
Bilateral Agent Negotiation With

Information-Seeking

Adil Hussain and Francesca Toni

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, UK

{ah02, ft}@doc.ic.ac.uk

Abstract. We present a generative framework for bilateral agent nego-
tiation that allows for information-seeking between agents in a resource
re-allocation setting. In this framework each agent begins with beliefs
as to which resources it has and desires for resources that it would like
to have. We define the rules of the dialogues specifying the permissi-
ble messages, turn-taking and the order in which messages can be sent.
The participants of the dialogues (i.e. the agents) adopt internal policies
that enable them to conform to the dialogue rules whilst pursuing their
individual desires.

1 Introduction

We present a framework for bilateral negotiation between agents in a resource
re-allocation setting that allows for the sharing of information. In our framework
agents begin with beliefs and desires as to which resources they have and would
like to have respectively, and the resource re-allocation problem is that of dis-
tributing the resources in such a way that the agents fulfil their desires (i.e. get
the resources they need).

We adopt a distributed approach to the resource re-allocation problem, such
that the resources are exchanged by the agents themselves rather than relying on
a central entity. The resource exchanges are made as a result of communication
between the agents, in the form of dialogues, as defined in [6]. Two types of
dialogues are modelled in this paper: information-seeking and negotiation. An
information-seeking dialogue is used by an agent to add to its knowledge-base, for
example, to determine which agents currently hold the resources that it desires
or to learn of the desires of other agents. This is useful in the larger context of
negotiation wherein agents exchange resources to achieve their individual desires.

We define the rules for the information-seeking and negotiation dialogues by
specifying the permissible messages, turn-taking and the order in which messages
can be sent. As well as defining the rules of the dialogues, which dictate what the
possible legal messages are at different points in the dialogue, we also provide
a means for specifying agent strategies (policies) that are able to select which
one of the possible messages to send. The policies, internal to the agents, are
modelled by means of preferences and action rules that specify conditions under
which an action (not always the sending of a message) can be performed and
the consequences of performing that action.

As in [1] and [4], our agent model is generative and makes use of commit-
ments1, which are taken on by an agent as a result of sending messages. However,
our focus is on information-seeking and negotiation with the aim of exchanging
resources, whereas the focus in [1] and [4] is on sharing knowledge in order to
contruct arguments for specific propositional claims. Further, although our dia-
logues are bilateral, we do not limit our agent systems to two agents.

Our approach to modelling the dialogues builds upon the work of [5]. As
in [5], we present a formal, logic-based approach to one-to-one agent negotiation
for resource re-allocation, in the context of goal achievement in systems of agents
with limited resource availability. However, as well as allowing information-
seeking dialogues to accompany the negotiation, we allow for more complicated
policies based on the knowledge of other agents’ beliefs and desires. Further, the
dialogue constraints based on which the dialogues of [5] are modelled are ex-
tended to include consequences, as in [4], which specify changes that the agent
must make to its internal state as a result of performing an action.

As discussed in [3, 6], dialogues are most interesting in combination, for exam-
ple, when dialogues run in parallel, in sequence or embedded within one another.
The framework presented in this paper follows on from this discussion and al-
lows for generative agent policies to be defined such that two types of dialogue,
information-seeking and negotiation, can be combined to represent interactions
more complex than would be possible with each dialogue alone.

The paper is structured as follows: Section 2 introduces the internal com-
ponents of our agents. Section 3 defines the rules for the information-seeking
and negotiation dialogues, as considered in this paper. Section 4 presents an
example policy that demonstrates how agents may participate in the dialogues,
i.e., how and when the agents send and respond to messages. Section 5 presents
an example agent system based on the agent policy of the previous section and
demonstrates the sequences of dialogues that ensue. Section 6 discusses proper-
ties of the agent policy and the resulting dialogues. Lastly, Section 7 summarises
and sets up a research agenda highlighting possible directions for future work.

2 Agent Components

The agents in our system are made up of eight components: beliefs, desires,
actions, messages, commitments, action rules, the evaluation mechanism and
preferences, all explained below. There is no intention component as found in
the BDI approach that guides what the agent does since this is covered implicitly
by the other components, as explained later.

The literals that occur in this paper are to be read as follows: A literal starting
with lower-case is grounded, a literal starting with upper-case is a variable and
an underscore symbol () represents an anonymous variable for which the value
does not matter. The symbol ¬ represents negation.

Beliefs. An agent can have a number of resources in its possession at any one
time, and is initiated with beliefs as to which resources it initially has. Such

1 Commitments are slightly different in [4], where they are referred to as shared beliefs.

beliefs, denoted B, are represented using a single predicate “has”, as follows:
B(x):has(x, r). This is read as: “Agent x believes that agent x has resource r”.2

It is assumed that if an agent has such a belief then it does indeed have that
resource. The resources that the agent has, and hence its belief-base, can change
as a result of a negotiation dialogue. Beliefs about other agents’ resources of
the form B(x):has(y, r) are ignored in this paper, such knowledge is captured
instead by means of commitments, as explained later in this section.

Desires. An agent is initialised with desires as to which resources it would
like to have. These desires, denoted D, are represented using a single predicate
“has”, as follows: D(x):has(x, r). This is read as: “Agent x has a desire for agent
x to have resource r”.3 Desires of the form D(x):has(y, r) (i.e. “Agent x has a
desire for agent y to have resource r”) are ignored in this paper and left for
future work.

Actions. An agent performs actions, according to the state of its internal com-
ponents, with the overall aim of fulfilling its desires (i.e. obtaining the desired
resources). The actions that we consider in this paper are of two types: external
communicative actions (i.e. speech acts), which we term send, and internal ac-
tions, which we term process. Both types of actions have consequences that, as
a result of performing, alter the internal state of the agent, as will be explained
when Action Rules are discussed later in this section. The difference between the
two types of action is that external actions are those which result in a speech
act (i.e. a message) being sent to another agent; this may be to initiate a dia-
logue or to respond to a previously received message. Actions are represented as
follows: Type[Message], where Type is either send or process, and Message is
the message to be sent or processed respectively. The form that Message takes
is explained below.

Messages. Dialogues are based on a sequence of messages between the partici-
pating agents, in alternation. Each agent has associated with it a message store
that stores the messages received from other agents. A message, denoted M , is
kept in the message store until such time that it can be processed and removed.
A queue structure is assumed in the message store such that it is possible to
distinguish messages by the order in which they are received. This is useful in
determining which message to respond to first, where the agent policy allows a
choice and time of receipt matters.

Messages are of the form: µ(X, Y, Z), where µ is the utterance, X is the agent
sending the message, Y is the intended recipient of the message and Z is the
content of the message, which may consist of more than one term. A concrete
instance of a message is offer(x, y, banana, apple), where offer is the utterance,
x is the agent sending the message, y is the intended recipient of the message
and (banana, apple) is the content of the message, the meaning of which will be
explained when the dialogues are discussed in Section 3.

2 Note that we do not assume a modal approach; a belief is treated as a fact at the
level of representation and beliefs abouts beliefs are not permitted.

3 As with beliefs, desires are treated as facts at the level of representation.

Commitments. Every agent has associated with it a commitment store that
records some of the dialogue utterances made by it to other agents and by other
agents to it. Thus each agent’s commitment store is partitioned into parts: one
part for each agent with which commitments are shared. The commitments,
denoted C, are of three types: commitment to belief, commitment to desire and
commitment to dialogue, all explained below. Note that the commitment store
is internal to the agent and not visible to any other agent.

Commitments may be retracted. This prevents an agent from having incon-
sistent commitments and is useful, for example, when an agent’s internal state
changes such that it is inconsistent with a commitment it has to another agent.
Retraction of a commitment is done by removing the commitment from the com-
mitment store and sending a message of retraction to the agents to whom the
agent has the commitment. The message of retraction takes the following form:
retract(X, Y, Commitment), where retract is the utterance, X is the sender of
the message (and owner of the commitment), Y is the recipient of the message
(and the agent to whom the commitment is held), and Commitment is the
commitment being retracted, the form of which differs depending on the com-
mitment, as explained below. In sending and receiving the message of retraction,
the sender and receiver have an obligation to remove the commitment from their
commitment stores.

Commitment to Belief. As part of a dialogue sequence, if an agent (say x) notifies
another agent (say y) of one of its beliefs (say B(x):has(x, r)), then, depending on
its internal policy, x may store this as a commitment to the recipient agent (y), as
follows: C(x, y):(B(x):has(x, r)). Conversely, if an agent x notifies an agent y that
it does not hold a particular belief (say B(x):has(x, r)), then x may store this
as a negative belief commitment to y, as follows: C(x, y):(B(x):¬has(x, r))4 . In
both cases, the recipient agent (y) may also record the commitment in the same
way in its own commitment store, but the commitment would be interpreted as a
commitment of the sender (x) to y and would allow y to reason about x’s beliefs.
An example of a message that would be sent by x to retract a positive belief
commitment is retract(x, y, B(x):has(x, r)), or retract(x, y, B(x):¬has(x, r)) in
the case of a negative belief commitment.

Commitment to Desire. As with beliefs, if an agent x notifies another agent y of
a desire (say D(x):has(x, r)), then, depending on its policy, x may store this as a
commitment to y, as follows: C(x, y):(D(x):has(x, r)). Similarly, if x notifies y of
an absence of the desire, then x may store this as a commitment to y, as follows:
C(x, y) : (¬D(x) :has(x, r))5 . As with belief commitments, the recipient agent
(y) may record the notification as a commitment of the sender (x) to it, which
would allow y to reason about x’s desires. An example of a message that would

4 We adopt a closed-world assumption for beliefs of the form B(x):has(x, r). Hence,
if an agent x does not believe it has a resource r, then x believes it does not have r.

5 We assume a difference between an absence of desire and a desire of the form D(x):
¬has(x, r). In the latter case, having r violates one of x’s desires. This is not the
case with an absence of desire, wherein x is indifferent to having r or not having r.

be sent by x to retract a desire commitment is retract(x, y, D(x):has(x, r)), or
retract(x, y,¬D(x):has(x, r)) in the case of an absence of desire.

Commitment to Dialogue. The dialogues considered in this paper, and explained
in Section 3, are information-seeking and negotiation. If an agent (say x) sends
a message to another agent that commences an instance of dialogue, then x may
record this in its commitment store. An instantiation by x of an information-
seeking dialogue for some information (say Query) from y would be recorded
as C(x, y) : dialogue(x, y, info, Query), and an instantiation of a negotiation
dialogue for an exchange of resources (say Rx for Ry) would be recorded as
C(x, y) : dialogue(x, y, neg, Rx, Ry). Depending on the agent’s internal policy,
such commitments can serve a number of purposes, for example, prohibiting x

from sending certain messages until other expected responses are received. Upon
completion of the dialogue, x would be expected to remove its commitment to
the dialogue. No explicit retract would be required, since it would be known to
both agents that the dialogue is complete.

As with initiating a dialogue, refusing a certain dialogue request may add
a dialogue commitment to the agent’s commitment store, but the commitment
here would be negative. For example, if an agent y refuses a certain request
from x for some information (say Query), then y may store this in its com-
mitment store as C(y, x):¬dialogue(x, y, info, Query), or if y refuses a certain
request from x to exchange resources (say Rx for Ry) then y may store this in
its commitment store as C(y, x):¬dialogue(x, y, neg, Rx, Ry). The agent receiv-
ing the refusal (x) may record y’s commitment in its own commitment store,
which could serve a number of purposes, for example, prohibiting x from at-
tempting the same dialogue request again until y retracts the negative commit-
ment. The owner of a negative dialogue commitment (say y) may retract its
negative dialogue commitment by notifying the agents to whom it has the com-
mitment with a message of the form retract(y, x,¬dialogue(x, y, info, Query))
or retract(y, x,¬dialogue(x, y, neg, Rx, Ry)).

Action Rules. Similar to the actions in [4], the actions available to an agent
have associated with them preconditions, constraints and consequences. The
preconditions and constraints limit what actions are legal for an agent to perform
at a particular point in time: an agent can perform an action if at that point in
time all of the preconditions of the action rule hold and none of the constraints
hold. The consequences specify changes the agent must make to its internal state
as a result of performing the action.6

An action rule is specified as a quadruple < A, P, Q, X >, where A is an
action, P are the preconditions for performing the action, Q are the contraints
and X are the consequences. The form that A takes is Type[Message], as men-
tioned above. The Message part of A may contain both grounded literals and
variables7. P and Q are each a set of clauses. For P , the set of clauses is read as

6 Agents are assumed to be autonomous, hence performing an action does not directly
modify another agent’s internal state.

7 Variables occurring in an action rule are implicitly universally qualified from the
outside.

a conjunction, such that all of the clauses must hold for the action to be appli-
cable. For C, the set of clauses is read as a disjunction, such that any one of the
clauses holding renders the action inapplicable. Each clause in P is a disjunction
of terms and each clause in C is a conjunction of terms. The terms in the clauses
of P and C are over the agent’s beliefs, desires, messages and commitments, and
may consist of both grounded literals and variables. X specifies a set of indi-
vidual terms over the agent’s beliefs, desires, messages and commitments that
would be added and, if preceded by a ∼, removed as a result of performing A.
The terms in X may consist of both grounded literals and variables. Examples
of action rules can be found in Section 4.

Evaluation Mechanism. The task of the evaluation mechanism is to determine
the actions that the agent may perform (i.e. the legal actions) by evaluating the
preconditions and constraints of the action rules and finding instantiations of the
variables. A unification procedure for matching terms similar to that of Prolog
could be used. Indeed, the action rules, excluding the consequences, can be seen
as logic program rules: the action (A) is interpreted as the conclusion (head)
of the rule and the conjunction of precondition (Pi) and negated8 constraint
(Ci) clauses are interpreted as the conditions (body) of the rule, as follows:
A ← P1 ∧ . . . ∧ Pm ∧ not C1 ∧ . . . ∧ not Cn. The disjunction of all the actions
that are legal at a particular time is interpreted as the agent’s intention at that
point in time. After performing an action the agent re-evaluates its intention.

Preferences. Communication proceeds in the agent system on the basis of
an alternation of turns between agents, wherein the agent whose turn it is can
perform a number of actions before passing over control. However, only one
action is performed at each time-point. The choice as to which action to perform
is based on two factors: Firstly, which actions are legal for the agent at that point
in time, determined by the action rules. Secondly, the agent’s preferences, which
are over the actions and specified by assigning a level of priority to each action:
Actions of highest priority are assigned a level of 1, actions of second-highest
priority are assigned a level of 2, and so on. The action chosen to be performed at
a particular point in time is the legal action of lowest level (i.e. highest priority).

It may be possible for two different actions of the same priority level to
be legal for the agent simultaneously. This is resolved in one of two ways: In
the case of processing or responding to a received message, from the choice of
legal actions of same priority, the action chosen is the one which corresponds to
the oldest received message (i.e. a first-come first-serve basis).9 In the case of
sending a message that is not in response to a received message (e.g. initiating
a dialogue), from the choice of legal actions of same priority, one is chosen at
random. Although preferences over beliefs and desires should be a possibility for
agents this will be ignored in this paper and left for future work.

8 Negation as failure.
9 This is possible since a queuing mechanism is assumed in the message store that is

able to distinguish messages by the order in which they are received.

3 The Dialogues

Two types of dialogue are considered in this paper: information-seeking and
negotiation. The dialogue protocols, as defined in this section, specify the per-
missible messages and the order in which the messages can be made. Note that
both dialogues are defined as request-response message sequences between two
agents. However, the dialogues differ in the purposes they serve and the messages
that can be exchanged. Below, we present the protocols informally. A formal pre-
sentation, such as using finite state automata, is omitted for lack of space. In the
process of sending and receiving the messages during the dialogues, the agents
may adopt certain commitments depending on their internal policies. This is
demonstrated in the next section.

Information-Seeking. An information-seeking dialogue as defined in this pa-
per allows one agent to request and possibly obtain information from another. If
an agent (say X) seeks the answer to some question from another agent (say Y),
who is believed by the first to know the answer, it sends a message requesting the
sought information, as follows: inforeq(X, Y, Query). In this message Query is
the information sought, the meaning of which is assumed to be shared by both
sender and receiver. As an example, given a Query of the form B(Y):has(Y, R),
in the context of information-seeking the agents would interpret this as: “Does
agent Y , the recipient of the inforeq message, believe it has resource R?” This
is a query seeking information about the recipient agent’s beliefs. Other queries
may be about the recipient agent’s desires or commitments.

The agent receiving the inforeq message (Y) is obliged by the dialogue
protocol to complete the dialogue by either responding to the query or refusing
to provide the requested information. In the case of responding to the query,
a message of the form inforesp(Y, X, Query, Response) is sent, where Query

is the information sought, as sent by X , and Response is either yes or no. In
the case of refusing to provide the requested information, a message of the form
inforef(Y, X, Query) is sent, where Query is the information sought by X .

Negotiation. A negotiation dialogue as defined in this paper allows two agents
to agree (or disagree) on an exchange of resources. If an agent (say X) seeks an
exchange of resources with another agent (say Y), it sends an offer message
specifying the resource to be given (Rx) and received (Ry) in the exchange, as
follows: offer(X, Y, Rx, Ry).

The agent receiving the offer message (Y) is obliged by the dialogue protocol
to complete the dialogue by either accepting the offer or rejecting it. In the case
of accepting, a message of the form acceptoffer(Y, X, Rx, Ry) is sent, where
Rx and Ry are the resources to be received and given away (respectively) by
Y , as specified by X in its offer. In sending the acceptance, the resources are
assumed to be exchanged and, accordingly, the agents are expected to update
their beliefs to reflect this. In the case of rejecting the offer, a message of the
form rejectoffer(Y, X, Rx, Ry) is sent, where Rx and Ry are the resources as
specified by X in its offer.

4 An Agent Policy for Bilateral Negotiation with

Information-seeking

The dialogues protocols, as defined in the previous section, specify the allowed
types of messages and how the messages are combined. It is the agent’s policy (i.e.
the action rules and preferences over the actions) and internal state (i.e. belief,
desire, commitment and mesage stores), on the other hand, that determines the
agent’s behaviour, and how and when it fulfils the obligations imposed upon it
by a dialogue. This is demonstrated in this section for an agent named x that
can engage in the information-seeking and negotiation dialogues as both initiator
and responder. For this agent the desires are fixed and attaining any one of the
desired resources achieves the agent’s overall goal. The agent is self-interested
and hence offers or accepts an exchange of resources as long as the resource to be
received is one that it desires. That is, unless it already has a desired resource,
in which case it will not make any offers but will still accept an offer as long as
a desired resource is received in exchange. The policy does not permit the agent
to initiate more than one dialogue simultaneously. However, there is no limit to
the number of dialogues it may be engaged in as responder. The agent does not
send any requests for information once it has obtained a desired resource but will
still continue to respond to information requests. A received message is put in
the message store until such time that the agent can process it and/or respond.
Any inconsistent commitments are retracted at the earliest oppurtunity.

The action rules are grouped in the following subsections by the dialogue
to which they contribute and the role of the agent in that dialogue. The last
subsection specifies preferences over the actions, which enables the agent to
select a single action when there is a choice.

4.1 Information-Seeking Dialogue as Initiator

A= send[inforeq(x, Y, (B(Y):has(Y, R)))]
P= {D(x):has(x, R)}
Q= {C(Y, x):¬dialogue(x, Y, info, (B(Y):has(Y, R))),

C(x, Y ′):dialogue(x, Y ′, info,), C(x, Y ′′):dialogue(x, Y ′′, neg, ,),
(B(x):has(x, R′)) ∧ (D(x):has(x, R′)),
C(Y, x):(B(Y):has(Y, R)), C(Y, x):(B(Y):¬has(Y, R))}

X= {C(x, Y):dialogue(x, Y, info, (B(Y):has(Y, R)))}

Agent x sends an inforeq message to an agent Y to determine if Y has a resource
(R) that x desires. Agent x sends this message as long as x does not have a nega-
tive dialogue commitment from Y preventing it from doing so (first constraint),
x is not committed to any information-seeking or negotiation dialogue as initia-
tor (second and third constraints), x does not already have a desired resource
(R′) (fourth constraint) and x does not know whether Y has the resource R (fifth
and sixth constraints). The single consequence of sending the inforeq message
is that x becomes committed to an instance of information-seeking dialogue.

A= send[inforeq(x, Y, (D(Y):has(Y, R)))]
P= {B(x):has(x, R), ((D(x):has(x, R′)) ∧ (C(Y, x):(B(Y):has(Y, R′))))}
Q= {C(Y, x):¬dialogue(x, Y, info, (D(Y):has(Y, R))),

C(x, Y ′):dialogue(x, Y ′, info,), C(x, Y ′′):dialogue(x, Y ′′, neg, ,),
(B(x):has(x, R′′)) ∧ (D(x):has(x, R′′)),
C(Y, x):(D(Y):has(Y, R)), C(Y, x):(¬D(Y):has(Y, R))}

X= {C(x, Y):dialogue(x, Y, info, D(Y):has((Y, R)))}

This action rule is similar to the previous one, except here the information
request is to determine whether Y has a desire for some resource (R) that x

has. Note that x performs this action only if Y has a resource (R′) desired by x

(second precondition).

A= process[inforesp(Y, x, Query, yes)] A= process[inforesp(Y, x, Query, no)]
P= {M(x):inforesp(Y, x, Query, yes), P= {M(x):inforesp(Y, x, Query, no),

C(x, Y):dialogue(x, Y, info, Query)} C(x, Y):dialogue(x, Y, info, Query)}
Q= {} Q= {}
X= {∼ M(x):inforesp(Y, x, Query, yes), X= {∼ M(x):inforesp(Y, x, Query, no),

∼ C(x, Y):dialogue(x, Y, info, Query), ∼ C(x, Y):dialogue(x, Y, info, Query),
C(Y, x):Query} C(Y, x):¬Query}

In processing a received inforesp message (stored in M), x updates its message
and commitment stores as shown in the consequences of the above two action
rules10. The symbol ∼ denotes removal of a term.

A= process[inforef(Y, x, Query)]
P= {M(x):inforef(Y, x, Query), C(x, Y):dialogue(x, Y, info, Query)}
Q= {}
X= {∼ M(x):inforesp(Y, x, Query, no), ∼ C(x, Y):dialogue(x, Y, info, Query),

C(Y, x):(¬dialogue(x, Y, info, Query))}

In processing a refusal for some information, x updates its message and commit-
ment stores as shown in the consequences of the above action rule.

4.2 Information-Seeking Dialogue as Responder

A= send[inforesp(x, Y, (B(x):has(x, R)), yes)] A= send[inforesp(x, Y, (B(x):has(x, R)), no)]
P= {M(x):inforeq(Y, x, (B(x):has(x, R))), P= {M(x):inforeq(Y, x, (B(x):has(x, R)))}

B(x):has(x, R)} Q= {B(x):has(x, R),
Q= {C(x, Y ′):dialogue(x, Y ′, neg, R,), C(x, Y ′):dialogue(x, Y ′, neg, R,),

C(x, Y ′′):dialogue(x, Y ′′, neg, , R)} C(x, Y ′′):dialogue(x, Y ′′, neg, , R)}
X= {∼ M(x):inforeq(Y, x, (B(x):has(x, R))), X= {∼ M(x):inforeq(Y, x, (B(x):has(x, R))),

C(x, Y):(B(x):has(x, R))} C(x, Y):(B(x):¬has(x, R))}

Agent x can send a positive or negative response for a query about one of its
beliefs if it has or does not have (respectively) such a belief in its belief store
whilst it is not committed to a negotiation dialogue that may alter this belief. In
doing so, agent x adopts a commitment to agent Y to notify it of any changes.

A= send[inforesp(x, Y, (D(x):has(x, R)), yes)] A= send[inforesp(x, Y, (D(x):has(x, R)), no)]
P= {M(x):inforeq(Y, x, (D(x):has(x, R))), P= {M(x):inforeq(Y, x, (D(x):has(x, R)))}

D(x):has(x, R)} Q= {D(x):has(x, R)}
Q= {} X= {∼ M(x):inforeq(Y, x, (D(x):has(x, R))),
X= {∼ M(x):inforeq(Y, x, (D(x):has(x, R))), C(x, Y):(¬D(x):has(x, R))}

C(x, Y):(D(x):has(x, R))}

These two action rules are similar to the previous two, except here the informa-
tion sought is about one of x’s desires.

10 In processing a negative response of a belief query, the negation operator would
appear within the Query term. The distinction is not made here for lack of space.

A= send[inforef(x, Y, Query)]
P= {M(x):inforeq(Y, x, Query)}
Q= {(Query = B(x):has(x,)), (Query = D(x):has(x,))}
X= {C(x, Y):¬dialogue(Y, x, info, Query)}

Agent x refuses any information request that is not about one of its beliefs or
desires.

4.3 Negotiation as Initiator

A= send[offer(x, Y, Rx, Ry)]
P= {B(x):has(x, Rx), D(x):has(x, Ry),

C(Y, x):(D(Y):has(Y, Rx), C(Y, x):(B(Y):has(Y, Ry))}
Q= {C(x, Y ′):dialogue(x, Y ′, neg, Rx,), C(x, Y ′′):dialogue(x, Y ′′, neg, , Ry),

C(Y, x):¬dialogue(x, Y, neg, Rx, Ry), (B(x):has(x, R)) ∧ (D(x):has(x, R))}
X= {C(x, Y):dialogue(x, Y, neg, Rx, Ry)}

Agent x sends an offer to give a resource Rx to an agent Y and to receive a
resource Ry in return if x’s internal state determines the exchange to be possible
and individually rational for both agents, as defined in the preconditions above.
The constraints for sending the offer are that x has offered Rx to another agent
(Y ′), x has requested Ry from another agent (Y ′′), x has a negative dialogue
commitment determining the exchange to be unwanted by Y , or x already has
a desired resource (R).

A= process[rejectoffer(Y, x, Rx, Ry)] A= process[acceptoffer(Y, x, Rx, Ry)]
P= {M(x):rejectoffer(Y, x, Rx, Ry), P= {M(x):acceptoffer(Y, x, Rx, Ry),

C(x, Y):dialogue(x, Y, neg, Rx, Ry)} C(x, Y):dialogue(x, Y, neg, Rx, Ry)}
Q= {} Q= {}
X= {∼ M(x):rejectoffer(Y, x, Rx, Ry), X= {∼ M(x):acceptoffer(Y, x, Rx, Ry),

∼ C(x, Y):dialogue(x, Y, neg, Rx, Ry), ∼ C(x, Y):dialogue(x, Y, neg, Rx, Ry),
C(Y, x):¬dialogue(x, Y, neg, Rx, Ry)} ∼ B(x):has(x, Rx), B(x):has(x, Ry)}

Upon processing rejection or acceptance of an earlier sent offer, x either forms a
negative dialogue commitment or updates it beliefs as to which resources it has.

4.4 Negotiation as Responder

A= send[acceptoffer(x, Y, Ry, Rx)]
P= {M(x):offer(Y, x, Ry, Rx), B(x):has(x, Rx), D(x):has(x, Ry))}
Q= {C(x, Y ′):dialogue(x, Y ′, neg, Rx,), C(x, Y ′′):dialogue(x, Y ′′, neg, , Ry)}
X= {∼ M(x):offer(Y, x, Ry, Rx), ∼ B(x):has(x, Rx), B(x):has(x, Ry)}

Agent x sends acceptance of a received offer if it has a desire for the offered
resource (Ry) and believes it has the requested resource (Rx). The resources to
be exchanged must not be pending in some other negotiation that x has initiated.
In sending the acceptance message, the exchange is agreed to and x updates its
beliefs as to which resources it has. Subsequently, x may have to update some of
its commitments. Note that x does not check whether Y actually has the offered
resource (Ry) since it assumes agents to be honest.

A= send[rejectoffer(x, Y, Ry, Rx)]
P= {M(x):offer(Y, x, Ry, Rx)}
Q= {(B(x):has(x, Rx)) ∧ (D(x):has(x, Ry))}
X= {∼ M(x):offer(Y, x, Ry, Rx), C(x, Y):¬dialogue(Y, x, neg, Ry, Rx)}

Agent x sends rejection of a received offer if the preconditions for accepting do
not hold (i.e. x would not have a desired resource after the exchange).

4.5 Sending Retractions of Commitment

A= send[retract(x, Y, (¬dialogue(Y, x, neg, Ry, Rx)))]
P= {C(x, Y):(¬dialogue(Y, x, neg, Ry, Rx)), B(x):has(x, Rx), D(x):has(x, Ry)}
Q= {}
X= {∼ C(x, Y):(¬dialogue(Y, x, neg, Ry, Rx))}

Agent x retracts negative commitment to a particular resource exchange if the
conditions for accepting the exchange now hold.

A= send[retract(x, Y, (B(x):¬has(x, R)))] A= send[retract(x, Y, (B(x):has(x, R)))]
P= {C(x, Y):(B(x):¬has(x, R)), B(x):has(x, R)} P= {C(x, Y):(B(x):has(x, R))}
Q= {} Q= {B(x):has(x, R)}
X= {∼ C(x, Y):(B(x):¬has(x, R))} X= {∼ C(x, Y):(B(x):has(x, R))}

Agent x retracts commitment to the belief that it does (not) have resource R, if
it now believes it has (does not have, respectively) resource R.11

4.6 Processing Retractions of Commitment

A= process[retract(Y, x, Commitment)] A= process[retract(Y, x, Commitment)]
P= {M(x):retract(Y, x, Commitment), P= {M(x):retract(Y, x, Commitment)}

C(Y, x):(Commitment)} Q= {C(Y, x):(Commitment)}
Q= {} X= {∼ M(x):retract(Y, x, Commitment)}
X= {∼ M(x):retract(Y, x, Commitment),

∼ C(Y, x):(Commitment)}

Agent x retracts an agent Y ’s (positive or negative) commitment to belief, de-
sire or dialogue if told by Y to do so and if x has such a commitment stored.
Otherwise, the message received from Y is removed with no changes made to
x’s commitment store.

4.7 Preferences over Actions

A possible grouping of actions into priority levels, which would allow the agent to
better engage in the information-seeking and negotiation dialogues, is as follows:

P1: process[Message] P5: send[inforesp(x, Y, Query, Response)]
P2: send[retract(x, Y, Commitment)] send[inforef(x, Y, Query)]
P3: send[rejectoffer(x, Y, Ry, Rx)] P6: send[inforeq(x, Y, (D(Y):has(Y, R))]

send[acceptoffer(x, Y, Ry, Rx)] P7: send[inforeq(x, Y, (B(Y):has(Y, R))]
P4: send[offer(x, Y, Rx, Ry)]

There are a couple of points to note. Firstly, all legal actions of processing a
received message and hence updating the agent’s internal state would be per-
formed before any action of sending a message. This is so that messages are not
sent based on beliefs and commitments that need to be changed or retracted.
Secondly, responding to a message and completing a dialogue has priority over
initiating a new dialogue. This is to avoid the opening of multiple dialogues un-
necessarily and to avoid situations of deadlock in negotiation where each agent
is waiting for the other to respond.

11 Note that there are no actions for x to retract desire or positive dialogue commit-
ments. This is because x’s desires are fixed (i.e. do not change) and a positive dialogue
commitment is automatically relinquished as soon as the dialogue is complete.

5 Example

In this section we present an example of the information-seeking and negotiation
dialogues that takes place in a system of three agents (x, y, z) and three resources
(apple, banana, pear). Each agent has a policy as defined in the previous section,
begins with empty commitment and message stores, and starts with beliefs and
desires as follows:

D(x):has(x, banana) D(y):has(y, pear) D(z):has(z, apple)
B(x):has(x, apple) B(y):has(y, banana) D(z):has(z, banana)

B(z):has(z, pear)

It is assumed that each agent knows which agents and resources make up the
system. The communication between the agents proceeds in a turn-based manner
and the agent whose turn it is passes over control when it has no legal actions
available to it. The details of turn-taking and the control-level dialogues are
ignored in this paper and it is assumed that agents are aware when it is their
turn in the communication. At each point in time only one action is selected
and it is assumed that the chosen action is immediately executed. Based on this
set-up, the dialogues between agents x, y, z (taking turns in that order) begin,
as shown below. In this particular example all of the agents manage to obtain
a desired resource. Note, for reasons of space, the internal actions (i.e. process)
are not shown and only the messages exchanged are shown.

(1) inforeq(x, y, (B(y):has(y, banana))) (11) offer(y, z, banana, pear)
(2) inforesp(y, x, (B(y):has(y, banana)), yes) (12) acceptoffer(z, y, banana, pear)

inforeq(y, x, (B(x):has(x, pear)) retract(z, x, (B(z):¬has(z, banana)))
(3) inforeq(z, x, (B(x):has(x, apple)) retract(z, y, (B(z):has(z, pear)))
(4) inforesp(x, y, (B(x):has(x, pear)), no) inforesp(z, y, (D(z):has(z, banana)), yes)

inforesp(x, z, (B(x):has(x, apple)), yes) (13) inforeq(x, z, (B(z):has(z, banana)))
inforeq(x, y, (D(y):has(y, apple))) (14) retract(y, x, (B(y):has(y, banana)))

(5) inforesp(y, x, (D(y):has(y, apple)), no) (15) inforesp(z, x, (B(z):has(z, banana)), yes)
inforeq(y, z, (B(z):has(z, pear))) (16) inforeq(x, z, (D(z):has(z, apple)))

(6) inforesp(z, y, (B(z):has(z, pear)), yes) (17) (no actions for y to perform)
inforeq(z, x, (D(x):has(x, pear))) (18) inforesp(z, x, (D(z):has(z, apple)), yes)

(7) inforesp(x, z, (D(x):has(x, pear)), no) (19) offer(x, z, apple, banana)
inforeq(x, z, (B(z):has(z, banana))) (20) (no actions for y to perform)

(8) inforeq(y, z, (D(z):has(z, banana))) (21) acceptoffer(z, x, apple, banana)
(9) inforesp(z, x, (B(z):has(z, banana)), no) retract(z, x, B(z):has(z, banana))

inforesp(z, y, (D(z):has(z, banana)), yes) (22) retract(x, y, (B(x):¬has(x, pear)))
inforeq(z, y, (B(y):has(y, apple)) retract(x, z, (B(x):has(x, apple)))

(10) (no send actions for x to perform)

6 Results and Discussion

In this section we discuss various properties desired of agent policies and di-
alogues that seek to provide a solution to the resource re-allocation problem,
focusing on the self-interested agent policy defined in this paper.

6.1 Agent Policy Properties

The agent policy properties that we consider in this subsection are as found
in [2, 5]. We discuss informally to what extent these properties are satisfied by
the agent policy of Section 4.

Truthfulness. Does the agent communicate non-deceptively? This is the case
for agents based on the defined policy since agents communicate in accordance
with their true internal states (i.e. they communicate their true beliefs and de-
sires) and retract inconsistent commitments at the earliest oppurtunity. Further,
a resource is only offered for exchange if the agent has that resource and has not
offered it to any other agent, hence, the agent is guaranteed to have the offered
resource at the time of acceptance.

Weak Conformance. Does the agent never utter an illegal dialogue move wrt
the protocols? This is evident for the defined agent policy since the only com-
municative actions available are those that are allowed by the protocols. Also,
the action rules only allow the agent to send a response message (inforesp /
inforef , acceptoffer / rejectoffer) if the corresponding dialogue initiation
message (inforeq, offer) has been received.

Exhaustiveness. Will the agent utter at least one response message for any
dialogue initiation message (inforeq, offer) it receives? For both types of di-
alogue, whilst the agent is not waiting for some other agent to respond to an
offer message that it has sent, the conditions of the actions rules for responding
to a message cover every possible state that the agent may be in. Hence, at least
one of the possible dialogue follow-ups is guaranteed to be part of the agent’s
intention as long as all agents being waited upon are guaranteed to respond with
an expected follow-up. This has the potential of deadlock, where each agent is
waiting for the other to respond. However, for a system of agents based on the
policy defined in this paper, where agents take turns in the communication and
responding to a dialogue request takes precedence over initiating a new dialogue,
situations of deadlock are avoided and exhaustiveness can be guaranteed.

Determinism. Will no more than one of the possible dialogue responses be
generated/selected by the agent? The conditions of the action rules for responding
to a particular inforeq or offer message are non-overlapping, i.e., the permitted
dialogue responses have conditions that disallow more than one to hold for the
agent simultaneously. Hence, at most one of the possible dialogue follow-ups will
be part of the agent’s intention.

Robustness. As well as being exhaustive, for any illegal message received (wrt
the protocols), will the agent recognise it as illegal and utter a special dialogue
message notifying the other agent of this? Although the defined agent policy is
not robustly conformant to the protocols, it is not difficult to add further ac-
tion rules to recognise and deal with received messages that are illegal wrt the
protocols. However, as discussed in [2], if agents are known to be weakly confor-
mant, it is theoretically unnecessary to deal with robust conformance (since no
agent will ever utter an illegal move). Also, the additional notification messages
may burden communication channels unnecessarily and simply ignoring illegal
messages would be a better strategy.

6.2 Dialogue Properties

The dialogue properties that we consider in this subsection are as found in [5]. We
discuss informally whether these properties are satisfied for a system of agents

based on the policy of Section 412. The latter two properties (soundness and
completeness) concern identifying solutions to the resource re-allocation (rrp)
problem. Solutions are defined as follows: A solution of the rrp for an agent x is
a distribution of resources such that x has the resources it requires13. A solution
of the rrp for an agent system is a distribution of resources such that each agent
has the resources it requires.

Termination. Are inidividual dialogues and the overall communication guar-
anteed to finitely come to a halt? Firstly, since exhaustiveness and determinism
can be guaranteed for a system of agents based on the policy defined in this
paper, as discussed in the previous subsection, agents are guaranteed to respond
to messages with one and only response message. Hence, individual dialogues are
guaranteed to terminate. Secondly, since agents adopt commitments that serve to
prohibit them from repeating dialogues unnecessarily, the sequence of dialogues
between the agents is guaranteed to converge such that overall communication
terminates, regardless of the initial distribution of resources, turn-ordering and
regardless of whether a solution exists.

Soundness. If some agent x ends communication in a successful state (i.e.
believing it has a desired resource), is the rrp of x solved? If every agent in the
agent system ends communication in a successful state, is the rrp of the agent
system solved? As for the first issue, since agents begin with correct beliefs as to
which resources they have, are truthful so any change of beliefs resulting from
negotiation reflects correctly the resources that the agents have and because an
agent retains at least one of its desired resources once obtained, the agent ends
communication in a successful state if either it began communication believing
it has a desired resource or at some point it agreed to an offer to receive a desired
resource. Therefore, an agent x ending communication in a successful state does
indeed have a desired resource and hence the rrp of x is indeed solved. Following
on from this, if every agent ends communication in a successful state, then every
agent has a desired resource and hence the rrp of the agent system is solved.

Completeness. If a solution to the rrp exists for an agent system, is every
agent guaranteed to end communication in a successful state, producing such a
solution? Since agents are truthful, all inconsistent commitments are retracted
and because an agent will ask each other agent in the system one by one about
their beliefs/desires until either a resource exchange is found or all agents have
been asked, any possible exchange of resources between two agents (because each
has a resource desired by the other) is guaranteed to be found and agreed to by
the agents, producing a solution to the rrp for the two agents. However, such
exchanges, in which both agents obtain a desired resource, alone are not enough
to guarantee a solution of the rrp for the agent system. Consider the following
two examples, where x, y, z are agents and a, b, c are resources:

12 Note that it is not strictly necessary for all agents in an agent system to be based
on the same policy.

13 In the case of the agent policy we consider in this paper, a solution of the rrp for an
agent x is a distribution of resources such that x has one of its desired resources.

1. x has a and desires c. y has b and c, and desires b. Here a solution for the
agent system exists wherein x has c and y has b. However, were x to offer y

an exchange of a for c, y would refuse since it does not desire a.
2. x has a and desires b. y has b and desires c. z has c and desires a. This cyclic

situation poses an interesting challenge: No exchanges will be made since no
two agents have the resource desired by the other, even though an overall
solution exists.

From these two examples it is clear that a system of agents based on the self-
interested policy of Section 4 is not guaranteed to find a solution, even though
one may exist. These two examples demonstrate the need for agents to convince
one another to agree to exchanges even when there is no direct benefit for the
agent. The obvious tool to allow for this is persuasion/argumentation, as will be
considered in future work.

7 Conclusion and Future Work

We have presented an agent model that allows private generative agent policies to
be defined such that agents can cooperatively engage in dialogues of various kinds
whilst attempting to fulfil their own individual desires. The two types of dialogue
considered in this paper for resource re-allocation are information-seeking and
negotiation. Basic request-response protocols for the two types of dialogue have
been defined. In order to demonstrate the potential of the framework, an example
policy has been defined that allows for agents to engage in the information-
seeking and negotiation dialogues. Some properties of the policy and resulting
dialogues have been discussed, and the need for persuasion (argumentation)
in order to better the chances of reaching a solution has been touched upon.
Future work will concentrate on guaranteeing the property of completeness for
self-interested agents that are communicating in the context of the resource re-
allocation problem by including the capability of persuasion.

References

1. Elizabeth Black and Anthony Hunter. A generative inquiry dialogue system. In
AAMAS 2007, 2007.

2. Ulrich Endriss, Nicholas Maudet, Fariba Sadri, and Francesca Toni. Protocol con-
formance for logic-based agents. In International Joint Conferences on Artificial

Intelligence, 2003.
3. Peter McBurney and Simon Parsons. Games that agents play: A formal frame-

work for dialogues between autonomous agents. Journal of Logic, Language and

Information, 2002.
4. Sonia V. Rueda, Alejandro J. Garcia, and Guillermo R. Simari. Argument-based

negotiation among bdi agents. Journal of Computer Science and Technology, 2(7),
october 2002.

5. Fariba Sadri, Francesca Toni, and Paolo Torroni. Dialogues for negotiation: Agent
varieties and dialogue sequences. In ATAL 2001, pages 405–421. Springer-Verlag,
2002.

6. Douglas N. Walton and Erik C. W. Krabbe. Commitment in Dialogue: Basic Con-

cepts of Interpersonal Reasoning. State University of New York Press, 1995.

