paid more
than its loss in utility, respectively. Only for agents i not
affected by the deal, i.e. in case A(i) = A′(i), there may be
no payment at all. (A concrete example may be found in
the next subsection.) For any given deal, there will usually
be a range of possible payments. How agents manage to
agree on a particular one is not a matter of consideration at
the abstract level at which we are discussing this framework
here. We assume that a deal will go ahead as long as there
exists some suitable payment function p.

Finally, we have to fix a notion of optimality for society
as a whole. Adopting a utilitarian view, we define the so-
cial welfare of an agent society for a given allocation A as
the sum of the values the agents in that society ascribe to
the sets of resources they hold in situation A. As the over-
all amount of money present in the system stays constant
throughout the negotiation process, it makes sense not to
take it into account for the evaluation of social welfare.

Definition 7 (Social welfare). The social welfare
sw(A) of an allocation of resources A is defined as follows:

sw(A) =
∑
i∈A

ui(A)

We say that an allocation A has maximal social welfare
for a given system (A,R) iff there is no other allocation
A′ for that system with sw(A) < sw(A′). Maximal social
welfare is our first optimality criterion (a second one will be
discussed in Section 4).

2.2 Deal Types
Following Sandholm [12], we can distinguish a number of
deal types. The simplest deals are one-resource-at-a-time
deals where a single resource is passed on from one agent
to another one. This corresponds to the ‘classical’ form of
a contract typically found in the contract net protocol [13].
Clearly, if the agent parting with the resource in question
does ascribe to it any value at all, then such a one-resource-
at-a-time deal can only go ahead if the two agents can agree
on an appropriate price.

As the following example will show, one-resource-at-a-
time deals alone are not always sufficient to guarantee the
optimal outcome of a negotiation. Take a system with two
agents, agent 1 and agent 2, and a set of two resources
{r1, r2}. The following table specifies for each of the two
agents what resources they hold in the initial allocation A0

as well as the values of the two utility functions u1 and u2

for every subset of {r1, r2}:

Agent 1 Agent 2
A0(1) = {r1, r2} A0(2) = { }
u1({ }) = 0 u2({ }) = 0

u1({r1}) = 2 u2({r1}) = 3
u1({r2}) = 3 u2({r2}) = 3

u1({r1, r2}) = 7 u2({r1, r2}) = 8

Social welfare for the initial allocation A0 is 7, but it could
be 8, namely if agent 2 had both resources. However, the
only possible one-resource-at-a-time deals would be to pass
either r1 or r2 from agent 1 to agent 2. In either case, the
loss in utility incurred by agent 1 (5 or 4, respectively) would
outweigh the gain of agent 2 (3 for either deal), so there is no
payment function that would make these deals individually
rational.

Deals where one agent passes a set of resources on to
another agent are called cluster deals. In the above example,
passing {r1, r2} from agent 1 to 2, would be individually
rational if agent 2 paid agent 1 an amount of, say, 7.5.

Deals where one agent gives a single item to another agent
who returns another single item are called swap deals. A
swap deal may be beneficial for both of the agents involved,
even if no money is exchanged and even if both agents as-
cribe some value to either resource.

Sometimes it can also be necessary to exchange resources
between more than just two agents. A multiagent deal is
a deal that could involve any number of agents, where each
agent passes at most one resource to each of the other agents
taking part. Similarly to the example above, we can also
construct scenarios where swap deals or multiagent deals
are necessary (i.e. where cluster deals alone would not be
sufficient to guarantee maximal social welfare). This also
follows from Theorem 2, which we are going to present in
the next section. Concrete examples are given in [12].

Finally, deals that combine the features of the cluster and
the multiagent deal type are called combined deals. These
could involve any number of agents and any number of re-
sources. In other words, every deal δ (in the sense of Def-
inition 4) is a combined deal. The ontology of deal types
presented here is, of course, not exhaustive. It may, for in-
stance, also be of interest to consider the class of deals that
involve exactly two agents but any number of resources.

2.3 Remarks on Social Welfare Functions
An agent’s utility function induces a preference ordering
over the set of alternative allocations of resources for that
agent. For instance, if ui(A1) > ui(A2) then agent i prefers
allocation A1 over allocation A2. In some cases, the partic-
ular values of the utility function are not relevant and we
are only interested in the agent’s preference profile. In fact,
from a cognitive point of view, one may even argue that
qualitative (non-numerical) preference orderings are more
appropriate than the quantitative approach where we as-
sociate specific numbers with alternative situations. Still,
technically it will often simply be more convenient to de-
scribe an agent’s preferences in terms of a (utility) function
from the resources it holds in a given situation to numerical
values. But only when we are working in a framework with
a monetary component, i.e. where agents need to be able to
agree on prices, we actually need access to specific numerical
utility values.



A social welfare function is a mapping from the set of pref-
erence profiles of the agents in a society (here represented
in terms of utility functions) to a preference profile of the
society as a whole [2]. In this paper, we have adopted a
utilitarian social welfare function: maximising the function
sw from Definition 7 amounts to maximising the “sum of all
pleasures” enjoyed by members of the society. It should be
stressed, however, that this is by no means the only way of
characterising social welfare.

For instance, in an egalitarian system, one would consider
any differences in individual welfare unjust unless remov-
ing these differences would inevitably result in reducing the
welfare of the agent currently worst off even further. (This
is Rawls’ difference principle [9].) Therefore, an egalitar-
ian society will (in the first instance) aim at maximising
the utility of the agent that is currently worst off. That
is, a suitable egalitarian social welfare function would be
swe(A) = min{ui(A) | i ∈ A}. An allocation A that max-
imises this function is an allocation that, from an egalitarian
point of view, maximises social welfare. Other more sophis-
ticated functions would also take into account the utility of
other (unhappy) agents in the society [8].

Given the distributed character of multiagent systems,
particularly when having in mind a commercial setting of
some sort, intuitively, the utilitarian view on social welfare
seems more appropriate than the egalitarian approach. We
are going to make this intuition more precise later on. In
the framework discussed in this paper, the system charac-
teristics are embodied in the definition of individual ratio-
nality: agents have no responsibilities towards other agents
and their only interests lie in increasing their own individual
welfare. In Lemma 1 in the next section we are going to show
that, in fact, individually rational deals are precisely those
deals that increase utilitarian social welfare. Therefore, if we
wish to design agent societies that maximise egalitarian so-
cial welfare by means of negotiation over resources, we have
to define a new criterion for the acceptability of deals to in-
dividual agents first. If we perceive the notion of multiagent
systems in a broader sense and do not wish to restrict the
range of potential applications to purely commercial trans-
actions, then this may indeed be an interesting direction of
research. We shall leave this issue for another occasion [5].
The technical results reported in this paper all pertain to
the utilitarian framework set out earlier.

3. SCENARIOS WITH MONEY
The two theorems we are going to present in this section cor-
respond to the main results obtained by Sandholm in [12]
on necessary and sufficient contract types in task-oriented
domains. In what follows, we are going to give a formal ac-
count of these results, using the terminology of our resource
allocation problems rather than that of task contracting. In-
stead of showing that the results of [12] really are applicable
to our resource allocation scenarios, we choose to prove the
relevant theorems here directly.

3.1 Rational Deals and Social Welfare
The following lemma, which states that a deal is individually
rational iff it increases social welfare, will simplify the proofs
of the subsequent theorems.

Lemma 1 (Rational deals). A deal δ = (A,A′) is in-
dividually rational iff sw(A) < sw(A′).

Proof. ‘⇒’: By definition, δ = (A,A′) is individually
rational iff there exists a payment function p such that
ui(A

′) − ui(A) > p(i) holds for all i ∈ A, except possibly
p(i) = 0 in case A(i) = A′(i). If we add up the inequations
for all agents i ∈ A we get:∑

i∈A

(ui(A
′)− ui(A)) >

∑
i∈A

p(i)

By definition of a payment function, the righthand side
equates to 0 while, by definition of social welfare, the left-
hand side equals sw(A′) − sw(A). Hence, we really get
sw(A) < sw(A′) as claimed.

‘⇐’: Now let sw(A) < sw(A′). We have to show that
δ = (A,A′) is an individually rational deal. We are done if
we can prove that there exists a payment function p such
that ui(A

′) − ui(A) > p(i) for all i ∈ A. We define p to be
a function from A to R as follows:

p(i) = ui(A
′)− ui(A)− sw(A′)− sw(A)

|A| for i ∈ A

First, observe that p really is a payment function, because
we get

∑
i∈A p(i) = 0. We also get ui(A

′)−ui(A) > p(i) for
all i ∈ A, because we have sw(A′) − sw(A′) > 0. Hence, δ
must indeed be an individually rational deal.

Recall our discussion of different notions of social welfare
in the previous section. In this context, a possible interpre-
tation of Lemma 1 would be that utilitarian social welfare
is indeed the appropriate notion for artificial societies where
agents follow individually rational strategies in the sense of
Definition 6.

3.2 Sufficient Deals (with Money)
The following theorem is, essentially, equivalent to Sand-
holm’s result regarding the sufficiency of the combined con-
tract type for finding a task allocation with maximal social
welfare [12, Prop. 10].

It states that, for any sequence of (combined) deals such
that each deal in the sequence is individually rational and
after the final deal in the sequence no more individually
rational deals are possible, the allocation reached at the end
of the sequence must have maximal social welfare.

Theorem 1 (Sufficient deals with money). Any
sequence of combined deals (with money) that are individ-
ually rational will eventually result in a resource allocation
with maximal social welfare.

Proof. By Lemma 1, any individually rational deal will
strictly increase social welfare. Hence, as the number of
distinct allocations is finite, negotiation will terminate after
a finite number of deals. Now, for the sake of contradic-
tion, let us assume that negotiation terminates with a non-
optimal allocation A, that is, there exists another allocation
A′ with sw(A) < sw(A′). But then, by Lemma 1, the deal
δ = (A,A′) would be individually rational and thereby pos-
sible, which contradicts our earlier assumption of A being a
terminal allocation.

At first sight, this result may seem almost trivial. The
notion of a combined deal is a very powerful one. A sin-
gle deal of this type allows for any number of resources to
be moved between any number of agents. From this point
of view, it is not particularly surprising that we can always



reach an optimal allocation (even in just a single step!). Fur-
thermore, finding a suitable combined deal is a very complex
task, which may not always be viable in practice. So, one
may ask, is this kind of result really relevant?

It is relevant. The true power of Theorem 1 is in the fine
print: any sequence of deals will result in an optimal allo-
cation. That is, whatever deals are agreed on in the early
stages of the negotiation, the system will never get stuck
in a local optimum and finding an allocation with maximal
social welfare remains an option throughout. Given the re-
striction to deals that are individually rational for all the
agents involved, social welfare must increase with every sin-
gle deal. Therefore, negotiation always pays off, even if it
has to stop early due to computational limitations.

The issue of complexity is still an important one. If the
full range of deals is too large to be managed in practice, it
is important to investigate how close we can get to finding
an optimal allocation if we restrict the set of allowed deals
to certain simple patterns. Andersson and Sandholm [1],
for instance, have conducted a number of experiments on
the sequencing of certain contract types to reach the best
possible allocations within a limited amount of time.

3.3 Necessary Deals (with Money)
The next theorem corresponds to Sandholm’s main result
regarding necessary contract types [12, Prop. 11].

It states that for any given negotiation system (A,R) and
any deal δ for that system there is an instance of the resource
allocation problem (that is, there are particular utility func-
tions and a particular initial allocation) such that δ is nec-
essary to be able to reach an allocation of resources with
maximal social welfare. All other findings on the insuffi-
ciency of certain types of contracts reported in [12] may be
considered corollaries to this. For instance, the fact that,
say, cluster deals alone are not sufficient to guarantee opti-
mal outcomes follows from this theorem if we take δ to be
any particular swap deal for the system in question.

Theorem 2 (Necessary deals with money). Let
the sets of agents and resources be fixed. Then for every
deal δ there is a resource allocation problem with money
such that δ is necessary to reach a resource allocation with
maximal social welfare.

Proof. Given a set of agents A and a set of resources R,
let δ = (A,A′) with A 6= A′ be any deal for this system. We
need to show that there are a collection of utility functions
U and an initial allocation such that δ is necessary to reach
an allocation with maximal social welfare. This would be
the case if A′ had maximal social welfare, A had the second
highest social welfare, and A was the initial allocation of
resources. As we have A 6= A′, there must be an agent
j ∈ A such that A(j) 6= A′(j). We now fix utility functions
ui for agents i ∈ A and sets of resources R ⊆ R as follows:

ui(R) =

 2 if R = A′(i) or (R = A(i) and i 6= j)
1 if R = A(i) and i = j
0 otherwise

We get sw(A′) = 2 · |A|, sw(A) = sw(A′) − 1, and
sw(B) < sw(A) for any other allocation B. That is, A′ is
the (unique) allocation with maximal social welfare and the
only allocation with higher social welfare than A. Therefore,
if we make A the initial allocation then δ = (A,A′) would
be the only deal increasing social welfare. By Lemma 1, this

means that δ would be the only individually rational (and
thereby the only possible) deal. Hence, δ is indeed necessary
to achieve maximal social welfare.

3.4 Unlimited Amounts of Money
An implicit assumption made in the framework that we have
presented so far is that every agent has got an ‘unlimited’
amount of money available to it to be able to pay other
agents whenever this is required for a deal that would in-
crease social welfare. Concretely, if A is the initial allocation
and A′ is the allocation with maximal social welfare, then
agent i may require an amount of money just below the
difference ui(A

′)−ui(A) to be able to get through the nego-
tiation process. In the context of task contracting, for which
this framework has been proposed originally [12], this may
be justifiable, at least if we are mostly interested in the real-
location of tasks and consider ‘money’ merely a convenient
way of keeping track of the utility transfers between friendly
agents. For resource allocation problems, on the other hand,
it seems questionable to make assumptions about the unlim-
ited availability of one particular resource, namely money.

Sandholm [12] also suggests to allow for a special cost
value ∞ associated with tasks that an agent is unable to
carry out. While this adds to the variety of scenarios that
can be modelled in this framework, it also further aggravates
the aforementioned problem. If we were to transfer this
idea to our resource allocation scenarios, we could extend
the domain of utility functions to include two special values
∞ and −∞. The intended interpretation of, say, ui(R) =
∞ would be that agent i would be prepared to pay just
about any price in order to obtain the resources in R, while
ui(R) = −∞ may be read as agent i having to get rid of the
set of resources R, again, at all costs. Unfortunately, these
are not just figures of speech. Indeed, if we were to include
either ∞ or −∞ into our negotiation framework, then we
would have to make the assumption that agents have truly
unlimited amounts of money at their disposal—otherwise
the theoretical results of [12] and the corresponding results
presented here, will not apply anymore.

4. SCENARIOS WITHOUT MONEY
As argued before, making assumptions about the unlimited
availability of money to compensate other agents for disad-
vantageous deals is not realistic for all application domains.
In this section, we investigate, to what extent the theoret-
ical results of [12] and the previous section still apply for
resource allocation problems without money.

In scenarios without money, that is, if we do not allow
for compensatory payments, we cannot always guarantee an
outcome with maximal social welfare. This is, for instance,
the case for the following simple problem:

Agent 1 Agent 2
A0(1) = {r} A0(2) = { }
u1({ }) = 0 u2({ }) = 0
u1({r}) = 4 u2({r}) = 7

Here, passing resource r from agent 1 to agent 2 would
increase social welfare by an amount of 3. For the framework
with money, agent 2 could pay agent 1, say, the amount of
5.5 and the deal would be individually rational for both of
them. Without money, however, no deal is possible and
negotiation must terminate with a non-optimal allocation.



4.1 Cooperative Rationality
As maximising social welfare is not generally possible, in-
stead we are going to investigate whether a Pareto optimal
outcome is possible in the framework without money, and
what types of deals are sufficient to guarantee this. In the
context of our utilitarian framework, an allocation is Pareto
optimal iff there is no other allocation where social welfare
is higher while no single agent has lower utility.

Definition 8 (Pareto optimality). An allocation
A is called Pareto optimal iff there is no allocation A′ such
that sw(A) < sw(A′) and ui(A) ≤ ui(A′) for all i ∈ A.

This formulation is equivalent to the more commonly used
one: “An agreement is Pareto optimal if there is no other
agreement [. . . ] that is better for some of the agents and
not worse for the others.” (quoted after [6]).

As will become clear in due course, in order to get a suf-
ficiency result, we need to relax the notion of individual
rationality a little. For the framework without money, we
also want agents to agree to a deal, if this at least maintains
their utility (that is, no strict increase is necessary). This
is a reasonable additional requirement for scenarios where
agents can be assumed to be cooperative, at least to the de-
gree of not being explicitly malicious. However, we are still
going to require at least one agent to strictly increase their
utility. This could, for instance, be the agent proposing the
deal in question. (It would make little sense, even for a co-
operative agent, to actively propose a deal that would not
result in at least a small payoff.) We call deals of this type
cooperatively rational.

Definition 9 (Cooperative rationality). A deal
δ = (A,A′) is called cooperatively rational iff ui(A) ≤ ui(A′)
for all i ∈ A and there exists an agent j ∈ A such that
uj(A) < uj(A

′).

Observe that, in analogy to Lemma 1, we still have
sw(A) < sw(A′) for any deal δ = (A,A′) that is cooper-
atively rational, but not vice versa.

4.2 Sufficient Deals (without Money)
The following theorem shows that the class of cooperatively
rational deals is sufficient to guarantee a Pareto optimal
outcome of negotiations without money. It constitutes the
analogue to Theorem 1 for the money-free framework.

Theorem 3 (Sufficient deals without money).

Any sequence of combined deals (without money) that are
cooperatively rational will eventually result in a Pareto
optimal allocation of resources.

Proof. Every cooperatively rational deal strictly in-
creases social welfare.1 Together with the fact that there are
only finitely many allocations, this implies that any negoti-
ation will eventually terminate. For the sake of contradic-
tion, assume negotiation ends with allocation A, but A is not
Pareto optimal. The latter means that there exists another
allocation A′ with sw(A) < sw(A′) and ui(A) ≤ ui(A

′) for
all i ∈ A. If we had ui(A) = ui(A

′) for all i ∈ A, then also
sw(A) = sw(A′), that is, there must be at least one j ∈ A
with uj(A) < uj(A

′). But then the deal δ = (A,A′) would
be cooperatively rational, which contradicts our assumption
of A being a terminal allocation.
1This is where we need the condition that at least one agent
behaves truly individually rational for each deal.

Observe that the proof would not have gone through if
deals were required to be strictly individually rational, as
this would necessitate ui(A) < ui(A

′) for all i ∈ A. Co-
operative rationality means, for instance, that agents would
be prepared to give away resources that they assign a util-
ity value of 0 to, without expecting anything in return. In
the framework with money, another agent could always of-
fer such an agent an infinitesimally small amount of money,
who would then accept the deal. So our proposed weakened
notion of rationality seems indeed a very reasonable price to
pay for giving up money.

4.3 Necessary Deals (without Money)
As our next result shows, also for the framework without
money, each and every deal may be necessary in order to be
able to guarantee an optimal outcome of a negotiation.

Theorem 4 (Necessary deals without money).

Let the sets of agents and resources be fixed. Then for every
deal δ there is a resource allocation problem without money
such that δ is necessary to reach a Pareto optimal allocation
of resources.

Proof. Let δ = (A,A′) with A 6= A′. We try to fix utility
functions ui in such a way that A′ has the highest and A has
the second highest social welfare, and that ui(A) ≤ ui(A

′)
for all agents i ∈ A. As we have A 6= A′, there must be
a j ∈ A such that A(j) 6= A′(j). We now define utility
functions as follows:

ui(R) =

 2 if R = A′(i) or (R = A(i) and i 6= j)
1 if R = A(i) and i = j
0 otherwise

We get sw(A′) = 2·|A|, sw(A) = sw(A′)−1, and sw(B) <
sw(A) for all other allocations B. We also have ui(A) ≤
ui(A

′) for all i ∈ A. Hence, A is not Pareto optimal, but
A′ is. If we make A the initial allocation, then δ would
be the only cooperatively rational deal (as every other deal
would decrease social welfare), i.e. δ is indeed necessary to
guarantee a Pareto optimal outcome.

Observe that, while this proof has been very similar to
the proof of Theorem 2, now we also required the additional
condition of ui(A) ≤ ui(A′) for all i ∈ A.

It is interesting to compare Theorems 3 and 4 with a
recent result of McBurney, Parsons, and Wooldridge [7],
which states, quite generally, that whenever agents, that are
“purely self-interested and without malice, engage freely and
without duress in a negotiation dialogue” using a protocol
that is inclusive (no agent is prevented from participating),
transparent (the rules of the game are known to all agents),
and fair (all agents are treated equally), and whenever that
dialogue “is conducted with neither time constraints nor
processing-resource constraints”, then the outcome reached
will be Pareto optimal. All these side-constraints are fulfilled
in our abstract framework, where the behaviour of agents is
essentially governed by the notion of cooperative rational-
ity. Therefore, Theorem 4 suggests that we have to interpret
the quoted lack of “processing-resource constraints” at least
in the following broad sense. Firstly, agents need sufficient
computational resources to be able to propose and evaluate
the required sequence of deals. (This is what is commonly
understood by lack of processing-resource constraints.) Sec-
ondly, to be able to communicate proposals we also require a



negotiation protocol based on an agent communication lan-
guage that is rich enough to represent every possible deal.
Amongst other things, this means that the protocol must al-
low for more than just two agents to agree on a transaction
(namely in the case of multiagent deals).

5. SPECIFIC UTILITY FUNCTIONS
Theorems 2 and 4 are negative results in the sense that they
show that deals of any complexity may be required in order
to guarantee an optimal outcome of a particular negotiation.
This is partly a consequence of the high degree of generality
of our two frameworks. In Section 2, we have defined utility
functions as arbitrary functions from sets of resources to
real numbers. For many application domains this may be
unnecessarily general or even inappropriate and we may be
able to obtain stronger results for specific classes of utility
functions. In this section, we discuss some examples.

Clearly, the results on the sufficiency of the combined deal
type established in Theorems 1 and 3 will still apply, what-
ever restrictions we may put on utility functions. Interesting
new results could be either that a weaker deal type is suffi-
cient for certain domains or that the combined deal type is
still necessary, even for a restricted class of utility functions.

5.1 Basic Restrictions
In general, there may be certain resources we would like
to assign a negative utility to (e.g. ‘five tons of radioactive
waste’), but in many domains non-negative utility functions
will suffice.

Definition 10 (Non-negative utility). We call a
utility function ui non-negative iff ui(R) ≥ 0 holds for every
set of resources R ⊆ R.

An inspection of the particular utility functions used in
the proofs of Theorems 2 and 4 reveals that all results on
the necessity of deals still apply for scenarios where utility
functions are required to be non-negative. As we shall see
next, this will not be the case anymore if we add a further,
seemingly innocent, restriction. A slightly stronger require-
ment than non-negative utility would be to assign at least a
small positive value to every non-empty set of resources.

Definition 11 (Positive utility). We call a utility
function ui positive iff it is non-negative and ui(R) 6= 0
holds for all sets of resources R ⊆ R with R 6= { }.

For positive utility functions, Theorem 4 does not hold
anymore. To see this, first observe that any deal that would
involve a particular agent (with a positive utility function)
giving away all its resources without receiving anything in
return could never be cooperatively rational. Hence, such a
deal could never be necessary to achieve a Pareto optimal
allocation either, because this would contradict Theorem 3,
which states that the set of cooperatively rational deals alone
is sufficient to guarantee a Pareto optimal outcome.

5.2 Additive Scenarios
We call a utility function ui additive iff the value ascribed
to a set of resources is always the sum of the values of
its members. This corresponds to the notion of modu-
lar task-oriented domains discussed by Rosenschein and
Zlotkin [10]. Additive utility functions are appropriate for
scenarios where combining resources does not result in any
synergy effects (in the sense of increasing an agent’s welfare).

Definition 12 (Additive utility). We call a utility
function ui additive iff we have ui(R) =

∑
r∈R ui({r}) for

every set of resources R ⊆ R.

The following theorem shows that for domains with addi-
tive utility functions the simple one-resource-at-a-time deal
type is sufficient to guarantee outcomes with maximal social
welfare in the framework with money.2

Theorem 5 (Additive scenarios). If the utility
functions of all agents are additive, then any sequence
of one-resource-at-a-time deals (with money) that are
individually rational will eventually result in a resource
allocation with maximal social welfare.

Proof. Termination is shown as for Theorem 1. We are
going to show that whenever the current allocation does not
have maximal social welfare, then there still is a possible
one-resource-at-a-time deal that is individually rational.

In additive domains, the social welfare of a given alloca-
tion may be computed by adding up the appropriate utility
values for all the single resources in R (the full set of re-
sources present in the society). For any allocation A, let
fA be the function mapping each resource r ∈ R to the
agent i ∈ A that holds r in situation A (that is, we have
r ∈ A(i)). The social welfare for allocation A is then given
by the following equation:

sw(A) =
∑
r∈R

ufA(r)({r})

Now suppose that negotiation has terminated with alloca-
tion A. Furthermore, for the sake of contradiction, assume
that A is not an allocation with maximal social welfare, i.e.
there exists another allocation A′ with sw(A) < sw(A′).
But then, by the above characterisation of social welfare for
additive scenarios, there must be at least one resource r ∈ R
such that ufA(r)({r}) < ufA′ (r)({r}). That is, the one-
resource-at-a-time deal δ of passing r from agent fA(r) on to
agent fA′(r) would increase social welfare. So by Lemma 1,
δ must be individually rational, i.e. contrary to our earlier
assumption, A cannot be a terminal allocation. Hence, A
must be an allocation with maximal social welfare.

5.3 0-1 Scenarios
An additive utility function ui may assign either 0 or 1 to
each single resource. This may be sufficient if we simply wish
to distinguish whether or not the agent needs a particular
resource (to execute a given plan, for example). This is, for
instance, the case for some of the agents defined in [11].

Definition 13 (0-1 utility). We call a utility func-
tion ui a 0-1 function iff it is additive and ui({r}) = 0 or
ui({r}) = 1 for every single resource r ∈ R.

As the following theorem shows, for 0-1 scenarios, the one-
resource-at-a-time deal type is even sufficient to guarantee
maximal social welfare in the framework without money.

Theorem 6 (0-1 scenarios). If the utility functions
of all agents are 0-1, then any sequence of one-resource-at-
a-time deals (without money) that are cooperatively rational
will eventually result in a resource allocation with maximal
social welfare.
2This has also been observed by T. Sandholm (personal commu-
nication, September 2002).



Proof. Termination is shown as for Theorem 3. If an
allocation A does not have maximal social welfare then it
must be the case that some agent i holds a resource r with
ui({r}) = 0 and there is another agent j in the system with
uj({r}) = 1. Passing r from i to j would be a cooperatively
rational deal, so either negotiation has not yet terminated
or we are in a situation with maximal social welfare.

6. CONCLUSIONS
We believe that the main contribution of this paper lies in
the transfer of Sandholm’s results on necessary and suffi-
cient conditions for optimal outcomes in negotiation scenar-
ios with money (as reported in [12]) to a framework without
money. This involved replacing the notion of (strict) indi-
vidual rationality with the notion of cooperative rational-
ity, and the optimality criterion of maximal social welfare
with the weaker concept of Pareto optimality. The techni-
cal results here are Theorems 3 and 4 on the sufficiency of
combined deals and the necessity of all deals, respectively.
Other contributions include our results on the sufficiency of
the one-resource-at-a-time deal type for additive scenarios
with money and 0-1 scenarios without money.

In the remainder of the paper, we briefly discuss a number
of possible directions for future research in this area.

6.1 Utility Functions and Deal Types
At this stage, theoretical results fall into two extremes: On
the one hand, we know that in the general case only the very
powerful combined deals are sufficient to guarantee optimal
outcomes. On the other hand, we have examples for specific
scenarios where the very simple one-resource-at-a-time deal
type is sufficient. Future work should aim at establishing a
clearer connection between utility functions and deal types.
Given a particular class of utility functions, what types of
deals would be sufficient to guarantee optimal outcomes?
Similarly, given a particular set of deals, what would be the
largest admissible class of utility functions?

6.2 Explicit Representation of Money
It is possible to use appropriate utility functions to model
money explicitly. This can be achieved by forcing the utility
functions of all the agents in the system to have the same
global value for certain sets of resources, namely those that
represent money. Such a framework would have the poten-
tial of avoiding the general problem of ‘unlimited money’
addressed earlier, while still allowing for negotiation results
with maximal social welfare whenever there are sufficient
amounts of money in the system.

6.3 Welfare Engineering
The utilitarian interpretation of social welfare is often taken
for granted in the multiagent systems literature (e.g. [7, 12]).
Lemma 1 shows that this is in fact the right notion for the
kind of scenarios we have considered here. However, for
different types of scenarios it may be of interest to inves-
tigate different types of measures studied in the literature
on welfare economics. We have already mentioned the case
of egalitarian welfare functions. Another option would be,
for example, to search for conditions that guarantee allo-
cations of resources that are envy-free [3]. In our frame-
work, we would call an allocation A envy-free iff we have
ui(A(i)) ≥ ui(A(j)) for all i, j ∈ A, that is, iff no agent

would rather have the set of resources allocated to one of
the other agents in the society.

For cooperatively rational agents, we cannot hope for ei-
ther maximal egalitarian social welfare or envy-free out-
comes in the general case. For applications where such out-
comes would be desirable, alternative criteria for the accept-
ability of deals to individual agents need to be developed.

6.4 Protocol Design
Our framework may also provide practical guidelines for the
design of concrete negotiation protocols. For example, if the
application domain in question can be modelled in terms
of additive or even 0-1 utility functions, then Theorems 5
and 6 tell us that it would be inappropriate to allow for
dialogue moves for proposing, say, swap deals. At the other
end of the spectrum, for domains where we cannot make
any strong assumptions on the nature of utility functions,
Theorems 2 and 4 show that, ideally, a good protocol should
enable agents to agree on any kind of deal.
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