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Abstract

Software Product Lines allow the automatic generation of related products built with reusable artefacts. In
this context, developers may need to perform changes and check whether products are affected. A strategy
to perform such analysis is verifying behaviour preservation through the use of formal theories. The product
line refinement notion requires behaviour preservation for all existing products. Nevertheless, in evolution
scenarios like bug fixes, some products intentionally have their behaviour changed. To support developers
in these and other unsafe scenarios, we define a theory of partial product line refinement that helps to
precisely understand which products are affected by a change. This provides a kind of impact analysis
that could, for example, reduce test effort, since only affected products need to be tested. We provide
properties such as compositionality, which deals with changes to a specific product line element, and general
properties to support developers when safe and partially safe scenarios are combined. We also define a set of
transformation templates, which are classified according to their compatibility to specific types of product
lines. To evaluate our work, we analyse two product lines: Linux and Soletta, to discover if our templates
could be helpful in evolving these systems.
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1. Introduction

Product lines provide systematic reuse and mass customisation for software related products [1, 2].
This concept brings advantages such as productivity and quality improvements, apart from the capacity
to customise a system based on customers needs. Nevertheless, there are several challenges in the product
line development field. Due to requirement changes, they naturally evolve and tend to become complex to5

manage. So developers face the challenge, for example, of guaranteeing that evolution is safe and users are
not inadvertently affected in an evolution scenario [3, 2].

This safe evolution concept [4] is formalised by a refinement notion [5] that requires every product of the
initial product line to have compatible behaviour with at least one product of the newly evolved product
line. This is useful to support developers in making sure that the changes they make do not have unintended10

impact. For instance, users might simply need to refactor assets, or even add optional features, and these
are guaranteed not to affect existing products, provided that certain conditions are observed [5, 4]. The
refinement notion and its associated transformation templates help us to precisely capture those conditions.

Although these notions of product line safe evolution and refinement are useful in many practical evolu-
tion scenarios, they are too demanding for other scenarios because they require behaviour preservation for all15

products. Nevertheless, we believe that we could still support developers even when all-products constraint
does not apply. For example, adding functionality to an asset changes the behaviour of all products that
use that asset. However, products that do not use the modified asset should not be affected. So we could
still provide behaviour preserving guarantees for a proper subset of the products in the product line.
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This kind of partial guarantee can be useful as an impact analysis for developers to be aware of which20

products are affected in an evolution scenario. They could, for instance, avoid checking behaviour preser-
vation of the refined products, focusing only on testing the new functionality in the subset of products
impacted by the changes. A notion of partially safe product line evolution could assist developers by pro-
viding this kind of weaker, but still useful, guarantee that covers common evolution scenarios not supported
by refinement. This concept can be helpful not only in a practical product line development context, but25

also in building tools that support product line development.
In fact, many evolution scenarios found in practice do not characterise refinements. Changing a top

level (child of root) feature from optional to mandatory, for example, is not refinement because not all
original products are refined. More specifically, products that already had the changed feature preserve the
same behaviour in the new product line. However, products that did not have the feature do not preserve30

behaviour because, in the new product line, they will present the extra behaviour associated to the changed
feature. Furthermore, Passos et al. [6] examined commits of the Linux repository history,1 and found that
feature removals, which are not refinements unless the feature is dead or has void behaviour, often occur.
The partially safe evolution notion can address these cases by requiring refinement for a proper subset of the
product line products. Transformation templates derived from this notion capture the context and required35

conditions for a number of scenarios, and precisely provide the subset of refined products for those cases.
Analogously to the fact that we formalise safe evolution in terms of a refinement notion [5, 4], partially

safe product line evolution is formalised in terms of a partial refinement notion. As discussed, partially safe
evolution only requires behaviour preservation for a subset of the existing products in a product line.2 We
also provide a set of properties to support developers in partial refinement scenarios. For instance, to justify40

stepwise evolution support reasoning about the set of refined products after changes to a single product line
element.

For scenarios where a change is intended to refine all products, such as changing a feature from mandatory
to optional, developers should rather use the original refinement notion [5]. Hence, they can choose a
specific notion depending on the situation. Evolution in practice often interleaves different kinds of changes,45

ranging from refinement to partial refinement scenarios. For this reason, to support practitioners, we derive
properties, including that safe and partially safe evolution transformations, when applied in different orders,
might lead to the same resulting product line. For example, developers could refine an asset and then remove
a feature, or apply these transformations in the opposite order, and still reach the same target.

In addition, we propose transformational templates representing abstractions of recurring partial refine-50

ment situations encountered in practice. Templates work as a guide for developers. Instead of reasoning over
refinement notions, they can use templates by means of pattern matching, which can also be tool supported.
The partial evolution templates precisely determine which subset of products is refined for each situation;
developers might even obtain this subset automatically. So our templates effectively provide change impact
analysis.55

To evaluate the applicability of our templates, we use the FEVER tool [7] to automatically analyse
evolution scenarios found among versions 3.11 and 3.16 of the Linux Kernel repository. We also analyse
commits from Soletta,3 which is a framework for making IoT devices. We find, in both projects, a number
of instances of most templates in the commit history of both projects and confirm that they could have
been applied, thus reinforcing the applicability of our templates. We also formalise the concepts and prove60

properties and soundness of the templates in the Prototype Verification System (PVS) theorem prover [8].
In summary, with the aim of giving better support for developers in partially safe evolution scenarios,

in this paper we define new properties, propose and formalise templates, and enhance our evaluation by
considering more evolution scenarios, including those from a new product line project. We also provide
proofs for several theorems. So this article extends our previous conference paper [9] in four main ways:65

1Linux repository is available at http://github.com/torvalds/linux.
2We use the “partial refinement" term to denote the new refinement notion, which requires refinement only for a subset of

the original products in a product line.
3Soletta is available at http://github.com/solettaproject/soletta
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• further properties: we provide compositionality properties for asset mapping (Section 3.2.2) and con-
figuration knowledge (Section 3.2.3).

• theorem proofs: we include proofs encoded in the PVS theorem prover. We use a more readable
language than the PVS notation, but the .pvs files can be found in our appendix [10]. We also discuss
the structure of our encoding (Section 5).70

• template compatibility analysis: we analyse the compatibility of our templates with existing configu-
ration knowledge (CK) languages (compositional and transformational). A CK is compositional when
features are mapped to artefacts. In the transformational one, features are mapped to transformations,
such as preprocess, which provides more flexibility to the developer. Moreover, we present templates
to deal with transformational CKs (Section 4.2), going beyond the compositional ones that had been75

published before.

• deeper evaluation: we now analyse the Soletta project (Section 6.2.2), another product line which
aims to support the development of IoT applications. Moreover, we extend our Linux evaluation by
providing further information regarding the analysed scenarios (Section 6.2.1). For instance, for the
Change Asset scenarios we make use of auxiliary tools to have a better understanding of the types80

of changes performed by developers.

This paper is organised as follows. In Section 2, we present a motivating example from the Linux
repository. We introduce the required background and the partial refinement theory in Section 3, relating
it with the refinement theory. In Section 4, we present a template catalogue. We present evaluation results
and related work in Section 6 and Section 7, respectively. Finally, we conclude in Section 8.85

2. Motivating Example

To illustrate a common evolution scenario not covered by the product line refinement notion, we refer
to commit ae3e4c2776 4 of the Linux repository history. It basically consists of a feature removal scenario.
Feature LEDS_RENESAS_TPU represents a LED driver in the Linux system. LEDS_RENESAS_TPU
was removed because it was superseded by the preexisting generic PWM_RENESAS_TPU driver. The90

commit changes are illustrated in Listing 1, 2 and 3. The lines in red were removed in the commit.
In Listing 1, we observe changes to a Linux Kconfig file,5 which plays a similar role to feature models and

other variability models, establishing the product line configuration space. Statements in Kconfig declare
features by indicating their names, types (the illustrated one is a boolean that can assume y or n, when it
is selected or not, respectively) and relations with other features, as specified in Lines 4 and 5. In this case95

LEDS_RENESAS_TPU depends on LEDS_CLASS, HAVE_CLK and GPIOLIB. Thus, the former can
only be selected if the three other features are included in the product. In terms of feature models, this
condition is akin to establishing LEDS_RENESAS_TPU as a descendant of those features.

Listing 1: drivers/leds/Kconfig

1 con f i g LEDS_ASIC3100

2 . . .
3 − c on f i g LEDS_RENESAS_TPU
4 − bool ‘ ‘LED support f o r Renesas TPU’ ’
5 − depends on LEDS_CLASS=y && HAVE_CLK && GPIOLIB
6 − help105

7 − . . .
8 c on f i g LEDS_TCA6507
9 . . .

4Feature removal commit http://github.com/torvalds/linux/commit/ae3e4c2776. Jul 16, 2013; version v3.12-rc1.
5Kconfig language documentation https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt.
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Listing 2: drivers/leds/Makefile
110

1 obj−$ (CONFIG_LEDS_ASIC3) += leds−a s i c 3 . o
2 −obj−$ (CONFIG_LEDS_RENESAS_TPU) += leds−renesas−tpu . o
3 obj−$ (CONFIG_LEDS_MAX8997) += leds−max8997 . o

Listing 3: drivers/leds/leds-renesas-tpu.c
115

1 −#inc lude . . .
2 − . . .
3 −MODULE_LICENSE( ‘ ‘GPL v2 ’ ’ ) ;

The LEDS_RENESAS_TPU feature is technically implemented by the leds-renesas-tpu.o asset, as we can120

infer from the Makefile mapping in Listing 2. These files represent Linux configuration knowledge, relating
feature expressions (presence conditions) to asset names. This mapping was removed, since the intention was
to remove the feature. However, a feature is only completely removed when its implementation is deleted as
well, otherwise there would be unused assets. Listing 3 indicates that this was actually done; we only show
part of the code of the file leds-renesas-tpu.c for brevity, but it was removed from the repository.125

With these deletions, products that had the LEDS_RENESAS_TPU feature present different behaviour,
unless the PWM_RENESAS_TPU feature has a compatible behaviour to the previous one, and the prod-
ucts having the former also had the latter, but this may not be true. Thus, in the new product line, we likely
will not find products that match the behaviour of a product with LEDS_RENESAS_TPU. Consequently,
this is not a safe evolution scenario; the existing product line refinement theory fails to support developers130

in this case, even though we know that products not having that feature should have the same behaviour.
In fact, this scenario is partially safe considering the configurations corresponding to products that did not
have LEDS_RENESAS_TPU and are, therefore, not impacted by its removal. Since Linux users can choose
to select or not LEDS_RENESAS_TPU, there might be a number of products that do not have it. If this
feature were directly connected to the root, we could give support for half of the products, which would135

make the gain significant by avoiding, for instance, to test these products.
There are many other kinds of partially safe evolution scenarios, such as adding functionality to existing

features. In these cases, both implementation files and the respective mappings are added to the product
line. In this scenario, products that suffer additions do not preserve behaviour, but the evolution is partially
safe as products that do not have the added functionality are not affected by the change, and thus, preserve140

their behaviour. The percentage of refined products is directly proportional to the frequency of the features
that haven’t changed. If the affected feature is mandatory, the guarantee might be weak or even void, in case
of a top level feature, which is included in all products. In contrast, when the changed feature is optional
and positioned just near the root feature, for instance, the guarantee can achieve 50% of the products,
since no more than 50% of the valid products have the respective feature; this percentage increases when145

the feature is positioned lower in the three. Therefore, we believe that product line engineers could benefit
from a notion of partially safe evolution able to handle unsafe evolution scenarios, while still offering safe
evolution guarantees considering a subset of the products.

3. Partially Safe Evolution

To handle evolution scenarios such as the one illustrated in the motivating example, we introduce a150

partial refinement theory that formalises our notion of partially safe evolution of product lines. Moreover,
we present properties and analyse how refinement and partial refinement operations can be interleaved,
which might be often necessary in practice.

To define the partial refinement notion, we rely on existing concepts from the refinement theory [11, 5].
We assume a well-fordmeness function for asset sets (formalised by wf(as), where as is a set of assets).155

We use wf(a) for a single asset a to denote wf({a}). Well-formedness could mean, for instance, that the
artefacts are compiling properly. We assume this function, instead of concretely defining it, because its
implementation could change depending on the particular language used for the assets of a product line. A
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product is then defined as a well-formed set of implementation assets, and a set of assets as′ refines another
set of assets as, denoted by as v as′, whenever as′ preserves the observable behaviour of as [5]. Assets might160

be available to several products (domain engineering) or local to a single product (application engineering).
Our theory is focused on domain engineering.

We also assume that the asset refinement relation v is a preorder. Reflexivity is essential here, and this
is aligned with the idea that refinement means “equal or better”. Consequently, every set of assets needs to
refine itself. The fact that two sets of assets are equal imply that they have the same observable behaviour.165

Thus, it is considered a refinement. Transitivity also holds [5]. If a set of assets as is refined by a set of
assets bs, and bs is refined by the set cs, cs also refines as.

Figure 1: SPL three main elements

Three main elements are used in product lines: a feature model (FM)
that has features and dependencies among them; an asset mapping (AM)
that relates asset names (the AM dom) and assets (the AM img); a170

configuration knowledge (CK) that maps features to asset names. We
provide the formal definition of the AM below (Definition 1). The CK
can be defined in several ways, but just to illustrate we provide a possible
concrete definition below in Definition 2. To make these definitions more
clear, we illustrate these three elements in Figure 1 by using the same ex-175

ample from Section 2. A product line is defined as a triple (FM,AM,CK)
that generates well-formed products [5]. This means that the notion of
product line well-formedness is defined in terms of well-formedness for
products. More specifically, a product line is considered well-formed
(wf(pl)) when all products p ∈ pl are well-formed (wf(p)).180

We do not assume specific languages for these three elements. The
FM, for instance, could be any kind of variability model, such as the
Linux Kconfig. For an arbitrary FM F , we assume a semantics function
JF K, which yields the set of all valid configurations generated from F .
A configuration is a feature selection, which can usually be represented185

as a set of feature names. The product generation process consists of
three main phases. (1) Users select the desired features that constitute a
configuration. (2) By processing the CK, it is then possible to obtain the
asset names that constitute the product represented by a configuration.
(3) The final product is obtained by checking which assets are mapped190

to the asset names in the AM. The three product line elements have
inter-dependencies, and this makes the product line management complex. For this reason, we need to take
into account these three elements in order to generate a product. The product generation function is the
CK semantics function, denoted by JKKAc , that takes a CK K, an AM A, a configuration c and yields the
respective product. When the configuration c is valid, JKKAc generates a valid product.195

Definition 1 (Asset Mapping). An Asset Mapping AM is defined as a set of pairs (n, a) where n is an asset
name and a is an asset. This set must satisfy the uniqueness property, which means that an asset name n
is only associated with a single asset. Therefore, if there are two assets a1 and a2 associated with the same
name (n), a1 is equal to a2.

unique(pairs) = ∀(n, a1, a2) : (n, a1) ∈ pairs ∧ (n, a2) ∈ pairs⇒ a1 = a2

AM : {pairs : F [AssetName,Asset] | unique(pairs)}

Definition 2 (Compositional CK). A compositional CK is defined as a set of items, where each item is
formed of a feature expression and a set of asset names. Intuitively this is a way of connecting features with
their respective implementations.

CK : F [Formula,P[AssetName]]
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Figure 2: Partial Refinement (left) versus Refinement (right)

Product line refinement happens when all products in the original product line are refined in the evolved
product line, as established in Definition 3. This applies when locally refactoring code, or removing unused
assets, for example. We should notice that the definition only requires product refinement to hold, therefore
configurations are allowed to change when matching a product of the original product line with a product
of the new product line. This happens, for example, in feature renaming scenarios, since configurations are200

sets of feature names, which change due to renaming. Consequently, feature renaming is a product line
refinement, as feature names do not matter.

Definition 3 (Product line refinement). For arbitrary product lines L = (F,A,K) and L′ = (F ′, A′,K ′),
L′ refines L, denoted by L v L′, whenever

∀c ∈ JF K · ∃c′ ∈ JF ′K · JKKAc v JK ′KA
′

c′ .

3.1. Partial Refinement205

The refinement notion is applicable in several scenarios, such as asset refinements and feature renaming.
However, there are many scenarios where a subset of the existing products do not preserve behaviour. To
support examples like the one shown in Section 2, we propose a partial refinement theory.

The difference between partial refinement and refinement is that the partial notion assumes that only
some products are refined and we illustrate this in Figure 2. On the left side, the products p1, p2 and p3210

from the initial product line L1 are refined by p1′, p2′ and p3′, respectively. The product p4 (in red colour)
is not refined, as there is no compatible product in L2. This could happen in a feature removal scenario,
for instance. The product p4 could have the removed feature, so there would be no compatible product in
L2. We use S as the set of configurations refined, which corresponds to {c1, c2, c3}. As p4 is not refined,
c4 cannot be in S. On the right side, we have product line refinement. All products from L1 are refined in215

L2. So, we have that L1 v L2. Note that partial refinement holds if the configurations remain unchanged.
This is the reason for having c1, c2 and c3 on the left side. The refinement relation, in contrast, allows
configurations to change and we can have c1′, c2′, c3′ and c4′ on the new product line.

We formalise the partial refinement notion in Definition 4. We use S as an index to denote the subset
of refined product configurations, that is, valid feature selections from the FM. More precisely, for product220

lines L and L′, and set of configurations S, we say that L′ partially refines L with respect to S when product
configurations from S are valid for both FMs, and product refinement holds for all such configurations. The
first condition is necessary to guarantee that all configurations in S are valid according to the respective
product lines. Otherwise, the set S could have spurious configurations.

Definition 4 (Partial product line refinement). For arbitrary product lines L = (F,A,K) and L′ =225

(F ′, A′,K ′), and a set of configurations S, L′ partially refines L for the configurations in S, denoted by
L vS L′, whenever

S ⊆ JF K ∧ S ⊆ JF ′K ∧ ∀c ∈ S · JKKAc v JK ′KA
′

c .
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Figure 3: Partial refinement transitivity

To support developers in examples like the one in Section 2, we could simply associate L with the product line
before the feature removal, and L′ with the resulting product line after removing LEDS_RENESAS_TPU.
Thus, S would be the set of all configurations that do not contain LEDS_RENESAS_TPU. Since the only230

modification is the feature removal, and we filter the respective changed products by ensuring refinement
only for configurations in S, partial refinement holds. Partial refinement would not hold, for example, if S
included configurations containing LEDS_RENESAS_TPU, as S would not be a subset of JF ′K. Hence,
considering that we give guarantees that the other products are refined, developers would only need to test
at most products that had LEDS_RENESAS_TPU. This could consequently increase productivity. The235

previous theory gives no guarantees for this case, so developers would have no support. We should notice
that we are comparing products generated with the same c for the two product lines, so configurations cannot
change. Therefore, feature names matter. For this reason, feature renaming is not a partial refinement. We
revisit this topic later and present a more general notion of partial refinement to cover feature renaming.

The partial refinement relation is reflexive and transitive, which are essential conditions to support240

stepwise partially safe evolution. Theorem 1 establishes that every product line is partially refined by itself.
As required by Definition 4, we need to assure that S is a subset of the valid configurations generated from
the respective product line.

Theorem 1 (Partial product line refinement reflexivity). For an arbitrary product line L = (F,A,K), and
a set of configurations S, if S ⊆ JF K, then L vS L.245

Proof. Let L = (F,A,K) be an arbitrary product line. By Definition 4, we have to prove that S ⊆ JF K and
∀c ∈ S · JKKAc v JKKAc . The first condition is already assumed by the theorem and the second follows from
asset refinement reflexivity [5].

One might want to consecutively perform partial refinement operations, and the transitivity property
guarantees that this is feasible, and that it might result in refined products. Given that the consecutive250

partial refinement operations might involve different subsets of products, we can only guarantee that re-
finement holds for the intersection of the configurations refined in each step. For instance, as illustrated
in Figure 3, given a product line L1, one could first perform a partial refinement operation, resulting in a
product line L2, and then perform another change, obtaining L3. Assuming that S and T are the sets of
configurations refined in each step, S would be the set of configurations c1, c2 and c3, and T would be the255

set of configurations c1 and c2. Assuming that S and T are different, the resulting product line L3 does
not partially refine L1 in terms of S or T in isolation, because the products refined in the first step are not
necessarily refined in the second step, and vice versa. But L3 partially refines L1 for the configurations that
are in both sets: S ∩ T . This notion is formalised in Theorem 2.

Theorem 2 (Partial product line refinement transitivity). For arbitrary product lines L1, L2, L3, and set260

of configurations S and T , if L1 vS L2 and L2 vT L3, then L1 vS∩T L3.

Proof. Let L1 = (F1, A1,K1), L2 = (F2, A2,K2) and L3 = (F3, A3,K3) be arbitrary product lines. Assume
that L1 vS L2 and L2 vT L3. By Definition 4, this amounts to

S ⊆ JF1K ∧ S ⊆ JF2K (1)
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∀c ∈ S · JK1KA1
c v JK2KA2

c (2)

T ⊆ JF2K ∧ T ⊆ JF3K (3)

∀c ∈ T · JK2KA2
c v JK3KA3

c (4)

We then have to prove that
(S ∩ T ) ⊆ JF1K ∧ (S ∩ T ) ⊆ JF3K (5)

and
∀c ∈ S ∩ T · JK1KA1

c v JK3KA3
c (6)

We can prove Predicate 5 by using Predicate 1 and Predicate 3. To prove Predicate 6, assuming an arbitrary
c ∈ S ∩T , we have to prove that JK1KA1

c v JK3KA3
c . Properly instantiating c in Predicate 2 and Predicate 4,

we have that JK1KA1
c v JK2KA2

c and JK2KA2
c v JK3KA3

c . The proof then follows by asset set refinement
transitivity [5].265

Note that S and T might be disjoint. For example, let us consider, for simplicity, a product line with
two features A and B only. One could first remove feature A and then feature B. S in this case would
be the set of product configurations that do not have A, that is the configuration that has just the feature
B. In the second transformation, however, T corresponds to product configurations that do not have B,
that is the product configuration that has A only. So, we would not be able to give guarantee for any270

product. This may naturally happen in a number of scenarios but for others we still give support after
several transformations. This is important when considering a system such as the Linux Kernel, which has
thousands of features. Therefore, we expect that for many of the possible evolution scenarios, one could still
be supported after performing consecutive partially safe transformations.

We also provide a property that allows developers to choose a subset of S, given that partial refinement275

holds for S. This property is formalised in Theorem 3. So, if a product line refines another in terms of S,
this is also true for any subset of S. We try to make S as large as possible to potentialize our support, but
this does not prevent one from choosing a smaller subset.

Theorem 3 (Partial refinement holds for subset). For arbitrary product lines L and L′, and sets of config-
urations S and S′, if L vS L′ and S′ ⊆ S, then L vS′ L′.280

Proof. For arbitrary product lines L = (F,A,K) and L′ = (F ′, A′,K ′), and sets of configurations S and S′,
by assuming L vS L′ and S′ ⊆ S, which amounts to

∀c ∈ S · JKKAc v JK ′KA
′

c (7)

and
∀c ∈ S′ · c ∈ S (8)

We then have to prove
∀c ∈ S′ · JKKAc v JK ′KA

′

c (9)

For an arbitrary c in S′, we have to prove that JKKAc v JK ′KA
′

c . Properly instantiating c in Predicate 8, we
have that c ∈ S. So, we can instantiate c in Predicate 7 and this concludes our proof.

8



3.2. Compositionality
To simplify reasoning about partial refinement, it is important to derive compositionality properties from

our definition. These are useful, for example, when the product line main elements evolve separately to be285

later integrated to generate products. In this context, one might need to change a specific artefact, for
instance, the FM, without changing the AM and CK. In this case, instead of using the definition to verify
partial refinement after changes are applied to a specific artefact, we could rely on a theorem and verify
partial refinement in a simpler way. Developers could also modify different product line elements. We analyse
these scenarios and whether such modifications preserve product line partial refinement. Compositionality290

theorems are provided in the existing refinement theory [5], so it would be important to provide the same
kind of modular support for partial refinement too. So, instead of using the definition, one could use the
compositionality theorems provided here.

3.2.1. FM Partial Equivalence
We first analyse the FM. Developers often desire to change feature types and dependencies. For example,295

a mandatory feature may become optional. The refinement theory already provides support for this and
other FM refinement scenarios. According to the FM refinement notion [5], a FM refines another when
the configurations of the initial FM are a subset of the evolved FM configurations. FM refinement often
implies product line refinement and partial refinement (considering S to be all initial configurations), as we
would be able to generate all existing products in the new product line. However, in scenarios such as a300

changing a feature from optional to mandatory, FM refinement is not applicable because we do not simply
increase the set of configurations. In this case, the FMs may share configurations, but the new FM might
have configurations that are extensions of the configurations of the initial FM. Thus, to provide support for
such scenarios, we establish a partial FM equivalence notion, relating two FMs in terms of a common set of
configurations S. This allows the initial FM to have configurations absent from the final FM. This contrasts305

with previous FM equivalence and refinement notions, that require the initial FM semantics to be equal or
a subset of the final FM semantics [5].

Definition 5 (Feature model partial equivalence). For arbitrary feature models F and F ′, and a set of
configurations S, F is equivalent to F ′ modulo S, denoted by F ∼=S F ′, whenever

∀c ∈ S · c ∈ JF K ∧ c ∈ JF ′K.

Now, we would be able to support developers when transforming a feature from optional to mandatory.310

Partial equivalence holds, if S is the set of configurations in the initial FM that already had the changed
feature plus those that do not have its parent. We should notice that FM equivalence and refinement lead
to FM partial equivalence, but the opposite does not hold.

As captured in Theorem 4, FM partial equivalence leads to product line partial refinement. Given a
product line L, one can modify the FM, by adding, removing or modifying features and dependencies, but315

preserving a set of configurations S. Whenever only the FM is changed, there is still a partial product line
refinement with respect to the same S. Since a product line by definition is well-formed [5] and we deal with
arbitrary changes to F that result in F ′, we know that L is well-formed. However, we have no guarantee
about L′, more precisely, whether configurations that are in F ′ but are not in S lead to valid products. This
is the reason for requiring well-formedness. Partial refinement holds because we are not checking products320

whose configurations are not in S. Moreover, the partial FM equivalence guarantees that S is in both FMs.
Neither the AM nor the CK change. Therefore, we actually have exactly the same products if we only check
configurations from S.

Theorem 4 (Feature model partial equivalence compositionality). For a product line L = (F,A,K), a
feature model F ′, and a set of configurations S, let L′ = (F ′, A,K). If F ∼=S F ′ and L′ is well-formed325

(wf(L′)), then L vS L′.

Proof. For an arbitrary product line L = (F,A,K), a FM F ′ and a set of configurations S, assume that
F ∼=S F ′. By Definition 5, this amounts to:

∀c ∈ S · c ∈ JF K ∧ c ∈ JF ′K (10)
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By Definition 4 we then need to prove that

S ⊆ JF K ∧ S ⊆ JF ′K (11)

and
∀c ∈ S · JKKAc v JKKAc (12)

and
wf(L′) (13)

We can prove Predicate 11 directly from Predicate 10, and Predicate 13 is assumed in the theorem. Finally,
Predicate 12 is trivially true from asset set refinement reflexivitiy [5].

3.2.2. AM Partial Refinement
Similarly to the FM, the AM may also be modified separately. Previous work shows that the source code330

is more frequently modified than the FM and CK [12]. In these cases, one not necessarily modifies the FM
and the CK. The existing AM refinement compositionality notion [5] is helpful only when all assets from
the initial AM are refined by the evolved ones. But, for example, that is not true in bug fix scenarios, when
changes are not safe in at least one asset.

According to Definition 6, the AMs must have the same domain. Additionally, for every asset a found in335

the initial AM A, there needs to be an asset a′ in the evolved AM A′ with the same name (an), that refines
the initial one (a v a′). AM refinement holds in several situations, like in a function renaming scenario. If
we rename a function in each initial asset, all of them are refined by the new ones.

Definition 6 (Asset mapping refinement). For asset mappings A and A′, A is refined by A′ whenever

(dom(A) = dom(A′) ∧
(∀an ∈ dom(A)·
∃a, a′ · (an, a) ∈ A ∧ (an, a′) ∈ A′ ∧ a v a′))

To support such scenarios, we define partial AM refinement. As stated in Definition 7, an AM partially
refines another for a subset of names when refinement holds for the sub mappings derived from this subset.340

More specifically, the AM resultant from filtering the original AM A according to a set of asset names ns
(that is formalised as A / ns, which expands to {(n : Name, a : Asset)|(n, a) ∈ A ∧ n ∈ ns}) needs to be
refined (according to Definition 6) by the AM obtained by filtering the new AM A′ according to ns. In the
case of a bug fix scenario, the new AM would partially refine the original one modulo the set of names of
the assets not changed by the fix.345

Definition 7 (AM Partial Refinement). For arbitrary asset mappings A and A′, and a set of asset names
ns, A′ partially refines A modulo ns, denoted by A vns A

′, whenever

(A / ns) v (A′ / ns),

CK Evaluation
AM partial refinement implies product line partial refinement, since products containing only asset names
in ns are not affected. As a product is represented as a set of assets, we need to discover which products
(and their configurations) have assets whose names are in ns to precisely express the set of refined products
after a change in an AM. Thus, in this context, we assume the CK semantics function can be decomposed350

in terms of an evaluation function L_M. We use LKMAc to denote a call to the evaluation with CK K, AM
A and configuration c. This function is similar to the CK semantics function, but instead of returning a
set of assets, it returns assets and their names in the form of an AM (the submapping of the original AM
containing only the assets used to build the product). This way, we are able to maintain the mapping and
check if a product has an asset associated with a specific name in the AM. We use the term assumption355

because we are not actually providing the function body or implementation, but only defining its signature.
Due to this, the properties are also assumptions, which is why we have them as axioms, since we are not
able to prove them, given that we do not have a concrete function definition.
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Assumption 1 (Configuration knowledge evaluation).

L_M : CK → AM → Configuration→ AM

To illustrate how the evaluation function works, consider the product line example shown in Figure 1
and assume that F , A and K correspond to its FM, AM and CK respectively. This product line has360

at least two features: LEDS_RENESAS_TPU and LEDS_CLASS. If we have a configuration c =
LEDS_CLASS, by calling the CK semantics function JKKAc , we would obtain the product containing
only this feature, which would contain only the leds − class.c asset. A call to the evaluation function
LKMAc , however, would return the AM containing the information related to the features present in the
configuration c, which would give us a single mapping containing leds− class.c and its content. Note that365

they return similar results. The difference is that the evaluation function returns an AM and the semantics
function returns only the respective assets. Thus, the CK evaluation function is also useful for establishing
a correspondence between configurations and asset names. Given the semantics function, we only know the
assets generated from a configuration, but we do not have the tracking of the asset names.

Here we do not concretely define the CK semantics function. We just define it in terms of the evaluation370

function, which is not defined because we do not deal with any particular CK notion in the general level. The
evaluation function has is just given signature and satisfies a number of axioms. In our appendix we provide
two types of CK semantics: (1) the compositional one, which corresponds essentially to the union of assets
mapped to the selected features, and (2) the transformational one, which does not simply “joins” assets,
but also applies transformations. In (1), we cannot select part of an implementation asset for a determined375

feature. We can think of (2) as being the more general case where we have a block of code denoting the
scope of a feature, instead of an entire implementation asset. The semantics function is simply the image of
the AM returned by the evaluation function. As we want to keep our theory language independent, we do
not offer a concrete definition because that would be inevitably specific to asset, class and FM languages.
The result of the semantics function is just collecting the assets in the resulting AM from the evaluation380

function, and ignoring their names. The assets of an AM constitute its image, which is denoted by A〈_〉
for an AM A. The semantics function is then defined as img(LKMAc ), which means the image of LKMAc . We
are assuming that the evaluation function captures the other steps in the product generation process.

Definition 8 (Configuration Knowledge Semantics). Let (F,A,K) be a product line and c be a configura-
tion. Then, JKKAc = img(LKMAc )385

Sanity Conditions
To make sure the CK evaluation function for different languages captures the essence of the product

generation process, we rely on axioms that capture sanity conditions that such a function should satisfy.
We then assume that the evaluation function adheres to these axioms, which rule out abnormalities such
as changing an asset name during the product generation process. First, we should guarantee that the390

resulting asset names from the generated products belong to the original asset mapping of the product line.
Otherwise, we could have dangling assets, which does not make sense. For this reason, we formalise this in
Axiom 1.

Axiom 1 (CK evaluation must preserve AM domain). For arbitrary AM A, CK K, configuration c,
dom(LKMAc ) ⊆ dom(A)395

We also state that unused assets do not influence the CK semantics in Axiom 2. If the asset names of a
determined product, which is the result of applying the CK semantics function, belong to a set of names ns,
the result of the CK evaluation should be the same using the entire AM or the filtered AM according to ns.
The reasoning is that if the other names are not present in the respective product, they can be discarded.

Axiom 2 (Unused assets do not influence CK semantics). For an arbitrary AM A, a CK K, a set of asset400

names ns and a configuration c, if dom(LKMAc ) ⊆ ns, then JKKAc = JKKA/ns
c
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The third constraint is established in Axiom 3. The evaluation function not only is forbidden to create new
asset names, but for asset mappings with equal domain, the resulting domain after applying the evaluation
function also needs to be equal. So, the evaluation function preserves equality over the domain of AM.

Axiom 3 (Evaluation preserves equality over AM domain). For arbitrary AMs A and A′, CK K, and405

configuration c, if dom(A) = dom(A′), then dom(LKMAc ) = dom(LKMA
′

c ).

The introduced axioms are essential to avoid an arbitrary evaluation function, and they do not overly
restrict the applicability of our theory, since they are mostly well-formedness conditions, to prevent abnor-
mal situations. To guarantee that both compositional and transformational CKs satisfy these axioms, we
instantiate this theory using both CK notions and prove them. The axioms are also important for stating410

and proving the AM compositionality theorem. We also found that all product lines from the evolution
scenarios analysed, which are detailed in Section 6, obey the three axioms. This confirms our intuition that
they are reasonable to be assumed.

AM Partial Refinement Compositionality
We finally establish Theorem 5, which states that partial AM refinement implies partial product line415

refinement. We calculate the set of configurations S for these situations based on the AM commonalities
and differences. Configurations from S must not generate products containing the names that are not in ns,
since as already discussed earlier in this section, these products are not refined. So, partial refinement does
not hold for them. Alternatively, configurations that lead to products containing assets in the scope of ns
are refined. To define S, we use a restriction operator � that takes the three elements of a product line (F ,420

A, K) and a finite set of asset names ns. It then yields configurations whose products have only assets that
are in ns, as can be seen in Definition 9. However, it is not enough to filter configurations considering the
original AM, since A and A′ have different domains. So, we need to define S as the intersection of filtering
both AMs according to ns (which is given by ((F,A,K) � ns) ∩ ((F,A′,K) � ns)).

Definition 9 (Filtering Configurations by Asset Names). Let (F,A,K) be a product line and ns be a set425

of asset names. Then, (F,A,K) � ns = {c : Conf | c ∈ JF K ∧ dom(LKMAc ) ⊆ ns}

Theorem 5 (Asset mapping partial refinement compositionality). For product lines L = (F,A,K) and
L′ = (F,A′,K), and a finite set of asset names ns, if A vns A′ then L vS L′, where S = (F,A,K) �
ns ∩ (F,A′,K) � ns.

Proof. For an arbitrary PL L = (F,A,K), an AM A′ and a finite set of asset names ns. We have to prove
that L vS L′, where L′ = (F,A′,K) and S = ((F,A,K) � ns)∩ ((F,A′,K) � ns). According to Definition 4,
L vS L′ expands to

S ⊆ JF K ∧ ∀c ∈ S · JKKAc v JKKA
′

c (14)

It is true that S ⊆ JF K, since this is expressed in the definition of S and of the operator. Then, we need to430

prove that, for an arbitrary c in S, JKKAc v JKKA
′

c . By properly instantiating K, A, ns, and c in Axiom 2,
we have that JKKAc = JKKA/ns

c . The condition dom(LKMAc ) ⊆ ns is satisfied due to S definition. Using
Axiom 2 again, properly instantiated with K, A′, ns, and c, we also have JKKA

′

c = JKKA
′/ns

c . By replacing
this in Predicate 14, we then need to prove that JKKA/ns

c v JKKA
′/ns

c . Using Definition 7, we have that
(A / ns) v (A′ / ns).435

Since asset mapping refinement implies product line refinement [5], we have that ∀am1, am2 · am1 v
am2 ⇒ ∀K, c · wf(JKKam1

c ) ⇒ wf(JKKam2
c ) ∧ JKKam1

c v JKKam2
c . Instantiating this equation with am1 =

A / ns and am2 = A′ / ns, the first condition holds because (F,A,K) is a product line, and by definition,
every product line is well-formed. So, this is enough to prove that JKKA/ns

c v JKKA
′/ns

c .

3.2.3. CK Partial Equivalence440

Now, we analyse scenarios where the CK structure is changed in isolation and how this impacts the
entire product line. Developers may need to modify the CK only, and it is important to support them in
these situations not only with our definition of partial refinement, but also with a CK partial equivalence
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notion. An example of such scenario would be adding a mapping between existing features and artefacts,
assuming a compositional CK. In this case, the FM and the AM do not suffer any change. Only the CK is445

modified. Moreover, this scenario would not be considered CK refinement because features from this new
mapping may suffer behavioural change, thus making certain configurations not to be refined.

To address this and other evolution scenarios, we formalise a partial equivalence notion to represent par-
tial refinement changes regarding the CK only. Notions to deal with refinement scenarios have already been
proposed [5]. However, several of the possible changes involving the CK are not refinements. Definition 10450

generalises all possible safe changes to the CK. We state that for a set of configurations S, the products
generated using the original and final CKs are equal. If the CKs are equal, S could be the semantics of the
FM, that is, the set of all valid configurations. In contrast, S could eventually be empty, and it would not
be possible to provide any kind of support or guarantee.

Definition 10 (Configuration knowledge partial equivalence). For arbitrary CKs K and K ′, and a set of
configurations S, K is equivalent to K ′ modulo S, denoted by K ∼=S K ′, whenever

∀am, c ∈ S · JKKamc = JK ′Kamc

Configuration Knowledge partial equivalence implies product line partial refinement. This is shown in455

Theorem 6. Considering an arbitrary product line L, let us suppose that a change is made to the CK of
L but preserving the set of configurations S. We then obtain L′, and we can say that L′ partially refines
L according to S as long as S is a subset of the valid configurations generated from the FM of L. Just to
give an example, considering that we obtain K ′ by removing a mapping from a hypothetical feature F to
an asset a present in K. In this case, S would be the set of configurations in the FM that do not have F .460

Products containing F might not be refined, since they will not have the asset a as before. So, configurations
containing F cannot be included in S. Since K is equivalent to K ′ according to S and S is a subset of F
configurations, L′ refines L according to the same S.

Theorem 6 (Configuration knowledge partial equivalence compositionality). For a product line L =
(F,A,K), a CK K ′, and a set of configurations S, let L′ = (F,A,K ′). If K ∼=S K ′, S ⊆ JF K and L′465

is well-formed, then L vS L′.

Proof. For an arbitrary product line L = (F,A,K), a CK K ′ and a set of configurations S, assume that
K ∼=S K ′ and S ⊆ JF K. This amounts to:

∀am, c ∈ S · JKKamc = JK ′Kamc (15)

By Definition 4 we then need to prove that
S ⊆ JF K (16)

and
∀c ∈ S · JKKAc v JK ′KAc (17)

We are already assuming Predicate 16. So, for an arbitrary c in S, we need to prove that JKKAc v JK ′KAc . By
properly instantiating am and c in Predicate 15 with A and c, we have JKKAc = JK ′KAc . So, we can replace
JK ′KAc by JKKAc and the proof follows from asset set refinement reflexivitiy [5].

3.3. Combining different refinement and partial refinement notions470

We also reason about compositionality in terms of combining different refinement notions, since the
refinement and partial refinement theories are complementary. Thus, practitioners may desire to interleave
refinement and partial refinement operations. For improvements or adding new features with behaviour
preservation, one can use the refinement theory. After that, developers may need to remove a feature, such
as the removal scenario illustrated in Section 2. For such cases, the partial refinement notion should be475

used. Hence, the theories might be used interchangeably and we need to provide support in the sense that,
when applying consecutive transformations, refinement still holds for a subset of products.
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Refinement and partial refinement
When a partial refinement over S is followed by a refinement, we would ideally have partial refinement

for products in S by transitivity. However this does not hold because, in the refinement transformation,480

feature names do not matter, contrasting with the partial refinement notion. In fact, as Definition 3 admits
configurations to change, refinement is not necessarily a particular case of partial refinement even when S
is equal to the set of all valid configurations.

To support interleaving of safe and partially safe changes, Definition 11 describes a more general partial
refinement notion that allows configurations to change according to a renaming function f . The function485

f maps configurations from the initial to the final feature models. Then, given an initial configuration c
from the initial feature model, refinement holds for the product generated from f(c). In a feature renaming
situation, supposing that we change the feature name from P to P ′, f would be defined as f(c) = c[P ′/P ].
This function takes a configuration c and returns c if c does not have the feature P . Otherwise, it gives a
new configuration c′ as result, that is equal to c, except that every occurrence of P is replaced by P ′.490

Definition 11 (Weak partial refinement). For arbitrary product lines L = (F,A,K), L′ = (F ′, A′,K ′) and
a function f : JF K→ JF ′K, L′ weakly partially refines L modulo f , denoted by L vf L′, whenever

∀c ∈ dom(f) · f(c) ∈ JF ′K ∧ JKKAc v JK ′KA
′

f(c).

The partial refinement notion is a particular case of Definition 11 (when f is the identity function over
S). Thus, this weaker notion supports situations where configurations change, which are not covered by the
default partial product line refinement notion (Definition 4). Since the weak definition is more general, we495

could have it instead of having both partial refinement relations. However, Definition 4 is less complex to
reason about, and it covers the majority of scenarios, unless developers need to deal with feature renaming,
so we decided to keep both.

We have a function f as an index because allowing configurations to be arbitrarily modified having a set
of configurations S as an index would lead to relations that are not transitive. Transitivity does not hold500

for such a definition because we have no control of the new configurations; they could be arbitrary. Thus,
when applying consecutive refinements, we would not know if the refined configurations were the same as
the ones refined in the first step. Hence, even assuming two refinement operations in terms of the same S,
transitivity does not hold for S.

Similarly to Definition 3, the weak partial refinement relation is also a preorder, as we should support505

developers in stepwise refinement. In Theorems 7 and 8, we formalise the reflexivity and transitivity prop-
erties. A product line partially refines itself, according to Definition 11, when the function f is an identity.
Otherwise, it makes no sense to compare different products in the same product line.

Theorem 7 (Weak partial refinement reflexivity). For an arbitrary product line L = (F,A,K), and a
function f : Conf → Conf , if f is the identity function and dom(f) ⊆ JF K, then L vf L.510

Proof. Let L = (F,A,K) be an arbitrary product line. By Definition 11, we have to prove that, for an
arbitrary c in dom(f), JKKAc v JKKAf(c). Since f is the identity function, we can replace f(c) by c and the
proof follows from asset refinement reflexivity [5].

For the transitivity property, the reasoning is similar to Theorem 2. Instead of giving refinement guar-
antees for the intersection of the two sets of configurations, we compose the two functions defined for each515

evolution step.

Theorem 8 (Weak partial refinement transitivity). For arbitrary product lines L1, L2, L3, and functions
f : Conf → Conf and g : Conf → Conf , if L1 vf L2 and L2 vg L3, then L1 vg◦f L3.

Proof. Let L1 = (F1, A1,K1), L2 = (F2, A2,K2) and L3 = (F3, A3,K3) be arbitrary product lines. Assume
that L1 vf L2 ∧ L2 vg L3. By Definition 11, this amounts to:

∀c ∈ dom(f) · JK1KA1
c v JK2KA2

f(c) (18)
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∀c ∈ dom(g) · JK2KA2
c v JK3KA3

g(c) (19)

We then have to prove that
∀c ∈ dom(g ◦ f) · JK1KA1

c v JK3KA3

g(f(c)) (20)

For an arbitrary c ∈ dom(g ◦ f), we need to prove that JK1KA1
c v JK3KA3

g(f(c)). Since the domain of g ◦ f is
equal to the domain of f , we can instantiate c in Predicate 18. We then have JK1KA1

c v JK2KA2

f(c). Properly520

instantiating c in Predicate 19 with f(c), we then have JK2KA2

f (c) v JK3KA3

g(f(c)). The proof then follows by
asset set refinement transitivity [5].

When one applies a partial refinement followed by a refinement, we have a weak partial refinement. A
possible scenario of such situation is when one changes an asset in a non behaviour-preserving way and then
renames a feature,. Since not all products are refined because of the asset change operation, the domain of525

the function is only the set of configurations whose products do not have the changed asset. Suppose that
feature P was renamed to P ′, L is the product line before these two operations and L′ is the final product
line, we then guarantee that L vf L′. The function f in this case would also be defined as f(c) = c[P ′/P ],
since in the asset change operation configurations were not changed. This notion is formalised in Theorem 9.
When partial refinement is followed by refinement, there is a function that maps configurations from S to530

the final product line, so that weaker partial refinement holds.

Theorem 9 (Partial refinement and refinement). For product lines L1, L2 and L3 and a set of configurations
S, let F3 be the FM of L3. If L1 vS L2 and L2 v L3, then, for some function f : S → JF3K, L1 vf L3.

When a refinement (Definition 3) occurs, we can derive a function that maps configurations. Given an
initial configuration from the initial FM, the function arbitrarily chooses a configuration from the final FM535

so that product refinement holds. So, in this case we could say that there is a function g : JF2K→ JF3K that
maps configurations from L2 to L3. In the first case, when we have a partial refinement (Definition 4), we
require that configurations do not change, differently from Definition 11. So, we can rely on the identity
function I : S → JF2K, since the initial configuration is equal to the final one. Thus, f : S → JF3K in
Theorem 9 would be the composition of g with the identity function I. Product refinement then holds by540

transitivity.
If the operations are conducted in the opposite order (refinement followed by partial refinement), the

reasoning and end result are analogous, so we omit the details here. The respective theorem and proof can
be found in our online appendix.

Name aware refinement and partial refinement545

The composition of refinement and partial refinement is intricate, because refinement allow changing
feature names and configurations. A plainer composition can be established with a name aware, stronger
notion of refinement. It is stronger than the standard notion in the sense that it gives less flexibility in terms
of configurations. This definition supports less scenarios when compared to Definition 3. Feature renaming,
for instance, is not a refinement according to this notion. Since configurations are usually sets of feature550

names, when changing such names, configurations containing them are impacted.

Definition 12 (Name aware product line refinement). For arbitrary product lines L = (F,A,K) and
L′ = (F ′, A′,K ′), L′ strictly refines L, denoted by L � L′, whenever

∀c ∈ JF K · c ∈ JF ′K ∧ JKKAc v JK ′KA
′

c .

Previous work has shown that this relation has similar properties to the refinement relation, like being a
preorder [5]. This notion (Definition 12) is similar to the partial refinement notion (Definition 4) in the sense555

that it does not allow any change in configurations. For product lines L and L′, name aware refinement
implies partial refinement, provided that the set of configurations S is present in L. As a consequence, by
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transitivity, when a partial refinement is followed by a name aware refinement, we have a partial refinement,
as shown in Theorem 10. If the refinements are performed in the opposite order, the result is also a partial
refinement.560

Theorem 10 (Partial and name aware refinement). For product lines L1, L2 and L3 and set of configurations
S, if L1 vS L2 and L2 � L3, then L1 vS L3.

Proof. For arbitrary product lines L1 = (F1, A1,K1), L2 = (F2, A2,K2) and L3 = (F3, A3,K3) and set of
configurations S, we assume L1 vS L2 and L2 � L3. This expands to

S ⊆ JF1K ∧ S ⊆ JF2K (21)

∀c ∈ S · JK1KA1
c v JK2KA2

c (22)

and
∀c ∈ JF2K · c ∈ JF3K ∧ JK2KA2

c v JK3KA3
c (23)

We then have to prove
S ⊂ JF1K ∧ S ⊂ JF3K (24)

and
∀c ∈ S · JK1KA1

c v JK3KA3
c (25)

Predicate 24 is true from Predicate 21 and Predicate 23. To prove Predicate 25, we assume an arbitrary c
in S. We then properly instantiate c in Predicate 22 and Predicate 23, as any c in S is also in JF2K vide565

Predicate 21 and the proof follows by asset set refinement transitivity [5].

Commutativity of name aware refinement and partial refinement
Finally, we show that name aware refinement and partial refinement transformations lead to the same

product line when applied in different orders. For instance, given a product line L1, suppose that a developer
performs a name aware refinement, such as locally refactoring an asset, obtaining L3, and then partially570

refines the product line by removing a feature, obtaining L4. Figure 4 represents a commutative diagram
that shows that if we instead first apply this same partial refinement operation (yielding L2) and then refine
the asset, we obtain the same L4. Thus, in this case, the order in which the transformations are applied
does not matter.

Figure 4: Commutative dia-
gram (refinement and partial
refinement)

Properties like this reflect what happens during development, where prac-575

titioners might want to apply several different operations consecutively, and
it is helpful to be sure that applying refinements in a different order can pro-
duce the same result. We formally derive and prove two theorems from the
commutative diagram structure shown in Figure 4. We only present the proof
for the first theorem; the other follows the same strategy. Both proofs can be580

found in our online appendix [10].
In Theorem 11, we give support in case developers are doing first a par-

tial refinement and then a name aware refinement. The theorem establishes
that there is an alternative way to obtain the same resulting product line, by
performing the corresponding operations in the opposite order. Theorem 12585

is analogous. This theorem has an extra condition when compared to the first
one. This property only holds if S is a subset of the valid configurations gen-
erated by the initial product line L1. This condition is necessary, as otherwise
we could have invalid products, since invalid configurations may not obey dependency rules among features.
Thus, it does not make sense to refine a product line in terms of an S that is not part of the product line590

configurations.
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Theorem 11 (Partial refinement and name aware refinement commute (1)). For product lines L1, L2 and
L4, and a set of configurations S, if L1 vS L2 and L2 � L4, then, for some product line L3, we have
L1 � L3 ∧ L3 vS L4.

Proof. For arbitrary product lines L1, L2, L4 and a set of configurations S, we assume L1 vS L2 and
L2 � L4 to prove that

∃L3 · L1 � L3 ∧ L3 vS L4 (26)

Instantiating L3 with L1 in Predicate 26, we then have to prove that L1 � L1 and L1 vS L4. Since �595

is a preorder, L1 � L1 trivially holds. To prove that L1 vS L4, we use partial refinement transitivity
(Theorem 2). We just need to show that L2 vS L4. Since we assume that L2 � L4, and we know that the
name aware refinement is a specific case of partial refinement (when S is the entire set of valid configurations),
this concludes the proof.

Theorem 12 (Partial refinement and name aware refinement commute (2)). For product lines L1, L3, L4600

and a set of configurations S. Let F1 be the FM of L1. If S ⊆ JF1K, L1 � L3 and L3 vS L4, then, for some
product line L2, we have L1 vS L2 ∧ L2 � L4.

3.4. Discussion
In the previous section, we establish a relationship between the partial refinement and name aware

refinement relations, through a commutative diagram illustrated in Figure 4. We believe that the diagram605

also holds if we replace � by v. Nevertheless, to prove the correspondent theorems, we would need to enrich
our theory. Instead of having only relations connecting product lines, we would also need transformation
operations expressing how product lines change. Instead of considering just sets of product lines, our
encoding would have also to consider sets of transformations or changes among product lines. The proof
would then be made by induction over the set of possible transformations.610

4. Partially Safe Evolution Templates

As mentioned in Section 3, the partial refinement theory can be applied to different contexts than the
refinement theory (possibly even more). In this section, we illustrate such contexts and define templates that
are abstractions of recurrent practical evolution scenarios. We defined such templates based on preexisting
refinement templates [4, 5], by changing conditions to allow partially safe changes. Our templates help615

because they provide guidance on how to evolve a product line guaranteeing safe evolution for a subset
of the products. Moreover, developers do not need to reason over the partial refinement definition for
these scenarios; the templates already provide some guidance. Templates might also avoid errors during
the evolution process and increase developers confidence, since they provide guidance on how to change a
product line.620

A template has a left-hand side pattern (LHS) and a right-hand side pattern (RHS), stating syntactic
and semantic conditions for the transformation to be applied. They correspond to abstractions that capture
properties of the initial and evolved product lines, respectively. We make use of meta-variables to represent
the initial and evolved product line elements. An element is supposed to be unchanged when the correspond-
ing meta-variable is present in both sides. In case one follows the syntactic and semantic rules established625

by templates, partial refinement holds for a specified subset of products S.
We represent the initial and evolved product lines with the three elements: FM, AM and CK and we

show them in detail when they are changed. We use a tree notation to represent the FM. Although the
FM structure can be large, with several features, we choose to show only the ones affected in the particular
evolution scenario. So, if the FM in the template contain only feature F, it is implicit that there might be630

upper and sub-trees attached. Although we do not show in the templates, we assume that the FM contains
cross-tree constraints, which are formulae used to build implications involving features usually not directly
related in the tree. For example, features P and O can be siblings and one would have the constraint P ⇒ O
to guarantee that whenever P is selected, O is also selected. As we define in Section 3, the AM is basically
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a set of pairs, each pair containing an asset name and an asset. We show these pairs between braces, and635

each pair has the form of n 7→ a, meaning that the asset name n is associated with the asset a. The CK is
represented as a table-like structure with two columns: on the left-side column we have feature expressions
containing features names and first-order logic boolean operators. These expressions could be, for instance,
P ∧ O (the case where both features P and O are selected) or ¬P ∨ O (the case where we have either not
P or O). The right-side column depends on the CK language adopted. It can be either sets of asset names640

or transformations. We show each case later in detail.
The value of S is defined in terms of the FM, AM and CK of the product lines in the templates.

Establishing S this way helps to understand the change impact, since products in the scope of S are not
impacted. We should remember that product line refinement holds for any configuration in S (according to
Theorem 3 from Section 3), so one might choose to work with a smaller subset of S. We assume two notations645

for the CK structure: compositional and transformational (see [4]). So we provide three sets of templates,
one in each subsection, first focusing on templates for the compositional notation, then on templates for the
transformational notation, and finally on more general templates that apply to both notations.

4.1. Compositional Templates
In this section, we present templates that use the compositional CK notation, consisting of a table-like650

structure with two columns. The left column has feature expressions (enabling conditions) and the right
column has asset names, indicating that a given configuration yields a product containing the names in the
right whenever the expression in the left evaluates to true. In the following, we analyse a number of possible
scenarios of partially safe evolution.

Remove Feature655

We first analyse feature removal situations, which is an usual scenario in a product line development
context. One often decides to exclude features for diverse reasons [6]; for instance, they are no longer used
or not needed by customers. We define the Remove feature template in Figure 5. Products that did not
have the removed feature in the original product line keep the same behaviour, and the others might not be
refined. We show the three elements before and after the feature removal in Figure 5. The feature model,660

which is shown in a tree-like notation, the asset mapping, which is a set of mappings from asset names to
assets (inside curly brackets), and the configuration knowledge, which is shown in a table-like structure. In
this template, the three product line elements are changed.

By syntactically analysing the Remove feature template in Figure 5, we observe that the initial FM
(F ), has the O feature, which is removed, and consequently, the resulting FM (F ′) does not have it. We665

also notice that O is P ’s child. Nothing else is changed in the FM, which might have other features beyond
O and P . We assume that the initial CK has references to O, so from the LHS to the RHS, every row in
the CK (like the one containing e′ and n′) referencing O is removed. If the CK has no references to O, the
feature could be removed directly but this scenario would actually consist in a product line refinement. The
AM has names such as n and n′ mapped to a and a′. Similarly to the FM and CK, the AM also loses a set670

of mappings, like a′ which implements O.
The guarantees provided by the template only hold if some conditions are valid. We need to make sure

that when e′ is true, O has been selected, otherwise it would make no sense to exclude this expression from
the CK. To do so, we require that e′ ⇒ O. Consequently, a′ is removed, since it must be in a product
whenever O is selected. We could use O instead of e′, but this would restrict the template applicability.675

When using e′, we are allowing any expression where O is true. When a feature is removed, the intuition
is that the products that did not have the respective feature do not change, so behaviour is preserved. The
other ones might not be compatible to any product in the new product line because they lose functionality,
unless a′ adds no extra behaviour to a product. To specify S to capture that, we make use of the � operator,
which filters configurations from a FM according to a feature expression. This expression may contain680

feature names and logical operators, such as ∧, ¬ and ∨. The expression P ∧Q, for instance, is satisfied by
a configuration c when c has the P and Q features. For an arbitrary FM F and a feature expression e, we
use F � e to denote the set of configurations in JF K that do not satisfy e. This is formalised in Definition 13.
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Figure 5: Remove feature compositional partial refinement template

Thus, we specify S as F � O, giving refinement guarantees only for product configurations that are in F and
do not include O. Since we only remove the line containing e′ and n′ from the CK, it is required that O does685

not appear in e and other CK lines, otherwise the feature would not be completely removed. This is to avoid
that another expression references O either directly or indirectly. Finally, we also need a well-formedness
condition to guarantee that the products not refined (the ones that had O in the initial product line) remain
well-formed. Since we assume that assets are removed from the initial to the evolved product line, we cannot
guarantee that existing products remain well-formed, except those in S.690

Definition 13 (Filtering Configurations by Feature Expression). Let F be a FM and e be a feature expres-
sion. Then, F � e = {c : Conf | c ∈ JF K ∧ ¬sat(c, e)}

The Remove feature template does not assume that O is a leaf feature. However, when O is removed,
the subtree under O is also removed according to the template. One might need to remove O, but keeping
its children. Thus, we would need another template, which would be a variation of the template illustrated695

in Figure 5, to deal with such scenario and this is part of our future work.
Strictly, this template does not match the example discussed in Section 2, but it is compatible with

a slight variation of the template, where two assets are removed. To illustrate that, we instantiate the
meta-variables for the example. In this case, F is instantiated with the initial Linux VM containing
LEDS_RENESAS_TPU, and F ′ is the resultant VM without this feature. The initial CK is instanti-700

ated with the Linux CK, including the line shown in Listing 2 and the changed CK is the same except
for this mapping. The Linux AM could be represented by mappings between the file names to their re-
spective contents. Using the feature removal example, n′ would be drivers/leds/leds-renesas-tpu.c and
drivers/leds/leds-renesas-tpu.h, and a′, the respective contents of these source code files. The other map-
pings, such as n 7→ a, correspond to other source file names and the respective contents. The new AM is705

obtained from the initial by removing the mapping n′ 7→ a′, which corresponds to the implementation of
the removed feature. It is true that e′ ⇒ O, since e′ is LEDS_RENESAS_TPU. This feature appears only
in e′, since we did not find occurrences of this feature in the remaining items of the CK. Assuming that
the resulting product line is well-formed, all conditions are satisfied. S is F � LEDS_RENESAS_TPU.
Thus, refinement holds for these configurations. The other products are not refined since they have the710

removed feature, thus not preserving behaviour. Differently from product line refinement (Definition 3),
which requires every product in the initial product line to be compatible with at least one product in the
new product line, partial refinement requires refinement for a subset of the initial products. Therefore, in
this case, only products without LEDS_RENESAS_TPU are refined.

4.2. Transformational Templates715

As shown in the previous section, feature removal is a possible partially safe evolution scenario developers
might face in practice. We also have templates to deal with other scenarios, such as asset additions, removals
and changes to the CK [9]. Here, we deal with the same scenarios, but assuming that the CK may also
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have transformations. Our theory covers two types of transformations: preprocess and select. By using the
former, one can limit the scope of a feature by using #ifdefs around the corresponding code block. Thus,720

the included assets might not be the original ones; they may suffer changes during the compilation process.
The latter simply selects the corresponding asset, so it does not change the asset itself.

Remove Feature
Developers may need to remove features for diverse reasons, as already explained in Section 4.1. The

compositional Remove feature template assumes that the CK has feature expressions and asset names,725

whereas the transformational one deals with transformations instead of names. They also differ in the
structures underlying their similar CK syntax. While the former definition consists of a set of items, the
latter consists of a list. It is not feasible to work with these different representations at the same time.
Additionally, a number of conditions may vary and impose restrictions on the artefacts format. For instance,
one could assume an artefact with an ifdef block, while another simply does not deal with such structure.730

For these reasons, we present two versions of the Remove feature and other templates and this increases
expressiveness of the partial refinement notion, as we are allowing different SPL languages. Thus, we also
have a template to deal with feature removals but allowing the use of transformations in the CK and ifdefs
in the AM structure. In Figure 6, the three parts of the product line are affected. Similarly to the feature
removal template for compositional CKs, we give support for the products that do not have the removed735

feature. Therefore, S is defined in the same way.
The O feature is removed from the initial FM F . Similarly to its compositional version, assets imple-

menting the O feature should be removed from the product line. In this case, since we are able to transform
assets, we can consider the use of preprocessing directives to implement features. So, instead of a single file
implementing the entire O feature, we have a code snippet c inside the a asset where O is implemented. In740

the CK, the x tag activates the c code that implements O. Thus, in the new AM, this tag is not present,
neither is the c code. Two lines are removed from the initial CK. Both have an expression e, which, if
true, implies the presence of O. For this reason, both lines should be removed, otherwise we could have an
ill-formed CK, that refers to features that do not exist anymore. The first transformation in the first line is
tag x, which activates this tag. The transformation preprocess n generates a new asset considering activated745

tags. As a consequence, since the x tag is previously activated, c is included. If x had not been activated, c
would not be included.

Figure 6: Remove feature partial refinement transformational template

There are three additional conditions in the template illustrated in Figure 6. The first one is to make
sure that O only appears in e. This is essential to guarantee that the remaining expressions in the resulting
CK will not refer to a feature that was already removed. We also require the x tag to not appear in other750

CK lines. As this tag activates the code related to the removed feature O, it should also be removed. The
first CK line refers to x, and it is also removed. Since we are assuming that x refers to the removed feature,
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it makes no sense to allow that other CK lines refer to x. This could imply in a ill-formed product line
because after removing O, there would still be a tag referring to O. Finally, we need a well-formedness
condition. We do not have control over the products that are not in the scope of S, since these products755

were affected by the feature removal. Consequently, we do not know if these products would still compile
successfully, for example. We then need to establish that they must be well-formed after the change.

We could also have another template considering the use of the select transformation, which would be
similar to the compositional one, as select transformations do not really transform assets, but simply select
them. For this reason, we only present a template dealing with ifdefs. We do not present the formalisation of760

the Remove feature transformational template, but it is similar to the Remove feature compositional
template formalisation illustrated in Section 4.1. Nevertheless, the languages used to represent the CK and
assets are different because we allow CKs with transformations and ifdef blocks. Consequently, we cannot
use the compositional template here. Moreover, we prove the template shown in Figure 6 by induction over
the CK, since we deal with a recursive semantics function. In contrast, the compositional template proof765

requires no induction.

4.3. General Templates
In this section, we present templates which are CK language independent. The previously introduced

templates are not general because they specify concrete CK changes. So, we need to represent these changes
with concrete languages.770

In the following scenarios, the CK does not change; only the FM or the AM. So, we can abstract from
the CK structure. Consequently, these templates are compatible with any CK notation, including both
compositional and transformational CKs. We first introduce the Change asset template, which deals
with changes only to implementation files. This template is a particular case of the AM partial refinement
compositionality introduced in Section 3.2.2. Moreover, we also have templates to deal with changes only775

to the FM. These would be particular cases of the FM compositionality (see Section 3.2.1).

Change asset
Developers modify source files in many contexts, such as when fixing bugs or implementing new features.

In such situations, one possibly does not desire to preserve behaviour. Thus, this is often a partially safe
evolution scenario, since products that contain the changed asset might not preserve behaviour. Therefore,780

we give refinement guarantees for the other products, which are the ones that do not have the changed
assets. We define a template that matches this scenario in Figure 7.

To specify S for this case, we use another restriction operator. For an arbitrary product line (F,A,K),
and set of asset names ns, we use (F,A,K) � ns to denote the subset of F configurations whose products
do not contain assets from ns. Hence, in Figure 7, S is defined as (F,A,K) � {n}, which is the subset of785

configurations whose features are not implemented by the asset named n, which in this case is the a asset.
Since products containing a′ are possibly not refined, we cannot give any guarantees for them. There is also
a well-formedness condition. Since we do not know which changes were performed to a, we need to demand
well-formedness for products containing a′.

Figure 7: Change asset partial refinement template
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This template assumes that both product lines have the same F and K. More precisely, only the asset790

a is changed to a′. Thus, only the asset content is modified, not the asset name, which is the same for
the initial and new lines (n). It could be the case that many assets change in a single evolution scenario,
and we would still support developers because this is the same as applying the Change Asset template
several times. Our transitivity property helps in such situations. Although this template does not capture
situations where the FM and CK change as well, one could obtain this effect by combining templates. The795

Change asset template can be used with the Change CK line template (which is introduced in what
follows), for instance. Thus, developers could not only change assets, but also change their reference in the
CK. As explained in Theorem 2, the guarantee is for the intersection of the products refined in both steps
and this can be automatically calculated, as we define S for both templates.

The Change asset template also captures safe evolution scenarios. When one refines an asset, this800

template also matches. However, it would give less support than possible since we assume that the asset
is being changed in a non behaviour-preserving way. The Refine asset template [4] is more appropriate
in this situation because it assumes that the asset changes and its behaviour is preserved, thus product
line is safely evolved and gives guarantees for all products. In contrast, if the change impacts the product
line behaviour, the Refine asset template gives no support and developers should rather make use of the805

Change asset template.

Transform Optional to Mandatory Feature
Feature types (mandatory, optional, alternative and or) may change during the evolution process. Some

of these changes are refinements and others are not. For example, transforming a mandatory feature into
an optional one is often a refinement, since the evolved product line would have more configurations than810

before, but we would still have the existing products, supporting existing users. This situation is addressed
by previous work [4].

On the other hand, the opposite transformation, transforming an optional feature into mandatory, is
often not a refinement. In this case, every product containing the parent of the transformed feature will also
have the changed feature. Thus we would not be able to generate products without the changed feature but815

with its parent. For this reason, some users would not be supported, but others can be because products
already containing the changed feature would be unaffected. This scenario is illustrated in Figure 8. We give
support for the original products that have O, because the only change applied to the initial product line
was that O becomes mandatory. Furthermore, products without P are not affected, because they remain
without O, as it is impossible to have O without having P820

We have a condition in the template (Figure 8) to guarantee that O can only be selected through the
P selection, so there are no formula changing this condition. We state that we must be able to deduce the
equation O ⇒ P from F . So, it should not be possible to have O without P in the Transform optional
to mandatory feature template.

For this evolution scenario, we define S as the set of configurations that belong to the semantics of F ,825

and satisfy the formula O ∨ ¬P . This is expressed with the filter operator �, which takes a FM F and a
feature expression e and yields all configurations in F that satisfy e. This operator is the opposite of the
restriction operator �.

We do not have any well-formedness condition for this template. This is not necessary because, in this
particular case, we are able to prove that the resulting product line is well-formed. As there are no changes830

to assets in this case, we know that products remain well-formed. Moreover, there are no new products; it
is just the case that some of the initial products do not exist anymore. Thus, we had essentially to prove
that all configurations belonging to F ′ semantics, also belong to F semantics.

Move Feature
Finally, we also consider changes to the FM regarding feature dependencies. During the evolution process,835

developers may want to move features in the FM. For example, a possible scenario is illustrated in Figure 9.
We have an initial FM F that has at least three features: P , Q and O. Feature P is the parent of Q and
O. A change is performed and we then obtain F ′, where O is now Q’s descendant. In this scenario, product
configurations from the initial product line that do not have Q and have O are nonexistent in the resulting
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Figure 8: Transform optional to mandatory feature partial refinement template

product line. In contrast, configurations that have O and Q do not suffer any impact, neither the ones that840

have P but do not have O. So, we define S as the set of configurations that belong to F semantics and do
not satisfy the expression ¬Q ∧O.

Figure 9: Move feature to its sibling partial refinement template

Besides that, the FM F , including cross-tree-constraints, should satisfy two expressions: O ⇒ P and
Q ⇒ P . This is necessary to guarantee that the FM formulae are not changing the relation between the
features. So, we should be able to select O only if P is selected and this must hold for the entire FM. The845

same happens to Q and P . Consequently, both feature expressions should hold for the constraints of both
FMs.

We do not specify any feature type in this template. This means that it applies no matter the types
of features P , Q and O. However, depending on their types, we could have variations of this template
that provide guarantees to different sets of products. For example, in two variations S is equal to all valid850

configurations, and, as a consequence, we would have refinement. This happens when only Q is mandatory,
and when the three features are mandatory. In both cases, all products would have Q, so the expression
¬Q∧O, which should be satisfied by the configurations that are not refined, would not hold for any product.
In any other scenario, S is not equal to F semantics. For instance, if all features are optional, products
containing only P and O would not be generated in the resulting product line, as Q would need to be855

present, since it is the ascendant of O in F ′.
We have just discussed a possible product line evolution scenario that consists of moving a feature in the

FM, with the effect of changing feature dependencies. Nevertheless, as the FM structure is a tree, there are
several potential scenarios of moving features in the scope of the tree. Although we have shown one possible
move feature transformation, there are several other possibilities. The FM tree can be large, and features860

may be moved to a place far from its origin. These are just examples and any case that does not match these
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templates needs to be analysed separately. Moreover, for each situation the set of refined configurations S
may vary. For this reason, we do not have a single template to represent all possible move feature scenarios.

4.4. Discussion
We derived the templates by adapting a catalogue of safe evolution templates [5, 4] for situations where865

not all products are refined by products in the evolved product line. For instance, the Change Asset
template in Figure 7 essentially adapts the Refine Asset [4] template by dropping the precondition that
the new asset a′ must refine a. This way we allow any kind of change to a, but capture change impact
by precisely defining S. The set S of configurations refined depends on each scenario. For instance, if we
change the behaviour of an asset present in every product, S can be the empty set. This would mean that870

we cannot provide any guarantee. This is not an ideal situation, but we are not aware of how to avoid it.
Eventually, developers need to perform changes that affect all products. We revisit this topic on Section 6.

Verifying completeness of the templates and proposing a minimal set are part of our future work. We
would also possibly need more templates, but we already cover several situations, like feature removals, CK
line additions and removals, changes to the implementation, among others. If it is not possible to obtain875

absolute completeness, we could then establish a relative completeness by showing that the templates are
expressive enough to transform an arbitrary product line to a reduced normal form.

Besides the introduced templates, we have others that are not presented here for brevity and can be found
in our online appendix [10]. For this reason, we show the full list of templates in Table 1. In addition to the
Remove Feature and the general templates, we also have templates to deal with changes to the CK that880

are also formalised in both CK compositional and transformational notations. Finally, we have templates
to cover asset removals and additions that were implemented in both transformational and compositional
theories.

Template Compositional TransformationalGeneral
Remove Feature 3 3 -
Add CK Lines 3 3 -
Remove CK Lines 3 3 -
Change CK Line 3 3 -
Add Assets 3 3 -
Remove Assets 3 3 -
Change Asset - - 3
Optional to Mandatory - - 3
Move Feature - - 3

Table 1: Full template list

We do not present proofs of the general templates, but they are available in our online appendix [10]. The
templates that deal with changes to the FM only are relatively simple to prove, as they do not deal with any885

change to the implementation, so we basically need to prove that the set S of refined product configurations
can be obtained from the initial and evolved FM semantics. We also guarantee that the evolved FM is well-
formed for these templates. We do not need to deal with CK semantics and AM peculiarities. Regarding
the Change asset template, it is a particular case of the AM partial refinement compositionality (see
Section 3.2.2). Thus, we make use of the existing AM partial refinement notion to prove this template.890

In general, our aim is to give support for several product line languages to increase the partial refinement
concept expressiveness. When a particular product line element is changed, we detail such element using
a particular language and try to understand which languages are possible to use. For the CK, we show
that both compositional and transformational notations are compatible with the templates. Otherwise, we
specify and prove the template in a more general level assuming that the elements are black boxes and they895

can thus be of any notation.
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Figure 10: PVS partial refinement theory

5. PVS Encoding

We present a partial refinement theory in Section 3 with definitions, properties and theorems about
partial refinement of product lines, allowing reasoning over partially safe evolution of product lines. To
guarantee soundness, we used a proof assistant to avoid human mistakes in manual proofs. This way, we900

can be confident that our proofs are correct, and the way that theories and proofs were mechanized also
made the process less time consuming, as manual proofs could take much longer. We choose to use PVS,
which provides a specification language, a type checker and an interactive theorem prover, mainly due to
building the partial refinement theory on top of the refinement theory, which has been mechanized in PVS
on previous works [5, 13].905

To understand how the theory is encoded in PVS and relate to the product line refinement theory, we
discuss the impact and the extension of the product line refinement theory in PVS [10]. In Figure 10, we
show the dependencies among theories (PVS modules) and their hierarchy. Although we do not show the
entire hierarchy here, all PVS files and proofs can be found online [10]. The new theories created in this
work due to the inclusion of partial refinement are highlighted in light grey colour. As the partial refinement910

concept builds on the existing product line theory and concepts (white PVS modules), all assumptions exist-
ing there, like asset set refinement preorder [5], are also required here. On top of that, we have extra specific
assumptions for partial refinement, like the axioms presented in Section 3.2.2. We prove all new properties
to guarantee that they are valid and consistent with the existing theory. In the remainder of this section, we
explain each theory in more detail. Some of them deal with general notions of FM, AM and CK (Partial-915

RefBasics, PartialRefDefault, PartialRefWeaker, PartialRefinement and PartialAMCompositionality), and
ideally they would be valid with any product line definition that has the three elements. These five theories
are parameterised with respect to FM, Asset, Asset Name and CK types, and also FM and CK semantics
functions. Thus, one can instantiate them with concrete languages for the three product line elements and
implement semantics functions. One needs to provide concrete notions, and semantics functions for the FM920

and CK. The other two theories are specific for compositional and transformational CK respectively:
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• PartialRefBasics: in this theory, partial refinement and weaker equivalence notions for the FM,
AM and CK are defined. It imports the preexisting refinement theory that abstractly define these
basic types representing the three main elements of the product line (Definition 5, Definition 7 and
Definition 10).925

• PartialRefDefault: this theory contains the main partial refinement definition (Definition 4). It
uses PartialRefBasics, as we analyse whether the transformations applied to the FM and the CK in
separate lead to product line partial refinement. Furthermore, we also reason about refinement and
partial refinement transformations being applied consecutively. So, Theorems 11 and 12 are defined
in this theory.930

• PartialRefWeaker: this is analogous to PartialRefDefault, but here we deal with the weaker
partial refinement notion (Definition 11).

• PartialRefinement: in this theory, we relate the previously presented definitions (default and
weaker). Basically, here we establish that if the function f in the weaker definition is the identity
function, this definition is equivalent to the relation in Definition 4.935

• PartialAMCompositionality: as we discussed in Section 3.2.2, we assume the existence of an
evaluation function to reason about AM compositionality. For this reason, this is expressed in a
separate theory, as we do not need the evaluation function for the other concepts. We do not allow
the evaluation function to be arbitrarily defined. As discussed in Section 3.2.2, it must obey a set of
constraints, like not generating assets not present in the AM of the product line being evaluated.940

• PartialAMRefInstComp: this is an instantiation of PartialAMCompositionality, where we deal
with the general CK notation. This theory is essential to certify that assumptions made regarding an
arbitrary CK would be valid for the compositional CK. So, we prove that Axioms 2, 1 and 3 also hold
for compositional CKs.

• PartialAMRefInstTrans: analogous to PartialAMRefInstComp, but deals with transforma-945

tional CKs.

In Figure 10, we also show the theories that specify templates. We highlight in black colour (white
font) the template theories. As we discussed, we have three template categories and they vary mainly
according to the CK notation used. Consequently, we have three different template theories. For each
template developers should obey the syntactic and conditions predicates like the ones presented for the950

Remove Feature template in Section 4.1. We also determine, for each case, the S set of refined product
configurations. In the following, we explain each template theory for partial refinement:

• PartialRefTemplatesComp: this theory comprises the templates proposed in Section 4.1. It uses
the concrete notions for FM (FeatureModel theory) and CK (CKComp theory). Since we are
defining partial refinement templates, these theories all import the PartialRefinement theory.955

• PartialRefTemplatesTrans: this is analogous to PartialRefTemplatesComp, but it deals with
transformational CKs and uses the CKtrans theory instead of CKComp.

• PartialRefTemplatesFM: this theory corresponds to the templates presented in Section 4.3, except
the Change Asset template that is specified together with the AM compositionality theory. This
template is in a separate place because it assumes an eval function (see Section 3.2.2), which is part of960

the CK semantics. All the other templates deal with changes to the FM only, so all specific cases of the
FM weaker equivalence compositionality are specified here. These templates assume a specific notation
for the FM, that is structured as a tree. So, we use the concrete FM theory and the intermediate CK
theory CKint, since the templates do not specify any CK language and would be compatible with
any concrete CK that is a instantiation of CKint.965
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Templates Formalisation
All of the templates presented in this paper were encoded and proved in the PVS system. However, we

do not present all specifications and proofs here, but all PVS files are available online [10]. In this section,
to illustrate our formalisation approach, we present the Remove feature template formalisation. The
template we formalise here is actually more general than the template presented in Figure 5, since it allows970

more than one line of the CK to be removed and also more than one asset from the AM. We illustrate as if
the feature appears only in one CK line and is implemented by one implementation artefact just to make
it more readable. To specify partially safe templates, we follow the same strategy found in previous works
[14, 5, 4, 13]. So, we first define the syntax and conditions predicates to encode the information present
in the template. All syntactic similarities and differences regarding the initial and final product lines form975

the syntax predicate. In the Remove feature template, the three product line elements are presented
in detail, so we define syntactic rules for all of them. Preconditions like well-formedness rules are specified
with the conditions predicate.

To specify the syntax predicate, we make use of preexisting functions defined for concrete FM
and CK PVS encoding. For example, the FM we are dealing with has a set of features and a980

set of formulae. So, for the Remove feature template, we state that F ′ (fm2 in the formali-
sation) formulae are all in F (fm1 in the formalisation), except those that have O. This is for-
malised as formulae(fm2) = remove(O, formulae(fm1)), and remove(O, formulae(fm1)) expands to
{f : Formulae | f ∈ formulae(fm1) ∧ O /∈ names(f))}. It would not make sense to allow these formulae
to be part of F ′, since the O feature is removed. So, this guarantees that the O feature does not appear in985

any formula in F . Besides that, we also require that features from F ′ are exactly the ones from F , except
for O. As Figure 5 shows, P and O need to be features from the initial FM. As a consequence of the second
condition, P is also in F ′.

We also describe the AMs and CKs. The removed feature does not need to be implemented by one asset
only, nor be present in only one expression in the CK. We assume that several items in the CK and in the990

AM may be removed, and we represent these two sets with the its and pairs variables, respectively. Thus,
the specification is actually more general than the template shown in Figure 5. Basically, the initial AM
must be an extension of the final one, with the AM pairs. The override ⊕ operator can be simplified to
pairs ∪ (am2− dom(pairs)), where am2− dom(pairs) is the set of pairs that belong to am2 whose names
are not in dom(pairs). The CK is represented as a set of items in the compositional language, so we say995

that K has every item from K ′ and also the removed items in its. Finally, we also need to certify that every
configuration satisfies the O ⇒ P expression, as this express the parenthood expressed in the FM.

syntax(fm1, fm2, am1, am2, ck1, ck2, P,O, its, pairs) :

bool =formulae(fm2) = remove(O, formulae(fm1)) ∧
features(fm2) = remove(O, features(fm1)) ∧
P ∈ features(fm1) ∧
O ∈ features(fm1) ∧
am1 = am2⊕ pairs ∧
ck1 = ck2 ∪ its ∧
∀c ∈ Jfm1K · sat(O ⇒ P, c)

We also define preconditions. The first one is to require S to be F � O, which represents the set of
configurations that are in F semantics, but do not satisfy O. It is also necessary to make sure that every
expression from its implies O, which is represented by the e′ variable in Figure 5. Regarding the CK, it is1000

also required that O does not appear in other CK lines. So, we establish that configurations from the initial
FM satisfy expressions from its if and only if they have the feature O. The second condition is related to
well-formedness. Developers must be sure that initial products containing O implementation remain well-
formed. Finally, we have a condition regarding its and pairs. We require that the remaining features do not
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have their implementation removed, by guaranteeing that if an item does not belong to its, its respective1005

assets, obtained by assets(item), are not in pairs, and consequently not removed.

conditions(fm1, S, its, pairs, P,O, ck, ck2, am2) : bool =

S = F � O ∧
∀c ∈ Jfm1K·

∀exp ∈ exps(ck)·
sat(exp, c)⇒ exp ∈ exps(its)⇔ sat(O, c) ∧

c /∈ S ⇒ wf(Jck2Kam2
c ) ∧

∀item ∈ ck · item /∈ its⇒
∀an ∈ assets(item) · an /∈ dom(pairs)

The template is already encoded, but we do not prove it directly. We define a strategy for an step-wise
proof. First, we prove that configurations in S do not satisfy any expression in its. This guarantees that,
when evaluating the CK, items associated with the O feature are not included, and consequently artefacts
that implement O are not also present. This is specified in Lemma 1. The evalCK function yields CK items1010

whose feature expressions are satisfied in the configuration c.

Lemma 1 (Items from its are not included). For product lines L = (F,A,K) and L′ =
(F ′, A′,K ′), a set of configurations S, a set of items its, an AM pairs and features P and O, if
syntax(F ,F ′,A,A′,K,K ′,P ,O,its,pairs) and conditions(F ,its,pairs,P ,O,K) hold, then

∀c ∈ S · ∀item ∈ evalCK(K, c) · item /∈ its

We also introduce Lemma 2, to establish that, for products in S, assets resulting from the evaluation of
the initial CK do not belong to the removed assets from pairs (note that eval(K, c) yields all asset names
mapped to feature expressions that are satisfied according to the configuration c). This means that assets
implementing the removed feature are not present in the evolved CK. This lemma is related to Lemma 1,1015

where we show that the evolved CK does not have any expression involving the removed feature. Although
we do not present in detail here, all definitions used in this proof can be found in our Git repository.6

Lemma 2 (Assets from pairs are not included). For product lines L = (F,A,K) and L′ =
(F ′, A′,K ′), a set of configurations S, a set of items its, an AM pairs and features P and O, if
syntax(F ,F ′,A,A′,K,K ′,P ,O,its,pairs) and conditions(F ,its,pairs,P ,O,K) hold, then

∀c ∈ S · ∀an ∈ eval(K, c) · an /∈ dom(pairs)

We are now able to prove that removing a feature, given the syntax and conditions predicates previously
established, leads to product line partial refinement. This is formalised in Theorem 13. Essentially, when
a feature is entirely removed from a product line, and no elements regarding the remaining features are1020

removed, we say that the evolved product line partially refines the initial one for configurations that do not
have the removed feature.

Theorem 13 (Removing a feature is a partial refinement). For product lines L = (F,A,K) and
L′ = (F ′, A′,K ′), a set of configurations S, a set of items its, an AM pairs and features P and O, if
syntax(F ,F ′,A,A′,K,K ′,P ,O,its,pairs) and conditions(F ,its,pairs,P ,O,K) hold and ∀c /∈ S · wf(JK ′KA′

c ),1025

then L vS L′, where L′ = (F ′, A′,K ′).

6http://github.com/spgroup/theory-pl-refinement/tree/dev
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Proof. We have to prove that L vS L′, which, according to Definition 4, expands to

S ⊆ JF K ∧ S ⊆ JF ′K (27)

and
∀c ∈ S · JKKAc v JK ′KA

′

c (28)

To prove Predicate 27, we first expand the restriction operator � in our assumption about S, which leads
us to ∀c ∈ S · c ∈ JF K ∧ ¬sat(O, c). So, we can conclude that S ⊆ JF K. To prove that S ⊆ JF ′K, we expand
the FM semantics function J_K, and we have to prove that all features and formulae in F ′ belong to F .
JF ′K expands to {c : Configuration | satImpConsts(F ′, c) ∧ satExpConsts(F ′, c)}. Expanding these two
predicates, we have to prove that:

∀c ∈ S · ∀(n : Name) ∈ c · n ∈ features(F ′) (29)

and
∀c ∈ S · ∀(f : Formula) ∈ formulae(F ′) · sat(f, c) (30)

From S definition, we have that S ⊆ JF K, which amounts to ∀c ∈ S · ∀(n : Name) ∈ c ·n ∈ features(F ). So,
to prove Predicate 29, we need to prove that n cannot be O. Otherwise, since it belongs to features(F ), it
will also be in features(F ′). Also from S definition, we conclude that c does not satisfy O. So, O cannot be
in c’s names. Predicate 30 also holds because it holds for formulae(F ) and formulae(F ′) ⊆ formulae(F ).1030

We then need to prove Predicate 28. Assuming an arbitrary c ∈ S and expanding the CK semantics
function, this simplifies to A<eval(K, c)> v A′<eval(K ′, c)>. The difference between K and K ′ is the set
of items (its) that belong to K but not to K ′. Expanding eval(K, c) results in assets(evalCK(K, c)). By
using Lemma 1, we conclude that all CK items resulting from evalCK(K, c) do not belong to its. As the
other items, except its, are equal, K and K ′ evaluation results in the same items for configurations in S.1035

So, we have that assets(evalCK(K, c)) = assets(evalCK(K ′, c)).
The difference between A and A′ refers to pairs. In Lemma 2, we show that there are no assets from

pairs resulting from the evaluation of K. So, assets obtained by the image in A and A′ are the same and do
not refer to pairs, so it makes no difference in obtaining the image in A and A′, which is formally expressed
as A<eval(K, c)> = A′<eval(K, c)>. Given that JKKAc = JK ′KA

′

c for an arbitrary c in S, the proof follows1040

by asset set reflexivity [5].
According to previous work [5], an FM is well-formed if its formulas only refer to its features. If features

not present in the FM are referred, the FM is not well-formed. We are able to prove that the final FM is
well-formed because, since the initial FM is well-formed, and the only transformation is removing a feature,
F ′ is also well-formed as we remove the formulas that refer to the removed features. Regarding the final1045

product line well-formedness, we need to prove that all products are well-formed, according to the product
line definition. There are two scenarios to be considered: if a product is in the scope of S, we guarantee
its well-formedness because it is equal to an initial product, as we have just proved in this theorem. For
products that do not belong to S, we make use of the condition requiring that all products in L′ which are
not in S should be well-formed. So, we are able to prove that L′ is well-formed.1050

6. Evaluation

Although we expect our partially safe evolution templates could be useful in a number of situations, it
is important to gather empirical evidence so we can better understand how often they could be applied in
practice. To do that, we perform a quantitative retrospective study by analysing two product lines, Linux7

and Soletta.8 Both projects are active on GitHub, the variability model is written in Kconfig, Makefiles are1055

used to map features to their implementation and C is the main programming language used for source code

7Linux Kernel repository available at http://github.com/torvalds/linux
8Soletta project website: http://solettaproject.org/
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files. Linux is a large and highly variable system that has been used in previous works [15, 16, 7]. Soletta
is smaller and more recent, so we also chose to analyse this system to understand whether characteristics
such as project size and number of commits have any influence in our analysis.

We try to find scenarios that match our templates by analysing commits from the two projects. In this1060

section, we detail the data extraction process in Section 6.1, show the results for each template in Section 6.2,
and discuss threats to validity in Section 6.3. The purpose of our study is to discover whether the proposed
templates could be frequently applicable in a product line development context. We would like to answer
the following question.

RQ: How often could partially safe evolution templates be applicable in product line projects?1065

In order to answer this question, we automatically analyse commits from the Linux and Soletta projects,
where each evolution scenario is composed of a commit pair: the initial and evolved product lines are the
ones in two consecutive commits. We measure the number of occurrences of the proposed templates, since
they represent partially safe evolution situations.1070

6.1. Setup
We use the FEVER tool [7] to identify template occurrence.9 This tool, developed by Dintzner et al.,

is able to analyse commits from projects that use the Linux notation. FEVER takes a set of commits as
input and collects information from them. Then, the differences from each pair of consecutive commits are
processed and the resulting information is stored in a Neo4j database.10 The tool discovers which Linux1075

elements, such as the variability model, were changed in evolution scenarios. Additionally, changed files
are automatically classified into source and non-source. To find occurrences of our templates, we query the
database populated by FEVER to filter evolution scenarios by expressing the conditions for each template,
such as whether they affect the FM. For instance, in the Change Asset template (Section 4.3), we ensure
that only the code is modified. Thus, there are no changes to the FM and CK.1080

We manually check all evolution scenarios returned by the queries (except those representing changes
only to the implementation, as the number is extremely high) to make sure they really match the templates,
and also to reduce false positives. The tool can also have bugs, so the manual analysis is also important to
mitigate the tool imprecision. To reduce false positives in Change Asset instances, we run a complementary
analysis. Altogether, we analysed 67310 evolution scenarios of the Linux Kernel from the database we had1085

access to, and this corresponds to all commits between Linux versions 3.11 and 3.16. The first commit was
performed on September 2nd of 2013 and the last one was on August 3rd of 2014, so this comprises roughly
one year of development. We try to match each evolution scenario with one of the templates, based on their
conditions, as explained in the following.

Remove Feature: scenarios that modify all three elements of the product line, removing elements.1090

These three modifications must be correlated, as illustrated in Section 4.1. Thus, the removed mappings
need to be associated with the removed feature in the FM. Similarly, the removed assets in the CK need also
to be excluded from the implementation. These rules are detailed in Listing 4, using Neo4j query language.
In the database, the MappingEdit and FeatureEdit nodes represent changes to the CK and FM, respectively.
An ArtefactEdit is any file change. From the MATCH clause, we have all commits in which the CK and1095

source code are both changed. We then have the WHERE clause to establish extra conditions. For instance,
the first condition is that this commit should affect the FM as well, and the change must be a removal.
Moreover, the feature name in the FM needs to be the same name as the edited feature in the mapping
change (CK) (Line 3). As the three parts are affected, we also state that there should be CK removals
(Line 5). It would make no sense to allow source code artefact additions in a feature removal scenario, so1100

we filter these cases (Line 7). We also verify if changes in the implementation are related to changes in the
mapping (Line 10). All distinct commits obeying these rules are then returned. In the Remove Feature

9http://github.com/NZR/SPLR-FEVER-Tool.
10Neo4j website http://neo4j.com.
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template, we have a condition regarding well-formedness that, in our analysis, we assume to be true in every
scenario.

Listing 4: Remove feature Neo4j query
1105

1 MATCH ( f i l e : Ar te fac tEd i t )<−−(c : commit )−−>(mapping : MappingEdit )
2 WHERE
3 ( c )−−>(:FeatureEdit { change : ‘ ‘ Remove ’ ’ , name : mapping . f e a tu r e }) AND
4 f i l e . change= ‘ ‘REMOVED’ ’ AND
5 mapping . target_change= ‘ ‘REMOVED’ ’ AND1110

6 mapping . target_type= ‘ ‘COMPILATION_UNIT’ ’ AND
7 NOT ( c )−−>(:Arte fac tEd i t { type : ‘ ‘ source ’ ’ , change : ‘ ‘ADDED’ ’ } ) AND
8 f i l e . name=~( ‘ ‘ .∗ ’ ’+
9 subs t r (mapping . target , 0 , l ength (mapping . t a r g e t )−2) +
10 ‘ ‘ . ∗ ’ ’ )1115

11 return d i s t i n c t c

This query is subject to false positives. Although the exact mapping between features and artefacts in
Makefiles can be complex, FEVER relates each mapping change to one feature only, which may lead to
imprecision. Additionally, features can be delimited with #ifdef annotations. So, when removing a feature,1120

one can remove only an #ifdef block, without removing an entire source code file. Although we cover
examples that deal with transformational CKs, this increases imprecision, since we cannot filter if only an
#ifdef has been removed. The FEVER tool is not able to detect such change. To deal with such false
positives, we perform manual analysis to guarantee their absence.

False negatives may arise due to special cases. For instance, the removed file not necessarily has the1125

same name of the mapping target removed in the CK. Thus, this evolution scenario would not be found
with this query because the last condition may not hold. Additionally, we also do not find scenarios that
are compositions of feature removals and other changes. For instance, one could remove a feature and add
a new one in the same commit. Errors in the data set can also lead to false negatives. We do not show
queries for the other templates, but they follow a similar approach and are available in our online appendix1130

[10]. We should remind that false negatives do not affect our results, as they would actually increase our
templates occurrence.

Change Asset: we classified an evolution scenario as a change asset instance when only the imple-
mentation changed. We filter commits that have at least one source file changed. It was also necessary to
establish that the commit had no added or removed source files. Therefore, we only capture cases where1135

the change is in source code. If only a non-code file is changed, such as a .txt file, we do not consider it a
change asset instance.

Add Assets and Remove Assets: we classify evolution scenarios as instances of these templates when
only the CK and implementation change. In the former, both changes must be additions. The files added
to the implementation should be new and of type source, according to FEVER. For the Remove Assets1140

template, the query is analogous. So, we only allow removals in the CK and implementation. Source files
should be entirely removed and CK lines must also be excluded. Moreover, we have a similar condition to the
last one in Listing 4 to guarantee that the changes are related. Developers might remove Makefile mappings
and source files independently. Thus, we check whether the source file names appear in the affected CK
lines. We do not consider any case in which the FM changes. This would actually consist in a feature1145

addition or removal.
We are not aware of false positives that may arise due to the Add Assets and Remove Assets queries.

Regarding false negatives, we do not find instances in which an added file has not exactly the same name of
the added CK line. However, changing such condition would probably increase the false positives number.

Change CK Line, Add CK Line and Remove CK Lines: we identify these templates with only one1150

query because they are very similar and we noticed that in some cases an evolution scenario was an instance
of the Change CK Line; template, but the Git diff algorithm was showing it as a removal followed by
an addition. Since the tool relies on this classification, we could have non-precise results, so we preferred
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Template Query returned Excluded Imprecision
Source Remaining

Change Asset (and
possibly Refine As-
set)

55345 780 Query 54565
(89.4%)

Add Assets 181 13 Tool 168 (0.27%)
Remove Assets 17 1 Tool 16 (0.02%)
Change CK Line 18 0 Query 18 (0.02%)
Add CK Lines 9 0 Query 9 (0.01%)
Remove CK Lines 12 0 Query 12 (0.02%)
Remove Feature 93 25 Query 68 (0.11%)

Table 2: Template occurrence - Linux Kernel

to detect mapping changes and check manually which templates match the respective evolution scenario.
Another reason is that the number of instances is considerably small for these templates. For all of them, we1155

required that the implementation and FM elements must remain unchanged. We also identified the other
templates in a similar way, and the results are presented next.

We can have false positives in these instances because we are filtering any mapping change. So, a
number of them might not be of our interest. We could filter mapping additions, removals and modifications
separately, but the FEVER tool uses the Git diff algorithm, which has an imprecise classification. We prefer1160

to filter all changes and manually classify according to their types. We are not aware of false negatives due
to the query, but they can occur due to data set problems.

6.2. Results
In this section, we discuss the results from the analysis of the Linux and Soletta systems. Linux and

Soletta are similar with respect to the notation used for its elements, but vary in size and maturity level.1165

These differences reflect in our results. For each project, we inform how often our templates could be applied
in evolution scenarios. We also discuss threats to the validity of our results.

Although we classify templates into compositional and transformational in Section 4, both systems use
a transformational CK notion. For instance, some feature removals actually affect #ifdef annotations and
our compositional template is not compatible with such structure. So, precisely, these would rather match1170

the transformational and general templates.

6.2.1. Linux Kernel
We present the numbers of each template in Table 2. The Change Asset template could be often

applied, matching almost 90% of the evolution analysed scenarios. By identifying commits that actually
change only white spaces and permissions, we exclude 780 scenarios. We try to reduce the query imprecision1175

by analysing commit messages, which suggest that partial refinement occur more frequently than refinement
scenarios. The other templates had considerably lower numbers. The Add Assets query returned 181
instances, but, only 168 were considered, since the other 13 do not match the template due to data set
problems which will be explained later. Similarly, the Remove Assets template had 16 instances only.
The templates that deal with changes to the CK (Change CK Line, Add CK Lines and Remove CK1180

Lines) had 18, 9 and 12 instances. Finally, the Remove Feature query returned 93 instances and after
manual analysis 68 remain valid. We believe that there are no problems due to data set in this template,
but the query is not precise enough.

The numbers in Table 2 are lower bounds of the cases we could confirm. We provide a summary of our
analysis in Table 3. From the 67310 commits, 5413 are merge commits, which are discarded by the tool1185

because they correspond to integration, not evolution, scenarios. Hence, we could give support for 89.94%
of the cases altogether, as shown in Table 3.
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There are, in fact, 6221 instances in the Linux system that do not match any of our current templates,
which could include, for instance, commits that only change feature dependencies in the FM, commits
that represent feature additions (which change the three elements of the product line), or even refinement1190

scenarios such as feature renaming. As discussed in Section 4, the proposed templates were adapted from
product line refinement templates proposed in previous works [4]. So, we aim to investigate these 6221
instances in more detail, and, if necessary, propose new templates to deal with them as well.

Commit type Number
Non-merge 67310
Merge 5413
Analysed 61897
Match our templates 55676 (89.94%)
Not match any template 6221 (10.06%)

Table 3: Template occurrence summary - Linux Kernel

We are not able to identify instances of all our current templates with the FEVER tool. For example,
we found no instance of the Transform Optional to Mandatory template. The Linux Kconfig model1195

does not provide a clear feature classification into optional, mandatory, alternative and or. So, the current
version of the tool is not able to inform feature types. This would require a deeper interpretation of the
Kconfig model, and possibly adding and improving modules of the FEVER tool.

In the following, for each template, we discuss in more detail the number of instances found. We also
provide examples of evolution scenarios that match our templates and show examples that were excluded1200

due to problems related to query and data set, among others.

Change Asset
According to Dintzner et al. [7], around 80% of feature oriented changes in Linux only touch the

implementation, and do not affect the FM or CK. Confirming that, the Change Asset template had the
highest occurrence rate, with 55345 instances, which corresponds to almost 90% of the evolution scenarios1205

analysed. This might be due to Linux maturity level, and also to the fine granularity of the commits observed
in the analysed period.

The Change Asset template matches any implementation change. Since we do not have control over
these changes (they could be refinements or non-refinements, for instance), we use auxiliary tools to have a
more precise idea of changes. Knowing precisely what are the changes made in Change Asset instances is1210

extremely important because they correspond to almost 90% of our scenarios found and this could affect the
applicability of the Change Asset template. For instance, those scenarios classified as refinement should
not be considered instances of the Change Asset template. As number of occurrences is extremely high,
we could not manually verify all cases. Thus, a number of these occurrences might be full refinements. By
manually analysing 50 Change Asset instances (randomly chosen between versions 3.15 and 3.16), only 71215

turned out to be asset refinements. The other 43 are non-refinements and the majority of them were bug
fixes. Developers fixed such bugs, for instance, by modifying if-then-else conditions. Based on this analysis,
we raise the hypothesis that partial refinements occur more frequently, and this makes the Change Asset
template far more frequently applicable than the Refine Asset template [4].

An example of a Change Asset scenario is the pair formed by commit 2627b7e15c11 and its predecessor.1220

In Listing 5, a developer removes the call to the ip_vs_conn_drop_conntrack function (we used the −
symbol to indicate line removal) to avoid a crash, as he explains in the message. This is the only change;
the other lines remain untouched. So, we consider this example to be a partial refinement, as there is
a clear intention to change the feature behaviour by solving a bug. Moreover, regardless of the commit
message, function call removals are often not refinement transformations [17, 18]. Unless the function has a1225

11Change Asset example: http://github.com/torvalds/linux/commit/2627b7e15c. Jul 8, 2014; version v3.16-rc5.
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Term Frequency Rank
Use 12609 (23.11%) 1
Fix 11836 (21.69%) 2
Patch 9921 (18.18%) 3
Add 9916 (18.17%) 4
Remove 8352 (15.31%) 8
Error 4200 (7.69%) 41
Change 4131 (7.57%) 42
Bug 1870 (3.43%) 146
Failure 1228 (2.25%) 267
Rename 1111 (2.03%) 305
Modify 431 (0.79%) 954
Refactor 422 (0.77%) 976

Table 4: Frequent terms in Change Asset commit messages

void behaviour, the resulting program tends not to have a compatible behaviour to the initial one. In this
example, products not containing the net/netfilter/ipvs/ip_vs_conn.c file are refined according to the set
of products S specified in the Change Asset template.

Listing 5: An excerpt of “net/netfilter/ipvs/ip_vs_conn.c”

1 i f ( cp−>f l a g s & IP_VS_CONN_F_NFCT) {1230

2 − ip_vs_conn_drop_conntrack ( cp ) ;
3 /∗ Do not a c c e s s conntracks during subsys cleanup because
4 nf_conntrack_find_get can not be used a f t e r connt ra ck cleanup
5 f o r the net .∗/
6 . . .1235

To better understand the type of changes in the 55345 commits returned by the query, we analyse commit
messages for identifying terms that suggest that changes are not behaviour preserving. Using Lucene,12 a
natural language processing tool we rank every term in the commit messages according to its frequency in
the text formed by concatenation all messages. We then select a number of best ranked terms and count1240

the number of messages in which they appear. So we are able to know the number of commit messages that
had each term.

Lucene ranked 209.328 terms that were found in the 55345 messages. We can see from Table 4 that
Fix and Bug occupy the 2nd and 146th positions, respectively. This suggests that a great number of the
Change Asset instances are bug fix scenarios. Patch is the 3rd most used term, which also suggests the1245

high presence of bug fixes or general improvements, which may not be code refinements. Other words that
might suggest the presence of product line refinement changes do not seem as frequent, like Rename and
Refactor. This only gives a general idea, but we cannot be sure about the exact changes performed in
Change Asset without analysing the code. Messages may not be well-written, or might be incomplete.
Developers often do not explain in detail their commits and surely express differently their ideas, so this1250

is just an approximation. Being conservative and considering that only the documents containing Bug and
Fix represent partial refinement scenarios and all the others are refinement, we then have 12680 Change
Asset instances instead of 55345. The number decreases considerably, but we would still be able to support
22% of the analysed scenarios.

The Lucene tool automatically excludes terms that are not of our interest, like prepositions, pronouns,1255

among others. We also configured the tool to ignore others terms, such as signed and off, which are present

12Lucene website: http://lucene.apache.org/
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at the end of every commit message and just pollute the rank. Besides analysing the rank of every single
term, Lucene also allows us to search for specific expressions, for example, the number of messages that
contain bug and fix, and including other possible terminations, like fixes. This provides a more powerful
search than the single term one, but there is no ranking in this case. We found similar results by looking1260

for expressions involving terms, and the results are available in our website [10].
In addition to analysing Change Asset commit messages, we also identified commits that only change

spacing in code files by using Conflicts Analyser,13 an open source tool that classifies conflicts according to a
set of patterns [19]. Although we are not dealing with conflicts, the tool identifies differences between source
code files. So, for every Change Asset instance, we compare the initial and final files. From the 553451265

commits returned in the Change Asset query, 777 only change white spaces, so these can be considered
product line refinements, which corresponds to approximately 1,4% of the instances for the Change Asset
template. We consider this number to be high, but it depends on project development practices. In the
Linux case, changes have fine granularity, so this seems to be common. Commit 2055fb41ea14 is one of
the instances found. In this commit, a line break is added before an if statement. No other changes are1270

performed.
Our template could still be applied in this situation, because we do not make any restrictions to the

changed artefact. However, one should rather make use of the Refine Asset template, as it gives guarantees
that all products are refined, differently from the Change Asset template, that assumes that the asset
is not refined and gives behaviour preservation guarantees for only a subset of the existing products. For1275

this reason, we exclude these instances. The other three excluded instances are permission changes. For
example, commit 186026874c15 changes the permission code of a C source file from 755 to 644. In the
Git version control system, which we deal with, permission changes may be committed in projects whose
configuration file has the filemode parameter set to true, like the Linux Kernel.

In summary, this analysis indicates that most evolution scenarios are partial refinements. Our manual1280

analysis confirms this hypothesis, given that we found 43 non-refinements out of 50 evolution scenarios. As
the data set is really huge (55345 Change Asset) scenarios, it is impossible to analyse all of them manually.
Using other tools to have a better understanding of the code is part of our future work.

Adding, Removing and Changing CK Lines
In our sample, we found 18, 9 and 12 scenarios that respectively correspond to mapping changes, additions1285

and removals. We manually checked and confirmed the 39 instances. The numbers regarding these templates
are not high because modifications focusing only on the mapping rarely occur [20], so the Change CK Line,
Add CK Lines and Remove CK Lines templates have a lower frequency when compared to others, such
as Add Assets. This might happen because most commits modify at least one source code file and some of
them also modify the FM. The Change CK Line template presents the highest number of instances of the1290

three patterns, probably because developers often remove and add mappings together with the respective
source code or references to the FM. It is also possible that an evolution scenario captured by one of our
templates corresponds to a longer sequence of commits. Since we try to match each commit pair separately
with the templates, this would explain the low occurrence.

We provide an example of a Change CK Line instance in Listing 6, which shows the differences between1295

commit 5a90af67c2 16 and its predecessor. The presence of the artefact davinci-cpufreq.o was conditioned to
the activation of CONFIG_ARCH_DAVINCI_DA850. After the change, the CONFIG_ARCH_DAVINCI
feature is mapped to this artefact instead. In the message, the author explains that this commit fixes
a build error. In such situations, there are no changes to the FM and implementation; only the CK
changes, as we stated in our query. In this case, our template guarantees that products without the CON-1300

FIG_ARCH_DAVINCI_DA850 and CONFIG_ARCH_DAVINCI features are refined.

13Conflicts Analyser website: http://twiki.cin.ufpe.br/twiki/bin/view/SPG/ConflictPatterns
14http://github.com/torvalds/linux/commit/2055fb41ea. Jun 20, 2014; version v3.16-rc3.
15http://github.com/torvalds/linux/commit/186026874c. Jul 2, 2014; version v3.16-rc4.
16CK line change commit: http://github.com/torvalds/linux/commit/5a90af67c2. July 10, 2014; version 3.16
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Listing 6: Changes made to “drivers/cpufreq/Makefile”

1 −obj−$ (CONFIG_ARCH_DAVINCI_DA850) += davinc i−cpufreq . o
2 +obj−$ (CONFIG_ARCH_DAVINCI) += davinc i−cpufreq . o

1305

Each scenario is classified as compatible with one template only, except for the Add CK Lines, Change
CK Line and Remove CK Lines templates. Since they were mined with the same query, we noticed that
some scenarios actually had instances of more than one of the three patterns. Thus, a scenario might be
classified as an instance of both Remove CK Lines and Add CK Lines templates, so we had to proceed
with a manual analysis as discussed.1310

Adding and Removing Assets
FEVER returned 181 instances of the Add Assets template, which were all manually checked to confirm

that they really match the template. Due to the tool imprecision, 13 of them did not. Therefore, we exclude
these instances and only 168 remain, which precisely match our conditions and are instances of the template.
There are at least 16 assets removals. We did not investigate the reason for such a lower removal rate. The1315

results might be different considering another interval and project.
In Listings 7, 8 and 9, we show a scenario that matches the Add Assets template.17 Basically, a line

is added to the Linux CK, to map the CONFIG_SOC_EXYNOS5410 feature to the exynos5410.o asset.
As this asset is new, the clk-exynos5410.c and exynos5410.h files are added to the implementation. So, as
the Change CK Line template requires, there is no change to the FM in this case. Also, the changes in1320

the CK and implementation need to be related, and we do not allow source file removals or modifications.
The only change in this commit that is not listed here is regarding documentation, but we do not forbid any
change to a non-source file.

Listing 7: Changes made to “drivers/clk/samsung/Makefile”

1 +obj−$ (CONFIG_SOC_EXYNOS5410) += clk−exynos5410 . o1325

Listing 8: Changes made to “drivers/clk/samsung/clk-exynos5410.c ”

1 209 l i n e s added

Listing 9: Changes made to “include/dt-bindings/clock/exynos5410.h ”
1330

1 33 l i n e s added

As we have already discussed, we only classify as Add Assets instances, commits that only touch the
implementation and CK. So, other artefacts like the variability model are not allowed to change. However,
among the commits returned by FEVER for our Add Assets query, we found 1 commit that changes1335

the Kbuild file, 11 that change the Kconfig, and another where additional CK lines change. In all these
examples, there are additions to the Makefile mapping and implementation files. However, FEVER acci-
dentally returned some instances that do not match our query. For example, commit d3e6573c48 18 and its
predecessor change additional lines in the CK. However, by the tool imprecision, these extra changes do not
appear in the data set, so it would not be possible to filter them.1340

Remove Feature
Our query returned 93 feature removal scenarios, but only 68 were classified as valid according to our

templates. The other 25 non-removals are scenarios where the features were actually being moved. Commit
messages help to identify these situations. All these excluded instances were found due to query imprecision,
so we are not aware of imprecision in the FEVER tool for this template. One of the main problems is that1345

17Add assets commit: http://github.com/torvalds/linux/commit/e7ef0b632e. May 26, 2014; version 3.16-rc1.
18http://github.com/torvalds/linux/commit/d3e6573c48. Dec 24, 2013; version v3.15-rc1.
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we do not restrict source file modifications to deletions. Intuitively, one might argue that when a feature
is removed from a product line, and no other changes are performed, we should have source file deletions,
but not additions/modifications. This would be valid in a compositional product line development context,
where one code artefact implements exclusively one feature. However, in the Linux system, developers can
make use of ifdefs, so an artefact may implement more than one feature, and removing a feature from the1350

code means basically removing the respective ifdef. For this reason, we allow source code removals and
modifications, but we need to filter them manually. We already provide a valid example of the Remove
Feature template instance in Section 2, and the 68 cases are available in our online appendix [10].

6.2.2. Soletta
Soletta is a development framework that makes writing software for IoT (Internet of Things) devices1355

easier. By abstracting hardware and operating system details from a program, Soletta allows developers to
write software for controlling actuators and sensors and communicating using standard technologies.

The same process used in Linux to find template instances was also applied to Soletta. By running
FEVER and executing the queries, like the Remove Feature query detailed in Listing 4, we obtain the
numbers regarding the Soletta project for the period ranging from its creation in 26 Jun 2015 to 19 Apr1360

2016. This corresponds to almost one year of development. Altogether, we analysed 2300 commit pairs for
the Soletta project.

Table 5 shows that the numbers are significantly lower when compared to Linux. This was expected, as
this project is considerably smaller and we are analysing only 2300 commits. The Change Asset query
returned 1496 instances, or 65% approximately. In the Linux project, this template corresponds to almost1365

90% of the commits. We believe that this difference is due to the commits granularity and project’s maturity
level. From the examples we observed, it should be the case that commits have a finer granularity in the
Linux project than in Soletta. Thus, developers commit more often. It is expected, then, a higher number
of Change Asset instances. Furthermore, Linux is considered a stable project, so changes are performed
mostly to the code [7], and there are less feature additions, for example, than a more recent project like1370

Soletta.
We only found five Add Assets instances. We expected to find more, as in the beginning the project

might have a significant number of asset additions. Nevertheless, we suspect that most asset additions are
also feature addition scenarios, where, apart from CK and implementation, the FM also changes. These
instances would best match the Add New Optional Feature refinement template proposed in previous1375

work [6]. There was no asset removal that matched our Remove Assets template. This is understandable
because Soletta is relatively new.

The numbers for Change CK Line and Add CK Lines were proportionately high than in Linux. A
possible explanation is that approximately 90% of the commits in Linux only change the implementation,
contrasting with 65% in Soletta. Like Remove Assets, Remove CK Lines had 0 instances. We found five1380

instances of the Remove Feature, but three were excluded. So, only two remain. This is also justifiable
by the fact that this is a recent project, so we expected to find a greater number of additions instead of
removals.

The results are summarised in Table 6. Surprisingly, we found only one merge commit for this period
in Soletta, which could be justified by the rebase practice. Thus, 2299 commits were analysed. As we1385

explained, the FEVER tool ignores merge commits. At least 65.89% of the evolution scenarios would match
our templates. This rate is much lower than Linux, that is almost 90%. We believe that this difference is due
to the projects maturity level. The Linux project is older and the analysed interval in Soletta includes the
start of the project, that tends to have more feature additions, which would not match any of our templates.
Another possibility is the granularity level for the changes. Linux commits have a finer granularity. So,1390

each commit in Soletta possibly would be the result of applying in sequence more than one partially safe
evolution template. Since we try to match each commit pair to a single template, we do not include such
instance.

We have the same problems in Soletta and Linux regarding the results, as we use the same queries and
FEVER in both projects. Change Asset instances are the most risky, since we do not precisely analyse the1395

performed changes. So, we do not know the number of refinements, although there might be more partial
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Template Query returned Excluded Imprecision Source Remaining
Change Asset (and possi-
bly Refine Asset) 1496 0 Query 1496 (65%)

Add Assets 5 0 Tool 5 (0.22%)
Remove Assets 0 0 Tool 0 (0%)
Change CKLine 9 0 Query 9 (0.39%)
Add CK Lines 3 0 Query 3 (0.13%)
Remove CK Lines 0 0 Query 0 (0%)
Remove Feature 5 3 Query 2 (0.09%)

Table 5: Template occurrence - Soletta

Commit type Number
Any 2300
Merge 1
Analysed 2299
Match our templates 1515 (65.89%)
Not match any template 785 (34.14%)

Table 6: Template occurrence summary - Soletta

refinements. Although we did not find any bug in the data set for the Add Assets and Remove Assets,
we encountered such errors in Linux, so we do not eliminate this possibility. For the other four templates,
the queries are not precise enough and we do not consider problems in the data set because we did not find
any of them.1400

We excluded three Remove Feature instances from Soletta results. Commit 5293f12e59 19 was excluded
because it is basically a renaming, where the FLOW_NODE_TYPE_FREEGEOIP feature is renamed to
FLOW_NODE_TYPE_LOCATION. So, this example is not considered to be a feature removal. We had
similar situations in commits 8d2e8aeb2c and 446bc7e43c. We can see removals, but the features are actually
renamed into others.1405

By running the Conflicts Analyser tool over Soletta Change Asset instances, we did not find any
commit changing only white spaces. This may be due to two reasons: the number of processed commits
(2300) and the project development practices. It might be the case that in the Linux project, commits
have finer granularity and developers accumulate less changes before committing. We also perform the term
analysis for commit messages in Soletta. Lucene found a total of 6028 terms in the 1496 messages. As shown1410

in Table 7, the word fix occupies the top again, as the most used term, appearing in 356 documents. Other
words found in the Linux analysis like Add, Error, Remove, Bug and Refactoring also appear, but in lower
positions. Although this project is different, we can see some similarity to Linux rank. This result indicates
that bug fixes occur in a significant frequency in both projects, which is possibly higher than refactoring
scenarios.1415

6.2.3. Conclusion
We analyse two product line systems to discover how often could our partially safe evolution templates be

applicable. In summary, we found that the Change Asset template would be applicable to most evolution
scenarios in both systems analysed (90% and 65%, respectively). The other templates, in contrast, had
much lower occurrence rates (they only sum 0.45% and 0.83% altogether). Nevertheless, they could still1420

be useful in some scenarios. We do not present results for the Transform Optional to Mandatory

19http://github.com/solettaproject/soletta/commit/5293f12e59. Sep 10, 2015; version v1_beta4.
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Term Frequency Rank
Fix 356 1
Add 307 2
Error 95 22
Remove 78 40
Change 74 42
Bug 14 390
Failure 5 825
Modify 5 826
Refactoring 3 1152

Table 7: Frequent terms in Change Asset commit messages

and Move Feature templates, but, based on our study, we expect them to have low occurrence rates as
well. Our results confirm previous study [7] evidence that the FM and CK are not changed as often as the
implementation. We should also remind that since the two systems analysed deal with transformational CKs,
our compositional templates could not be applicable. However, the transformational ones are compatible1425

and also the general ones, since they do not assume any particular CK language. It is part of our future
work analysing product lines dealing with compositional CKs.

This evaluation extends our previous one [9] by considering annotation templates in addition to the
compositional ones. We also analyse the Soletta project, which was not analysed before. We should highlight
that while doing a deeper analysis, we discovered bugs in our previous Linux results. In particular, the1430

number of commits we report here is slightly lower because, due to an error in our data set, we computed
some examples twice. This has also directly impacted the results. Nevertheless, in general, our results have
actually been improved. Most of them changed less than 0.1%, but the Change Asset had an increase in
the number of instances of approximately 7%.

6.3. Threats to Validity1435

As this is a preliminary evaluation, in this section, we discuss risks to internal, external and construct
validity.

Construct: As already mentioned in Section 6.2, to find occurrences of the Change Asset template,
we search for any change in the implementation and do not analyse which type of modification was performed
in the source file, thus possibly also retrieving commits which actually represent occurrences of the Refine1440

Asset template [4]. Although we manually examined 50 commits and performed analysis using both
Lucene and Conflicts Analyser, we cannot generalise to all commits. Regarding the term frequency analysis,
it is superficial to make conclusions, specially considering that developers express differently their ideas.
Moreover, we do not consider synonyms in that analysis, which could also lead to more precise results.
Scenarios matching the other templates can be safe only in pathological cases, so we do not take them into1445

consideration.
Internal: We should consider that the tool we use may have bugs. However, we perform manual

analysis to eliminate all false positives, except for the Change Asset instances. For these, we perform a
complementary analysis based on commit messages. Thus, we may only have false negatives, which would
actually improve our results. For example, if in a Remove Feature scenario, FEVER does not capture1450

that the three elements of the product line have been changed, our query will not return such scenario. We
discussed such examples in the previous section.

False negatives rate also depends on the number of commits matched to an evolution scenario. We
analysed each commit separately. For instance, one could remove a feature in two parts: first, the FM and
CK could be changed, and in the subsequent commit only the implementation would be removed. In this1455

situation, these two commits would not match any template, although, in sequence, they constitute a feature
removal scenario.
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Finally, we assume certain template conditions to be true, such as well-formedness. To reduce such
imprecision we should use a strategy to verify well-formedness [21] to make sure that the template would
be applicable. In our analysis, we make the open world assumption. Consequently, we analyse the scenarios1460

locally instead of globally. For instance, in the Change Asset instances, we analyse the changed files but
nothing else. It could be the case that the change seems to be a partial refinement (such as function call
removals), but the global effect might be different. Thus, this is also a threat. In systems such as Linux it
is not trivial to analyse changes globally and this is also part of our future work.

External: We only examined Soletta and a small part of the Linux repository history. Hence, we cannot1465

generalise the result for other history periods or projects, which may have different development practices,
such as commits with coarser granularity and different programming languages. Perhaps, if we analyse other
projects, the Change Asset template could be used together with others, since one might change not only
the implementation but also the FM and the CK in a single commit. However, as a consequence, other
templates could have a higher rate of occurrence. Although we do not include other projects, we consider1470

the Linux system significant because of its popularity and complexity.

7. Related Work

As discussed, this work extends the partial refinement theory for product lines [9], by presenting new
properties (such as compositionality), and a broader evaluation study. We also rely on some other previous
works. Borba et al. [11, 5] define safe evolution for product lines. A product line is safely evolved when1475

behaviour preservation holds for all initial products, and this is formalised through a refinement theory.
Teixeira et al. [22] extended this work for product populations and multi product lines. With the aim of
guiding developers in possible refinement scenarios, Neves et al. [4] and Benbassat et al. [23], among others,
propose template catalogues to abstract safe evolution scenarios. Additionally, a product line of theories
for reasoning about safe evolution of product lines was proposed by Teixeira et al. [13] to investigate and1480

explore similarities between different languages that specify product line elements.
Dintzner et al. [12] present a classification of feature changes as well as a tool named FMDiff to automat-

ically analyse differences in Linux variability models. The change categories are specific to structures found
in Kconfig specifications, such as feature dependency changes. Finally, they evaluate the tool by analysing
commits from the Linux repository history. Dintzner et al. [7] also developed the FEVER tool, which we1485

use in our evaluation, to enables the analysis of Linux commits and precisely informs which artefacts are
affected by a change.

Thüm et al. [24] classify FM edits into refactorings, specialisations, generalisations and arbitrary edits
by using satisfiability solvers. Our work differs because it is not our goal to build a tool and to analyse the
feature model structure only. However, our theory could be mechanised in such tools to provide even more1490

support for developers when making changes to the FM, by providing the subset of refined configurations
in each case.

Passos et al. [6] propose a pattern catalogue containing feature addition and removal templates applicable
in the Linux context. The main difference from their patterns to ours is that they do not focus on giving
guarantees for developers in partially safe evolution scenarios. Additionally, they present both refinement1495

and potential non-refinement templates. To verify the scenarios occurrence in practice, they conducted
an experiment by manually analysing the Linux repository trying to find instances of their templates and
discarded the ones that did not present a significant occurrence rate. While they focus on proposing templates
for the Linux context, our aim is to propose a new refinement theory and templates for product lines in
general. They also suggest the need for a new theory to address non-refinement scenarios.1500

Nieke et al. [25] analyse feature model evolution and define temporal feature models, which allow features
to have expiration date. For instance, if a feature is removed it is no longer valid. It is also possible to have
locked configurations. A configuration that is locked should never be broken. This information is achieved
through analysing possible changes, such as feature renaming, deletion, among others, to temporal FMs.
This work resembles ours because it gives support for some partial refinements regarding the variability1505

model. Developers can change some configurations and still be certified that the locked ones remain valid.
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However, they only analyse the variability model and do not propose a partial refinement theory, differently
from our work.

Also in the context of the Linux system, Ziegler et al. [26] present an approach to identify relationships
between configuration options, which allows one to discover source files that might be affected due to a1510

change in a configuration option. They found that most configuration options affect few files only, and a few
options affect a significant number of files. This work is related to ours, as we also analyse changes in the
Linux system. However, this is not the core of our work. We could use their approach to present more detail
of the evolution scenarios to give an idea of the number of products affected by a change to a configuration
option. Furthermore, Lotufo et al. [27] provide a quantitative and qualitative analysis of the Linux product1515

line. They discovered changes related to the FM, such as the number of features and the tree height, and
how these changes influence in the Kconfig model complexity. While they focus on the Linux FM, we are
interested in changes to the three elements of a product line.

Seidl et al. [28] provide a remapping approach to keep product line artefacts after evolution. The
authors classify changes to each product line element and inform developers possible inconsistencies that1520

may arise. Our solution could be integrated to theirs in establishing other possible categories and supporting
the inconsistency analysis, as we provide an impact analysis for a set of evolution scenarios.

Finally, there are several works [29, 30, 31] that propose change impact analysers for specific contexts.
The approaches involve running tests to check whether behaviour is preserved after a change. Our work is
also related to change impact analysis but we do not deal with any programming language in particular, so1525

our discussion is more abstract. Moreover, our theory provides formal guarantees. Furthermore, we reason
about changes not only to code, but also FMs and CKs, as we are dealing with product lines.

8. Conclusion and Future Work

In this work, we extend our partially safe evolution notion for product lines, by supporting developers
when evolving the AM and CK providing compositionality properties for these two artefacts. We also anal-1530

yse the compatibility of our templates with existing CK notions. As a result, we present partial refinement
transformational templates to deal with CKs containing transformations, such as preprocess. Additionally,
we extend our quantitative evaluation by analysing another product line, Soletta, and providing further
information regarding Linux results. The motivation of this work is that product line evolution is a chal-
lenging and complex task. It is important to give guarantees during this process, even for a product subset1535

only. Especially in highly configurable systems like the Linux Kernel, there are thousands of possible valid
configurations and predicting whether products have their behaviour preserved is often hard.

As future work, we intend to expand our theory to deal with function transformations to specify refine-
ment (see Section 3.4), and also prove that refinement and partial refinement commute. Additionally, we
intend to correlate our work with previous work [13] that defines a product line of product line theories.1540

This way, we could apply our theory to itself and integrate our new theory to the existing product line
of theories. Additionally, we could also improve our evaluation and further investigate Change Asset
instances. Although we provide a commit messages analysis, it would be useful to know precisely the type
of changes in each scenario, and also classify them in refinements and partial refinements.

Furthermore, we could provide the set of refined products in each scenario. This way, developers know,1545

for instance, when considering the motivating example shown in Section 2, the exact set of products that
had the LEDS_RENESAS_TPU. We did not evaluate the quality of our templates by means of the value
of S in each scenario. As already discussed, if all products have this feature, we would have no products
refined and this means an empty S. Consequently, developers would have no support. In contrast, if the
feature is not present in a high number of products, the support tends to be much higher. So, this is a1550

limitation and part of our future work.
Finally, we would like to develop a tool to support developers on software product line evolution. We

could implement transformations described in the proposed templates to allow developers to automatically
evolve product lines and inform the set of products refined. So, the tool would provide another layer of
abstraction and use the partial refinement theory concepts in background.1555
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