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Abstract. In this work, we extend the architecture of agents (and robots) based
upon fixed, one-size-fits-all cycles of operation, by providing a framework of
declarative specification of agent control. Control is given in terms ofcycle the-
ories, which define in a declarative way the possible alternative behaviours of
agents, depending on the particular circumstances of the (perceived) external en-
vironment in which they are situated, on the internal state of the agents at the
time of operation, and on the agents’ behavioural profile. This form of control
is adopted by the KGP model of agency and has been successfully implemented
in the PROSOCS platform. We also show how, via cycle theories, we can for-
mally verify properties of agents’ behaviour, focusing on the concrete property
of agents’interruptibility. Finally, we give some examples to show how different
cycle theories give rise to different, heterogeneous agents’ behaviours.

1 Introduction

To make theories of agency practical, normally a control component is proposed within
concrete agent (robot) architectures. Most such architectures rely upon a fixed, one-size-
fits-all cycle of control, which is forced upon the agents whatever the situation in which
they operate. This kind of control has many drawbacks, and has been criticised by many
(e.g. in robotics), as it does not allow us to take into account changes in the environment
promptly and it does not take into account agent’s preferences and “personality”.

In this paper, we present an alternative approach, which models agents’ control via
declarative, logic-basedcycle theories, which provideflexible controlin that: (i) they
allow the same agent to exhibit different behaviour in different circumstances (internal
and external to the agent), thus extending in a non-trivial way conventional, fixed cycles
of behaviour, (ii) they allow us to state and verify formal properties of agent behaviour
(e.g. their interruptibility), and thus (iii) provide implementation guidelines to design
suitable agents for suitable applications. Furthermore, cycle theories allow different
agents to have different patterns of behaviour in the same circumstances, by varying
few, well-identified components. Thus, by adopting different cycle theories we obtain
behaviourallyheterogeneousagents.

The notion of cycle theory and its use to determine the behaviour of agents can in
principle be imported into any agent system, to replace conventional fixed cycles. How-
ever, in defining the cycle theory of an agent, we will assume that the agent is equipped
with a pool ofstate transitionsthat modify its internal state. We will understand the



operation of agents simply in terms of sequences of such transitions. Such sequences
can be obtained fromfixed cyclesof operation of agents as in most of the literature.
Alternatively, such sequences can be obtained via fixed cycles together with the pos-
sibility of selecting amongst such fixed cycles according to some criteria e.g. the type
of external environment in which the agent will operate (see the recent work of [4]).
Yet another possibility, that we pursue in this paper, is to specify the required operation
via more versatile cycle theories that are able to generate dynamically several cycles of
operations according to the current need of the agent. This approach has been adopted
in the KGP model of agency [8, 2] and implemented in the PROSOCS platform [16].

We will define a cycle theory as a logic program with priorities over rules. The
rules represent possible follow-ups of (already executed) transitions. The priorities ex-
press high-level preferences of the particular agent equipped with the cycle theory, that
characterise the operational behaviour of the agent, e.g. a preference in testing the pre-
conditions of an action before it tries to execute it. We will assume that the choice for
the next transition depends only on the transition that has just been executed (and the
resulting state of the agent), and not on the longer history of the previous transitions.
We believe this not to be restrictive, in that the effects of any earlier transitions may in
any case be recorded in the internal state of the agent and reasoned upon by it. Also,
the approach can be extended to take into account longer histories of transitions when
deciding the next one.

2 Background

Cycle theories will be written in the general framework of Logic Programming with
Priorities (LPP). Our approach does not rely on any concrete such framework. One
such concrete framework could be the Logic Programming without Negation as Failure
(LPwNF) [5, 9] suitably extended to deal with dynamic preferences [10]. Other concrete
frameworks that could be used for LPP are, for instance, those presented in [13, 12].
Note also that our approach does not depend crucially on the use of the framework
of LPP: other frameworks for the declarative specification of preference policies, e.g.
Default Logic with Priorities [3], could be used instead. Note, however, that the use of a
logic-based framework where priorities are encoded within the logic itself is essential,
since it allows reasoning even with potentially contradictory preferences. Also, note
that the choice of one logic rather than another might affect the properties of agents
specified via cycle theories.

For the purposes of this paper, we will assume that anLPP-theory, referred to asT ,
consists of four parts:

(i) a low-level partP , consisting of a logic program; each rule inP is assigned a name,
which is a term; e.g., one such rule could be

n(X) : p(X)← q(X,Y ), r(Y )
with namen(X);

(ii) a high-level partH, specifying conditional, dynamic priorities amongst rules inP ;
e.g., one such priority could be

h(X) : n(X) � m(X)← c(X)



to be read: if (some instance of) the conditionc(X) holds, then the rule inP with
name (the corresponding instance of)n(X) should be given higher priority than
the rule inP with name (the corresponding instance of)m(X). The rule is given a
name,h(X);

(iii) an auxiliary partA, defining predicates occurring in the conditions of rules inP
andH and not in the conclusions of any rule inP ;

(iv) a notion of incompatibility which, for the purposes of this paper, can be assumed
to be given as a set of rules defining the predicateincompatible, e.g.

incompatible(p(X), p′(X))
to be read: any instance of the literalp(X) is incompatible with the corresponding
instance of the literalp′(X). We assume that incompatibility is symmetric, and
refer to the set of all incompatibility rules asI.

Any concrete LPP framework is equipped with a notion of entailment, that we denote
by |=pr. Intuitively, T |=prα iff α is the “conclusion” of a sub-theory ofP ∪A which is
“preferred” wrtH ∪ A in T over any other any other sub-theory ofP ∪ A that derives
“conclusion” incompatible withα (wrt I). Here, we are assuming that the underlying
logic programming language is equipped with a notion of “entailment” that allows to
draw “conclusions”. In [13, 12, 10, 9, 5],|=pr is defined via argumentation.

3 Abstract agent model

We assume that our agents conform to the following abstract model, which can be seen
as a high-level abstraction of most agent systems in the literature. Agents are equipped
with

– someinternal state, which changes over the life-time of the agent, and is formalised
in some logic-based language or via some concrete data structure in some program-
ming language;

– some pool of(state) transitions, that modify the state of the agent, and may take
some inputs to be “computed” or selected by

– someselection functionson their states.

For example, the state may consist of beliefs, desires and intentions, represented in some
modal logics, as in the BDI architecture [14] and its follow-ups, e.g. [1], or commit-
ments and commitment rules, as in [15], or beliefs, goals and capabilities, represented
in concurrent logic programming, as in [7], or knowledge, goals and plan, represented
in (extensions of) logic programming, as in [11].

The transitions in the given pool can be any, but, if we abstract away from existing
agent architectures and models in the literature, we can see that we need at least a transi-
tion responsible for observing the environment, thus rendering the agents situated. This
transition might modify the internal state differently in concrete agent architectures, to
record the observed events and properties of the environment. Here, we will call such
a transitionPassive Observation Introduction(POI). POI is “passive” in the sense that,
via such a transition, the agent does not look for anything special to observe, but rather
it opens its “reception channel” and records any inputs what its sensors perceive. An-
other transition that is present in most agent systems is that ofAction Execution(AE),



whereby actions may be “physical”, communicative, or “sensing”, depending on the
concrete systems.

Other useful transitions besides POI and AE (see e.g. [8, 2]) may include Goal In-
troduction (GI), to introduce new goals into the state of the agent, taking into account
changes to the state and to the external environment that somehow affect the preferences
of the agent over which goals to adopt, Plan Introduction (PI), to plan for goals, Reac-
tivity (RE), to react to perceived changes in the environment by means of condition-
action/commitment-like rules, Sensing Introduction (SI), to set up sensing actions for
sensing the preconditions of actions in the agent’s plan, to make sure these actions are
indeed executable, Active Observation Introduction (AOI), to actively seek informa-
tion from the environment, State Revision (SR) to revise the state currently held by the
agent, and Belief Revision (BR), e.g. by learning.

Whatever pool of transitions one might choose, and whatever their concrete speci-
fication might be, we will assume that they are represented as

T (S,X, S′, τ)
whereS is the state of the agent before the transition is applied andS′ the state after,
X is the (possibly empty) input taken by the transition, andτ is the time of application
of the transition. Note that we assume the existence of aclock(possibly external to the
agent and shared by a number of agents), whose task is to mark the passing of time. The
clock is responsible for labelling the transitions with the time at which they are applied.
This time (and thus the clock) might play no role in some concrete agent architectures
and models, where time is not reasoned upon explicitly. However, if the framework
adopted to represent the state of the agent directly manipulates and reasons with time,
the presence of a clock is required. Note also that the clock is useful (if not necessary)
to label executed actions, and in particular communicative actions, to record their time
of execution, as foreseen e.g. by FIPA standards for communication [6].

As far as the selection functions are concerned, we will assume that each transition
T available to the agent is equipped with a selection functionfT , whose specification
depends on the representation chosen for the state and on the specification of the tran-
sition itself. For example, AE is equipped with a selection functionfAE responsible
for choosing actions to be executed. These actions may be amongst those actions in
the plan (intention/commitment store) part of the state of the agent whose time has not
run-out at the time of selection (and application of the transition) and belonging to a
plan for some goal which has not already been achieved by other means.

In the next Section, we will see that, for fixed cycles, the role of the selection func-
tions is exclusively to select the inputs for the appropriate transition when the turn of the
transition comes up. Later, in Section 5, we will see that the role of selection functions
when using cycle theories is to help decide which transition is preferred and should be
applied next, as well as provide its input.

4 Fixed cycles and fixed operational trace

Both for fixed cycles and cycle theories, we will assume that the operation of an agent
will start from someinitial state. This can be seen as the state of the agent when it is
created. The state then evolves via the transitions, as commended by the fixed cycle or



cycle theory. For example, the initial state of the agent could have an empty set of goals
and an empty set of plans, or some designer-given goals and an empty set of plans. In
the sequel, we will indicate the given initial state asS0.

A fixed cycleis a fixed sequence of transitions of the form
T1, . . . , Tn

where eachTi, i = 1, . . . , n, is a transition chosen from the given pool, andn ≥ 2.
A fixed cycle induces afixed operational traceof the agent, namely a (typically

infinite) sequence of applications of transitions, of the form
T1(S0, X1, S1, τ1), T2(S1, X2, S2, τ2), . . . , Tn(Sn−1, Xn, Sn, τn),
T1(Sn, Xn+1, Sn+1, τn+1), . . . , Tn(S2n−1, X2n, S2n, τ2n), . . .

where, for eachi ≥ 1, fTi(Si−1, τi) = Xi, namely, at each stage,Xi is the (possibly
empty) input for the transitionTi chosen by the corresponding selection functionfTi .

Then, a classical “observe-think-act” cycle (e.g. see [11]) can be represented in our
approach as the fixed cycle:

POI,RE,PI,AE,AOI.
As a further example, a purely reactive agent, e.g. with its knowledge consisting of
condition-action rules, can execute the cycle

POI,RE,AE.
Note that POI is interpreted here as a transition which is under the control of the agent,
namely the agent decides when it is time to open its “reception channel”. Below, in
Section 8, we will see a different interpretation of POI as an “interrupt”.

Note that, although fixed cycles such as the above are quite restrictive, they may
be sufficiently appropriate in some circumstances. For example, the cycle for a purely
reactive agent may be fine in an environment which is highly dynamic. An agent may
then be equipped with a catalogue of fixed cycles, and a number of conditions on the
environment to decide when to apply which of the given cycles. This would provide
for a (limited) form of intelligent control, in the spirit of [4], paving the way toward
the more sophisticated and fully declarative control via cycle theories given in the next
Section.

5 Cycle theories and cycle operational trace

The role of the cycle theory is to dynamically control the sequence of the internal tran-
sitions that the agent applies in its “life”. It regulates these “narratives of transitions”
according to certain requirements that the designer of the agent would like to impose
on the operation of the agent, but still allowing the possibility that any (or a number
of) sequences of transitions can actually apply in the “life” of an agent. Thus, whereas
a fixed cycle can be seen as a restrictive and rather inflexible catalogue of allowed se-
quences of transitions (possibly under pre-defined conditions), a cycle theory identifies
preferred patternsof sequences of transitions. In this way a cycle theory regulates in a
flexible way the operational behaviour of the agent.

Formally, a cycle theoryTcycle consists of the following parts.

– An initial partTinitial, that determines the possible transitions that the agent could
perform when it starts to operate (initial cycle step). More concretely,Tinitial con-
sists of rules of the form



∗T (S0, X)← C(S0, τ,X), now(τ)
sanctioning that, if the conditionsC are satisfied in the initial stateS0 at the current
time τ , then the initial transition should beT , applied to stateS0 and inputX, if
required. Note thatC(S0, τ,X) may be absent, andTinitial might simply indicate
a fixed initial transitionT1.
The notation∗T (S,X) in the head of these rules, meaning that the transitionT can
be potentially chosen as the next transition, is used in order to avoid confusion with
the notationT (S,X, S′, τ) that we have introduced earlier to represent the actual
application of the transitionT .

– A basicpartTbasic that determines the possible transitions (cycle steps) following
other transitions, and consists of rules of the form
∗T ′(S′, X ′)← T (S,X, S′, τ), EC(S′, τ ′, X ′), now(τ ′)

which we refer to via the nameRT |T ′(S′, X ′). These rules sanction that, after the
transitionT has been executed, starting at timeτ in the stateS and ending at the
current timeτ ′ in the resulting stateS′, and the conditionsEC evaluated inS′ atτ ′

are satisfied, then transitionT ′ could be the next transition to be applied in the state
S′ with the (possibly empty) inputX ′, if required. The conditionsEC are called
enabling conditionsas they determine when a cycle-step from the transitionT to
the transitionT ′ can be applied. In addition, they determine the inputX ′ of the
next transitionT ′. Such inputs are determined by calls to the appropriate selection
functions.

– A behaviourpartTbehaviour that contains rules describing dynamic priorities amongst
rules inTbasic andTinitial. Rules inTbehaviour are of the form
RT |T ′(S,X ′) �RT |T ′′(S,X ′′)←BC(S,X ′, X ′′, τ), now(τ)
with T ′ 6= T ′′, which we will refer to via the namePTT ′�T ′′ . Recall thatRT |T ′(·)
andRT |T ′′(·) are (names of) rules inTbasic ∪ Tinitial. Note that, with an abuse of
notation,T could be 0 in the case that one such rule is used to specify a priority over
the first transition to take place, in other words, when the priority is over rules in
Tinitial. These rules inTbehaviour sanction that, at the current timeτ , after transition
T , if the conditionsBC hold, then we prefer the next transition to beT ′ overT ′′,
namely doingT ′ hashigher priority than doingT ′′, afterT . The conditionsBC
are calledbehaviour conditionsand give the behavioural profile of the agent. These
conditions depend on the state of the agent afterT and on the parameters chosen
in the two cycle steps represented byRT |T ′(S,X ′) andRT |T ′′(S,X ′′). Behaviour
conditions areheuristicconditions, which may be defined in terms of theheuristic
selection functions, where appropriate. For example, the heuristic action selection
function may choose those actions in the agent’s plan whose time is close to running
out amongst those whose time has not run out.

– An auxiliary part including definitions for any predicates occurring in the enabling
and behaviour conditions, and in particular for selection functions (including the
heuristic ones, if needed).

– An incompatibility part, including rules stating that all different transitions are in-
compatible with each other and that different calls to the same transition but with
different input items are incompatible with each other. These rules are facts of the
form
incompatible(∗T (S,X), ∗T ′(S,X ′))←



for all T, T ′ such thatT 6= T ′, and of the form
incompatible(∗T (S,X), ∗T (S,X ′))← X 6= X ′

expressing the fact that only one transition can be chosen at a time.

Hence,Tcycle is an LPP-theory (see Section 2) where:
(i) P = Tinitial ∪ Tbasic, and (ii)H = Tbehaviour.
In the sequel, we will indicate withT 0

cycle the sub-cycle theoryTcycle \ Tbasic and
with T scycle the sub-cycle theoryTcycle \ Tinitial.

The cycle theoryTcycle of an agent is responsible for the behaviour of the agent,
in that it induces acycle operational traceof the agent, namely a (typically infinite)
sequence of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi),
Ti+1(Si, Xi+1, Si+1, τi+1), . . .

(where each of theXi may be empty), such that

– S0 is the given initial state;
– for eachi ≥ 1, τi is given by the clock of the system, with the property thatτi <
τi+i;

– (Initial Cycle Step) T 0
cycle ∧ now(τ1) |=pr ∗T1(S0, X1);

– (Cycle Step) for eachi ≥ 1
T scycle ∧ Ti(Si−1, Xi, Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si, Xi+1)
namely each (non-final) transition in a sequence is followed by the most preferred
transition, as specified byTcycle.

If, at some stage, the most preferred transition determined by|=pr is not unique, we
choose arbitrarily one.

Note that, for simplicity, the above definition of operational trace prevents the agent
from executing transitionsconcurrently. However, a first level of concurrency can be
incorporated within traces, by allowing all preferred transitions to be executed at ev-
ery step. For this we would only need to relax the above definition ofincompatible
transitions to be restricted between any two transitions whose executions could inter-
act with each other and therefore cannot be executed concurrently on the same state,
e.g. the Plan Introduction and State Revision transitions. This would then allow several
transitions to be chosen together as preferred next transitions and a concurrent model
of operation would result by carrying out simultaneously the (non-interacting) state up-
dates imposed by these transitions. Further possibilities of concurrency will be subject
of future investigations.

In section 8 we will provide a simple extension of the notion of operational trace
defined above.

6 Fixed versus flexible behaviour

Cycle theories generalise fixed cycles in that the behaviour given by a fixed operational
trace can be obtained via the behaviour given by a cycle operational trace, for some
special cycle theories. This is shown by the following theorem, which refers to the
notions offixed cycleandfixed operational traceintroduced in Section 4.



Theorem 1. LetT1, . . . , Tn be afixed cycle, and letfTi be a given selection function
for eachi = 1, . . . , n. Then there exists a cycle theoryTcycle which induces a cycle
operational trace identical to the fixed operational trace induced by the fixed cycle.

Proof. The proof is by construction as follows.

– Tinitial consists of the rule
∗T1(S0, X)← now(τ)
i.e. the initial transition is simplyT1.

– Tbasic consists of the following rules, for eachi with 2 ≤ i ≤ n:
∗Ti(S′, X ′)← Ti−1(S,X, S′, τ), now(τ ′), X ′ = fTi(S

′, τ ′).
In additionTbasic contains the rule
∗T1(S′, X ′)← Tn(S,X, S′, τ), now(τ ′), X ′ = fT1(S′, τ ′).

– Tbehaviour is empty.
– the auxiliary part contains the definitions of the given selection functionsfTi , for

eachi = 1, . . . , n.

The proof then easily follows by construction, since at each stage only one cycle step
is enabled and no preference reasoning is required to choose the next transition to be
executed. 2

It is clear that there are some (many) cycle theories that cannot be mapped onto any
fixed cycles, e.g. the cycle theory given in the next Section. So, providing control via
cycle theories is a genuine extension of providing control via conventional fixed cycles.

7 An Example

In this Section we exemplify the flexibility afforded by cycle theories through a sim-
ple example. Assume that the pool of transitions consists of GI, PI, AE and POI, as
described in Section 3. We start from the cycle theory corresponding to the fixed cycle
given by POI, GI, PI, AE which is constructed as follows (see Theorem 1).
(1) Tinitial with the following rule

∗POI(S0, {})←
namely, the only way an agent can start is through a POI.
(2) Tbasic with the following rules
∗GI(S′, {})← POI(S, {}, S′, τ)
∗PI(S′, Gs)← GI(S, {}, S′, τ), Gs = fPI(S′, τ ′), now(τ ′)
∗AE(S′, As)← PI(S,Gs, S′, τ),As = fAE(S′, τ ′), now(τ ′)
∗POI(S′, {})← AE(S,As, S′, τ)

(3) Tbehaviour is empty.
A first simple improvement, providing a limited form of flexibility, consists in re-

fining the ruleRGI|PI(·) by adding the condition that the set of goals to plan for, which
are selected by the corresponding selection functionfPI , is non-empty. This amounts
at modifying the second rule ofTbasic by adding the conditionGs 6= {} to its body.

Similarly, AE is an option after PI if some actions can actually be selected for exe-
cution. This amounts at modifying the the third rule ofTbasic by adding the condition
As 6= {} to its body.



In this case, we should provide further options for choosing the transition to be
executed afterGI andPI, respectively. To adhere with the given original cycle, these
rules could be simply suitable rules named byRGI|AE(S′, As),RGI|POI(S′, {}) and
RPI|POI(S′, {}), i.e. AE and POI are also an option after GI, and POI is also an option
after PI. With this choice, the standard operational trace is recovered by adding to the
Tbehaviour part of the cycle theory the following rules

RGI|PI(S′, Gs) � RGI|AE(S′, As)←
RGI|AE(S′, As′) � RGI|POI(S′, {})←
RGI|PI(S′, Gs′) � RGI|POI(S′, {})←
RPI|AE(S′, As) � RPI|POI(S′, {})←

The first rule states that PI has to be preferred over AE as the next transition to be
applied after GI, whenever both PI and AE are enabled. Similarly for the other rules.

A more interesting, proper extension of the original (fixed) cycle amounts at adding
further options to the transition which can follow any given transition. Imagine for in-
stance that we want to express the behaviour of apunctualor timelyagent. This agent
should always prefer executing actions if there are actions in the plan which have be-
comeurgent. This can be declaratively formalised by adding to theTbasic part the rules
∗AE(S′, As′)← T (S,X, S′, τ), As′ = fAE(S′, τ ′), now(τ ′)

for each transitionT in the pool, and by adding to theTbehaviour part the following
rules namedPTAE�T ′ :
RT |AE(S′, As′) � RT |T ′(S′, X ′)← urgent(As′)

for each transitionT andT ′ 6= AE, whereurgent is defined in the auxiliary part of the
theory with the intuitive meaning. In the rest of this Section, we useT fixcycle to refer to
the cycle theory corresponding to the fixed cycle POI, GI, PI, AE, and we useT extcycle to
refer to the extended cycle theory.

As a concrete example, consider an agent aiding a businessman who, while on a
business trip, can choose amongst three possible goals: return home (home), read news
(news), and recharge his laptop battery (battery). Let us use first the cycle theory
T fixcycle.

Suppose that, initially (whennow(1) holds), the agent’s state is empty, namely the
(businessman’s) agent holds no plan or goal, and that the initial POI does not add any-
thing to the current state. Then GI is performed as the next transition in the trace:

GI(S0, {}, S1, 1),
and suppose also that the application of GI generates the agent’s goal (added toS1)
G1 = home. This goal may come along with a time parameter and some temporal
constraints associated with it, e.g. the actual goal can be represented by(home, t)∧ t <
20. Due to space limitations, we intentionally omit here the details concerning temporal
parameters of goals and actions, and the temporal constraints associated with them.
Since the state contains a goal to be planned for, suppose that the selection functionfPI
selects this goal, and the PI transition is applied next, producing two actionsbook ticket
andtake train. Hence, the second transition of the trace is (whennow(3) holds)

PI(S1, {}, S2, 3)
where the new stateS2 contains the above actions.

Suppose now that the selection functionfAE selects the actionbook ticket and
hence that the next element of the trace is (whennow(4) holds)



AE(S2, {book ticket}, S3, 4). (*)
In the original fixed cycle the next applicable transition is POI, and assume that this

is performed at some current time, say10. Hence the next element of the trace is (when
now(10) holds)

POI(S3, {}, S4, 10). (**)
Imagine that this POI brings about the new knowledge that the laptop battery is low,

suitably represented in the resulting stateS4. Then the next transition GI changes the
state so that the goalbatteryis added, and then PI is performed to introduce a suitable
plan to recharge the battery and so on.

Now suppose that we useT extcycle instead and that the operational trace is identical
up to the execution of the transition (*). At this point, the actiontake train may have
becomeurgent. Notice that it is likely that this same action was not urgent at time3,
whenbook ticket was selected for execution, but has become urgent at time10 (e.g.
because the train is leaving at11). Then, if we useT extcycle, the rulePAEAE�POI applies
and the next element of the trace, replacing (**) above, becomes

AE(S3, {take train}, S′4, 10).
This example shows how the use of cycle theories can lead to flexible behaviours. More
flexibility may be achieved by allowing the agents to be interruptible, i.e. to be able to
react to changes in the environment in which they are situated as soon as the perceive
those changes. This added flexibility requires some further extensions, that we discuss
in the next Section.

8 Interruptible agents

In our approach we can provide a declarative specification ofinterruptibleagents, i.e.
agents that are able to dynamically modify their “normal” (either fixed or cycle) opera-
tional trace when they perceive changes in the environment in which they are situated.

In order to obtain interruptibility, we will make use of the POI transition as the
means by which an agent can react to an interrupt. Referring to the example of the
previous Section, assume that our agent can book the ticket only through its laptop and,
by the time it decides to actually book the ticket, the laptop battery has run out. Then,
the action of recharging the laptop battery should be executed as soon as possible in
order to (possibly) achieve the initial goal. Indeed, executing the booking action before
recharging would not be feasible at all.

In order to model the environment where the agent is situated, we assume the exis-
tence of an environmental knowledge baseEnv that it is not directly under the control
of the agent, in that the latter can only dynamically assimilate the knowledge contained
in Env. This knowledge base can be seen as an abstraction of the physical (as op-
posed to the mental) part of the agent (itsbody) which, e.g. through its sensors, per-
ceives changes in the environment. We assume that, besides the knowledge describ-
ing the agent’s percepts,Env models a special propositional symbol, referred to as
changed env which holds as soon as the body of the agent perceives any new, relevant
changes in the environment. The way we model the reaction of the agent to the changes
represented bychangedenvbecoming true, is through the execution of a POI. We also



assume that the execution of a POI transition resets the truth value ofchanged env, so
that the agent may be later alerted of further changes in the environment.

TheEnv knowledge base becomes now part of the knowledge that the agent uses in
order to decide the next step in its operational trace. This is formally specified through
the notion ofcycle-env operational trace, which extends the notion of cycle operational
trace introduced in Section 5, by replacing the definitions ofInitial Cycle StepandCycle
Stepby the following new definitions:
(Initial Cycle-env Step): T 0

cycle ∧ Env ∧ now(τ1) |=pr ∗T1(S0, X1);
(Cycle-env Step) for eachi ≥ 1
T scycle ∧ Ti(Si−1, Xi, Si, τi) ∧ Env ∧ now(τi+1)

|=pr ∗Ti+1(Si, Xi+1)
We can now define a notion ofinterruptible agentas follows. LetTcycle be the cycle

theory of the agent and letT1(·), . . . , Ti(·), . . . be a cycle operational trace of the agent.
Let alsoTi(Si−1, Xi, Si, τi) be an element of the given trace such that:

Env ∧ now(τi) |= ¬changed env, and
Env ∧ now(τi+1) |= changed env.
In other words, some changes have happened in the environment between the time

of the execution of the transitionsTi andTi+1 in the trace. Then we say that the agent
is interruptible if
Tcycle ∧ Ti(Si−1, Xi, Si, τi)∧Env ∧ now(τi+1) |=pr ∗POI(Si, {}), i.e. as soon as the
environment changes, in a cycle-env operational trace the next transition would be a
POI.

It is worth noting that by interruptibility we do not mean here that the (executions
of) transitions are interrupted, rather the trace is interrupted.

In order to make an agent interruptible, we need to extend bothTbasic andTbehaviour.
In Tbasic, POI should be made an option after any other transition in the pool, which is
achieved by adding the following ruleRT |POI(S, {}), for anyT :
∗POI(S′, {})← T (S,X ′, S′, τ).

In Tbehaviour, the following set of rules, whereT, T ′ are transitions withT ′ 6= POI,
express that POI should be preferred over any other transition if the environment has
actually changed:
RT |POI(S′, {}) � RT |T ′(S′, X)← changed env. (***)

Notice that, even if the above extensions are provided in the overallTcycle theory,
the interruptibility of the agent is still not guaranteed. For instance,Tbehaviour could
contain further rules which make a transitionT 6= POI preferable over POI even if
changed env holds. One way to achieve full interruptibility is by adding the condition
¬changed env in the body of any rule inTbehaviour other than the rules (***) given
above.

9 Patterns of behaviour

In this section we show how different patterns of operation can arise from different
cycle theories aiming to capture different profiles of operational behaviour by agents.
We assume the agent is equipped with a set of transitions, as in the KGP model [8, 2]
(see Section 3 for an informal description of these transitions):



– POI,Passive Observation Introduction
– AE, Action Execution
– GI, Goal Introduction
– PI, Plan Introduction
– RE,Reactivity
– SI, Sensing Introduction
– AOI, Active Observation Introduction
– SR,State Revision

In Section 7 we have given a simple example of a cycle theory describing a punctual,
timely agent which attempts to execute its planned actions in time. This agent was
obtained by adding some specific rules toTbehaviour of a given cycle theory. The same
approach can be adopted to obtain different profiles.

For example, we can define afocused or committedagent, which, once chosen a plan to
execute, prefers to continue with this plan (refining it and/or executing parts of it) until
the plan is finished or it has become invalid, at which point the agent may consider other
plans or other goals. Hence transitions that relate to an existing plan have preference
over transitions that relate to other plans. This profile of behaviour can be captured by
the following rules added toTbehaviour of an appropriate cycle theory:

RT |AE(S,As) � RT |T ′(S,X)← same plan(S,As)

for anyT and anyT ′ 6= AE, and

RT |PI(S,Gs) � RT |T ′(S,X)← same plan(S,Gs)

for anyT and anyT ′ 6= PI. These rules state that the agent prefers to execute actions
or to reduce goals from the same plan as the actions that have just been executed. Here,
the behaviour conditions are defined in terms of some predicatesame plan which,
intuitively, checks that the selected inputs for AE and PI, respectively, belong to the
same planas the actions most recently executed within the latest AE transition.

Another example of behavioral profile is theimpatientpattern, where actions that have
been tried and failed are not tried again. This can be captured by rules of the form:

RT |T ′(S, ) � RT |AE(S,As)← failed(S,As)

for anyT and anyT ′ 6= AE. In this way, AE is given less preference than any other
transitionT ′ after any transitionT . Intuitively,As arefailed actions. As a result of this
priority rule it is possible that such failed actions would remain un-tried again (unless
nothing else is enabled) until they are timed out and dropped by SR.

If we want to capture acarefulbehaviour where the agent revises its state when one of
its goals or actions times out (being careful not to have in its state other goals or actions
that are now impossible to achieve in time) we would have inTbehaviour the rule:

RT |SR(S, {}) � RT |T ′(S, )← timed out(S, τ)

for anyT and anyT ′ 6= SR. In this way, the SR transition is preferred over all other
transitions, where the behaviour conditiontimed out(S, τ) succeeds if some goal or
action in the stateS has timed out at timeτ .



10 Conclusions and ongoing work

We have presented an approach providing declarative agent control, via logic programs
with priorities. Our approach share the aims of 3APL [4], to make the agent cycle
programmable and the selection mechanisms explicit, but goes beyond it. Indeed, the
approach of [4] can be seen as relying upon a catalogue of fixed cycles together with the
possibility of selecting amongst such fixed cycles according to some criteria, whereas
we drop the concept of fixed cycle completely, and replace it with fully programmable
cycle theories.
Our approach allows us to achieve flexibility and adaptability in the operation of an
autonomous agent. It also offers the possibility to state and verify properties of agents
behaviour formally. In this paper we have exemplified the first aspect via an example,
and the second aspect via the property of “interruptibility” of agents. The identification
and verification of more properties is a matter for future work.
Our approach also lends itself to achieving heterogeneity in the overall operational be-
haviour of different agents that can be specified within the proposed framework. Indeed,
an advantage of control via cycle theories is that it opens up the possibility to produce
a variety of patterns of operation of agents, depending on the particular circumstances
under which the transitions are executed. This variety can be increased, and many dif-
ferentpatterns or profiles of behaviourcan be defined by varying the cycle theory, thus
allowing agents with (possibly) the same knowledge and operating in the same environ-
ment to exhibit heterogeneous behaviour, due to their different cycle theories. We have
given a number of examples of profiles of behaviour. A systematic study of behaviour
parameterisation (perhaps linking with Cognitive Science) is a matter for future work,
as well as the comparison on how different behaviours affect the agents’ individual
welfare in different contexts.
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