
GuyDance: Guiding Configuration Updates for Product-Line
Evolution

Michael Nieke

TU Braunschweig

Braunschweig, Germany

m.nieke@tu-bs.de

Gabriela Sampaio

Imperial College London

London, United Kingdom

g.sampaio17@imperial.ac.uk

Thomas Thüm

Ulm University

Ulm, Germany

thomas.thuem@uni-ulm.de

Christoph Seidl

ITU Copenhagen

Copenhagen, Denmark

chse@itu.dk

Leopoldo Teixeira

Federal University of Pernambuco

Recife, Brazil

lmt@cin.ufpe.br

Ina Schaefer

TU Braunschweig

Braunschweig, Germany

i.schaefer@tu-bs.de

ABSTRACT
A product line is an approach for systematically managing con-

figuration options of customizable systems, usually by means of

features. Products are generated by utilizing configurations con-

sisting of selected features. Product-line evolution can lead to un-

intended changes to product behavior. We illustrate that updating

configurations after product-line evolution requires decisions of

both, domain engineers responsible for product-line evolution as

well as application engineers responsible for configurations. The

challenge is that domain and application engineers might not be

able to talk to each other. We propose a formal foundation and a

methodology that enables domain engineers to guide application

engineers through configuration evolution by sharing knowledge

on product-line evolution and by defining configuration update op-

erations. As an effect, we enable knowledge transfer between those

engineers without the need to talk to each other. We evaluate our

method by providing formal proofs that show product behavior of

configurations can be preserved for typical evolution scenarios.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software evolution; Maintaining software; Software config-

uration management and version control systems.

KEYWORDS
software product line, configuration, evolution

ACM Reference Format:
Michael Nieke, Gabriela Sampaio, Thomas Thüm, Christoph Seidl, Leopoldo

Teixeira, and Ina Schaefer. 2020. GuyDance: Guiding Configuration Updates

for Product-Line Evolution. In 24th ACM International Systems and Software
Product Line Conference Companion (SPLC ’20 Companion), October 19–23,
2020, MONTREAL, QC, Canada. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3382026.3425769

SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use.

Not for redistribution. The definitive Version of Record was published in 24th ACM
International Systems and Software Product Line Conference Companion (SPLC ’20
Companion), October 19–23, 2020, MONTREAL, QC, Canada, https://doi.org/10.1145/
3382026.3425769.

1 INTRODUCTION
Configurable software allows customization of software products

to fit users’ requirements. For instance, cars and their software can

be configured by customers through a web configurator of the car

manufacturer [29] and the Linux kernel can be custom-tailored

by selecting from more than 21,000 configuration options [18].

A product line is a concept for managing configurable software

systems and their configuration options in terms of features [2,

10, 19, 23]. A configuration of a product line is a set of selected

features. The set of available features and their valid combinations

are often captured using a feature model [10]. A mapping uses

Boolean formulas to associate features with reusable artifacts or

parts thereof (e.g., through preprocessor statements in C++ code and

a configuration sets variables for compile time variability). Using

these artifacts, a product can be generated automatically for a given

configuration [2, 7]. In the product-line life cycle, two main roles

are involved: during domain engineering, domain engineers specify
feature models and mappings [19]; during application engineering,

application engineers define configurations to generate products.
In the process of product-line evolution, domain engineers may

change the set of features, artifacts, and the mapping [11]. This can

lead to unintended changes to product behavior [9]. For instance,

if a feature A is merged into another feature B, configurations se-
lecting only B and not A represent different product behavior be-

fore and after evolution. Previous research identified the need of

practitioners to know how changes impact existing configurations

and that it is pivotal to know whether a system operates as ex-

pected after evolution [3, 12]. Thus, configuration evolution must

be in line with product-line evolution. Application engineers are

left with the task of detecting and fixing problems manually with

existing configurations used in the field, which is time consuming

and error prone [31].

When trying to update configurations to new product-line ver-

sions, domain engineers and application engineers face problems in

sharing their knowledge with each other: first, with long product-

release cycles, the time span between evolution of product lines

and configurations can exceed months or years so that detailed

knowledge of the evolution may be lost; second, domain and appli-

cation engineers may not know each other, which creates a com-

munication barrier [5]. For instance, a domain engineer developing

the Linux kernel does not know all end-users configuring it. Hence,

domain engineers do not necessarily know which configurations

https://doi.org/10.1145/3382026.3425769
https://doi.org/10.1145/3382026.3425769
https://doi.org/10.1145/3382026.3425769
https://doi.org/10.1145/3382026.3425769

SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada M. Nieke et al.

Optional

Or Group
Alternative Group

Mandatory

Figure 1: Feature model of the running example.

are actually used and may not be aware of the requirements the

generated product has to fulfill. Similarly, application engineers do

not know why and how product-line evolution was performed and,

in isolation, cannot decide on how to change their configurations,

especially if multiple evolution steps have been performed. Leav-

ing application engineers with the task of updating their configura-

tions is bad practice and often leads to misconfiguration [33, 34].

Previous research attempts provide automated fixes for configura-

tions which may inadvertently alter product behavior [30–32, 34].

Even if applicable, these approaches assume that engineers in isola-

tion are able to choose a suitable fix. However, depending on the

evolution neither domain engineers nor application engineers are

able to adapt configurations without each other.

Apart from lack of communication mechanisms, the number of

application engineers typically is significantly higher than domain

engineers, which leads to a high communication overhead or makes

it even impossible for domain engineers to talk to each application

engineer [5]. For instance, thousands of application engineers con-

figure the Linux kernel but only a few develop it. Moreover, industry

reports that, for some systems, configuration logic changes almost

weekly [3]. One of our industry partners reports even 200 changes

in a year. Without automating the communication between domain

and application engineers, updating configurations requires mas-

sive communication efforts which quickly become infeasible.

In this paper, we present guided configuration evolution, provid-
ing guidance for domain and application engineers when updating

configurations to a new product-line version. Our main goal is to

enable knowledge transfer from domain engineers to application

engineers without the need to talk to each other. To this end, do-

main engineers define guidance in the form of instructions for ap-

plication engineers on how to update configurations to best cope

with product-line evolution – ideally maintaining product behav-

ior fully automatically. We propose a formal foundation and a gen-

eral methodology allowing domain engineers to define guidance

for application engineers to update their configurations. Such guid-

ance consists of a rationale for product-line evolution and concrete

update suggestions for configurations that can be applied automat-

ically. Optimally, product behavior is preserved after evolution but,

even if this cannot be achieved, application engineers are made

aware and can make an informed decision on how to adapt config-

urations. Guidance is defined once by a domain engineer and can

be reused by an arbitrary number of application engineers. In ad-

dition, domain engineers do not have to define guidance for each

individual configuration but for large sets of configurations. To en-

able reuse, our methodology allows to define templates for guid-

ance of typical evolution scenarios independent of their specific

application context. We illustrate the use of the methodology by

means of three exemplary pre-defined evolution templates which

define how the set of features and the mapping evolve. In our eval-

uation, we formally prove that we are able to preserve product be-

havior of configurations for typical evolution scenarios using our

methodology. In summary, we make the following contributions:

• We propose a formal foundation for domain engineers to

express evolutionary changes to configurations.

• Wedefine amethodologywith a prototypical toolGuyDance1

enabling domain engineers to guide application engineers

in updating configurations.

• We provide three example evolution templates to support

domain engineers, which illustrate the methodology and the

formalism.

• We formally prove soundness of the templates by establish-

ing behavior preservation for subsets of configurations.
2

2 BEHAVIOR PRESERVATION
Given a configuration, the product generated before and after

product-line evolution may behave differently due to changes to ar-

tifacts that are mapped to features. In the following, we define our

notion of product behavior. To this end, we first introduce basic

product-line concepts by means of a running example of a feature

model for a car product line depicted by Figure 1. We adapt existing

notions and formalisms for product lines [4, 21]. We formalize a fea-

ture model F as the set of all features. We abstract from feature rela-

tions or other constraints, as our notion of product behavior is inde-

pendent of such relations. A configurationC is a set of selected fea-

tures such that C ⊆ F . Each feature f < C is implicitly deselected.

To generate a product for a given configuration, it is neces-

sary to know which reusable artifacts have to be selected. The

set I contains all reusable artifacts. For instance, the Engine fea-

ture can be realized using a plug-in car.engine. In a mapping, fea-
tures are related to reusable artifacts [10]. For instance, for the run-

ning example, a mapping with preprocessor directives could look

like: #if Engine <code> #endif. We abstract from concrete im-

plementation and mapping techniques. We consider a mapping

M : ac → P(I) as a function relating features in terms of an appli-

cation condition ac , being a Boolean formula over features, and a

set of mapped artifacts. For instance, a mapping entry could look

like: M(GPS ∨ Glonass) = {car.positioning}.
Finally, we consider a product line as a triple PL = (F , I ,M) with

the feature model F , the set of reusable artifacts I , and the mapping

M . A product can be generated by composing all reusable artifacts

that are collected using the mapping and a configuration. We de-

fine a product of a configuration c ⊆ F as JMKc =
⋃
ac {M(ac) | c |=

ac}. While product and configuration are often used synonymous

in the literature, we adopt the distinction from the literature be-

tween those two elements and consider a configuration as an

implementation-agnostic set of features whereas a product com-

prises the implementation generated for a configuration [28].

We denote all elements after evolution with a prime symbol (e.g.,

the feature model after evolution is F ′). We define feature-model

evolution using standard set operations. For instance, if the feature

GPS is deleted, we express this as: F ′ = F \ {GPS}. As configurations
are sets of selected features, we use common set operations to

1
https://gitlab.com/DarwinSPL/GuyDance

2
https://gitlab.com/mnieke/guydance_proofs

https://gitlab.com/DarwinSPL/GuyDance
https://gitlab.com/mnieke/guydance_proofs

GuyDance: Guiding Configuration Updates for Product-Line Evolution SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada

formalize update operations. For instance, we express the removal

of the GPS feature from a configuration C with C ′ = C \ {GPS}.
To describe mapping evolution, we define a replace operator

M[fn 7→ exp] that iterates over all application conditions ofM and

replaces occurrences of a feature fn by the feature expression exp.
In the running example, if Diesel should be replaced by Engine
in the mapping, we express this as M ′ = M[Diesel 7→ Engine].
For simplicity and without loss of generality, we assume that if a

realization artifact i ∈ I is modified, this results in a new artifact i ′ ∈
I ′. As new realization artifacts also require to be mapped to features,

we define a second operator:M ⊕ (exp, i ′ ∈ I ′) adds an entry with

the application condition exp related to the realization artifact i ′.
We formalize product behavior and its preservation. As, in gen-

eral, program behavior equality is undecidable [20], we rely on a

more conservative notion for comparison. As approximation for

product behavior, we use the definition of a product, i.e., JMKc .
Product behavior of a configuration C is preserved if we can find a

configuration C ′
that results in the same set of artifacts. Thus, we

consider product behavior preservation as syntactic equality.

Definition 1. For a product line (F , I ,M) evolved to (F ′, I ′,M ′),
configurationsC ∈ P(F), andC ′ ∈ P(F ′), the product behavior ofC ′

preserves the product behavior of C , if
JMKC = JM ′KC ′

For instance, if feature GPS is mapped to iGPS, feature Glonass is

mapped to iGlonass and configuration C = {GPS, Glonass} is used
for product generation, the product behavior of C is defined by

JMKC = {iGPS, iGlonass}. During evolution, Glonass is merged into

GPS and iGlonass is mapped to GPS. By removing Glonass from C
resulting in C ′ = {GPS}, C ′

preserves the product behavior of C
(i.e., JMKC = JM ′KC ′ = {iGPS, iGlonass}).

To preserve product behavior of a configuration, this configu-

ration may need to be updated. Note that a configuration is an

implementation-agnostic set of features whereas a product com-

prises the implementation of a configuration. We identify configura-

tion subsets that need to evolve by adapting the filter operator ↿ of
Sampaio et al. [21]. For a feature model F and a feature expression

exp, F ↿ exp yields the set of all configurations of F that satisfy exp.
For instance, in the running example, if AudioCD and Cassette are
deleted, all configurations that select both features need to be up-

dated, i.e., the configuration yielded by F ↿ AudioCD ∧ Cassette.

3 GUIDED CONFIGURATION EVOLUTION
Individual knowledge of neither domain engineers nor application

engineers is sufficient to update configurations after product-line

evolution. For instance, in the running example, domain engineers

might not know the requirements of configurations that selected

the Cassette feature and application engineers need to know that

this feature has been deleted. We provide a methodology to support

domain engineers in guiding application engineers on updating

their configurations.

In such guidance, domain engineers formulate instructions for

application engineers to update configurations in accordance with

performed product-line evolution in a machine processable man-

ner. Ideally, these instructions can be applied fully automatically

and preserve a configuration’s meaning in terms of product behav-

ior – even if a different set of features has to be selected. However,

Table 1: Guidance for a Delete Feature operation.

Operation: Delete feature 𝒇𝟎 with realization artifacts (𝒓)

𝑭′ = 𝑭 ∖ {𝒇𝟎}, 𝑴′ = 𝑴[𝒇𝟎 ↦ 𝒇𝒂𝒍𝒔𝒆]

Configurations Update

Operations

Preserves

Behavior

Update

Rationale

Type

(𝒙𝟏)
𝑫𝒆𝒍𝒆𝒕𝒆𝟎:
𝑪 ∈ 𝑭 ↿ ¬𝒇𝟎
(𝒔𝟏)

(𝒖𝟏,𝟏:) 𝐶′ = 𝐶

(𝒐𝒑𝟏,𝟏)

yes
(𝒃𝟏,𝟏)

Not affected. Can
be left as-is. (𝒓𝟏,𝟏)

autom.
(𝒕𝟏)

(𝒙𝟐) 𝑫𝒆𝒍𝒆𝒕𝒆𝟏:
𝑪 ∈ 𝑭 ↿ 𝒇𝟎

𝐶′ = 𝐶 ∖ {𝑓0} no Remove 𝑓0 from all

configs.

semi-
autom.

in some cases, product behavior cannot be preserved by a new con-

figuration and application engineers need to decide on which of

the suggested configuration update operations to perform to find a

configuration that best suites their use case. Application engineers

can use guidance at a time of their choosing and independently

of domain engineers to update configurations that are relevant to

them. For a product line PL, application engineers derive a config-

uration C and a product represented by JMKC . After domain en-

gineers change the product line to PL′, they define guidance for

application engineers to update their configuration toC ′
and corre-

sponding product JM ′KC ′ , which can be derived from PL′. Depend-
ing of the intent of the evolution operation, the defined guidance

may preserve product behavior. However, in all cases, domain en-

gineers have to make clear whether product behavior is preserved,

whether it is not preserved, or whether it is unknown. In partic-

ular, we conservatively assume that product behavior is not pre-

served if resulting products use different implementation artifacts

than before evolution (cf. Section 2).

3.1 Structure of Configuration Evolution
Guidance

Configuration evolution guidance consists of the essence of product-

line evolution, configuration update suggestions, and statements

of product behavior preservation. Table 1 shows an example of

guidance for a Delete Feature evolution operation. For easier ref-

erence, we added identifiers in brackets in the table which we re-

fer to in the text. First, the rationale of the product-line evolution

itself is defined in natural language (i.e., r in Table 1). This helps

application engineers to understand the overall scope and reasons

for changes that have been performed. Second, domain engineers

have to define a set of guidance elements (i.e., X). Each guidance

element (xi ∈ X = (si ,Ui , ti), visualized as row in Table 1) is de-

fined for a subset of configurations (si) for which it is applicable.

As a result, domain engineers must not define an update opera-

tion for each individual configuration but can define one update

operation for large subsets of configurations. Domain engineers

define a set of configuration update operations (Ui) for each guid-

ance element. These update operations are suggestions for appli-

cation engineers on how to update their configurations. For each

update operation (ui , j ∈ Ui), domain engineers need to specify

the concrete set operation on the configuration (opi , j), a rationale
(ri , j) which explains why they defined this operation and in which

cases it makes sense to be applied. Additionally, domain engineers

specify whether product behavior is preserved (bi , j) by applying

a update operation (i.e., ui , j ∈ Ui = (opi , j , ri , j ,bi , j)). In this way,

SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada M. Nieke et al.

identify
configuration

subsets

define update
operations & write
update rationales

check behavior
preservation

set guidance
types

change product line
& write evolution

rationale

(a) For domain
engineers.

read evolution
rationale &

apply own update
operations

automatically
apply update

operations

load relevant
guidance elements
for configuration

check guidance
type

read update
operations & update

rationales

select most suitable
update operation

adapt update
operation

does update
operation meet

needs as is?
no

yes

automatic semi-automatic manual

(b) For application engineers.

Figure 2: Guided configuration evolution process.

application engineers always know whether they have to perform

additional work, e.g., testing updated products.

Finally, the type of a guidance element (ti in Table 1) can be

automatic, semi-automatic, or manual. Automatic guidance can

be applied without any manual effort from application engineers.

Semi-automatic guidance requires manual effort from application

engineers in terms of choosing between multiple possible update

operations that can be applied automatically. Manual guidance

requires application engineers to specify update operations on

their own using the information on the product-line evolution.

This is required if domain engineers are not able to define update

operations. Guidance G = (r ,X) is defined as a tuple containing

the evolution rationale and the set of guidance elements.

3.2 Guided Configuration Evolution Process
As part of the guided configuration evolution methodology, we pro-

pose processes for domain engineers to define guidance and for ap-

plication engineers to apply such guidance. Figure 2a illustrates the

process from the domain engineers’ perspective. During evolution,

domain engineers have to gradually define the elements for the

configuration evolution guidance. First, they can perform product-

line evolution as they are used to, e.g., with existing tools. To allow

a high level of flexibility, this evolution is performed independently

of our method and, consequently, we do not limit how to change

a product line. Directly afterwards, so that no details on the evo-

lution are forgotten, domain engineers define guidance. To share

knowledge about the evolution, domain engineers have to specify

an evolution rationale. The rationale should be specified in such a

way that application engineers with different levels of expertise are

able to understand it. Second, they have to determine which con-

figuration subsets are affected by the product-line evolution. This

is done by analyzing which features are part of the evolution sce-

nario. For instance, if the feature Cassette of Figure 1 is deleted
during evolution, all configurations selecting Cassette are in one

category and all configurations not selecting Cassette are in an-

other category. Third, for each of these subsets, one or multiple up-

date operations should be defined and rationales explaining them

with their impact on configurations must be added. Multiple up-

date operations are necessary if the domain engineer identifies sev-

eral sensible possibilities to update those configurations. If domain

engineers are not able or do not want to define update operations,

we allow to omit the respective update operations which results in

manual typed guidance for application engineers. However, this is

an undisciplined usage of our method, and we strongly encourage

domain engineers to define update operations.

Fourth, domain engineers have to analyze how each update op-

eration affects product behavior. Given that our behavior preserva-

tion notion is based on the set of artifacts included in a product, this

is optimally done with tool support, e.g., with a verification system

that compares the resulting artifacts of a configuration by evaluat-

ing the mapping before and after evolution. Different levels of prod-

uct behavior assurance may be defined by domain engineers. For

instance, proven if product behavior preservation is shown using a

proof system, tested if thorough testing resulted in the same prod-

uct behavior, or reviewed if experts reviewed the resulting product

and confirm product behavior preservation. Fifth, a guidance type

has to be set for each update operation, determining the automation

degree of the guidance. For cases in which the update operation is

clear, domain engineers set the type to automatic, e.g., if the evolu-
tion was a refactoring or if only one operation is possible. However,

this type should only be used if product behavior is preserved or

if other circumstances force this operation (e.g., management de-

cisions). If multiple update operations are available or if domain

engineers are not sure whether the update operation is suitable, the

type is set to semi-automatic. We consider it as undisciplined usage

if no update operation has been defined, and set the type tomanual.
Figure 2b shows the process from the application engineers’ per-

spective. When application engineers want to update a configura-

tion to a new product-line version the knowledge transfer takes

place. It is first evaluated which guidance type is set for that config-

uration. If the category is automatic, the respective update opera-
tion can be applied automatically, without manual effort from appli-

cation engineers. Nevertheless, the update operation and the ratio-

nale can still be inspected by application engineers. If the category

is semi-automatic, application engineers have to select the most

suitable update operation based on the rationales. The selected op-

eration can then be applied automatically. Moreover, application

engineers can adapt the update operations if needed. If it is man-
ual, the application engineers can read the rationales that explain

the product-line evolution. Based on this information, application

engineers need to find a fix on their own.

4 GUIDANCE TEMPLATES
Specifying guidance for product-line evolution requires up-front

effort. Thus, to reduce effort for domain engineers, we provide the

possibility to store guidance for evolution scenarios in the form of

GuyDance: Guiding Configuration Updates for Product-Line Evolution SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada

Table 2: TemplateMerge Features

Operation: Merge functionality of feature 𝒇𝟏 into feature 𝒇𝟎

𝑭′ = 𝑭 ∖ {𝒇𝟏}, 𝑴′ = 𝑴[𝒇𝟏 ↦ 𝒇𝟎]

Configurations Update Operations Preserves
Behavior

Type

𝑴𝒆𝒓𝒈𝒆𝟎:
𝑪 ∈ 𝑭 ↿ (¬𝒇𝟎 ∧ ¬𝒇𝟏)

𝐶′ = 𝐶
yes

autom.

𝑴𝒆𝒓𝒈𝒆𝟏:
𝑪 ∈ 𝑭 ↿ (𝒇𝟎 ∧ 𝒇𝟏)

𝐶′ = 𝐶 ∖ {𝑓1}
yes

autom.

𝑴𝒆𝒓𝒈𝒆𝟐:
𝑪 ∈ 𝑭 ↿ (𝒇𝟎 ∧ ¬𝒇𝟏)

𝑀2.𝑎: 𝐶′ = 𝐶 no semi-

autom. 𝑀2.𝑏: 𝐶′ = 𝐶 ∖ {𝑓0}

𝑴𝒆𝒓𝒈𝒆𝟑:
𝑪 ∈ 𝑭 ↿ (¬𝒇𝟎 ∧ 𝒇𝟏)

𝑀3.𝑎: 𝐶′ = 𝐶 ∖ {𝑓1} no semi-

autom. 𝑀3.𝑏: 𝐶′ = 𝐶 ∖ {𝑓1} ∪ {𝑓0}

templates to facilitate reuse. Consequently, guidance templates fur-

ther automate the presented process, but are not necessary to apply

our method. In contrast to "standard" guidance, templates addition-

ally specify the evolution scenario for which they are applicable.

An evolution scenario E = (eF , eM) consists of feature-model evo-

lution (eF) and mapping evolution (eM), described in terms of the

evolution operations we defined in Section 2. The evolution oper-

ations are preconditions for applying the guidance defined in the

templates. Thus, an evolution template T = (G, E) consists of a de-

scription of the evolution scenario and the corresponding guidance.

In the following, we define three exemplary guidance templates

for common evolution scenarios. We chose those scenarios as re-

latedwork identified them as relevant evolution cases [13, 15, 17, 21].

The templates also illustrate the general concept of guided configu-

ration evolution. For brevity, we omit the rationales in the tables

describing the templates but explain them in the text. To better

reference elements of the table in the text, we add identifiers for

guidance elements and update operations.

4.1 Delete Feature
Maintaining certain features may not be profitable anymore. In the

running example (cf. Figure 1), the feature Cassette is rarely used.

Therefore, this feature is deleted, including its mapped artifacts. For

such cases, we introduce the Delete Feature template.

We use this template to illustrate the structure of guided config-

uration evolution with Table 1. As precondition, the feature f0 is

removed from the feature set and in the mapping application con-

ditions, it is replaced by false. The first guidance element (Delete0)
addresses the configuration subset not selecting f0. We specify

the category as automatic because such configurations remain un-

changed, as they are unaffected by the operation, and explain this

in the rationale.

We define a second guidance element Delete1 for the configura-

tion subset selecting f0. As update operation, we specify to remove

f0 from these configurations and state in the update rationale that

we suggest this as f0 no longer exists. As product behavior is not

preserved if artifacts were mapped to f0 before evolution, we set

the guidance category to semi-automatic as application engineers

should be informed of the reduced functionality. Nonetheless, this

update operation can be applied automatically.

Table 3: Template Extract New Feature

Operation: Extract some functionality of feature 𝒇𝟎 into new

feature 𝒇𝟏

𝑭′ = 𝑭 ∪ {𝒇𝟏}, 𝑴′ ⊆ {𝒎′ = 𝒎, 𝒎′ = 𝒎[𝒇0 ↦ 𝒇1], 𝒎′ = 𝒎[𝒇𝟎 ↦
(𝒇𝟎 ∧ 𝒇1)], 𝒎′ = 𝒎[𝒇𝟎 ↦ (𝒇𝟎 ∨ 𝒇𝟏)]|𝒎 ∈ 𝑴}

Configurations Update Operations Preserves
Behavior

Type

𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝟎:
𝑪 ∈ 𝑭 ↿ ¬𝒇𝟎

𝐸0.𝑎: 𝐶′ = 𝐶 yes semi-
autom. 𝐸0.𝑏: 𝐶′ = 𝐶 ∪ {𝑓0}

no
𝐸0.𝑐: 𝐶′ = 𝐶 ∪ {𝑓1}

𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝟏:
𝑪 ∈ 𝑭 ↿ 𝒇𝟎

𝐸1.𝑎: 𝐶′ = 𝐶 ∪ {𝑓1} yes semi-

autom. 𝐸1.𝑏: 𝐶′ = 𝐶
no

𝐸1.𝑐: 𝐶′ = 𝐶 ∖ {𝑓0} ∪ {𝑓1}

4.2 Merge Features
When systems evolve, individual features may grow together into

one semantic unit [17]. In our running example, new cheaper hard-

ware is capable of providing functionality for both features GPS
and Glonass. Thus, Glonass is merged into GPS. For such cases,

we define the Merge Features template.

Table 2 shows this template. The source feature f1 is merged into

the target feature f0 and, thus, f1 is removed from the set of features

and f1 is replaced by f0 in all mapping application conditions.

We define four guidance elements for this template. The first el-

ementMerge0 is for the configuration subset selecting neither f0
nor f1. As the merge does not affect them, we leave the configura-

tions unchanged. Thus, product behavior is preserved, no interac-

tion is required, and we set the guidance category to automatic. We

define the second guidance elementMerge1 for the configuration

subset which selects both f0 and f1. As update operation, we spec-
ify to remove f1 as f0 provides functionality for both features after

evolution. Product behavior is preserved using this update opera-

tion and, thus, we set the guidance category to automatic.
The third guidance element Merge2 is for configurations con-

taining f0 but not f1. In this case, existing approaches [30–32] de-

tecting defects in configurations would leave the configuration as-

is because f0 still exists. As f0 also provides the functionality of f1,
we know that product behavior is not preserved. In the first update

operationM2.a , we define that the configuration is left as-is but we

make application engineers aware that product behavior changed.

Without this knowledge, products with altered behavior might be

deployed which may cause harm. We provide a second update op-

eration M2.b that removes f0 from configurations if application

engineers do not want to have the additional functionality of f1.
As we do not know which update operation is most suitable for

application engineers, the guidance type is semi-automatic. Thus,
application engineers must select an update operation that can be

applied automatically. Merge3 describes the remaining case and

is defined analogously to Merge2.

4.3 Extract New Feature
Features represent a cohesive unit of configuration. To allow more

precise configuration, parts of a feature’s functionality can be ex-

tracted into a separate feature. In our running example, both en-

gine types are equipped with a turbocharger and this functional-

ity is integrated into both features. For cheaper variants, the tur-

bocharger should be optional. Thus, this functionality is extracted

SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada M. Nieke et al.

into a new feature Turbocharger. For such cases, we introduce the

Extract New Feature template shifting functionality from a source
feature into a new target feature.

Table 3 shows this guidance template. We add a new feature f1 to
the feature set. As some artifacts mapped to f0 should be extracted

to f1, we need to represent this in the mapping. We identified four

cases: first, if an artifact remains mapped to f0 after evolution,

we leave the mapping as-is; second, if an artifact belongs to the

functionality that is extracted, we replace f0 by f1 in the application
condition; third, if an artifact is required only to make both features

work together, we replace f0 by f0∧ f1 in the application condition;

fourth, if an artifact is required by both features individually, we

replace f0 by f0 ∨ f1 in the application condition. As the required

evolution operation may differ for each artifact, domain engineers

can change each application condition independently.

We define guidance elements for two configuration subsets. First,

Extract0 targets configurations not selecting f0. Principally, those
configurations could be left as-is and product behavior would be

preserved. However, new configuration options are introduced and

application engineers might want to use them. Consequently, we de-

fine three update operations. The first update operation E0.a leaves

corresponding configurations unchanged and preserves product be-

havior. The configuration update operations E0.b and E0.c add f0
or f1, respectively. The two latter update operations do not preserve
product behavior. Tomake application engineers aware of these new

configuration options, we set the guidance type to semi-automatic.
The second guidance elementExtract1 targets subsets of config-

urations that select f0. Again, product behavior could be preserved

by adding f1 to these configurations. Similar to Extract0, applica-
tion engineers might want to use the new configuration options.

Consequently, we define three update operations. The first oper-

ation E1.a adds the feature f1 to the configurations as described

above. The second operation E1.b leaves the configuration as-is.

The resulting product’s functionality is reduced by the extracted

functionality of f1. The third operation E1.c is relevant only if the

functionality that has been extracted should be available. Corre-

spondingly, f0 is replaced by f1 in configurations. Again, the latter

two operations result in altered product behavior.

For this evolution scenario, existing approaches fixing defects in

configurations [30–32] would leave the configuration as-is because

f0 still exists. In configurations covered by Extract0 this would

even preserve product behavior but application engineers would

not be informed about the new configuration options. However,

for configurations covered by Extract1 this would even lead to

changed product behavior which may entail significant risk and

cost to later fix and update these configurations.

4.4 Evolution Process with Templates
The three presented templates are examples that illustrate the us-

age of guided configuration evolution, and we do not claim com-

pleteness. Hence, as additional templates may be necessary, we en-

able domain engineers to define their own templates. However, our

methodology can also be applied without templates following the

process defined in Section 3.2.

To cover guided configuration evolution with and without tem-

plates, we need to adapt the process defined in Section 3.2. After se-

lecting a template to be applied, domain engineers apply the defined

feature-model and mapping evolution operations. As the feature-

model and mapping evolution operations defined in the templates

are preconditions for applying the template, template’s operations

have to match the actually performed changes to the product line.

In the following steps, domain engineers have to check whether

the elements defined in the template meet their needs. Optimally,

the update operations meet the needs as-is and it is not necessary to

change the update operations. However, domain engineers should

always check whether they can define additional domain-specific

update operations to better guide application engineers. If the up-

date operations are not completely matching the evolution scenario

or the intended way to update configurations, existing update op-

erations can be adapted or supplemented by additional operations.

For instance, if a feature should be replaced by another feature,

the delete feature template can be applied with the first feature

to be deleted but domain engineers can adapt the update opera-

tions such that the first feature is replaced by the latter feature in

configurations. For changed or added update operations, domain

engineers need to analyze whether product behavior is preserved.

If domain engineers claim product behavior preservation for new

update operations, they have to ensure that the resulting artifact

set is the same afterwards, e.g., with a formal proof or excessive

testing. In the next step, the guidance types of the guidance ele-

ments should be set. To stimulate domain engineers in providing

more information, we define this as a mandatory step. Finally, the

rationales for the evolution operation and the update operations

should be written. This is of particular importance as application

engineers should use this information as main source for decision

making on how to update configurations.

By using templates, we expect that the effort for defining guid-

ance can be reduced. If a template can be used as-is, the effort is

almost non-existent. Adapted or newly defined templates can be

added to a template catalog and, over the entire life cycle of a prod-

uct line, the template catalog can grow to cover most evolution

scenarios. Additionally, as the product-line evolution is formally

specified in the templates, our methodology lies the foundation for

an automated detection of evolution scenarios and, thus, suitable

templates. Such an automated detection would reduce the effort

for domain engineers even more as they do not have to search for

an applicable template. Even if effort remains unchanged, it results

in proactively avoiding errors instead of retroactively fixing errors

constituting a quality assurance mechanism. This process shows

the flexibility of the guided configuration evolution as it can be

used from scratch without any templates, it can be gradually ex-

tended by templates, existing templates can be reused directly, or

existing templates can be adapted for a concrete scenario.

5 APPLYING GUIDED CONFIGURATION
EVOLUTION

Tool support is pivotal for using guided configuration evolution in

real-world development projects. Thus, we sketch the core func-

tions a production tool needs to provide based on our methodology

along with the suitable application orders of these functionalities

GuyDance: Guiding Configuration Updates for Product-Line Evolution SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada

to realize the workflows of Figures 2a, and 2b. We implemented

an early open-source prototype, named GuyDance, to show feasi-

bility (cf. Footnote 1).

Preserving compatibility with existing processes and tools is cru-

cial for acceptance. For this reason, domain engineers can perform

changes to their product line with tools they are used to. This is

particularly important as guided configuration evolution can be

used for certain important evolution operations but does not have

to be used for all operations. Thus, if domain engineers consider a

change as insignificant, our method does not have to be applied but

it can be applied for other changes or even retroactively when first

problems occur. In the next step, domain engineers have three op-

tions. First, they can define guidance without using an existing tem-

plate. Second, they can define guidance and save this guidance as a

new template. Third, they can reuse an existing template with or

without adaptation. To define guidance and respective templates, a

domain-specific language that provides the possibility to specify re-

spective information is most suitable. In GuyDance, we used Xtext3

for defining a grammar and editors for guidance and templates.

To increase the level of automation, templates that match the

changes performed by domain engineers could be automatically

detected by analyzing the actually performed changes and compar-

ing to the changes defined in the templates. For instance, the tool

FEVER [8] is able to extract and detect changes that match a certain

pattern, such as evolution scenarios described in the templates.

For application engineers, the first step is to analyze which guid-

ance elements (i.e., rows in the example tables) are relevant for an

existing configuration. As the configuration subset of a guidance el-

ement is defined formally, this can be evaluated using a SAT solver.

For instance, if a subset is defined as C ∈ F ↿ ¬f0 and a configura-

tion selects features f1, f2, a SAT solver or simple Boolean evalua-

tion algorithm can check the formula ¬f0 ∧ f1 ∧ f2 for satisfiabil-

ity. In this example, the configuration would be part of the defined

subset, i.e., the guidance element is relevant. Next, update opera-

tions for the configuration are selected for application. If the guid-

ance type is automatic, this can be done without user interaction.

Nonetheless, a tool should give the possibility for application engi-

neers to inspect this and to intervene if needed. For semi-automatic
guidance, application engineers have to select which update opera-

tion to apply. To increase user experience, the effect of these opera-

tions can be shown as a preview. The actual execution of the up-

date operations can be fully automated as the update operations are

defined as set operations on configurations. To apply a update op-

eration, selected features of an existing configuration are either de-

selected or newly selected features are added to that configuration.

6 EVALUATION
Knowledge whether product behavior is preserved after applying

update operations is a core information of guided configuration

evolution. In our evaluation, we show the soundness of our method-

ology by formally proving that the guidance we provide for the

evolution templates (cf. Section 4) preserves behavior for the re-

spective configuration subsets.

For our proofs, we utilize the formalization that we introduced

in Section 2, i.e., product behavior of a configurationC is preserved

3
https://www.eclipse.org/Xtext/

by C ′
, if JMKC = JM ′KC ′ . We fully formalized proofs for the three

templates using the theorem prover PVS [16]. To this end, we for-

malized the evolution operations and the update operations in PVS.
For the sake of brevity, we only provide proof sketches. The com-

plete proofs can be found in our online repository (cf. Footnote 2).

For the Delete Feature template, behavior is preserved for con-

figurations that did not select the deleted feature f0 (cf. Table 1,

Delete0). To show this, we prove the following theorem.

Theorem 1. For product line (F , I ,M) evolved to (F ′, I ′,M ′), given
that I ⊆ I ′, f ∈ F , F ′ = F \ { f } andM ′ = M[f 7→ false]:

∀C ∈ F ↿ (¬f) : JMKIC = JM ′KI
′

C

The idea of the proof is that we can show for an arbitrary M ,

anM ′ = M[f 7→ f alse] exists which produces the same value for

configurations not containing f . We have proven this in PVS by

induction over the application conditions of the mapping. We have

proven all of the following theorems in PVS using similar reasoning.

For the Merge Features template, behavior is preserved if either

both features f0 and f1 were not selected in C or both features

were selected (cf. Table 2, Merge0 and Merge1). In the first case,

the configuration remains as is and, in the second, f1 is removed.

To show behavior preservation for Merge0 and Merge1, we have
proven the following theorem in PVS:

Theorem 2. For product line (F , I ,M) evolved to (F ′, I ′,M ′), given
that I ⊆ I ′, with f0, f1 ∈ F , f0 , f1, F

′ = F \ { f1}, and M ′ =

M[f1 7→ f0]:
(∀C ∈ F ↿ (¬f0 ∧ ¬f1) : C

′ = C, JMKIC = JM ′KI
′

C ′)∧

(∀C ∈ F ↿ (f0 ∧ f1) : C
′ = C \ { f1}, JMKIC = JM ′KI

′

C ′)

For the Extract New Feature template, we are principally able

to preserve behavior for all possible configurations. In particular,

for configurations that do not select the feature f0, we leave the
configuration as is, and for configurations that select f0, we ad-

ditionally select the extracted feature f1 (cf. Table 3, Extract0.a
and Extract1.a). In PVS, we formalized and proved the template

using the following theorem:

Theorem 3. For product line (F , I ,M) evolved to (F ′, I ′,M ′), given
that I ⊆ I ′, with f0 ∈ F , f0 , f1, F

′ = F ∪ { f1} and M ′ ⊆ {m′ =

m,m′ = m[f0 7→ f1],m
′ = m[f0 7→ (f0 ∧ f1)],m

′ = m[f0 7→

(f0 ∨ f1)] |m ∈ M}:
(∀C ∈ F ↿ (¬f0) : C

′ = C, JMKIC = JM ′KI
′

C ′)∧

(∀C ∈ F ↿ (f0) : C
′ = C ∪ { f1}, JMKIC = JM ′KI

′

C ′)

Threats to Validity. The external validity is threatened as we

prove behavior preservation for only three templates. However, it

is infeasible to consider all possible evolution operations. All the

more so, as the templates’ update operations may vary between

product lines to match domain-specific needs. We try to mitigate

this threat by defining templates for evolution operations consid-

ered as relevant in the literature [13, 15, 17, 21]. We expect that

other evolution operations work similarly.

Another threat to validity is that we do not evaluate the definition

of new guidance and templates, especially for real-world product-

line evolution. As we defined the three templates in this paper

using our methodology, we expect that defining new templates

and proving behavior works analogously to the definition of the

https://www.eclipse.org/Xtext/

SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada M. Nieke et al.

presented templates. In our future work we want to define guidance

for a real-world product-line evolution scenario.

One of the main goals of our methodology is to automate updat-

ing configurations for application engineers and to provide support

in case of altered product behavior. However, we did not evaluate

to which extent we are able to preserve product behavior and de-

tect altered product behavior. We want to investigate this in our

future work for real-world product-line evolution.

7 RELATEDWORK
Xu et al. [33] identified misconfigurations in highly configurable

systems that lead to vulnerabilities or bugs. They conclude that de-

velopers should take an active role in handling misconfigurations

by supporting users in the configuration process. With our method-

ology, we address this issue as we provide a method for domain

engineers (i.e., developers) to support application engineers (i.e.,

users). Zhang et al. [34] address a very similar problem as guided

configuration evolution. They are interested in preserving prod-

uct behavior after evolution by analyzing products’ control flow.

This method could be used complementarily by domain engineers

if product behavior cannot be preserved to devise a suggestion for

a update operation.

Recent research analyzed and categorized evolution of product

lines and, in particular, the mapping between variability model and

artifacts [6, 8, 17, 35]. However, the guided configuration evolution

is more generic and helps to update configurations. With FEVER,

Dintzner et al. introduced a tool to extract changes to variability

models, code artifacts, and the corresponding mapping [8]. FEVER

could be used in combination with our methodology to identify

commits of a product line that match a certain pattern, such as the

evolution scenarios described with guidance templates.

Other research defines refactorings for product-line evolution.

Thüm et al. [27] and Alves et al. [1] classify feature-model evolu-

tion in terms of changes to the set of valid configurations. Both

approaches do not consider product behavior of configurations.

Schulze et al. define refactoring operations for product lines us-

ing feature-oriented and delta-oriented programming [24, 25].

Seidl et al. define evolution operations to co-evolve three spaces:

feature models, artifacts, and mappings [26]. For operations affect-

ing more than one space, they define how to co-evolve the other

spaces [26]. In contrast to the previously mentioned publications,

we do not want to limit evolution to refactorings.

Borba et al. devised a refinement theory for product-line evo-

lution preserving product behavior [4] and Neves et al. proposed

several evolution templates preserving product behavior using this

theory [13]. Sampaio et al. extended this theory by introducing par-

tially safe evolution templates, preserving product behavior for a

subset of configurations [21, 22]. These methods already allow to

reason on product behavior changes of configurations even in pres-

ence of configuration changes. We devised a novel more general

concept that enables domain and application engineers can share

their knowledge to update configurations after product-line evo-

lution. Thus, domain-specific knowledge can be incorporated and

guidance can also be provided even if product behavior cannot be

preserved. We used the formalizations and proofs of the works of

Borba et al. [4], Neves et al. [13], and Sampaio et al. [21, 22] as a

basis for our formalization and the proofs for the templates.

Some research focuses on fixing invalid configurations. An auto-

matic approach computes the smallest possible set of changes in the

configuration to fix it [31]. Semi-automatic approaches proposed ei-

ther to provide the complete set of fixes with the smallest amount of

feature changes [32] or to gradually reach the desired fix using ap-

plication engineers’ feedback [30]. Both semi-automatic approaches

assume that the person fixing the configuration knows what the

best fix is. Moreover, these approaches do not take the implementa-

tion and mapping into account. Thus, the fixes may lead to different

product behavior and, therefore, provide a false sense of correctness.

8 CONCLUSION
We presented guided configuration evolution, a methodology for up-

dating configurations after product-line evolution that overcomes

the communication barrier between domain engineers and applica-

tion engineers. We enable domain engineers to share the essence

of product-line evolution and to suggest configuration update op-

erations. Application engineers can use this information to update

their configurations while knowing the impact on product behav-

ior. Even if it is impossible to talk, our methodology allows for ap-

plication engineers to update configurations in accordance with

the evolution performed by domain engineers, at the time of their

choosing, and with the most suitable update strategy. Additionally,

effort is spent only once by domain engineers to define guidance

which can be used by an arbitrary number of application engineers,

optimally resulting in a reduced overall effort.

This work raises several further research opportunities. First

and most importantly, we lay the theoretical and practical founda-

tions for guided configuration evolution. To assess effectiveness, ef-

ficiency, and acceptance for real-world product-line evolution pro-

cesses, we plan to perform an empirical evaluation based on real-

world product lines and their evolution. A second future work op-

portunity is an extension to our method that ensures configuration

validity after applying update operations, which would reduce man-

ual effort of application engineers even more. Third, we want to in-

vestigate automatic learning from modified templates (either by do-

main or by application engineers) to derive new templates or to sus-

tainable change templates. Finally, if domain engineers define their

own templates, automatic proofs of behavior preservation would in-

crease usability, as proofs in PVS are typically not feasible for them.

ACKNOWLEDGMENT
This work was partially supported by the Federal Ministry of Educa-

tion and Research of Germany within CrESt (funding 01IS16043S),

by the DFG (German Research Foundation) under SPP1593: Design

For Future — Managed Software Evolution, by FACEPE (grant APQ-

0570-1.03/14), by CNPq (grant 409335/2016-9), and by INES 2.0,

FACEPE grants PRONEX APQ 0388-1.03/14 and APQ-0399-1.03/17,

CAPES grant 88887.136410/2017-00, and CNPq grant 465614/2014-

0. Sampaio was supported by a CAPES Foundation Scholarship,

process number 88881.129599/2016-0.

GuyDance: Guiding Configuration Updates for Product-Line Evolution SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada

REFERENCES
[1] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Car-

los José Pereira de Lucena. 2006. Refactoring product lines. In Generative Pro-
gramming and Component Engineering, 5th International Conference, GPCE 2006,
Portland, Oregon, USA, October 22-26, 2006, Proceedings. 201–210. https://doi.org/

10.1145/1173706.1173737

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
oriented software product lines: concepts and implementation. Springer Science &
Business Media.

[3] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof Czarnecki,

and Andrzej Wąsowski. 2014. Three Cases of Feature-Based Variability Modeling

in Industry. In Model-Driven Engineering Languages and Systems, Juergen Dingel,

Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfran (Eds.). Springer

International Publishing, Cham, 302–319.

[4] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. 2012. A theory of software

product line refinement. Theoretical Computer Science 455 (2012), 2–30.
[5] J. Bosch. 2001. Software product lines: organizational alternatives. In Proceedings

of the 23rd International Conference on Software Engineering. ICSE 2001. 91–100.
https://doi.org/10.1109/ICSE.2001.919084

[6] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and

Andy Schürr. 2016. Reasoning about product-line evolution using complex feature

model differences. Automated Software Engineering 23, 4 (2016), 687–733.

[7] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glück, David Vandevoorde, and

Todd Veldhuizen. 2000. Generative programming and active libraries. In Generic
Programming. Springer, 25–39.

[8] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2017. FEVER: An

approach to analyze feature-oriented changes and artefact co-evolution in highly

configurable systems. Empirical Software Engineering (04 Nov 2017). https:

//doi.org/10.1007/s10664-017-9557-6

[9] Karine Gomes, Leopoldo Teixeira, Thayonara Alves, Márcio Ribeiro, and Rohit

Gheyi. 2019. Characterizing Safe and Partially Safe Evolution Scenarios in Product

Lines: An Empirical Study. In Proceedings of the 13th International Workshop on
Variability Modelling of Software-Intensive Systems (Leuven, Belgium) (VAMOS
’19). Association for Computing Machinery, New York, NY, USA, Article Article

15, 9 pages. https://doi.org/10.1145/3302333.3302346

[10] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer

Peterson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Tech-
nical Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[11] Christian Kröher, Lea Gerling, and Klaus Schmid. 2018. Identifying the Intensity

of Variability Changes in Software Product Line Evolution. In Proceedings of
the 22nd International Systems and Software Product Line Conference - Volume 1
(Gothenburg, Sweden) (SPLC ’18). Association for Computing Machinery, New

York, NY, USA, 54–64. https://doi.org/10.1145/3233027.3233032

[12] Mukelabai Mukelabai, Damir Nešić, Salome Maro, Thorsten Berger, and Jan-

Philipp Steghöfer. 2018. Tackling Combinatorial Explosion: A Study of Industrial

Needs and Practices for Analyzing Highly Configurable Systems. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France) (ASE 2018). ACM, New York, NY, USA, 155–166. https:

//doi.org/10.1145/3238147.3238201

[13] Laís Neves, Paulo Borba, Vander Alves, Lucinéia Turnes, Leopoldo Teixeira,

Demóstenes Sena, and Uirá Kulesza. 2015. Safe evolution templates for software

product lines. Journal of Systems and Software 106 (2015), 42–58. https://doi.org/

10.1016/j.jss.2015.04.024

[14] Michael Nieke, Gil Engel, and Christoph Seidl. 2017. DarwinSPL: An Integrated

Tool Suite for Modeling Evolving Context-aware Software Product Lines. In

Proceedings of the Eleventh International Workshop on Variability Modelling of
Software-intensive Systems (Eindhoven, Netherlands) (VAMOS ’17). ACM, New

York, NY, USA, 92–99. https://doi.org/10.1145/3023956.3023962

[15] Michael Nieke, Christoph Seidl, and Sven Schuster. 2016. Guaranteeing Con-

figuration Validity in Evolving Software Product Lines. In Proceedings of the
Tenth International Workshop on Variability Modelling of Software-intensive Sys-
tems (Salvador, Brazil) (VaMoS ’16). ACM, New York, NY, USA, 73–80. https:

//doi.org/10.1145/2866614.2866625

[16] Sam Owre, John M Rushby, and Natarajan Shankar. 1992. PVS: A prototype

verification system. In International Conference on Automated Deduction. Springer,
748–752.

[17] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wą-

sowski, Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. 2016. Coevolution

of variability models and related software artifacts. Empirical Software Engineer-
ing 21, 4 (2016), 1744–1793. https://doi.org/10.1007/s10664-015-9364-x

[18] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and

Ina Schaefer. 2019. Product Sampling for Product Lines: The Scalability Chal-

lenge. In Proceedings of the 23rd International Systems and Software Product Line
Conference - Volume A (Paris, France) (SPLC ’19). ACM, New York, NY, USA, 78–

83. https://doi.org/10.1145/3336294.3336322

[19] K. Pohl, G. Böckle, and F.J. van der Linden. 2005. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer Berlin Heidelberg.

[20] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their

decision problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366.
[21] Gabriela Sampaio, Paulo Borba, and Leopoldo Teixeira. 2016. Partially Safe

Evolution of Software Product Lines. In Proceedings of the 20th International
Systems and Software Product Line Conference (Beijing, China) (SPLC ’16). ACM,

New York, NY, USA, 124–133. https://doi.org/10.1145/2934466.2934482

[22] Gabriela Sampaio, Paulo Borba, and Leopoldo Teixeira. 2019. Partially safe

evolution of software product lines. Journal of Systems and Software 155 (2019),
17 – 42. https://doi.org/10.1016/j.jss.2019.04.051

[23] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz

Botterweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. 2012. Software

diversity: state of the art and perspectives. International Journal on Software Tools
for Technology Transfer 14, 5 (01 Oct 2012), 477–495. https://doi.org/10.1007/

s10009-012-0253-y

[24] Sandro Schulze, Oliver Richers, and Ina Schaefer. 2013. Refactoring Delta-oriented

Software Product Lines. In Proceedings of the 12th Annual International Conference
on Aspect-oriented Software Development (Fukuoka, Japan) (AOSD ’13). ACM, New

York, NY, USA, 73–84. https://doi.org/10.1145/2451436.2451446

[25] Sandro Schulze, Thomas Thüm, Martin Kuhlemann, and Gunter Saake. 2012.

Variant-preserving Refactoring in Feature-oriented Software Product Lines. In

Proceedings of the Sixth InternationalWorkshop on Variability Modeling of Software-
Intensive Systems (Leipzig, Germany) (VaMoS ’12). ACM, New York, NY, USA,

73–81. https://doi.org/10.1145/2110147.2110156

[26] Christoph Seidl, Florian Heidenreich, and Uwe Aßmann. 2012. Co-evolution of

Models and Feature Mapping in Software Product Lines. In Proc. of the 16th Intl.
Software Product Line Conference (Salvador, Brazil) (SPLC ’12). ACM, New York,

NY, USA, 76–85. https://doi.org/10.1145/2362536.2362550

[27] Thomas Thüm, Don Batory, and Christian Kästner. 2009. Reasoning About Edits

to Feature Models. In Proceedings of the 31st International Conference on Software
Engineering (ICSE ’09). IEEE Computer Society, Washington, DC, USA, 254–264.

https://doi.org/10.1109/ICSE.2009.5070526

[28] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund.

2011. Abstract Features in Feature Modeling. In Proceedings of the 2011 15th
International Software Product Line Conference (SPLC ’11). IEEE Computer Society,

Washington, DC, USA, 191–200. https://doi.org/10.1109/SPLC.2011.53

[29] Thomas Thüm, Sebastian Krieter, and Ina Schaefer. 2018. Product Configuration

in theWild: Strategies for Conflicting Decisions inWeb Configurators. In Proceed-
ings of the 20th Configuration Workshop, Graz, Austria, September 27-28, 2018. 1–8.

[30] Bo Wang, Leonardo Passos, Yingfei Xiong, Krzysztof Czarnecki, Haiyan Zhao,

and Wei Zhang. 2013. SmartFixer: Fixing Software Configurations Based on

Dynamic Priorities. In Proceedings of the 17th International Software Product
Line Conference (Tokyo, Japan) (SPLC ’13). ACM, New York, NY, USA, 82–90.

https://doi.org/10.1145/2491627.2491640

[31] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortés. 2008.

Automated Diagnosis of Product-Line Configuration Errors in Feature Models.

In 2008 12th International Software Product Line Conference. 225–234. https:

//doi.org/10.1109/SPLC.2008.16

[32] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. 2012. Gen-

erating Range Fixes for Software Configuration. In Proceedings of the 34th Interna-
tional Conference on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE
Press, Piscataway, NJ, USA, 58–68. http://dl.acm.org/citation.cfm?id=2337223.

2337231

[33] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,

Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Miscon-

figurations. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP ’13). ACM, New York, NY,

USA, 244–259. https://doi.org/10.1145/2517349.2522727

[34] Sai Zhang and Michael D. Ernst. 2014. Which Configuration Option Should

I Change?. In Proceedings of the 36th International Conference on Software En-
gineering (Hyderabad, India) (ICSE 2014). ACM, New York, NY, USA, 152–163.

https://doi.org/10.1145/2568225.2568251

[35] Andreas Ziegler, Valentin Rothberg, and Daniel Lohmann. 2016. Analyzing the

Impact of Feature Changes in Linux. In Proceedings of the Tenth International
Workshop on Variability Modelling of Software-intensive Systems (Salvador, Brazil)
(VaMoS ’16). ACM, New York, NY, USA, 25–32. https://doi.org/10.1145/2866614.

2866618

https://doi.org/10.1145/1173706.1173737
https://doi.org/10.1145/1173706.1173737
https://doi.org/10.1109/ICSE.2001.919084
https://doi.org/10.1007/s10664-017-9557-6
https://doi.org/10.1007/s10664-017-9557-6
https://doi.org/10.1145/3302333.3302346
https://doi.org/10.1145/3233027.3233032
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1016/j.jss.2015.04.024
https://doi.org/10.1016/j.jss.2015.04.024
https://doi.org/10.1145/3023956.3023962
https://doi.org/10.1145/2866614.2866625
https://doi.org/10.1145/2866614.2866625
https://doi.org/10.1007/s10664-015-9364-x
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/2934466.2934482
https://doi.org/10.1016/j.jss.2019.04.051
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1145/2451436.2451446
https://doi.org/10.1145/2110147.2110156
https://doi.org/10.1145/2362536.2362550
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1109/SPLC.2011.53
https://doi.org/10.1145/2491627.2491640
https://doi.org/10.1109/SPLC.2008.16
https://doi.org/10.1109/SPLC.2008.16
http://dl.acm.org/citation.cfm?id=2337223.2337231
http://dl.acm.org/citation.cfm?id=2337223.2337231
https://doi.org/10.1145/2517349.2522727
https://doi.org/10.1145/2568225.2568251
https://doi.org/10.1145/2866614.2866618
https://doi.org/10.1145/2866614.2866618

	Abstract
	1 Introduction
	2 Behavior Preservation
	3 Guided Configuration Evolution
	3.1 Structure of Configuration Evolution Guidance
	3.2 Guided Configuration Evolution Process

	4 Guidance Templates
	4.1 Delete Feature
	4.2 Merge Features
	4.3 Extract New Feature
	4.4 Evolution Process with Templates

	5 Applying Guided Configuration Evolution
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

