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Abstract. We investigate the suitabilility of the KGP (Knowledge,
Goals, Plan) model of agency for autonomous decision making in dy-
namically changing environments. In particular, we illustrate how this
model supports the decision making process of an agent at different lev-
els, while the agents generates goals, plans for these goals, and selects
actions to achieve the goals that it has planned for. We also exemplify
the approach by illustrating how the model and a prototype implementa-
tion in the PROSOCS platform can be adopted to support e-negotiation,
using a particular kind of internet auctions as a case study.

1 Introduction

If the ultimate goal of e-negotiation research is to provide a solid scientific foun-
dation for the design of e-negotiation systems, we need to lay the groundwork
for achieving effective principles for building and analysing such systems. Within
the EU-funded project SOCS, we have developed a model for autonomous deci-
sion making agents defined via computational logic which is used to define the
internal organisation, reasoning and mutual interactions of agents [12, 4]. These
agents are autonomous, intelligent entities capable of operating in environments
which are open and highly dynamic. The model is called KGP since agents’
internal state consists of a knowledge base (K), from which they reason, goals
(G) that they need to achieve, and plans (P ) for their goals, consisting of actions
that may be physical, sensing or communicative. Agents pursue their goals while
being alert to the environment and adapt their goals and plan to any changes
that they perceive.

The KGP model incorporates and integrates various kinds of decision making,
concerning in particular the goals adopted by the agents, the plans adopted to
achieve these goals, the actions selected for execution at any particular time, the
goals selected for plan introduction at any particular time, as well as various
high-level decisions, for example when to be interrupted to observe changes in
the environment, when to execute actions or introduce plans, etc. These decisions
are taken while taking into account the evolution of the environment. Most of
these decisions need to be taken in a timely manner.



As the rise of the internet and electronic commerce continues, dynamic au-
tomated markets and negotiation will be an increasingly important domain for
agents. In general, agents may negotiate to obtain resources that they are lack-
ing but that are necessary to carry out their plans. In this setting, negotiation
is used to solve problems of resource re-allocation and sharing.

The paper is organised as follows. In section 2 we summarise the main fea-
tures of the KGP model and we describe the prototype implementation of KGP
agents in the PROSOCS platform [23]. In section 3 we outline the main idea
underlying using KGP agents for e-negotiation in general, and auctions in par-
ticular. Section 4 concludes.

2 KGP agents: recap

2.1 KGP model

Here we briefly summarise the KGP model for agents. Formal details can be
found in [12, 4]. This model relies upon

– an internal (or mental) state,
– a set of reasoning capabilities, in particular supporting planning, temporal

reasoning, reactivity and goal decision,
– a Sensing capability, linking the agent to its environment, by allowing it

to observe whether properties hold or do not hold, and that other agents
execute actions,

– a set of transition rules, defining how the state of the agent changes, and
defined in terms of the above capabilities,

– a set of selection functions, to provide appropriate inputs to the transitions,
– a cycle theory, for deciding which transitions should be applied when, and

defined using the selection functions.

Internal state. This is a tuple 〈KB, Goals, P lan, TCS〉, where:

– KB is the knowledge base of the agent, and describes what the agent knows
(or believes) of itself and of the environment. KB consists of various modules
supporting the different reasoning capabilities of agents, including
• KBplan, for Planning,
• KBreact, for Reactivity, and
• KB0, for holding the (dynamic) knowledge of the agent about the ex-

ternal world in which it is situated.
– Goals is the set of properties that the agent wants to achieve, each one

explicitly time-stamped by a time variable. Goals may also be equipped
with a temporal constraint (belonging to TCS) bounding the time variable
and defining when the goals are expected to hold.

– Plan is a set of actions scheduled in order to satisfy goals. Each is explicitly
time-stamped by a time variable and possibly equipped with a temporal con-
straint, similarly to Goals, but defining when the action should be executed.
Actions are partially ordered, via their temporal constraints. Each action is
also equipped with the preconditions for its successful execution.



– TCS is a set of constraint atoms (referred to as temporal constraints) in
some given underlying constraint language with respect to some structure
equipped with a notion of Constraint Satisfaction. We assume that the con-
straint predicates include <,≤, >,≤,=, 6=. These constraints bind the time
of goals in Goals and actions in Plan. For example, they may specify a time
window over which the time of an action can be instantiated, at execution
time.

Goals and actions are uniquely identified by their associated time variable, which
is implicitly existentially quantified within the overall state.

To aid revision and partial planning, Goals and Plan form a tree 3. The tree
is given implicitly by associating with each goal and action its parent. Top-level
goals and actions are children of the root of the tree, which is chosen from outside
the language of actions and goals in the state.

Reasoning capabilities. These include:

– Planning, which generates a partial plan for any given set of goals, if one
exists in the overall state. These plans consist of (temporally constrained)
sub-goals and actions.

– Reactivity, which reacts to perceived changes in the environment, by replac-
ing (some) goals in Goals and actions in Plan with (possibly temporally
constrained) goals and actions.

– Goal Decision, which revises the top-most level goals of the agent, adapting
the agent’s state to changes in its own preferences and in the environment.

– Temporal Reasoning, which reasons about the evolving environment, and
makes predictions about properties (fluents) holding in the environment,
based on the partial information the agent acquires.

Planning, Reactivity and Temporal reasoning are modelled via Abductive Logic
programming (ALP). Goal Decision is modelled via Logic Programming with
Priorities (LPP).

Transitions. The state of an agent evolves by applying transition rules, which
employ capabilities and the constraint satisfaction. The transitions are:

– Goal Introduction (GI), changing the top-level Goals, and using the Goal
Decision capability.

– Plan Introduction (PI), changing Goals and Plan, and using the Planning
capability.

3 In the full model we actually have two trees, the first containing non-reactive goals
and actions, the second containing reactive goals and actions. All the top-level non-
reactive goals are either assigned to the agent by its designer at birth, or they are
determined by the Goal Decision capability, via the GI transition (see below). All
the top-level reactive goals and actions are determined by the Reactivity capability,
via the RE transition (see below). Here for simplicity we overlook the distinction
amongst the two trees.



– Reactivity (RE), changing Goals and Plan, and using the Reactivity capa-
bility.

– Sensing Introduction (SI), changing Plan by introducing new sensing actions
for checking the preconditions of actions already in Plan, and using the
Sensing capability.

– Passive Observation Introduction (POI), changing KB0 by introducing un-
solicited information coming from the environment, and using the Sensing
capability.

– Active Observation Introduction (AOI), changing KB0 by introducing the
outcome of (actively sought) sensing actions, and using the Sensing capabil-
ity.

– Action Execution (AE), executing all types of actions, and thus changing
KB0.

– State Revision (SR), revising Goals and Plan, and using the Temporal Rea-
soning capability and Constraint Satisfaction.

The effect of transitions is dependent on the concrete time of their application.

Selection functions. Inputs to (some of the) transitions is given via selection
functions, taking the current state S and time τ as input:

– action selection function, returning the set of actions in to be executed by
AE;

– goal selection function, returning the set of goals to be planned for by PI;
– fluent selection function, returning the set of properties to be sensed by AOI;
– precondition selection function, returning the set of preconditions of actions

for which sensing actions are to be introduced by SI.

Cycle Theories The behaviour of agents results from the application of tran-
sitions in sequences, repeatedly changing the state of the agent. These sequences
are not fixed a priori, as in conventional agent architectures, but are determined
dynamically by reasoning with declarative cycle theories, giving a form of flexible
control.

The role of the cycle theory is to dynamically control the sequence of the
internal transitions that the agent applies in its “life”. It regulates these “narra-
tives of transitions” according to certain requirements that the designer of the
agent would like to impose on the operation of the agent, but still allowing the
possibility that any (or a number of) sequences of transitions can actually apply
in the “life” of an agent. Thus, reasoning with cycle theories to decide, at any
stage, the next transition can be seen as a sophisticated form or decision making,
taking into account the time at which the decision is taken, the decision taken
earlier on, the current state of the agent, and, in particular, any constraints on
the time of goals and actions, including the ordering imposed upon them, the
current top-level goals, any plans already decided for them and their sub-goals,



and any changes in the environment. By means of reasoning with cycle theo-
ries, decisions making also depends upon agents’ “personalities” or “behavioural
profiles”.

Cycle theories are given in the framework of LPP, also used for the Goal
Decision capability. More details on cycle theories and how they can provide
control for agents can be found in [13].

2.2 PROSOCS: Implementing KGP agents

To realise the KGP model we have developed PROSOCS [23], a platform which
allows us to deploy and test the functionality of KGP agents via the SOCSiC
(standing for SOCS individual Computee) component of PROSOCS. Deploy-
ment of KGP agents using SOCSiC is based on an agent template whose de-
sign [22] builds upon previous work in multi–agent systems, in particular, the
head/body metaphor described by [25] and [8], and the mind/body architecture
introduced by [3] and more recently used by [9].

In the mind part of a PROSOCS agent, the ALP-based components of the
KGP model are implemented in CIFF [6, 7] and the LPP-based components of
the KGP model are implemented in GORGIAS [1]. Overall, we build the mind
using SICStus Prolog [20] and the bidirectional Java-Prolog interface Jasper it
provides; Jasper is used by the body to exchange information with the mind.

To implement the body of the agent we use Java on top of the Peer-to-
Peer JXTA Project [26]. JXTA is suitable for the low-level functionality of a
PROSOCS agent, such as interaction with the environment, and is provided in
the form of an API (Application Programming Interface). By importing this
API when we instantiate specific PROSOCS agents, we enable such agents to
discover bodies of other PROSOCS agents (using JXTA’s peer discovery proto-
cols facilities for dynamic discovery in a GC network) as well as communicate
with other agents (using JXTA’s facilities for message transport and structuring
via a pipe binding and resolver protocols).

To allow the reuse of functionality from other components that are not nec-
essarily agents, PROSOCS has been extended with the notion of objects. An
object is an entity that has no reasoning capability in the sense of the KGP
model. Conceptually, objects are simply a way in which we can introduce in a
PROSOCS environment entities that agents can interact with physical actions.
In other words, objects are simply parts of the environment that allow physical
interaction in a PROSOCS application. Objects can also be acting as wrappers
to external objects, if necessary. An external object is any software component
with an API (Applications programmer’s Interface). Such external object can
be included in the PROSOCS environment using the PROSOCS objects facility.
A detailed discussion on the incorporation of objects in PROSOCS is discussed
in [15].



3 E-Negotiation

Negotiation has become an important research area in distributed systems [18]
and has recently become an important interaction mechanism for multi-agent
systems [11]. Agents need to negotiate because they often need to operate in
environments with limited resource availability. For example, one-to-many nego-
tiation is used for auctions, where participants reach an agreement on the cost
of the items on sale. One-to-one negotiation is used, for instance, for task real-
location [19] and for resource reallocation [17], where the limited resources may
be time, the computational resources of agents, or physical resources needed to
carry out some tasks. In this section we demonstrate how the decision making
ability of KGP agents can support one-to-many negotiation of the type one finds
in auctions.

3.1 E-Negotiation in Auctions

An auction describes a process where two or more parties negotiate on the values
of goods until an acceptable agreement is reached for the exchange of these goods.
The value of goods on which the negotiation is based on is usually price (but
any other attribute of the goods e.g. quality) can also be used.

Typically, auctions have two types of participants: auctioneer and (two or
more) bidders. Bidders aim at buying (or selling, depending on the application)
goods from one another. To do so, they place bids on these items. The auctioneer
decides the winning bid(s), which determine the allocation of the goods amongst
the bidders.

Different auction types exists, regulating differently the interaction mech-
anism amongst auctioneer and bidders and their decision making mechanism.
E.g., in single unit reverse auctions, the objective of bidders is to obtain the
goods at the lowest price, and the objective of the auctioneer in taking this
decision is to maximise its profit (or the profit of the parties the auctioneer is
representing). In this kind of auctions, bidders and auctioneer are self-interested
and do not collaborate nor negotiate with one another.

The information exchanged during auctions and its format depend on the
type of auction. In general, we have the auctioneer proposal, namely the set of
items (goods or services) to be sold, with constraints, which may be temporal
or setting minimum/maximum prices.

A bid in an auction is defined by the bidder’s name, the name of the items
to be purchased, any temporal constraints, and the value of the bid, possibly
defined by constraints. The auctioneer answer specify the winning bids.

Auctions can also be used among cooperative agents. For example, two sup-
pliers can cooperate and put together their resources to obtain better prices and
more appealing bids. As another example, if the constraints (maximum price
and temporal constraints) imposed by the customer are too strict, after a failure
of the bid evaluation process, the customer can start negotiating with suppliers
to obtain information on the relaxation of the customer’s constraints.



Fig. 1. A combinatorial auction organised as a set of agents and objects in PROSOCS.

In conventional auctions, auctioneer and bidders are human. In electronic
(e.g. internet-based) auctions, software agents (as well as humans) can partic-
ipate in auctions on behalf of end-users [27]. We present below an example of
distributed e-negotiation where people and software agents interact to exchange
goods via a network of computers.

We have experimented with the development of a combinatorial auction [16]
in order to experiment and test [2], amongst other things, with the PROSOCS
platform and distributed decision making using the KGP model. In this con-
text we have experimented with an ambient intelligence application [24] (whose
scenario is described in [21]) where people are represented in electronic envi-
ronments by personal service agents (PSAs)[5]. The specific scenario illustrates
how a PSA facilitates a person’s travel by creating a combinatorial auction to
meet that person’s travel requirements for reaching an airport. Fig. 1 shows the
PSA initiates a reverse auction where travel agents bid to meet the person’s
requirements.

More specifically, the PSA becomes the auctioneer of a reverse auction where
a set of real or artificial travel agents (B1, B2,...,Bn) are bidding to try matching
the price required by the user. The PSA creates a PROSOCS object, called the



Notepad, which allows the PSA to make notes of the bids offered by the bidders,
and giving an example of how an agent can annotate the external environment to
its advantage. The PSA also uses an auction calculator to solve the constraints
of the bids. This object shows how to incorporate the ILOG solver [10] as an
object into our system, without having to treat it as an agent (which arguably
it is not). Both the notepad and the auction calculator involve the auctioneer
agent to interact using the ideas of objects, described in the previous section.

One important advantage of using PROSOCS objects is that, in principle,
a PROSOCS agent could use different auction calculators, possibly using dif-
ferent constraint and optimisation techniques, to decide on different aspects of
an auction (e.g. winner determination). Moreover, these objects could again, in
principle, run on different nodes of a computer network, and thus making the
overall approach more flexible and more scalable.

3.2 Modelling the Auctioneer

Opening an auction. An Auctioneer starts an auction after selecting the com-
municative act openauction to the Bidders. This act will be initiated by the
planning capability in response to producing a plan for a goal. We represent this
in KBplan by initiates/3 rules of the form:

initiates(Act, T, auction(ID, Duration, Deadline, Bidders, Items)):-

self(Auctioneer),

Act=tell(Auctioneer, Bidders, openauction(Items, Duration, Deadline), ID).

The representation of the above rule assumes amongst other that the descrip-
tion of an Act initiating an auction contains the auction’s Duration (i.e. a fixed
number of time units for which the auction should last) as well as the auction’s
Deadline (i.e. the additional time required for the auctioneer to announce the
auction’s result after the auction’s duration has expired).

Collecting bids. After opening an auction the auctioneer is to check the bids that
it receives for validity and to collect those that are considered valid for processing
after the end of the auction. Valid bids should (i) reach the auctioneer in time,
(ii) come from a bidder that has actually been invited to participate in the
auction, and (iii) specify a set of items that is a subset of the items put on
auction.

To collect the valid bids, we make use of another external object (besides
the object implementing the auction solver). This so-called notepad object can
be used to collect a list of items (identified by the same identifier); it will store
them and we can later retrieve the entire list by, again, specifying the appro-
priate identifier. This approach has turned out to be considerably simpler than
programming the collection of of past observations (of valid bids) directly in
KBreact. Besides, it also showcases another application of the integration of ob-
jects into PROSOCS. The following rule implements both the checking of a bid
for validity according to the three criteria given above and the forwarding of
valid bids to the notepad for collection:



[

observed(Bidder,tell(Bidder,Auctioneer,bid(Price,Items),ID,_),T),

executed(tell(Auctioneer,Bidders,openauction(Items,T1,T2),ID),T0),

self(Auctioneer),

T0 #< T,

T #=< T1,

member(Bidder,Bidders),

subset(Items, Items),

NextAct=do(notepad, makeNote(ID,bid(Bidder,Price,Items)))

] implies

[

assume_happens_after_once(NextAct,T)

].

This reactive rule uses the following auxiliary predicates to test for mem-
bership in a set and to to test for being a subset of a given set, respectively
(where sets are represented as lists, using the notation familiar from Prolog).
For simplicity, we will assume that any physical actions (of the form do( )) are
executable by the agent (by programming executable/1 accordingly).

Closing an auction. The final task of an auctioneer is to close an auction once
the specified time has passed and to communicate the result to the bidders (at
least to those that have submitted a valid bid). This has been programmed,
again, by providing appropriate rules for KBreact. The following rule “fires” as
soon as the specified end time T1 has passed and queries the notepad object for
the list of collected bids (provided the deadline T2 for announcing the result has
not yet passed):

[

executed(tell(Auctioneer,AllBidders,openauction(AllItems,T1,T2),ID),T0),

self(Auctioneer),

time_now(T),

T1 #< T,

T #=< T2

] implies

[

assume_happens_after_once(do(read_notes(ID)),T)

].

Then there is a simple rule that, upon receiving the list from the notepad
(by means of a sensing action), forwards this list to the auction solver (omitted
here). The result of the auction received from the auction solver is again picked
up by means of a sensing action. It specifies the list of winners as well as the
list of losers. The following reactive rule causes a message to be sent to each
agent given in the list of winners (there is a similar rule for informing the losers;
omitted here):

[

self(Auctioneer),



observed(auction_solver,Observation,T),

Observation=see(auction_solver,solution(ID,WinBids,LoseBids)),

member((Bidder,Price,Items),WinBids),

NextAct=tell(Auctioneer,Bidder, answer(win,Bidder,Items,Price),ID)

] implies

[

assume_happens_after_once(NextAct, T)

].

We should stress that the implementation of KBreact for an auctioneer agent
is independent from the exact syntax used to specify bids (i.e. it could, for
instance, be used for combinatorial auctions that either do or do not specify
time windows within bids, and for both reverse auctions and normal auctions).

3.3 Modelling Bidders

For most of our experiments we have represented concrete bids for specific sets
of items that are on auction using simple reactive rules. The following reactive
rule causes an agent to reply to any openauction act that offers a set of items
including central station by offering an a price of 5 monetary units for that
item, and provided it is amongst the agents that have been invited to bid:

[

observed(Auctioneer,Observation,T),

Observation=tell(Auctioneer,Bidders,openauction(Items,T1,T2),ID,_),

self(Bidder),

member(Bidder,Bidders),

member(central_station,Items),

NextAct=tell(Name,Auctioneer,bid(5,[central_station]),ID)

] implies

[

assume_happens_after_once(NextAct,T)

].

In principle, it would also be possible to implement more sophisticated bid-
ding strategies (in the true sense of the word) for combinatorial auctions. The
present experiments are mostly aimed at testing whether a KGP agent can de-
cide using the cycle theory, its plans, and goals, together with its reactivity rules.
We have also tried to test these decisions in PROSOCS and provide the basic
communication needs for running combinatorial auctions. However, other pos-
sible approaches for generating interesting problem instances would be to use
the Combinatorial Auction Test Suite (CATS) [14] to automatically generate
instances of combinatorial auction problems that could be adopted by bidding
agents to test the overall architecture more extensively. The details of such an
extension, however, is beyond the scope of this work.

4 Conclusions

In this paper we have summarised the KGP model of agency [12, 4] and its
implementation [23]. The model incorporates and integrates a number of decision



making components, one that assists the agent to generate goals, one to allow
the agent to plan for these goals, and one that allows the agent to select actions
to achieve the goals that it has planned for. We have exemplified the approach
by illustrating how the model and a prototype implementation in the PROSOCS
platform can be adopted to support e-negotiation, using a combinatorial auction
as a case study.
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