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Abstract. Argumentation and answer set programming are the two
main knowledge representation paradigms emerged from logic program-
ming for non-monotonic reasoning. This paper surveys recent work on
using answer set programming as a mechanism for computing extensions
in argumentation. The paper also indicates some directions for future
work.

1 Introduction

Argumentation was developed, starting in the early ’90s [9, 14, 8], as a computa-
tional framework to reconcile and understand common features and differences
amongst most existing approaches to non-monotonic reasoning, including vari-
ous alternative treatments of negation as failure in logic programming [30, 24,
42, 17], theorist [38], default logic [40], autoepistemic logic [35], non-monotonic
modal logic [34] and circumscription [33]. Argumentation relies upon

– the representation of knowledge in terms of an argumentation framework,
defining arguments and a binary attack relation between the arguments,

– dialectical semantics for determining “acceptable” sets of arguments
– a computational machinery for determining the acceptability of a given (set

of) argument(s) or for computing all acceptable sets of arguments (also re-
ferred to as extensions), according to some dialectical semantics.

Answer set programming (ASP) [29] constitutes one of the main current trends
in logic programming and non-monotonic reasoning. ASP relies upon

– the representation of knowledge in terms of disjunctive logic programs with
negation as failure (possibly including explicit negation, various forms of
constraints, aggregates etc);

– the interpretation of these logic programs under the stable model/answer
set semantics [30, 31] and its extensions (to deal with explicit negation, con-
straints, aggregates etc);

– efficient computational mechanisms (ASP solvers) to compute answer sets
for grounded logic programs, and efficient “grounders” to turn non-ground
logic programs into grounded ones.



Standard computational mechanisms for argumentation are defined using trees
(e.g. see [16]) or disputes (e.g. see [18]) and only construct relevant parts of ex-
tensions. ASP can instead be used to support the full computation of extensions.

This paper provides a survey of recent work using ASP for computing ex-
tensions of abstract argumentation frameworks [14] and some other forms of
argumentation. It also indicates possible directions for future work and cross-
fertilisation between ASP and argumentation.

The paper is organised as follows. Section 2 gives some background on argu-
mentation (focusing on abstract argumentation [14]) and ASP. Section 3 surveys
existing approaches using ASP to compute extensions in argumentation (again
focusing on abstract argumentation). Section 4 indicates some possible directions
for future work. Section 5 concludes.

2 Background

2.1 Argumentation

An abstract argumentation (AA) framework [14] is a pair 〈Arg, att〉 where Arg
is a finite set, whose elements are referred to as arguments, and att ⊆ Arg×Arg
is a binary relation over Arg. Given α, β ∈ Arg, α attacks β iff (α, β) ∈ att.
Given sets X,Y ⊆ Arg of arguments, X attacks Y iff there exists x ∈ X and
y ∈ Y such that (x, y) ∈ att. A set of arguments is referred to as an extension.
An extension X ⊆ Arg is

– conflict-free iff it does not attack itself;
– stable iff it is conflict-free and it attacks every argument it does not contain;
– acceptable wrt a set Y ⊆ Arg of arguments iff for each β that attacks an

argument in X, there exists α ∈ Y such that α attacks β;
– admissible iff X is conflict-free and X is acceptable wrt itself;
– preferred iff X is (subset) maximally admissible;
– complete iff X is admissible and X contains all arguments x such that {x}

is acceptable wrt X;
– grounded iff X is (subset) minimally complete.

In addition, an extension X ⊆ Arg is

– ideal [16] iff X is admissible and it is contained in every preferred set of
arguments;

– semi-stable [12] iff X is complete and X ∪ X+ is (subset) maximal, where
X+ = {β|(α, β) ∈ att for some α ∈ X}.

These notions of extensions constitute different alternative dialectical semantics,
giving different approaches for determining what makes arguments dialectically
viable. Arguments can be deemed to hold credulously wrt a given dialectical se-
mantics if they belong to an extension sanctioned by that semantics. Arguments
can be deemed to hold sceptically wrt a given dialectical semantics if they be-
long to all extensions sanctioned by that semantics. In some cases credulous and



sceptical reasoning coincide, e.g. for grounded and ideal extensions, since these
are unique.

For AF = 〈Arg, att〉, the characteristic function FAF is such that FAF (X)
is the set of all acceptable arguments wrt X. Then, a conflict-free X ⊆ Arg is

– an admissible extension iff X ⊆ FAF (X),
– a complete extension iff it is a fixpoint of FAF , and
– a grounded extension iff X is the least fixpoint of FAF .

Several other argumentation frameworks have been given in the literature, con-
cretely specifying arguments and attacks, some instantiating abstract argumen-
tation, e.g. assumption-based argumentation [9, 8, 15] and logic programming-
based argumentation frameworks such as [39], some equipped with dialectical
semantics other than the ones proposed for abstract argumentation, e.g. [7, 28].
Moreover, extensions of abstract argumentation have been proposed, e,g, value-
based argumentation [5].

2.2 Answer Set Programming (ASP)

A logic program is a set of clauses of the form

p1 ∨ . . . ∨ pk ← q1 ∧ . . . ∧ qm ∧ not qm+1 ∧ . . . ∧ not qm+n

for k ≥ 0, m ≥ 0, n ≥ 0, k+m+n > 0, pi, qj atoms, and not negation as failure.
We will refer to {p1, . . . , pk} as the head, {q1, . . . , qm, not qm+1, . . . not qm+n} as
the body and {not qm+1, . . . not qm+n} as the negative body of a clause. We will
also refer to clauses with k = 0 as denial clauses, clauses with k = 1 as standard
clauses, clauses with k > 1 as disjunctive clauses, clauses with n = 0 as positive
clauses.

All variables in clauses in a logic program are implicitly universally quantified,
with scope the individual clauses. A logic program stands for the set of all
its ground instances over a given Herbrand universe. The semantics of logic
programs is given for their grounded version over this Herbrand universe.

The answer sets of a (grounded) logic program are defined as follows [30, 31].
An interpretation is a set of literals (namely atoms and negation as failure of

atoms) that is consistent (namely it does not contain an atom and its negation
as failure). A literal is true in an interpretation if it belongs to it. A literal is false
in an interpretation if its complement belongs to it (the complement of an atom
is its negation as failure, the complement of not a is the atom a). A clause is true
in an interpretation I if its head is true in I (namely there exists an atom in the
head that is true in I) whenever its body is true in I (namely all the literals in
the body are true in I). Thus, denial clauses are true in an interpretation I only
if their body is false in I (namely some literal in the body is false in I).

A model of a logic program P is an interpretation M that is total (each literal
is either true or false in M) and such that all clauses in P are true in M .

If P is a set of positive clauses, then an answer set of P is a model M such
that the set of all atoms in M is (subset) minimal amongst all the models of P .



If P is a set of any clauses, let the Gelfond-Lifschitz transform [30] of P wrt
an interpretation I be P I obtained from P by deleting 1) all clauses in P whose
negative body is false in I (namely with some literal in the body false in I) and
2) the negative body from all remaining clauses. P I is a set of positive clauses.
Then an answer set of P is a model M that is an answer set of PM .

Several ASP solvers have been proposed, to compute answer sets and/or
perform query answering wrt answer sets. These solvers include Smodels 1, DLV 2

and clasp 3. These solvers incorporate or are used in combinations with grounders
generating, prior to computing answer sets, ground logic programs (over a given,
typically finite Herbrand Universe) from non-ground logic programs.

3 ASP for Argumentation

3.1 ASP for abstract argumentation

Several approaches have been proposed for computing (several kinds of) ex-
tensions of AA frameworks using ASP solvers [36, 43, 21, 25]. All rely upon the
mapping of an AA framework into a logic program whose answer sets are in one-
to-one correspondence with the extensions of the original AA framework. All
use the DLV solver to compute these answer sets (and thus the extensions). The
approaches differ in the kinds of extensions they focus on and in the mappings
and correspondences they define, as we will see below. The mapping defined
by the first approach results into an AA framework-dependent logic program.
The mappings defined by the other approaches result into logic programs with an
AA framework-dependent component and an AA framework-independent (meta-
)logic program.

Nieves et al [36] for preferred extensions. Nieves et al [36] focus on the
computation of preferred extensions. Their mapping relies upon the method
of [6] using propositional formulas to express conditions for sets of arguments
to be extensions of AA frameworks. It results into a disjunctive logic program
defining a predicate def , where def(α) can be read as “argument α is defeated”.
Intuitively,

– each pair (α, β) in the att component of an AA framework (Arg, att) is
mapped onto a disjunctive clause def(α) ∨ def(β)←; moreover

– for each α being attacked (namely occurring in some pair (β, α) ∈ att), a
standard clause def(α) ← def(γ1) ∧ . . . ∧ def(γk) (k ≥ 0) is introduced
for each argument β attacking α, where γ1, . . . , γk are all “defenders” of α
against β (namely (δ1, β), . . . , (δk, β) ∈ att, and there are no more attacks
against β).

1 http://www.tcs.hut.fi/Software/smodels/
2 http://www.dbai.tuwien.ac.at/proj/dlv/
3 http://potassco.sourceforge.net/
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Fig. 1. Graph representation for the AA framework ({a, b, c}, {(a, b), (b, c)}).

For the AA framework of figure 1, the mapping returns

def(a) ∨ def(b)←
def(b) ∨ def(c)←
def(c)← def(a)
def(b)←

The answer sets of the disjunctive logic program P pref
NCO thus obtained are in one-

to-one correspondence with the preferred extensions of the original AA frame-
work 〈Arg, att〉, in that the “complement” of each answer set AS of P pref

NCO is a
preferred extension of 〈Arg, att〉. This “complement” can be defined as follows:

– C(AS) = {α ∈ Arg|def(α) 6∈ AS}

In the case of the AA framework of figure 1 and the resulting P pref
NCO given earlier,

the only answer set is {def(b)}, corresponding to the only preferred extension
{a, c} = C({def(b)}) of the original AA framework.

a<<

Fig. 2. Graph representation for the AA framework ({a}, {(a, a)}).

As further illustrations, in the case of the AA framework of figure 2, P pref
NCO

is

def(a) ∨ def(a)←
def(a)← def(a)

with answer set {def(a)} corresponding to the (only) preferred extension {} of
the original AA framework, and, in the case of the AA framework of figure 3,
P pref

NCO is

def(a) ∨ def(b)←
def(a)← def(a)
def(b)← def(b)



with answer sets {def(a)} and {def(b)} corresponding to the preferred exten-
sions {b} and {a} (respectively) of the original AA framework.

a //boo

Fig. 3. Graph representation for the AA framework ({a, b}, {(a, b), (b, a)}).

Wakaki and Nitta [43] for complete, stable, preferred, grounded, and
semi-stable extensions. Wakaki and Nitta [43] focus on the computation
of complete, stable, preferred, grounded, and semi-stable extensions. Their map-
pings rely upon Caminada’s reinstatement labellings and correspondence between
various kinds of constraints on such labellings and various notions of extensions
in abstract argumentation [11]. Intuitively, a reinstatement labelling is a total
function from arguments to labels in, out, undec such that (i) an argument is
labelled out iff some argument attacking it is labelled in, and (ii) an argument
is labelled in iff all arguments attacking it are labelled out.

All mappings given by Wakaki and Nitta result in a logic program including
a logic program P〈Arg,att〉 with standard clauses arg(α) ← for all arguments
α ∈ Arg and att(α, β) ← for all pairs (α, β) ∈ att (for a given AA framework
〈Arg, att〉). For example, in the case of the AA framework of figure 1, one obtains:

arg(a)←
arg(b)←
arg(c)←
att(a, b)←
att(b, c)←

In addition, in the case of complete extensions, the logic program P compl
WN re-

sulting from the mapping also includes the following (AA framework-independent)
standard clauses (directly corresponding to the notion of reinstatement labelling):

in(X)← arg(X) ∧ not ng(X)
ng(X)← in(Y ) ∧ att(Y,X)
ng(X)← undec(Y ) ∧ att(Y,X)
out(X)← in(Y ) ∧ att(Y,X)
undec(X)← arg(X) ∧ not in(X) ∧ not out(X)



The answer sets of P compl
WN thus obtained are in one-to-one correspondence with

the original AA framework 〈Arg, att〉, in that the “in” arguments of each answer
set AS of P compl

WN is a complete extension of 〈Arg, att〉. These “in” arguments
can be defined as follows

– I(AS) = {α ∈ Arg|in(α) ∈ AS}

In the case of the AA framework of figure 1, there is just one answer set
of P compl

WN : {in(a), in(c), out(b)}, corresponding to the only complete extension
{a, c} = I({in(a), in(c), out(b)}) of the original AA framework. In the case of
the AA framework of figure 2, there is just one answer set of P compl

WN : {undec(a)},
corresponding to the only complete extension {} = I({undec(a)}) of the origi-
nal AA framework. In the case of the AA framework of figure 3, there are three
answer sets of P compl

WN : {in(a), out(b)}, {in(b), out(a)}, and {undec(a), undec(b)},
corresponding to the three complete extensions {a}, {b} and {}, respectively, of
the original AA framework.

In the case of stable extensions, the logic program defined by Wakaki and
Nitta is P stable

WN obtained by extending P compl
WN with

← undec(X)

corresponding to imposing that reinstatements labelling have an empty undec
component. Thus, in the case of the AA framework of figure 3, there are only
two answer sets of P stable

WN , since {undec(a), undec(b)} is not an answer set in this
case. Also, in the case of the AA framework of figure 2, there is no answer set of
P stable

WN , since {undec(a)} is no longer an answer set. The answer sets of P stable
WN

are in one-to-one correspondence with the original AA framework 〈Arg, att〉, in
that the “in” arguments of each answer set AS of P stable

WN is a stable extension
of 〈Arg, att〉, similarly to complete extensions.

Caminada [11] has proven that reinstatement labellings with a minimal in
component, a maximal in component, a minimal undec component correspond,
respectively, to grounded, preferred and semi-stable extensions. In order to im-
pose these maximality/minimality conditions and obtain logic programs with
answer sets corresponding to grounded, preferred and semi-stable extensions,
Wakaki and Nitta extend P compl

WN to include meta-logic programs to be used to
“check” answer sets of P compl

WN (and thus reinstatement labellings) while these
are determined, in a “guess&check” fashion [23]. These meta-logic programs are
different for the three notions of extensions, but include a common core MPWN

consisting of (meta-)clauses

m1(int(X))← in(X) ∧ arg(X)
m1(undect(X))← undec(X) ∧ arg(X)

where int(α) and undect(α) are terms corresponding to atoms in(α) and undec(α)
in P compl

WN and m1 is a meta-predicate expressing the candidate reinstatement la-



belling to be checked, as well as (meta-)clauses, for all answer sets AS of P compl
WN :

m2(int(X), ψ(AS))← in(X) ∈ AS
m2(undect(X), ψ(AS))← undec(X) ∈ AS

where ψ is a function univocally assigning a natural number to answer sets
of P compl

WN and m2 is a meta-predicate expressing alternative reinstatement la-
bellings to be compared with the candidate reinstatement labelling being checked.

Then, P pref
WN is P compl

WN ∪MPWN extended with

← d(Z) ∧ not c(Z)
d(ψ(AS))← m2(int(X), ψ(AS)) ∧ notm1(int(X))
c(ψ(AS))← m1(int(X)) ∧ notm2(int(X), ψ(AS))

Also, P grounded
WN is P compl

WN ∪MPWN extended with

← c(Z) ∧ not d(Z)
d(ψ(AS))← m2(int(X), ψ(AS)) ∧ notm1(int(X))
c(ψ(AS))← m1(int(X)) ∧ notm2(int(X), ψ(AS))

Finally, P semi
WN is P compl

WN ∪MPWN extended with

← d(Z) ∧ not c(Z)
d(ψ(AS))← m2(undect(X), ψ(AS)) ∧ notm1(undect(X))
c(ψ(AS))← m1(undect(X)) ∧ notm2(undect(X), ψ(AS))

As in the case of complete and stable extensions, preferred, grounded and semi-
stable extensions correspond to the “in” arguments in answer sets of the respec-
tive logic programs.

Egly et al [21, 22] for conflict-free, admissible, preferred, stable, semi-
stable, complete, grounded extensions. Egly et al [21] focus on the com-
putation of conflict-free, admissible, preferred, stable, complete, and grounded
extensions. Like Wakaki and Nitta [43], they map an AA framework 〈Arg, att〉
onto a logic program P〈Arg,att〉, included in all logic programs they define for
computing the various notions of extension.

For conflict-free extensions, they define a logic program P cf
EGW consisting

of P〈Arg,att〉 and 4

4 Note that predicates in and out here are different from those used in [43] and, in
particular, do not refer to the reinstatement labelling of [11].



← in(X) ∧ in(Y ) ∧ att(X,Y )
in(X)← not out(X) ∧ arg(X)
out(X)← not in(X) ∧ arg(X)

The answer sets of P cf
EGW are in one to one correspondence with the conflict-free

extensions of the AA framework 〈Arg, att〉 mapped onto the P〈Arg,att〉 compo-
nent of P cf

EGW , in the same sense as in [43] (namely the “in” arguments in the
answer sets correspond to conflict-free extensions).

A similar correspondence exists for the other kinds of extensions and the
answer sets of the logic programs given below.

For stable extensions, the logic program P stable
EGW consists of P cf

EGW and

← out(X) ∧ not defeated(X)
defeated(X)← in(Y ) ∧ att(Y,X)

For admissible extensions, the logic program P adm
EGW consists of P cf

EGW and

← in(X) ∧ not defended(X)
not defended(X)← att(Y,X) ∧ not defeated(Y )
defeated(X)← in(Y ) ∧ att(Y,X)

For complete extensions, the logic program P compl
EGW consists of P adm

EGW and

← out(X) ∧ not not defended(X)

For grounded extensions, the logic program P grounded
EGW is obtained by “mirror-

ing” the characteristic function presentation of this semantics (see section 2.1).
The program makes use of an arbitrary ordering < over arguments assumed as
given a-priori. The program consists of three components. The first component
P<

EGW uses the given ordering < over arguments to define notions of infimum
inf , supremum sup and successor succ over arguments, as follows:

succ(X,Y )← lt(X,Y ) ∧ not nsucc(X,Y )
nsucc(X,Z)← lt(X,Y ) ∧ lt(Y,Z)
lt(X,Y )← arg(X) ∧ arg(Y ) ∧X < Y

inf(X)← arg(X) ∧ not ninf(X)
ninf(Y )← lt(X,Y )
sup(X)← arg(X) ∧ not nsup(X)
nsup(X)← lt(X,Y )



The second component to compute all arguments “defended” (by all arguments
currently “in”) in the layers obtained using inf , sup and succ, as follows:

defended(X)← sup(Y ) ∧ defended up to(X,Y )
defended up to(X,Y )← inf(Y ) ∧ arg(X) ∧ not att(Y,X)
defended up to(X,Y )← inf(Y ) ∧ in(Z) ∧ att(Z, Y ) ∧ att(Y,X)
defended up to(X,Y )← succ(Z, Y ) ∧ defended up to(X,Z) ∧ not att(Y,X)
defended up to(X,Y )← succ(Z, Y ) ∧ defended up to(X,Z) ∧ in(V ) ∧

att(V, Y ) ∧ att(Y,X)

The third component of P grounded
EGW simply imposes that all “defended” arguments

should be “in”:

in(X)← defended(X)

Further, for preferred extensions, P pref
EGW is P adm

EGW ∪ P<
EGW extended with a

further component incorporating a maximality check on the “in” arguments, by
guessing a larger extension with more “in” arguments than the current extension,
and checking that this is not admissible, again in a “guess&check” fashion [23].
Membership in the guessed larger extension is defined using a new predicate inN
(and corresponding new predicate outN). This additional component in P pref

EGW

is:

← not spoil

spoil← eq

eq ← sup(Y ) ∧ eq up to(Y )
eq up to(Y )← inf(Y ) ∧ in(Y ) ∧ inN(Y )
eq up to(Y )← inf(Y ) ∧ out(Y ) ∧ outN(Y )
eq up to(Y )← succ(Z, Y ) ∧ in(Y ) ∧ inN(Y ) ∧ eq up to(Z)
eq up to(Y )← succ(Z, Y ) ∧ out(Y ) ∧ outN(Y ) ∧ eq up to(Z)
spoil← inN(X) ∧ inN(Y ) ∧ att(X,Y )
spoil← inN(X) ∧ outN(Y ) ∧ att(Y,X) ∧ undefeated(Y )
undefeated(X)← sup(Y ) ∧ undefeated up to(X,Y )
undefeated up to(X,Y )← inf(Y ) ∧ outN(X) ∧ outN(Y )
undefeated up to(X,Y )← inf(Y ) ∧ outN(X) ∧ not att(Y,X)
undefeated up to(X,Y )← succ(Z, Y ) ∧ undefeated up to(X,Z) ∧ outN(Y )
undefeated up to(X,Y )← succ(Z, Y ) ∧ undefeated up to(X,Z) ∧ not att(Y,X)
inN(X)← spoil ∧ arg(X)
outN(X)← spoil ∧ arg(X)



Finally, for semi-stable extensions, Egly et al define P semi
EGW as a variant of

P pref
EGW (see [22] for details).

Faber and Woltran [25] for ideal extensions. Faber and Woltran propose
an encoding of the computation of ideal extensions into manifold answer set pro-
grams [25]. These programs allow to implement various forms of meta-reasoning
within ASP, including credulous and sceptical reasoning. The manifold answer
set programs used for computing ideal extensions follows the algorithm of [19],
which works as follows.

– Let adm be the set of all the admissible extensions of a given argumentation
framework 〈Arg, att〉

– let X− = Arg \
⋃

S∈adm S

– let X+ = {α ∈ Arg|∀β, γ ∈ Arg : (β, α), (α, γ) ∈ att⇒ β, γ ∈ X−} \X−
– let 〈Arg∗, att∗〉 be the argumentation framework with Arg∗ = X+∪X− and
att∗ = att ∩ {(α, β), (β, α)|α ∈ X+, β ∈ X−}

– let adm∗ be the set of all admissible extensions of 〈Arg∗, att∗〉

Then, the ideal extension of 〈Arg, att〉 is
⋃

S∈adm∗ S ∩X+. The admissible ex-
tensions of (Arg∗, att∗) can be computed in polynomial time using a fixpoint
iteration, since this argumentation framework is bipartite. At the first iteration,
X1 is generated, by eliminating all arguments in Arg∗ that are attacked by
unattacked arguments. At the second iteration, X2 is X1 minus all arguments
that are attacked by arguments unattacked by X1, and so on, until no more
arguments can be eliminated (after at most |X+| iterations).

The logic program whose answer sets correspond to ideal extensions is ob-
tained by using the manifold for credulous reasoning of the logic program for
admissible extension given by [21] extended to identify (Arg∗, att∗) and to sim-
ulate the fixpoint algorithm outlined above. Details of this logic program can be
found in [25].

3.2 DLV for ASP for abstract argumentation

All approaches described in section 3.1 have been implemented using the DLV
ASP solver.

DLV can be used to perform credulous and sceptical reasoning under pre-
ferred extensions using the approach of [36] as follows. Let file lp be a file with
the logic program P pref

NCO obtained for an AA framework (Arg, att) and file arg
be a file with α? for an argument α ∈ Arg. Then

– $ dlv -brave file lp file arg can be used to determine whether α be-
longs to a preferred extension of (Arg, att)

– $ dlv -cautious file lp file arg can be used to determine whether α
belongs to all preferred extensions of (Arg, att)



DLV is used to perform credulous and sceptical reasoning under the various
semantics considered by [43] within the system avavilble at

http://www.ailab.se.shibaura-it.ac.jp/compARG.html.
DLV is also the core of the ASPARTIX system [21, 20] available at

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/.
This system allows to compute admissible, stable, complete, grounded, preferred
and ideal extensions, following the work of [21, 25], as well as semi-stable exten-
sions [12] and cf2 extensions [3] (see also section 3.3, following encodings given
in [22].

3.3 ASP for other forms of argumentation

ASP has been proposed as a computational tool for abstract argumentation
under other semantics, notably the cf2 extensions semantics [3], as well as for
forms of argumentation other than abstract argumentation. In particular:

– Thimm and Kern-Isberner [41] propose mappings of the DeLP argumenta-
tion framework [28] onto ASP.

– Egly et al [21] define mappings for value-based argumentation [5], preference-
based argumentation [1] and bipolar argumentation [2].

– Wakaki and Nitta [44] use ASP for computing extensions of a form of ab-
ductive argumentation they define.

– Devred et al [13] use ASP to compute extensions of abstract argumentation
frameworks extended with constraints in the form of propositional formulas.
Their mapping of constrained argumentation onto ASP uses lists and, as
a consequence, only ASP solvers capable of dealing with lists can be used
with the outcome of this mapping. These include DLV-complex5 [10] and
ASPerIX6 [32].

– Gaggl and Woltran [27] and Egly et al [22] propose encodings for abstract
argumentation under the cf2 extensions semantics [3]. These are incorporated
withing the ASPARTIX system (see section 3.2).

– Osorio et al [37] propose an alternative mapping for abstract argumentation
under the cf2 extensions semantics and use the DLV system to compute these
extensions under the given mapping.

4 Some future directions

All approaches defined in section 3.1 rely upon the DLV system as the underlying
ASP solver of choice. The approach of [36] makes use of the capability of DLV
to deal with disjunctive clauses and deploy the brave and cautious modes of
DLV. The approach of [21, 22] makes use of the < ordering that is built into DLV.
The approach of [43] uses the brave and cautious modes of DLV. It would be
interesting to see whether other ASP solver, e.g. the recently proposed clasp
5 http://www.mat.unical.it/dlv-complex
6 http://www.info.univ-angers.fr/pub/claire/asperix/



and claspD (for disjunctive clauses) 7 could be beneficially used to support the
computation of extensions and query answering in abstract argumentation.

It would be interesting to perform a comparative performance analysis of the
methods presented in section 3.1 to identify the most efficient method to support
applications.

With the exception of few works (see section 3.3) ASP has been deployed
to support abstract argumentation. However, the majority of applications of ar-
gumentation, e.g. medical decision making [26] and legal reasoning [4], require
concrete argumentation frameworks, where arguments and attacks are built from
knowledge bases “on demand” (namely depending on given queries/claims to be
argued for or against). It would thus be useful to see whether other forms of
argumentation could be fruitfully computed using ASP. In particular, there are
a number of approaches to argumentation based on logic programming (e.g.
[39]), extending logic programming (e.g. assumption-based argumentation [9, 8,
15]), or based upon logic (e.g. [7]) that may benefit from computational models
supported by ASP.

In several of the existing applications of argumentation, the “explanation”
of answers given to specific queries (namely claims) matters more than the ac-
tual answers. These explanations are given in terms of arguments in favour and
arguments against the claims. Then, it would be useful to see whether these ex-
planations could be usefully extracted from the extensions computed by means
of ASP. A step in this direction has been made with the ASPARTIX system (see
section 3.2), that includes a graphical interface labelling nodes of argumentation
graphs that visuale abstract argumentation frameworks. In general, however,
and especially when the graph is large, only relevant parts of the graph should
be presented to be useful to users (as the presentation of full extensions may
“cloud” matters).

5 Conclusions

Argumentation and answer set programming are the two main knowledge rep-
resentation paradigms emerged from logic programming for non-monotonic rea-
soning.

We have surveyed a number of existing approaches to using ASP for com-
puting extensions in argumentation. The majority of these approaches focus on
abstract argumentation. These approaches rely upon mapping abstract argu-
mentation frameworks onto logic programs, whose answer sets correspond to
(various kinds of) extensions for abstract argumentation. We have seen that
approaches exist for computing the majority of existing notions of extensions
(including conflict-free, admissible, stable, preferred, complete, semi-stable, and
ideal extensions). All presented approaches have been implemented in DLV.

7 http://potassco.sourceforge.net/



We have also indicated some possible directions for future research on us-
ing ASP for argumentation, including: (i) deploying ASP solvers other than
DLV, e.g. claspD, (ii) considering concrete (rather than abstract) argumentation
frameworks in support of applications, and (iii) developing methods for explain-
ing answers to queries (claims) in dialectical terms, drawing from relevant parts
of answer sets corresponding to extensions where the claims hold true.
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