
The CIFF Proof Procedure for Abductive Logic
Programming with Constraints

U. Endriss1, P. Mancarella2, F. Sadri1, G. Terreni2, and F. Toni1,2

1 Department of Computing, Imperial College London
Email: {ue,fs,ft}@doc.ic.ac.uk

2 Dipartimento di Informatica, Università di Pisa
Email: {paolo,terreni,toni}@di.unipi.it

Abstract. We introduce a new proof procedure for abductive logic pro-
gramming and present two soundness results. Our procedure extends that
of Fung and Kowalski by integrating abductive reasoning with constraint
solving and by relaxing the restrictions on allowed inputs for which the
procedure can operate correctly. An implementation of our proof pro-
cedure is available and has been applied successfully in the context of
multiagent systems.

1 Introduction

Abduction has found broad application as a tool for hypothetical reasoning with
incomplete knowledge, which can be handled by labelling some pieces of informa-
tion as abducibles, i.e. as possible hypotheses that can be assumed to hold, pro-
vided that they are consistent with the given knowledge base. Abductive Logic
Programming (ALP) combines abduction with logic programming enriched by
integrity constraints to further restrict the range of possible hypotheses. Im-
portant applications of ALP include planning [10], requirements specification
analysis [8], and agent communication [9]. In recent years, a variety of proof
procedures for ALP have been proposed, including the IFF procedure of Fung
and Kowalski [4]. Here, we extend this procedure in two ways, namely (1) by
integrating abductive reasoning with constraint solving (in the sense of CLP, not
to be confused with integrity constraints), and (2) by relaxing the allowedness
conditions given in [4] to be able to handle a wider class of problems.

Our interest in extending IFF in this manner stems from applications devel-
oped in the SOCS project, which investigates the use of computational logic-
based techniques in the context of multiagent systems for global computing. In
particular, we use ALP extended with constraint solving to give computational
models for an agent’s planning, reactivity and temporal reasoning capabilities [5].
We found that our requirements for these applications go beyond available state-
of-the-art ALP proof procedures. While ACLP [6], for instance, permits the use
of constraint predicates (unlike IFF), its syntax for integrity constraints is too
restrictive to express the planning knowledge bases (using a variant of the abduc-
tive event calculus [10]) used in SOCS. In addition, many procedures put strong,

sometimes unnecessary, restrictions on the use of variables. The procedure pro-
posed in this paper, which we call CIFF, manages to overcome these restrictions
to a degree that has allowed us to apply it successfully to a wide range of prob-
lems. We have implemented CIFF in Prolog;3 the system forms an integral part
of the PROSOCS platform for programming agents in computational logic [11].

In the next section we are going to set out the ALP framework used in this
paper and discuss the notion of allowedness. Section 3 then specifies the CIFF
proof procedure which we propose as a suitable reasoning engine for this frame-
work. Two soundness results for CIFF are presented in Section 4 and Section 5
concludes. An extended version of this paper that, in particular, contains detailed
proofs of our results is available as a technical report [3].

2 Abductive Logic Programming with Constraints

We use classical first-order logic, enriched with a number of special predicate
symbols with a fixed semantics, namely the equality symbol =, which is used to
represent the unifiability of terms (i.e. as in standard logic programming), and
a number of constraint predicates. We assume the availability of a sound and
complete constraint solver for this constraint language. In principle, the exact
specification of the constraint language is independent from the definition of the
CIFF procedure, because we are going to use the constraint solver as a black
box component.4 However, the constraint language has to include a relation
symbol for equality (we are going to write t1 =c t2) and it must be closed under
complements. In general, the complement of a constraint Con will be denoted as
Con (but we are going to write t1 6=ct2 for the complement of t1 =c t2). The range
of admissible arguments to constraint predicates again depends on the specifics
of the chosen constraint solver. A typical choice for a constraint system would
be an arithmetic constraint solver over integers providing predicates such as ≤
and > and allowing for terms constructed from variables, integers and function
symbols representing operations such as addition and multiplication.

Abductive logic programs. An abductive logic program is a pair 〈Th, IC 〉
consisting of a theory Th and a finite set of integrity constraints IC. We present
theories as sets of so-called iff-definitions:

p(X1, . . . , Xk) ↔ D1 ∨ · · · ∨Dn

The predicate symbol p must not be a special predicate (constraints, =, > and
⊥) and there can be at most one iff-definition for every predicate symbol. Each
of the disjuncts Di is a conjunction of literals. Negative literals are written as
implications (e.g. q(X,Y)→ ⊥). The variables X1, . . . , Xk are implicitly univer-
sally quantified with the scope being the entire definition. Any other variable is
implicitly existentially quantified, with the scope being the disjunct in which it
3 The CIFF system is available at http://www.doc.ic.ac.uk/∼ue/ciff/.
4 Our implementation uses the built-in finite domain solver of Sicstus Prolog [1], but

the modularity of the system would also support the integration of a different solver.

occurs. A theory may be regarded as the (selective) completion of a normal logic
program (i.e. of a logic program allowing for negative subgoals in a rule) [2]. Any
predicate that is neither defined nor special is called an abducible.

In this paper, the integrity constraints in the set IC (not to be confused
with constraint predicates) are implications of the following form:

L1 ∧ · · · ∧ Lm → A1 ∨ · · · ∨An
Each of the Li must be a literal (with negative literals again being written in
implication form); each of the Ai must be an atom. Any variables are implicitly
universally quantified with the scope being the entire implication.

A query Q is a conjunction of literals. Any variables in Q are implicitly
existentially quantified. They are also called the free variables. In the context of
the CIFF procedure, we are going to refer to a triple 〈Th, IC, Q〉 as an input.

Semantics. A theory provides definitions for certain predicates, while integrity
constraints restrict the range of possible interpretations. A query may be re-
garded as an observation against the background of the world knowledge encoded
in a given abductive logic program. An answer to such a query would then pro-
vide an explanation for this observation: it would specify which instances of the
abducible predicates have to be assumed to hold for the observation to hold
as well. In addition, such an explanation should also validate the integrity con-
straints. This is formalised in the following definition:

Definition 1 (Correct answer). A correct answer to a query Q with respect
to an abductive logic program 〈Th, IC 〉 is a pair 〈∆,σ〉, where ∆ is a finite set
of ground abducible atoms and σ is a substitution for the free variables occurring
in Q, such that Th ∪ Comp(∆) |= IC ∧Qσ.

Here |= is the usual consequence relation of first-oder logic with the restriction
that constraint predicates have to be interpreted according to the semantics
of the chosen constraint system and equalities evaluate to true whenever their
two arguments are unifiable. Comp(∆) stands for the completion of the set of
abducibles in ∆, i.e. any ground atom not occurring in ∆ is assumed to be false.
If we have Th ∪ IC |= ¬Q (i.e. if Q is false for all instantiations of the free
variables), then we say that there exists no correct answer to the query Q given
the abductive logic program 〈Th, IC 〉.

Example 1. Consider the following abductive logic program:

Th : p(T) ↔ q(X,T ′) ∧ T ′<T ∧ T<8
q(X,T) ↔ X= a ∧ s(T)

IC : r(T) → p(T)

The set of abducible predicates is {r, s}. The query r(6), for instance, should
succeed; a possible correct answer would be the set {r(6), s(5)}, with an empty
substitution. Intuitively, given the query r(6), the integrity constraint in IC
would fire and force the atom p(6) to hold, which in turn requires s(T ′) for some
T ′ < 6 to be true (as can be seen by unfolding first p(6) and then q(X,T ′)). 2

Allowedness. Fung and Kowalski [4] require inputs 〈Th, IC, Q〉 to meet a number
of so-called allowedness conditions to be able to guarantee the correct operation
of their proof procedure. These conditions are designed to avoid constellations
with particular (problematic) patterns of quantification. Unfortunately, it is
difficult to formulate appropriate allowedness conditions that guarantee a cor-
rect execution of the proof procedure without imposing too many unnecessary
restrictions. This is a well-known problem, which is further aggravated for
languages that include constraint predicates. Our proposal is to tackle the issue
of allowedness dynamically, i.e. at runtime, rather than adopting a static and
overly strict set of conditions. In this paper, we are only going to impose the
following minimal allowedness conditions:5

– An integrity constraint A→ B is allowed iff every variable in it also occurs
in a positive literal within its antecedent A.

– An iff-definition p(X1, . . . , Xk)↔ D1 ∨ · · · ∨Dn is allowed iff every variable
other than X1, . . . , Xk occurring in a disjunct Di also occurs inside a positive
literal within the same Di.

The crucial allowedness condition is that for integrity constraints: it ensures that,
also after an application of the negation rewriting rule (which moves negative
literals in the antecedent of an implication to its consequent), every variable
occurring in the consequent of an implication is also present in its antecedent.
The allowedness condition for iff-definitions merely allows us to maintain this
property of implications when the unfolding rule (which, essentially, replaces a
defined predicate with its definition) is applied to atoms in the antecedent of an
implication. We do not need to impose any allowedness conditions on queries.

3 The CIFF Proof Procedure

We are now going to formally introduce the CIFF proof procedure. The input
〈Th, IC, Q〉 to the procedure consists of a theory Th, a set of integrity constraints
IC, and a query Q. There are three possible outputs: (1) the procedure succeeds
and indicates an answer to the query Q; (2) the procedure fails, thereby indi-
cating that there is no answer; and (3) the procedure reports that computing an
answer is not possible, because a critical part of the input is not allowed.

The CIFF procedure manipulates, essentially, a set of formulas that are ei-
ther atoms or implications. The theory Th is kept in the background and is only
used to unfold defined predicates as they are being encountered. In addition to
atoms and implications the aforementioned set of formulas may contain disjunc-
tions of atoms and implications to which the splitting rule may be applied, i.e.
which give rise to different branches in the proof search tree. The sets of formulas
manipulated by the procedure are called nodes. A node is a set (representing a

5 Note that the CIFF procedure could easily be adapted to work also on inputs not
conforming even to these minimal conditions, but then it would not be possible
anymore to represent quantification implicitly.

conjunction)6 of formulas (atoms, implications, or disjunctions thereof) which
are called goals. A proof is initialised with the node containing the integrity con-
straints IC and the literals of the query Q. The proof procedure then repeatedly
manipulates the current node of goals by rewriting goals in the node, adding
new goals to it, or deleting superfluous goals from it. Most of this section is
concerned with specifying these proof rules in detail.

The structure of our proof rules guarantee that the following quantification
invariants hold for every node in a derivation:
– No implication contains a universally quantified variable that is not also

contained in one of the positive literals in its antecedent.
– No atom contains a universally quantified variable.
– No atom inside a disjunction contains a universally quantified variable.

In particular, these invariants subsume the minimal allowedness conditions dis-
cussed in the previous section. The invariants also allow us to keep quantification
implicit throughout a CIFF derivation by determining the quantification status
of any given variable. Most importantly, any variable occurring in either the
original query or an atomic conjunct in a node must be existentially quantified.

Notation. In the sequel, we are frequently going to write ~t for a “vector” of
terms such as t1, . . . , tk. For instance, we are going to write p(~t) rather than
p(t1, . . . , tk). To simplify presentation, we assume that there are no two predi-
cates that have the same name but different arities. We are also going to write
~t = ~s as a shorthand for t1 = s1 ∧ · · · ∧ tk = sk (with the implicit assump-
tion that the two vectors have the same length), and [~X/~t] for the substitution
[X1/t1, . . . , Xk/tk]. Note that X and Y always represent variables. Furthermore,
in our presentation of proof rules, we are going to abstract from the order of con-
juncts in the antecedent of an implication: the critical subformula is always rep-
resented as the first conjunct. That is, by using a pattern such as X = t∧A→ B
we are referring to any implication with an antecedent that has a conjunct of
the form X = t. A represents the remaining conjunction, which may also be
“empty”, that is, the formula X = t→ B is a special case of the general pattern
X = t ∧A→ B. In this case, the residue A→ B represents the formula B.

Proof rules. For each of the proof rules in our system, we specify the type of
formula(s) which may trigger the rule (“given”), a number of side conditions that
need to be met, and the required action (such as replacing the given formula by
a different one). Executing this action yields one or more successor nodes and
the current node can be discarded. The first rule replaces a defined predicate
occurring as an atom in the node by its defining disjunction:

Unfolding atoms

Given: p(~t)

Cond.: [p(~X)↔ D1 ∨ · · · ∨Dn] ∈ Th

Action: replace by (D1 ∨ · · · ∨Dn)[~X/~t]

6 If a proof rule introduces a conjunction into a node, this conjunction is understood
to be broken up into its subformulas right away.

Note that any variables in D1 ∨ · · · ∨Dn other than those in ~X are existentially
quantified with respect to the definition, i.e. they must be new to the node and
they will be existentially quantified in the successor node.

Unfolding predicates in the antecedent of an implication yields one new im-
plication for every disjunct in the defining disjunction:

Unfolding within implications

Given: p(~t) ∧A→ B

Cond.: [p(~X)↔ D1 ∨ · · · ∨Dn] ∈ Th

Action: replace by D1[~X/~t] ∧A→ B, . . . , Dn[~X/~t] ∧A→ B

Observe that variables in any of the Di that have been existentially quantified in
the definition of p(~t) are going to be universally quantified in the corresponding
new implication (because they appear within the antecedent).

The next rule is the propagation rule, which allows us to resolve an atom in
the antecedent of an implication with a matching atom in the node. Unlike most
rules, this rule does not replace a given formula, but it merely adds a new one.
This is why we require explicitly that propagation cannot be applied again to
the same pair of formulas. Otherwise the procedure would be bound to loop.

Propagation

Given: p(~t) ∧A→ B and p(~s)
Cond.: the rule has not yet been applied to this pair of formulas

Action: add ~t = ~s ∧A→ B

The splitting rule gives rise to (not just a single but) a whole set of successor
nodes, one for each of the disjuncts in A1 ∨ · · · ∨An, each of which gives rise to
a different branch in the derivation:

Splitting

Given: A1 ∨ · · · ∨An
Cond.: none
Action: replace by one of A1, . . . , An

The next rule is a logical simplification that moves negative literals in the an-
tecedent to the consequent of an implication:

Negation rewriting

Given: (A→ ⊥) ∧B → C
Cond.: none
Action: replace by B → A ∨ C

There are two further logical simplification rules:

Logical simplification (trivial condition)

Given: > ∧A→ B
Cond.: none
Action: replace by A→ B

Logical simplification (redundant formulas)

Given: either ⊥ → A or >
Cond.: none
Action: delete formula

The following factoring rule can be used to separate cases in which particular
abducible atoms unify from those in which they do not:

Factoring

Given: p(~t) and p(~s)

Cond.: p abducible; the rule has not yet been applied to p(~t) and p(~s)

Action: replace by [p(~t) ∧ p(~s) ∧ (~t = ~s→ ⊥)] ∨ [p(~t) ∧ ~t = ~s]

The next few rules deal with equalities. The first two of these involve simplifying
equalities according to the following rewrite rules:
(1) Replace f(t1, . . . , tk) = f(s1, . . . , sk) by t1 = s1 ∧ · · · ∧ tk = sk.
(2) Replace f(t1, . . . , tk) = g(s1, . . . , sl) by ⊥ if f and g are distinct or k 6= l.
(3) Replace t = t by >.
(4) Replace X = t by ⊥ if t contains X.
(5) Replace t = X by X = t if X is a variable and t is not.
(6) Replace Y = X by X = Y if X is a univ. quant. variable and Y is not.
(7) Replace Y = X by X = Y if X and Y are exist. quant. variables and X

occurs in a constraint predicate, but Y does not.

Rules (1)–(4) essentially implement the term reduction part of the unification
algorithm of Martelli and Montanari [7]. Rules (5)–(7) ensure that completely
rewritten equalities are always presented in a normal form, thereby simplifying
the formulation of our proof rules.

Equality rewriting for atoms

Given: t1 = t2
Cond.: the rule has not yet been applied to this equality
Action: replace by the result of rewriting t1 = t2

Equality rewriting for implications

Given: t1 = t2 ∧A→ B
Cond.: the rule has not yet been applied to this equality
Action: replace by C ∧A→ B where C is the result of rewriting t1 = t2

The following two substitution rules also handle equalities:

Substitution rule for atoms

Given: X = t
Cond.: X 6∈ t; the rule has not yet been applied to this equality
Action: apply substitution [X/t] to entire node except X = t itself

Substitution rule for implications

Given: X = t ∧A→ B
Cond.: X univ. quant.; X 6∈ t; t contains no univ. quant. variables or X 6∈ B
Action: replace by (A→ B)[X/t]

The purpose of the third side condition (of t not containing any universally
quantified variables or X not occurring within B) is to maintain the quantifi-
cation invariant that any universally quantified variable in the consequent of an
implication is also present in the antecedent of the same implication.

If neither equality rewriting nor a substitution rule are applicable, then an
equality may give rise to a case analysis:

Case analysis for equalities

Given: X = t ∧A→ B (exception: do not apply to X = t→ ⊥)
Cond.: X exist. quant.; X 6∈ t; t is not a univ. quant. variable
Action: replace by X = t and A→ B, or replace by X = t→ ⊥

Case analysis should not be applied to formulas of the form X = t→ ⊥ (despite
this being an instance of the pattern X = t ∧ A→ B), because this would lead
to a loop (with respect to the second successor node). Also note that, if the third
of the above side conditions was not fulfilled and if t was a universally quantified
variable, then equality rewriting could be applied to obtain t = X ∧ A → B, to
which we could then apply the substitution rule for implications.

Observe that the above rule gives rise to two successor nodes (rather than
a disjunction). This is necessary, because the term t may contain variables that
would be quantified differently on the two branches, i.e. a new formula with
a disjunction in the matrix would not (necessarily) be logically equivalent to
the disjunction of the two (quantified) subformulas. In particular, in the first
successor node all variables in t will become existentially quantified. To see this,
consider the example of the implication X = f(Y) ∧ A → B and assume X
is existentially quantified, while Y is universally quantified. We can distinguish
two cases: (1) either X represents a term whose main functor is f , or (2) this
is not the case. In case (1), there exists a value for Y such that X = f(Y), and
furthermore A → B must hold. Otherwise, i.e. in case (2), X = f(Y) will be
false for all values of Y .

Case analysis for constraints

Given: Con ∧A→ B
Cond.: Con is a constraint predicate without univ. quant. variables

Action: replace by [Con ∧ (A→ B)] ∨ Con

Observe that the conditions on quantification are a little stricter for case analysis
for constraints than they were for case analysis for equalities. Now all variables
involved need to be existentially quantified. This simplifies the presentation of
the rule a little, because no variables change quantification. In particular, we
can replace the implication in question by a disjunction (to which the splitting
rule may be applied in a subsequent step).

While case analysis is used to separate constraints from other predicates, the
next rule provides the actual constraint solving step itself. It may be applied to
any set of constraints in a node, but to guarantee soundness, eventually, it has
to be applied to the set of all constraint atoms.

Constraint solving

Given: constraint predicates Con1, . . . ,Conn
Cond.: {Con1, . . . ,Conn} is not satisfiable
Action: replace by ⊥

If {Con1, . . . ,Conn} is found to be satisfiable it may also be replaced with
an equivalent but simplified set (in case the constraint solver used offers this
feature). To simplify presentation, we assume that the constraint solver will fail
(rather than come back with an undefined answer) whenever it is presented with

an ill-defined constraint such as, say, bob ≤ 5 (in the case of an arithmetic solver).
For inputs that are “well-typed”, however, such a situation will never arise.

Our next two rules ensure that (dis)equalities that affect the satisfiability of
the constraints in a node are correctly rewritten using the appropriate constraint
predicates. Here we refer to a variable as a constraint variable (with respect to
a particular node) iff that variable occurs inside a constraint atom in that node.
For the purpose of stating the next two rules in a concise manner, we call a term
c-atomic iff it is either a variable or a ground element of the constraint domain
(e.g. an integer in the case of an arithmetic domain).

Equality-constraint rewriting

Given: X = t
Cond.: X is a constraint variable
Action: replace by X =c t if t is c-atomic; replace by ⊥ otherwise

Disequality-constraint rewriting

Given: X = t→ ⊥
Cond.: X is a constraint variable
Action: replace by X 6=ct if t is c-atomic; delete formula otherwise

For example, if we are working with an arithmetic constraint domain, then the
formula X = bob → ⊥ would be deleted from the node as it holds vacuously
whenever X also occurs within a constraint predicate.

We call a formula of the form t1 = t2 → ⊥ a disequality provided no uni-
versally quantified variables occur in either t1 or t2. The next rule is used to
identify nodes containing formulas with problematic quantification, which could
cause difficulties in extracting an abductive answer:

Dynamic allowedness rule (DAR)

Given: A→ B (exception: do not apply to disequalities)
Cond.: A consists of equalities and constraints alone; no other rule applies
Action: label node as undefined

In view of the second side condition, recall that the only rules applicable to an
implication with only equalities and constraints in the antecedent are the equality
rewriting and substitution rules for implications and the two case analysis rules.

Answer extraction. A node containing ⊥ is called a failure node. If all branches
in a derivation terminate with failure nodes, then the derivation is said to fail
(the intuition being that there exists no answer to the query). A node to which
no more rules can be applied is called a final node. A final node that is not a
failure node and that has not been labelled as undefined is called a success node.

Definition 2 (Extracted answer). An extracted answer for a final success
node N is a triple 〈∆,Φ, Γ 〉, where ∆ is the set of abducible atoms, Φ is the set
of equalities and disequalities, and Γ is the set of constraint atoms in N .

An extracted answer in itself is not yet a correct answer in the sense of Defini-
tion 1, but —as we shall see— it does induce such a correct answer. The basic idea

is to first define a substitution σ that is consistent with both the (dis)equalities
in Φ and the constraints in Γ , and then to ground the set of abducibles ∆ by
applying σ to it. The resulting set of ground abducible atoms together with the
substitution σ then constitutes a correct answer to the query (i.e., an extracted
answer will typically give rise to a whole range of correct answers). To argue
that this is indeed possible, i.e. to show that the described procedure of deriving
answers to a query is a sound operation, will be the subject of the next section.

Example 2. We show the derivation for the query r(6) given the abductive logic
program of Example 1. Recall that CIFF is initiated with the node N0 composed
of the query and the integrity constraints in IC.

N0 : r(6) ∧ [r(T)→ p(T)] [initial node]
N1 : r(6) ∧ [T = 6→ p(T)] ∧ [r(T)→ p(T)] [by propagation]
N2 : r(6) ∧ p(6) ∧ [r(T)→ p(T)] [by substitution]
N3 : r(6) ∧ q(X,T ′) ∧ T ′<6 ∧ 6<8 ∧ [r(T)→ p(T)] [by unfolding]
N4 : r(6) ∧ q(X,T ′) ∧ T ′<6 ∧ [r(T)→ p(T)] [by constraint solving]
N5 : r(6) ∧X= a ∧ s(T ′) ∧ T ′<6 ∧ [r(T)→ p(T)] [by unfolding]

No more rules can be applied to the node N5 and it neither contains ⊥ nor has
it been labelled as undefined. Hence, it is a success node and we get an extracted
answer with ∆ = {r(6), s(T ′)}, Φ = {X = a} and Γ = {T ′< 6}, of which the
correct answer given in Example 1 is an instance. 2

4 Soundness Results

In this section we are going to present the soundness of the CIFF procedure
with respect to the semantics of a correct answer to a given query. Due to space
restrictions, we have to restrict ourselves to short sketches of the main ideas
involved. Full proofs may be found in [3]. Our results extend those of Fung
and Kowalski for the original IFF procedure in two respects: (1) they apply to
abductive logic programs with constraints, and (2) they do not rely on a static
(and overly strict) definition of allowedness.

For an abductive proof procedure, we can distinguish two types of soundness
results: soundness of success and soundness of failure. The first one establishes
the correctness of derivations that are successful (soundness of success): whenever
the CIFF procedure terminates successfully then the extracted answer (consisting
of a set of abducible atoms, a set of equalities and disequalities, and a set of
constraints) gives rise to a true answer according to the semantics of ALP (i.e.
a ground set of abducible atoms and a substitution). Note that for this result to
apply, it suffices that a single final success node can be derived. This node will
give rise to a correct answer, even if there are other branches in the derivation
that do not terminate or for which the DAR has been triggered. The second
soundness result applies to derivations that fail (soundness of failure): it states
that whenever the CIFF procedure fails then there is indeed no answer according
to the semantics. This result applies only when all branches in a derivation have

failed; if there are branches that do not terminate or for which the DAR has
been triggered, then we cannot draw any conclusions regarding the existence of
an answer to the query (assuming there are no success nodes).

The proofs of both these results heavily rely on the fact that our proof rules
are equivalence preserving:

Lemma 1 (Equivalence preservation). If N is a node in a derivation with
respect to the theory Th, and N is the disjunction of the immediate successor
nodes of N in that derivation, then Th |= N ↔ N .

Note that the disjunction N will have only a single disjunct whenever the rule
applied to N is neither splitting nor case analysis for equalities. Equivalence
preservation is easily verified for most of our proof rules. Considering that IC∧Q
is the initial node of any derivation, the next lemma then follows by induction
over the number of proof steps leading to a final success node:

Lemma 2 (Final nodes entail initial node). If N is a final success node for
the input 〈Th, IC, Q〉, then Th |= N → (IC ∧Q).

Our third lemma provides the central argument in showing that it is possible to
extract a correct abductive answer from a final success node:

Lemma 3 (Answer extraction). If N is a final success node and ∆ is
the set of abducible atoms in N , then there exists a substitution σ such that
Comp(∆σ) |= Nσ.

The first step in proving this lemma is to show that any formulas in N that are
not directly represented in the extracted answer must be implications where the
antecedent includes an abducible atom and no negative literals. We can then
show that implications of this type are logical consequences of Comp(∆σ) by
distinguishing two cases: either propagation has been applied to the implication
in question, or it has not. In the latter case, the claim holds vacuously (because
the antecedent is not true); in the former case we use an inductive argument
over the number of abducible atoms in the antecedent.

The full proof of Lemma 3 makes reference to all proof rules except factoring.
Indeed, factoring is not required to ensure soundness. However, as can easily be
verified, factoring is equivalence preserving in the sense of Lemma 1; that is, our
soundness results apply both to the system with and to the system without the
factoring rule. We are now ready to state these soundness results:

Theorem 1 (Soundness of success). If there exists a successful derivation
for the input 〈Th, IC, Q〉, then there exists a correct answer for that input.

Theorem 2 (Soundness of failure). If there exists a derivation for the input
〈Th, IC, Q〉 that terminates and where all final nodes are failure nodes, then there
exists no correct answer for that input.

Theorem 1 follows from Lemmas 2 and 3, while Theorem 2 can be proved by
induction over the number of proof steps in a derivation, using Lemma 1 in the

induction step. We should stress that these soundness results only apply in cases
where the DAR has not been triggered and the CIFF procedure has terminated
with a defined outcome, namely either success or failure. Hence, such results are
only interesting if we can give some assurance that the DAR is “appropriate”: In
a similar but ill-defined system where an (inappropriate) allowedness rule would
simply label all nodes as undefined, it would still be possible to prove the same
soundness theorems, but they would obviously be of no practical relevance.

The reason why our rule is indeed appropriate is that extracting an answer
from a node labelled as undefined by the DAR would either require us to extend
the definition of a correct answer to allow for infinite sets of abducible atoms
or at least involve the enumeration of all the solutions to a set of constraints.
We shall demonstrate this by means of two simple examples. First, consider the
following implication:

X = f(Y) → p(X)

If both X and Y are universally quantified, then this formula will trigger the
DAR. Its meaning is that the predicate p is true whenever its argument is of the
form f(_). Hence, an “answer” induced by a node containing this implication
would have to include the infinite set {p(f(t1)), p(f(t2)), . . .}, where t1, t2, . . .
stand for the terms in the Herbrand universe. This can also be seen by considering
that, if we were to ignore the side conditions on quantification of the substitution
rule for implications, the above implication could be rewritten as p(f(Y)), with
Y still being universally quantified.

For the next example, assume that our constraint language includes the
predicate < with the usual interpretation over integers:

3 < X ∧ X < 100 → p(X)

Again, if the variable X is universally quantified, this formula will trigger the
DAR. While it would be possible to extract a finite answer from a node including
this formula, this would require us to enumerate all solutions to the constraint
3<X ∧X<100; that is, a correct answer would have to include the set of atoms
{p(4), p(5), . . . , p(99)}. In cases where the set of constraints concerned has an
infinite number of solutions, even in theory, it is not possible to extract a correct
answer (as it would be required to be both ground and finite).

5 Conclusion

We have introduced a new proof procedure for ALP that extends the IFF pro-
cedure in a non-trivial way by integrating abductive reasoning with constraint
solving. Our procedure shares the advantages of the IFF procedure [4], but cov-
ers a larger class of inputs: (1) predicates belonging to a suitable constraint
language may be used, and (2) the allowedness conditions have been reduced to
a minimum. Both these extension are important requirements for our applica-
tions of ALP to modelling and implementing autonomous agents [5, 11]. In cases
where no answer is possible due to allowedness problems, the CIFF procedure
will report this dynamically. However, if an answer is possible despite such prob-
lems, CIFF will report a defined answer. For instance, one node may give rise

to a positive answer while another has a non-allowed structure, or a derivation
may fail correctly for reasons that are independent of a particular non-allowed
integrity constraint. For inputs conforming to any appropriate static allowedness
definition, the DAR will never be triggered.

We have proved two soundness results for CIFF: soundness of success and
soundness of failure. Together these two results also capture some aspect of com-
pleteness: For any class of inputs that are known to be allowed (in the sense of
never triggering the DAR) and for which termination can be guaranteed (for in-
stance, by imposing suitable acyclicity conditions [12]) the CIFF procedure will
terminate successfully whenever there exists a correct answer according to the
semantics. We hope to investigate the issues of termination and completeness
further in our future work. Another interesting issue for future work on CIFF
would be to investigate different strategies for proof search and other optimisa-
tion techniques. Such research could then inform an improvement of our current
implementation and help to make it applicable to more complex problems.

Acknowledgements. This work was partially funded by the IST-FET programme
of the European Commission under the IST-2001-32530 SOCS project, within
the Global Computing proactive initiative. The last author was also supported
by the Italian MIUR programme “Rientro dei cervelli”.

References

[1] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In Proc. PLILP-1997, 1997.

[2] K. L. Clark. Negation as failure. In Logic and Data Bases. Plenum Press, 1978.
[3] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof pro-

cedure: Definition and soundness results. Technical Report 2004/2, Department
of Computing, Imperial College London, May 2004.

[4] T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151–165, 1997.

[5] A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model
of agency. In Proc. ECAI-2004, 2004. To appear.

[6] A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive constraint logic
programming. Journal of Logic Programming, 44:129–177, 2000.

[7] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4(2):258–282, 1982.

[8] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An abductive approach for
analysing event-based requirements specifications. In Proc. ICLP-2002. Springer-
Verlag, 2002.

[9] F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture
for negotiating agents. In Proc. JELIA-2002. Springer-Verlag, 2002.

[10] M. Shanahan. An abductive event calculus planner. Journal of Logic Program-
ming, 44:207–239, 2000.

[11] K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: A platform for programming software agents in computational logic.
In Proc. AT2AI-2004, 2004.

[12] I. Xanthakos. Semantic Integration of Information by Abduction. PhD thesis,
Department of Computing, Imperial College London, 2003.

