
Probabilistic Analysis of Programs:
A Weak Limit Approach

Alessandra Di Pierro1 and Herbert Wiklicky2

1 Dipartimento di Informatica, Università di Verona
2 Department of Computing, Imperial College London

Abstract. We present an approach to probabilistic analysis which is
based on program semantics and exploits the mathematical properties of
the semantical operators to ensure a form of optimality for the analysis.
As in the algorithmic setting, where the analysis results are used the help
the design of efficient algorithms, the purposes of our framework are to
offer static analysis techniques usable for resource optimisation.

1 Introduction

In probabilistic analysis we can distinguish two different situations, namely the
case in which the program is deterministic and the input data varies according
to some probability distribution, and the case in which the program is proba-
bilistic and we evaluate its behaviour in different executions determined by the
probability distribution on the same input data.

In this paper we present a general framework for the probabilistic static
analysis of quantitative properties, that can cover both aspects and in particular
includes the treatment of average case analyses as a special instance of a wider
range of applications centred on the quantification of resource consumption. This
is similar to the algorithmic setting where probabilistic analysis, or average-case
analysis, refers to the estimation of the computational complexity of an algorithm
starting from an assumption about the probabilistic distribution on the set of
all possible inputs; the results of such an analysis are then used for the design of
efficient algorithms. The approach we follow is a semantics based analysis where
the program semantics is defined formally so as to express the various resources
via the observable behaviour of the program.

As the possible behaviours of a given program are often ‘too many’, the
complexity of the analysis of the possible executions of some code often suffers
from the problem of combinatorial explosion (even when un-decidability is not
involved). At the centre of numerous approaches to program analysis is there-
fore the attempt of a “simplification” or “abstraction” of programs and their
possible executions, in particular the abstraction of the concrete state space to
a substantially simpler one.

In previous work [1–3] we have introduced a framework for probabilistic anal-
ysis based on least square approximation, which achieves such a simplification.
We have called the general methodology Probabilistic Abstract Interpretation

(PAI) for its strong analogy with the theory of Abstract Interpretation [4]. PAI
aims in constructing statistical or average estimates of program properties which
are usable for resource optimisation, in the same way as in algorithmic complex-
ity a probabilistic analysis might aim at estimating the average-case computa-
tional complexity of an algorithm to the purpose of improving its efficiency.

Contrary to the classical abstract interpretation based static analysis, PAI-
based analyses are not necessarily safe, i.e. it is not guaranteed that all accepted
behaviours conform a given specification. They are rather guaranteed to be as
close as possible to the concrete properties. This is because the objective of a
PAI based analysis is ‘performance’ rather than ‘correctness’, and applications
are the optimisation of resource usage rather than the construction of bounds
for the (minimal or maximal) probability that something happens. As very often
probability bounds tend to be 0 or 1 they are only of limited use in a context
where optimisation is the main issue.

In previous work we have studied various aspects of the PAI framework for
large but still finite state spaces. The central contribution of this paper is to
extend PAI to infinite state spaces, by facing the mathematical problems which
arise in this case and showing how they can be overcome. In particular, we will
present a weak limit construction for abstraction operators on infinite domains
that will allow us to deal with the problem of the unboundedness of such oper-
ators.

Mathematical Background. For the mathematical notions and notation used in
this paper we refer to the standard literature and in particular to the recent
monograph by Kubrusly [5] with regard to functional analytical and operator
algebraic concepts. We will only recall here some basic notions that are essential
for the comprehension of the results we are going to present.

The concrete Banach and Hilbert spaces we consider here are spaces `p of
infinite sequences of real numbers (xi)i∈N for which (

∑
i∈N |xi|p)1/p < ∞ with

p = 1 and p = 2, respectively. The space `1 is the standard example of a Banach
space; in particular it contains (as the set of positive normalised elements) all
probability distributions on N. The space `2 is the standard example of a real
Hilbert space with inner product 〈(xi), (yi)〉 =

∑
i xiyi.

We also recall the definition of the three main topologies on Hilbert spaces,
namely the norm or uniform convergence, denoted An → A or limn An = A,
the strong operator topology, An

s→ A or s- limn An = A and the weak topology
An

w→ A or w- limn An = A defined by (cf. e.g. pag. 378 and [5, Def 4.45]):

An → A iff ‖An −A‖ → 0

An
s→ A iff ‖(An −A)(x)‖ → 0

An
w→ A iff 〈(An −A)(x), y〉 → 0

for all x, y ∈ H. Note that the norm topology is defined in terms of the operator
norm, while the strong topology in terms of the vector norm on H. We have
An → A implies An

s→ A and An
s→ A implies An

w→ A, but not vice versa.
Three definitions regarding linear operators on Hilbert spaces will play an

important role in the next, namely those of normally solvable, densely defined

2

and closed operators, which we will therefore recall here. We will write L(X ,Y)
for the set of all linear operators between X and Y, and for T ∈ L(X ,Y),
we will denote by D(T), N (T) and R(T) the domain, the null space and the
range of T, respectively. A linear operator T : X → Y between two Hilbert
spaces X and Y is bounded if ‖T‖ = sup ‖T(x)‖/‖x‖ <∞. For linear operators
the concept of continuity is equivalent to the concept of boundedness, see, e.g.
[5, Thm. 4.14]). A linear map T ∈ L(X ,Y) is normally solvable if its range
is closed. A necessary and sufficient condition for T to be normally solvable
is that its range coincide with the orthogonal complement of the null space of
its linear adjoint T∗ . The linear map T ∈ L(X ,Y) is called closed if its graph
ΓT = {(x,Tx) ∈ D(T)×Y ⊂ X×Y} is closed in X×Y. Equivalently, T is closed
if and only if for any sequence xn ∈ D(T) ⊆ X , with xn → x and T(xn) → y
this implies that y = T(x), cf. [5, 6]. T is said to be densely defined if D(T) is
dense in X , that is D(T) = X , where the notation X indicates the topological
closure of the space X.

2 The Language

We will discuss our framework by referring to a simple core language. This is in
essence the language used by Kozen in [7]. In this section we introduce both the
syntax and the semantics for this language, which we call pWhile.

2.1 Syntax

In a style typical of static analysis [8], we introduce a labelled version of the
pWhile language, where labels are used to identify the programs points that
are crucial for defining our formal semantics.

S ::= [skip]` | [x := e]` | [x ?= ρ]` | S1; S2

| if [b]` then S1 else S2 fi | while [b]` do S od

We assume a unique labelling (by numbers ` ∈ Lab).
The statement skip does not have any operational effect but can be used,

for example, as a placeholder in conditional statements. We have the usual (de-
terministic) assignment x := f(x1, . . . , xn), sometimes also in the form x := e.

Then we have the random assignment x ?= ρ where the value of a variable
is set to a value according to some random distribution ρ. In [7] it is left open
how to define or specify distributions ρ in detail. We will use occasionally an
ad-hoc notation as sets of tuples {(vi, pi)}, expressing the fact that value vi will
be selected with probability pi. It might be useful to assume that the random
number generator or scheduler which implements this construct can only imple-
ment choices over finite ranges, but in principle we can also use distributions
with infinite support. For the rest we have the usual sequential composition,
conditional statement and loop. We leave the detailed syntax of functions f or
expressions e open as well as for boolean expressions or test b in conditionals
and loop statements.

3

2.2 Linear Operator Semantics

We will base our probabilistic analysis on a syntax-based semantics which repre-
sents the executions of a program S as a Discrete Time Markov Chain (DTMC).
More precisely, we associate to S a linear operator T(S) corresponding to the
generator of the DTMC associated to S. This is a possibly infinite matrix whose
domain is the set of probabilistic configurations, i.e. distributions on classical con-
figurations (x1, . . . , xv, `) as row vectors, which record the value of all variables
and the current label, defined by Dist(Conf) = Dist(Xv×Lab) ⊆ `2(Xv×Lab).
Using the tensor product (e.g. [9, Chap. 14] or [10, Chap. 2.6]) we can exploit
the fact that `2(Xv×Lab) = `2(X)⊗v⊗`2(Lab). We refer to s ∈ Var→ X = Xv
as a classical state and to σ ∈ Dist(Var→ X) ⊆ `2(X)⊗v as probabilistic state.
In this definition we assume that that variables occurring in a pWhile program
can take values in some countable set X that might be finite (e.g. Booleans) or
infinite (typically Z or N).

The labelled version of the syntax introduced in Section 2.1 allows us to use
labels as a kind of program counter. The control flow F(S) in a program S is
then defined via a function flow : Stmt→ P(Lab×Lab) which maps statements
to sets of pairs which represent the control flow graph, e.g. [8, Sect. 2.1] or [11].
This only records that a certain control flow step is possible. For tests [b]` in
conditionals and loops we indicate the branch corresponding to the case when
the test succeeds by underlining it. As our semantics is ultimately modelling the
semantics of a program via the generator of a DTMC we are also confronted
with the fact that such processes never terminate. For this we will add a single
final loop via a virtual label `∗ at the end of the program.

The construction of T(S) is done compositionally by using among its building
blocks simple operators such as the identity matrix I and the matrix units Eij

containing only a single non zero entry (Eij)ij = 1. We also define for any
Boolean expression b on X a diagonal projection matrix P(b) with (P(b))ii = 1
if b(i) holds and 0 otherwise. The operator P(s) tests for a classical state s, i.e.
if each variable xi has the value s(xi), and P(e = c) whether an expression e
evaluates to a constant c. The update operator U implements state changes. The
matrix U(c) implements the deterministic update of a variable to a constant c
via (U(c))nm = 1 if m = c and 0 otherwise. The operator U(xk ← e) makes
sure that the kth variable xk is assigned the value of the expression e

The matrix T(S) of the DTMC representing the program’s executions is
then defined as the sum of the effects of the individual control flow steps, i.e.
the computational effect of each (labelled) block [B]` – with B = skip, a test b
or a (random) assignment – and a control flow step of the form E``′ .

T(S) =
∑

(`,`′)∈F(S)

[[[B]`]]⊗E`,`′ +
∑

(`,`′)∈F(S)

[[[B]`]]⊗E`,`′

If we also consider the final loop we have to add the term I⊗E`∗,`∗ . The definition
of the semantics of the individual blocks is given in Table 2.2.

Although the operator T(S) is in general not bounded (e.g. consider just
U(x ← 1)), we can guarantee that it converges weakly for any initial state and

4

P(s) =

v⊗
i=1

P(s(xi))

P(e = c) =
∑
E(e)s=c

P(s)

U(xk ← c) =

k−1⊗
i=1

I⊗U(c)⊗
v⊗

i=k+1

I

U(xk ← e) =
∑
c

P(e = c)U(xk ← c)

[[[x := e]`]]] = U(x← e) [[[v ?= ρ]`]] =
∑

c∈X ρ(c)U(x← c)

[[[b]`]] = P(b = false) [[[b]`]] = P(b = true)

[[[skip]`]] = [[[skip]`]] = [[[x := e]`]]] = [[[v ?= ρ]`]] = I

Table 1. Elements of the LOS

any observable (specified as vector distributions in `1 ⊆ `2). We have shown this
in [11], to which we refer for a full treatment of the linear operational semantics
(LOS).

3 Probabilistic Abstract Interpretation

Classically the correctness of a program analysis is asserted with respect to the
semantics in terms of a correctness relation. The theory of abstract interpretation
allows for constructing analyses that are automatically correct without having
to prove it a posteriori. This is possible because of the conditions defining a Ga-
lois connection (the mathematical structure underlying abstract interpretation),
which guarantee that we do not lose safety by going back and forth between the
two lattices of the concrete and the analysis domains – although we may lose
precision [4, 8].

Probabilistic Abstract Interpretation was introduces in [1, 12] as an alterna-
tive theory leading to analyses that are possibly not safe but that are guaranteed
to be as close as possible to the concrete properties. It is concerned with prob-
abilistic analysis, i.e. an analysis intended to return quantitative answers about
a program property, rather than a ‘yes/no’ answer.

We have shown in a number of papers how the PAI technique can be used
for performing the probabilistic analysis of many problems typical of classical
program analysis, such as data-flow and pointer analyses [2], and of security
problems [13]. The treatment in this previous work is restricted to the special
case of finite state spaces. In this paper we generalise the theory to infinite-
dimensional Hilbert spaces, where it is necessary the consideration of some ap-
propriate topological notions in order to correctly deal with possibly infinite
abstraction operators (and their generalised inverses).

Both classical abstract interpretation and PAI are usually based on state
abstraction, i.e. on the abstraction of the concrete semantical domain. If we
can make sure that the final state contains information about the resource(s)
we are interested in, then we can use static analysis techniques in order to
perform a quantitative analysis of resources and resource consumption. In some

5

situations the computational state already describes the resources needed; for
example, if we have a loop index which determines the number of iterations, then
the final state(s) will automatically encode the time complexity of the program
in question. If this is not the case, then we can always introduce additional
variables (e.g. counters) which extend the state so as this information becomes
available for a state based analysis via classical abstract interpretation (e.g. for
a worst case analysis) or PAI (e.g. for an average case analysis). As an example,
we have developed a ‘language-based’ complexity analysis of quicksort, showing
how the time behaviour of a program implementing this sorting algorithm can
be analysed with PAI (see Section 4.2).

3.1 Basic Definitions

The theory of Probabilistic Abstract Interpretation relies on the notion of gener-
alised (or pseudo-)inverse. This notion is well-known in mathematics where it is
used for finding approximate solutions to integral and differential equations [14,
Chap 9]. The abstract concept of a generalised or pseudo-inverse was introduced
by Moore in the 1920s and was then rediscovered by Penrose in the 1950s.

Definition 1. Let H1 and H2 be two Hilbert spaces and A : H1 7→ H2 a linear
map between them. A linear map A† = G : H2 7→ H1 is the Moore-Penrose
pseudo-inverse of A iff A ◦ G = PA and G ◦ A = PG, where PA and PG

denote orthogonal projections onto the ranges of A and G.

It is also possible to define the Moore-Penrose pseudo-inverse A† of an op-
erator A without direct reference to orthogonal projections (cf. e.g. [15, Sec-
tion 4.7]). For this we need the notion of the adjoint A∗ of an operator A : H →
H on a Hilbert space; this is defined via the condition 〈A(x), y〉 = 〈x,A∗(y)〉.
Then the Moore-Penrose pseudo-inverse can be defined via the following four
conditions: AA†A = A, A†AA† = A†, (A†A)∗ = A†A, and (AA†)∗ = AA†.
In this form it is also obvious that the Moore-Penrose pseudo-inverse (like a
Galois connection) is indeed a pseudo-inverse.

If C and D are two Hilbert spaces, and A : C → D and G : D → C are linear
operators between the concrete domain C and the abstract domain D, such that
G is the Moore-Penrose pseudo-inverse of A, then we say that (C,A,D,G) forms
a probabilistic abstract interpretation.

3.2 Correctness vs Best Solution

The Moore-Penrose pseudo-inverse plays a similar role in Probabilistic Abstract
Interpretation as Galois connections in the theory of classical Abstract Inter-
pretation in helping with the problem of combinatory explosion: it allows us to
simplify the semantics T(S) of a program S by considering the abstract seman-
tics T# = A†T(S)A instead of the concrete one.

However, the properties of the Moore-Penrose pseudo-inverse (e.g. [16, 14])
guarantee a different form of optimality of the abstractions (abstract seman-
tics) we can construct via PAI. In particular, these properties ensure that PAI

6

abstractions are the closest ones to the concrete semantics one can construct.
Here closeness is defined via the distance induced by the norm on the Hilbert
space, thus the name of ‘least square approximation’ which is often used to refer
to this approximation notion. As a consequence, in our probabilistic setting the
main aim of the analysis is to reduce the error margin rather than to ‘err on the
safe side’, which would lead to safe abstractions in the usual sense, i.e. over- or
under-approximations of the concrete semantics.

The choice of the Hilbert space `2 as the domain for the LOS semantics is
partly motivated by the symmetry between observables and states (we recall
that `2 is self-dual) but also by the fact that it provides a simple and math-
ematically well understood theory of best approximations by Moore-Penrose
pseudo-inverses. A similar well-behaved theory does not exist in general Banach
spaces like `1 which do not have an inner product and a notion of an adjoint
operator A∗. As a result the theory of approximations in Banach spaces can, in
general, not even guarantee the existence of unique optima (e.g. [17]).

3.3 Compositionality of PAI

Important for the applicability of PAI is the fact that it possesses some useful
compositionality properties. These allow us to construct the abstract semantics
by abstracting the single blocks of the concrete semantics T(S):

T(S)# = A†T(S)A = A†
(∑

[[[B]`]]
)

A =
∑(

A†[[[B]`]]A
)

=
∑

[[[B]`]]#

The fact that we can work with the abstract semantics of individual blocks
instead of the full operator obviously reduces the complexity of the analysis
substantially.

Another important fact is that the Moore-Penrose pseudo-inverse of a tensor
product can be computed as: (A1 ⊗A2 ⊗ . . .⊗Av)

† = A†1 ⊗A†2 ⊗ . . .⊗A†v, cf
[14, 2.1,Ex 3]. We can therefore abstract properties of individual variables and
then combine them in the global abstraction. This is also made possible by the
definition of the concrete LOS semantics (cf. Section 2.2) which is heavily based
on the use of tensor product. Typically we have [[[B]`]] = (

⊗v
i=1 Ti`) ⊗ E``′ or

a sum of a few of such terms. The Ti` represents the effect of T(S), and in
particular of [[[B]`]], on variable i at label ` (both labels and variables only form
a finite set). For example, we can define an abstraction A for one variable and
apply it individually to all variables (e.g. extracting their even/odd property),
or use different abstractions for different variables (maybe even forgetting about
some of them by using Af = (1, 1, . . .)t) and define A =

⊗v
i=1 Ai such that

A† =
⊗v

i=1 A†i in order to get an analysis on the full state space.
Usually we do not abstract the control step E``′ , although this would also be

possible. Very often most of the Ti`’s are just the identity matrix – expressing
the fact that the variable in question is not involved in whatever happens at
label `. In this case we have A†i IAi = I, where the two identity operators are
of the appropriate dimensions (maybe an infinite matrix on the concrete space,
but a finite matrix on the abstract property space).

7

The abstractions of tests [b]`, i.e. P(b), provide the basis for analysing abstract
branching probabilities [18]. This can be done by constructing A†[[[b]`]]A and
A†[[[¬b]`]]A. As these operators are projections, we can exploit the fact that
[[[b]`]]# = I − [[[¬b]`]] and compute in practice only one of them. The abstract
operator [[[¬b]`]]# in effect estimates the chance of the test b succeeding in terms
of the abstract properties. For example, with a parity analysis we obtain a (least
square) estimate for the chance that in an conditional statement, for an even
number we take the then branch rather than the else branch (cf. Example in
Section 4). If an analytical (statistical) construction of [[[b]`]]# is infeasible one
might consider profiling information as a replacement of the exact solution.

3.4 Abstraction Operators

In classical program analysis [8] an extraction function α : C → D is a func-
tion which associates to each element c of a concrete domain C an abstract
description or property d ∈ D. In our framework for probabilistic analysis, we
will consider Hilbert spaces for both concrete and abstract domains C and D,
respectively. In particular, for an extraction function α : C → D we will con-
struct the Hilbert spaces C = `2(C) and D = `2(D) generated by the base
vectors {c}c∈C and {d}d∈D. For finite C and D we can identify the two spaces
with the finite dimensional vector spaces R|C| and R|D|. We can then define
a linear operator Aα = A : `2(C) → `2(D) by mapping every x =

∑
c xc to

A(x) = A(
∑
c xcc) =

∑
c xcA(c), with (A(c))α(c) = 1 and (A(c))d = 0 for all

d 6= α(c). In effect, this means that we construct a matrix A, which we refer to
as classification operator, with rows enumerated by elements in C and columns
enumerated by elements in D such that (A)cd = 1 iff α(c) = d and 0 otherwise.

The following theorem shows that a necessary and sufficient condition for the
existence of the Moore-Penrose inverse for a bounded linear operator A : H → H
on a Hilbert space H is that A is normally solvable, i.e. its range R(A) =
{Ax | x ∈ H} is closed. This implies that in particular all operators on a finite
dimensional Hilbert space are Moore-Penrose invertible.

Proposition 1. [15, Thm 4.24] A bounded operator A∈B(H)) is Moore-Penrose
pseudo-invertible, i.e. a unique A† exists, if and only if it is normally solvable.
In this case (A∗A + P) is invertible and A† = (A∗A + P)−1A∗ where P is the
orthogonal projection of H onto N(A) = {x | A(x) = o} with o being the null
vector.

Typically D will be finite, but C could be countably infinite. In this case we
are faced with the problem that A might not be bounded. Thus – though A
represents a closed map because D is finite – we need to be more careful when
we construct the Moore-Penrose pseudo-inverse.

Example 1 (Forgetful Abstraction). Let us consider the abstraction into an ab-
stract domain containing only a single property ∗, i.e. D = {∗} and α(s) = ∗
for all concrete values s. Essentially, this abstraction only tests for the existence

8

of the system. It might seem rather pointless, but it turns out to be useful in
various contexts, for example to analyse only a particular variables property
ignoring other program variables, (see e.g. [3]).

The matrix Af representing the forgetful abstraction in the PAI framework
is a single column matrix containing only 1s. This corresponds to the map x 7→
(‖x‖1) ∈ R1 = `2({∗}). This matrix represents clearly an unbounded map `2 →
R: the vector x = (xi)

∞
i=0 = (1, 12 ,

1
3 , . . .) is in `2 but Af (x) = (‖x‖1) = (∞).

However, one can easily check that the operator Af of Example 1 is densely
defined and closed. More concretely the following holds:

– Af is not bounded on `2. To see this, take the vector x = (xi)
∞
i=0 =

(1, 12 ,
1
3 , . . .) which is in `2 but for which we have Af (x) = (‖x‖1) = (∞).

– Af is defined on a dense subspace of `2, namely `1, since for all x ∈ `1 the
1-dim vector Af (x) = (‖x‖1) ∈ R1 is defined.

– Af is closed (on `1). If we have a sequence of vectors xn → x then Af (xn) =
(‖xn‖1) converges to ‖x‖1 as `1 is complete and the 1-norm is continuous.

In general, the following theorem holds, which allows us to establish the
existence of a Moore-Penrose pseudo-inverse also in the case of unbounded ab-
straction operators provided that certain conditions are satisfied.

Theorem 1. [6, Thm2.12] If A : D ⊆ H1 → H2 is a closed densely defined
linear operator then A† : D(A†) = R(A) + R(A)⊥ → D(A) ∩N(A)⊥ is closed
and densely defined. Moreover,

(i) A† is bounded if and only if R(A) is closed.
(ii) AA†(y) = P

R(A)
(y) for all y ∈ D(A†).

(iii) A†A(y) = PN(A)⊥(y) for all y ∈ D(A).

Fortunately, for classification operators, i.e. the abstraction operators of the
PAI framework, we can guarantee the existence of a unique Moore-Penrose
pseudo-inverse. In fact, the following two results generalise the properties of
the forgetful abstraction in Example 1 to any probabilistic abstraction.

Proposition 2. For any countable set C and finite set D the classification op-
erator A : `2(C) → `2(D) corresponding to the extraction function α : C → D
is a densely defined closed linear operator.

Proof. The representation of the abstraction operator A for any extraction func-
tion α is a (possibly infinite) stochastic matrix, i.e. the row sums are all 1. This
matrix represents therefore a bounded operator on `1 with respect to the 1-norm
on `1,. This is because stochastic matrices preserve the 1-norm ‖A(x)‖1 = ‖x‖1.

Clearly, A is in general not defined for all vectors in `2 (cf. the operator Af (x)
in Example 1). However, all abstractions A are well-defined on `1 which is dense
in `2 (e.g. [5]). In order to show that A is closed, we recall that ‖x‖2 ≤ ‖x‖1
holds, cf. [19, Exercise 1.15]. Therefore, if we assume convergence of a sequence
{xn} in the 1-norm, i.e. ‖xn−x‖1 → 0 then this implies that also ‖xn−x‖2 → 0

9

holds. Now, if A(xn) → y in Rd ⊆ `2(D), because by hypothesis A ∈ B(`1,Rd)
is continuous with respect to the 1-norm, we have that ‖A(xn) −A(x)‖1 → 0,
i.e. A(xn) → A(x). Because Rd is a finite-dimensional Hilbert space, all norms
are equivalent on it, and therefore A(x) = y must hold. ut

Proposition 3. For any countable set C and finite set D and any extraction
map α : C → D, the corresponding probabilistic abstraction A : `2(C) → `2(D)
has a Moore-Penrose pseudo-inverse A† : D ⊆ `2(D)→ `2(C).

Proof. This follows from the fact that A is densely defined and closed (from
Proposition 2) and Theorem 1. ut

3.5 Construction of Infinite-dimensional Abstractions

For an abstraction operator A, i.e. a classification matrix corresponding to an ex-
traction function α on a finite dimensional space `2(C) = R|C|, we can construct
the Moore-Penrose pseudo-inverse by just transposing A and row-normalising
the resulting transposed matrix. However, we cannot use the same construction
for infinite abstractions even if by Proposition 3 we are guaranteed that A† does
exist. In Example 1, it is clear that with a concrete finite space C = {c1, . . . , cn}
we can construct

Af = (1, 1, . . . , 1)t and A†f = (
1

n
,

1

n
, . . . ,

1

n
).

However, if we extend this to the case of a countable infinite concrete space, e.g.
C = Z, then clearly the row-normalised transpose of an infinite version of Af

must be the zero (single-row) matrix.

Example 2 (Parity Abstraction). Consider as abstract and concrete domains
C = `2({0, . . . , n}) and D = `2({even, odd}). The abstraction operator Ap and
its concretisation operator Gp = A†p corresponding to a parity analysis are rep-
resented by the following (n+ 1)× 2 and 2× (n+ 1) matrices (assuming w.l.o.g.
that n is odd)

Ap =

(
1 0 1 0 . . . 0
0 1 0 1 . . . 1

)t
A†p =

(2
n+1 0 2

n+1 0 . . . 0

0 2
n+1 0 2

n+1 . . .
2

n+1

)
The concretisation operator A†p represents uniform distributions over the n

2 even
numbers in the range 0, . . . , n (as the first row) and the n odd numbers in the
same range (in the second row). Clearly, if we increase the dimension n we
encounter the same problems as with Af .

In the following, we address the problem of effectively constructing A† for
any probabilistic abstraction A. This would be essential for practical and com-
putational purposes, not least the implementation of our analyses.

In numerical mathematics [20, Sect 12.1], there is a general theory related to
the so-called finite sections or projection methods which aims in approximating

10

infinite dimensional operators on Hilbert spaces by means of finite-dimensional
approximations. A general approximating setting for projection methods is de-
fined in [21] for bounded linear operators T : X → Y, where X and Y are
Hilbert spaces over the same field (that, for our purposes, we can assume to be
R). In this setting, let {Xn} and {Yn} be sequences of closed subspaces of X and

Y, respectively, which satisfy Pn
s→ IX and Qn

s→ IY , where Pn = PXn
and

Qn = QYn denote the orthogonal projections from X and Y onto Xn and Yn,
respectively. A generalisation of this setting was introduced in [22] where projec-
tion methods are defined that apply to densely defined and closed operators (thus
to our abstraction operators). The method consists in constructing {Yn}n∈N as
an increasing sequence of subspaces of R(T) such that ∪∞n=1Yn = R(T), and
{Xn}n∈N as an increasing sequence of subspaces of the orthogonal complement
N (T)† of the null space of T such that ∪∞n=1Xn = N (T)†. These two sequences
must be constructed so as to satisfy some particular properties that are de-
fined in [22, Def. 3.2] and called admissibility of the sequences. If we now define

Tn = PnTQn and T̂n = Tn|Xn
, then the method is said to be convergent wrt

to a given admissible pair {Pn,Qn} if for all y ∈ Y (using post-multiplication):

y ·PnT̂†n −→ y ·T†.

By applying Theorem 3.4 in [22], we can show that for any abstraction op-
erator A, we can construct A† by applying the generalised projection method
described above. In fact, the following proposition holds:

Proposition 4. For any countable set C and finite set D, let A : `2(C)→ `2(D)
be the classification operator corresponding to the extraction function α : C → D.
Then the generalised projection method for A is convergent wrt the sequence
{Pn,Qn} of projections corresponding to the subspaces Xn = N (A)†n and Yn =
R(A)n, respectively.

The fact that for the abstraction operators constituting the PAI framework
a Moore-Penrose pseudo-inverse is always defined and that it can be constructed
efficiently (e.g. [23–25]), makes the PAI theory consistent, and guarantees a solid
mathematical basis to the program analysis techniques based on it.

However, for the purposes of our analysis we are actually not really inter-
ested in the limit object A† itself; we are rather interested in the effect of the
finite approximations of the abstract semantics defined via A and A† on the ab-
stract state of a given program with respect to the property under consideration.
This is captured by the notion of weak limit: if T(S) is the concrete (possibly
unbounded) linear operator semantics for a given program S, x is an element
(distribution) in the domain of the abstract operator T#(S) = A†T(S)A, and
y is an abstract property (distribution) in the same domain, we are interested
in analysing the behaviour of S by observing the abstract sequence of the inner
products between the n-th approximation vector x·(T#(S))n and the observable
y, i.e. the weak limit of the sequence with respect to that observable. We will
show in the following that this sequence always converges in R, and we will take
this limit to define the effect of property y on state x ·T#(S).

11

For a program S and its LOS, T(S), we can define the finite approximations
of T(S) as the operators T(S)n = PnT(S)Pn, where for all n ∈ N, Pn is
a diagonal matrix with all entries zero except for the first n diagonal entries
that are all equal to 1. Then, for a given abstraction operator A, we define the
finite approximations T#(S)n of the abstract semantics T#(S) = A†T(S)A
as A†nT(S)nAn, where An is the finite section of A defined in the projection
method, for which we can easily construct A†n (it is a finite matrix).

Proposition 5. For any countable set C and finite set D and any classification
map α : C → D, let A be the corresponding linear map A : `2(C) → `2(D).
Then for any program S and its LOS operator T(S) and for all distributions
x, y ∈ Dist(Conf) ⊂ `2(D), we have that limn→∞

〈
x ·A†nT(S)nAn, y

〉
<∞.

Proof. Let xn = x · T#(S)n and y ∈ Dist(Conf) ⊂ `1(Conf) ⊂ `2(Conf). We
need to show that 〈xn, y〉 =

∑∞
k=1(xn)k · yk converges in R. Since the T#(S)n

are (sub-)stochastic matrices and ‖x‖1 = 1 (because x is a distribution), we have
that ‖xn‖1 ≤ 1 and 〈xn, y〉 ≤ 〈xn+1, y〉, i.e. the sequence of the inner products is
monotone. Moreover, by the Cauchy-Schwarz inequality (e.g. [10, Prop. 2.1.1])
we have that 〈xn, y〉 ≤ ‖xn‖2‖y‖2. Thus, as in general ‖v‖2 ≤ ‖v‖1 holds for all
v (cf. [19, Exercise 1.14]), we have that 〈xn, y〉 ≤ ‖xn‖2‖y‖2 ≤ ‖xn‖1‖y‖1 ≤ 1,
i.e. 〈xn, y〉 is a bounded, monotone sequence of reals, which thus converges. ut

Example 3 (Approximation of A†f). If we construct the weak limit of finite ap-
proximations to Af and consider its effect only in the context of a concrete state
σ then we get a useful result even if we do not effectively construct the norm or
uniform limit of (Af)n. For any probabilistic state σ ∈ `1(C) with σi ≥ 0 and
‖σ‖1 = 1, i.e. a probability distribution, we get for all x ∈ `2(C)

lim
n→∞

〈(Af)n(σ), x〉 = E(x, σ) and lim
n→∞

〈
(A†f)n(∗), x

〉
= E(x, ν),

where E(x, d) is the expectation value of x with respect to the distribution d and

ν is the uniform distribution. In other words, the weak limit A†f = w- lim(Af)n
represents the effect of an eventually non-existing “uniform measure” on all of
C, even when C is an infinite set. In measure theoretic terms this means that
we represent a uniform measure (on all of C) which per se cannot be expressed
as a distribution as the limit of distributions.

4 Examples

We conclude by discussing in detail an example which illustrates how proba-
bilistic abstraction allows us to analyse the properties of programs. We also
demonstrate how the PAI framework could be used for average case complexity
analysis by re-phrasing the well-known probabilistic analysis of the Quicksort
algorithm in our program analysis setting. We will also discuss the efficiency of
the analysis, i.e. how PAI can be deployed in order to beat the combinatorial
explosion or the curse of dimensionality.

12

4.1 Factorial

It is easy to observe that the factorial function n! “almost always” returns an
even number (except for 0! and 1!). If we perform a classical abstraction we
cannot justify this intuition as in oder to be safe we can only obtain a guarantee
that the result may be even or odd. In order to provide a formal analysis of n!
let us first consider the concrete semantics of the program F using labelling:

[m := 1]1; while [n > 1]2 do [m := m× n]3; [n := n− 1]4 od; [skip]5

The flow is F(F) = {(1, 2), (2, 3), (3, 4), (4, 2), (2, 5), (5, 5)} which includes a loop-
ing on the final skip statement. We then have: T(F) = U(m ← 1) ⊗ E1,2 +
P((n > 1)) ⊗ E2,3 + U(m ← (m * n)) ⊗ E3,4 + U(n ← (n - 1)) ⊗ E4,2 +
P((n <= 1))⊗E2,5 + I⊗E5,5.

If we just consider the factorials 0!, 1! and 2! then we can restrict ourselves
to values m,n ∈ {0, 1, 2}. In this case the semantics of each block is given by a
3 · 3× 3 · 3 = 9× 9 matrix.

For the updates in label 3 and 4 we have “empty rows”, i.e. rows where we
have no non-zero entries. These correspond to over- and under-flows as we are
dealing only with finite values in Z, e.g. the product for m = 2 and n = 2 is not
in {0, 1, 2}. We could clarify the situation in various ways, e.g. by introducing an
additional value ⊥ for undefined (concrete) values of variables, or by introducing
an error configuration. In the analysis we present here these over- and under-
flows do not play any relevant role and we therefore leave things as they are.

The full operator representing the LOS semantics of the factorial program is
given by a (3 · 3 · 5)× (3 · 3 · 5) = 45× 45 matrix.

We can construct an abstract version T#(F) = A†T(F)A of T(F) by record-
ing only the parity of m as even and odd. We will not abstract n nor the la-
bels defining the current configuration during the execution. We thus get the
(2 · 3 · 5)× (2 · 3 · 5) = 30× 30 matrix T#(F) = (Ap ⊗ I⊗ I)†T(F)(Ap ⊗ I⊗ I).
Though this abstract semantics does have some interesting properties, it ap-
pears to be only a minor improvement with regard to the concrete semantics:
We managed to reduce the dimension only from 45 to 30. However, the sim-
plification becomes substantially more dramatic once we increase the possible
values of m and n, and combinatorial explosion really takes a hold. If we al-
low n to take values between 0 and n then we must allow for m values between 0
and n!. Concrete values of the dimensions of T(F) and T#(F) for n = 1, 2, . . . , 9
are dim(T(F)) = 45, 140, 625, 3630, 25235, 201640, 1814445, 18144050 but for the
abstract semantics only dim(T#(F)) = 30, 40, 50, 60, 70, 80, 90, 100.

The problem is that the size of T(F) explodes so quickly that it is impossible
to simulate it for values of n much larger than 5 on a normal PC. If we want to
analyse the abstract semantics, things remain much smaller. Importantly, we can
construct the abstract semantics in the same way as the concrete one, just using
“smaller” matrices: T#(F) = U#(m← 1)⊗E1,2+P#((n > 1))⊗E2,3+U#(m←
(m * n))⊗E3,4 +U#(n← (n - 1))⊗E4,2 +P#((n <= 1))⊗E2,5 +I#⊗E5,5.
Fortunately, most of the operators T#(`, `′) are very easy to construct. These
matrices are 2 · (n+ 1) · 5× 2 · (n+ 1) · 5 = 10(n+ 1)× 10(n+ 1) matrices if we

13

consider the control transfer, and only 2(n + 1) × 2(n + 1) matrices if we deal
only with the update of the current state.

Except for label 3 only either m or n but never both are involved in each
statement: We thus can express the T#(`, `′)’s as tensor products of a 2× 2 and
a (n+ 1)× (n+ 1) matrix. Finally, we need to construct the update for label 3.
It is easy to see that for even m the result is again even and for odd m the parity
of n determines the parity of the resulting m. We can thus write this update at
label 3 as: (

1 0
0 0

)
⊗ I +

(
0 0
1 0

)
⊗P(even) +

(
0 0
0 1

)
⊗P(odd)

where I is the identity matrix, and P(even) and P(odd) are the indicator
projections for even and odd, e.g. (P(even))ij = 1 if i = j is even and 0 otherwise
(with i, j ∈ {0, 1, . . .}).

With this we can now approximate the probabilistic properties of the factorial
function. In particular, if we look at the terminal configurations with the initial
abstract configuration: x0 =

(
1
2

1
2

)
⊗
(

1
n+1 . . .

1
n+1

)
⊗
(

1 0 0 0 0
)

which corre-
sponds to a uniform distribution over all possible abstract values for our variables
m and n (in fact, the part describing m could be any other distribution), then we
get as final probabilistic configuration: x =

(
n−1
n+1

2
n+1

)
⊗
(

1
n+1

n
n+1 0 . . . 0

)
⊗(

0 0 0 0 1
)
. This expresses the fact that indeed in most cases (with probability

n−1
n+1) we get an even factorial – only in two cases out of n+ 1 (for 0 and 1) we
get an odd result (namely 1). The final value of n is nearly always 1 except when
we start with 0 and we always reach the final statement with label 5.

If we start with the abstract initial state x0 above and execute T#(F) until
we get a fixpoint x we can use abstractions not to simplify the semantics but
instead in order to extract the relevant information. Concretely we use: A =
I ⊗ Af ⊗ Af , i.e. once we reached the terminal configuration (of the abstract
execution) we ignore the value of n and the final label ` and only concentrate on
the abstract, i.e. parity, values of m. Concretely we have to compute: (limi→∞ x0·
(T#(F))i) ·A. Note that we always reach the fixpoint after a finite number of
iterations (namely at most n) so this can be computed in finite time. The concrete
probabilities we get for various n are:

n even odd
10 0.81818 0.18182

100 0.98019 0.019802

n even odd
1000 0.99800 0.0019980

10000 0.99980 0.00019998

We can easily compute the final distribution on {even,odd} for quite large
n despite the fact that, as said, it is virtually impossible to compute the explicit
representation of the concrete semantics T(F) already for n = 6.

Considering the factorial only for a limited number of inputs – here for n less
than 10, 100, 1000, and 10000 – means in effect considering the finite approxi-
mations for the full factorial function F with any input n ∈ Z. We are essentially
computing

(lim
i→∞

x0 · (T#
n (F))i) ·A = (lim

i→∞
x0 · (PnT(F)Pn)i) ·A

14

for n = 10, 100, 1000, and 10000. Numerically the last table of results shows
that for n→∞ we obviously get P (even) = 1, and P (odd) = 0.

We see that with a uniform distribution for n we get a vanishing probability
P (odd) = 0 for m. But we could also execute the abstract program with different
initial distributions to get different estimates for P (odd). If we take, for example,
as a distribution for n something like (1

2 ,
1
2 , 0, 0, . . .) – which would mean that

we only need to compute 0! and 1! – we obviously get the result P (even) = 0 for
m. A worst-case, safe analysis would thus result in 0 ≤ P (even) ≤ 1 – which is
certainly correct but trivial – while by an average case analysis providing instead
optimal estimates (for different initial distributions) we can achieve more useful
results.

4.2 Quicksort

QuickSort (due to C.A.R. Hoare) is one of the best known sorting algorithms.
Its complexity theoretic properties are studied in practically all mongraphs on
algorithms and complexity. It is well-known that its worst case time complexity is
O(n2) and average case time complexity is O(n log n), where n is the length of the
list to be sorted and it is assumed a uniform distribution over all permutations.
We show here how our approach to probabilistic program analysis can be used
to analyse the QuickSort algorithm. Our aim is not to provide a new complexity
theoretic analysis of this algorithm but to illustrate how PAI can be used to gain
some understanding of the average running time of QuickSort. In order to do
this we consider the following simple recursive pseudo-code for QuickSort:

QuickSort (list,left,right)

if (left<right) then pivot := Partition(list,left,right);

Quicksort(list,left,pivot-1); Quicksort(list,pivot+1,right)

For the purposes of the analysis we concentrate on the partitioning step.
Clearly, the number of calls to Partition determines the overall running time
of QuickSort. To simplify the discussion we analyse the behaviour of a function
Split which takes as input a list and splits it in two parts based on a given
element p of the list (the pivot). In our implementation we take as pivot always
the first element in the list. The effect of the splitting is a partition of the original
list into a list of elements strictly smaller than p and a list of elements strictly
larger than p. Function Split always returns the longest of the two lists.

We define the concrete semantics of Split via the corresponding transition
matrix T on V(

⋃n
j=1 Sj) where Sj = {πi}j!i=1 is the set of all permutations of

{1, 2, . . . , j} enumerated in some way. We denote by πji the i-th permutation of
length j. We observe that Split can produce (as longer list) either a list π which
is a permutation of all elements smaller than the pivot p – i.e. an element in Sp−1
– or a permutation of all elements larger than p, which we can also identify with
an element in Sn−p by dropping p from all elements in π; we denote the resulting
(maybe p ‘shifted’) list by bπc.

15

Let us denote by n!! =
∑n
i=1 i!. Given the enumeration of elements in any

Si, we enumerate the n!! permutations in
⋃n
i=1 Si by ι(πki) = (k − 1)!! + i for

πki ∈ Sk, where we set ι(π1
1) = 1 for the single permutation in S1. Split can

now be implemented as the reduction which takes a permutation πki ∈ Sk to
a permutation πlj in Sl (with l < n). Formally, we define this reduction via an

operator on Rn!! = V({
⋃n
i=1 Si}) represented by an n!!× n!! matrix with entries

(in row i and column j): (P(π))i,j = 1 if π′ = bSplit(π)c with i = ι(π) and
j = ι(π′), and 0 otherwise. The operator T, which encodes all reduction steps for
lists of at most n elements under Split, is the linear operator T : Rn!! → Rn!!

T =

n∑
k=2

k!∑
i=1

P(πki) + E1,1,

where the second term expresses looping on terminal states, i.e. the states where
the list is reduced to a singleton, in order to stay within the framework of
DTMCs. The concrete semantics of the Split function quickly becomes very
large and difficult to understand. In order to perform our analysis we nevertheless
just need to concentrate on the length of the longer list produced in the splitting
process, and abstract away all the rest. This can be achieved by abstracting T
via the operator A : V({

⋃n
i=1 Sn}) → V({1, . . . , n}) or A : Rn!! → Rn, repre-

sented by the n!!× n matrix with entries (A)ij = 1 if i = ι(π) and π ∈ Sj , and
0 otherwise. This keeps the length and ignore the concrete permutation we get
after splitting. The abstract semantics is therefore: T# = A†TA. Note that if
we allow for lists of any length then T# is an infinite dimensional operator; its
finite sections are given by restricting the space according to the maximal length
of the list to which it is applied. More precisely, the n-th section of T# is the
upper left sub-matrix of T# defined on Rn. We can therefore express the average
behaviour of Split, that is the average running time of QickSort, in terms of
the expectation value

〈
enT#, e1

〉
, where en = (0, 0, . . . , 0, 1) ∈ Rn represents all

lists of length at most n and e1 = (1, 0, . . . , 0) is the (final) point distribution
representing all singleton lists reached at the end of the splitting process.

If we define p≤l =
〈
en(T#)l, e1

〉
=
〈
en(T#

n)l, e1
〉

as the probability that
Split terminates in l steps or less, then pl = p≤l− p≤l−1 is the probability that
Split terminates in exactly l steps. The average running time for lists of length n
is thus

∑∞
l=0 l·pl = limn→∞

∑n
l=0 l·pl = limn→∞

∑n
l=0 l

〈
en(T#)l−1(T# − I), e1

〉
..

From the numerical experiments it is easy to conjecture that a general form
for the abstract operator T# is (verified with octave for n = 1, .., 9):

(T#)i,j =

1 for i = j = 1
2
i for i = 2k and k ≤ j < i or for i = 2k + 1 and k < j < i
1
i for i = 2k + 1 and j = k
0 otherwise

Based on T# – more precisely its nth sections T#
n – we can numerically

calculate the average running time (until repeated calls of Split terminate)
for lists of length n = 1 . . . , 100. It is easy to see from these figures that the

16

average running time increases roughly logarithmically. As we have simplified
the problem by considering only the longer list, the results obtained this way
do, of course, only indicate the actual complexity theoretic behaviour.

5 Related Work and Conclusions

The aim of this work is to provide a mathematically sound framework for proba-
bilistic program analysis. The two main elements for this are (i) a compositionally
defined semantics, called LOS, and (ii) a way to reduce the concrete semantics in
order to obtain a more manageable abstract one via PAI. The concepts of a lin-
ear operator semantics and probabilistic abstract interpretation have been used
before in the setting of finite domains in [3, 2, 13] for the analysis of programs
and security properties. This paper extends PAI to infinite abstract domains.

Our LOS is closely related to a number of models which are popular in, for
example, performance analysis, like Stochastic Automata Networks (SAN) [26,
27]. The idea of reducing the complexity of dynamical systems via least square
approximations, which is at the core of our PAI approach, can also be found in
various approaches ranging from Kalman filters, to model order reduction [28]
and aggregation of Markov models [29]. However, to the best of our knowledge
most of these models are finite dimensional.

While the theoretical framework of generalised inverses for finite-dimensional
and bounded operators is well understood and relatively straight forward (e.g.
[16, 14]), it is less well developed for the infinite dimensional unbounded case (see
e.g. [6]). In the area of program analysis the well-known semantics for probabilis-
tic programs by Kozen [7] and the application of classical abstract interpretation
[30] to probabilistic languages are perhaps the closest alternatives to our LOS
and PAI approach. The main differences are however that (i) the LOS – in
contrast to Kozen’s semantics – is not only able to capture the input/output
behaviour but rather, because it uses the generator of a Markov Chain, defines
the details and intermediate steps of a computational process, and (ii) PAI pro-
vides closest estimates to probabilities rather than worst case bounds for them.
This makes PAI a more useful alternative in all those cases where the expected
outcomes of a static analysis is not a yes-or-no answer but some estimates on
which to base a speculative optimisation (compiler design, tradeoffs and cost
analysis, etc). Moreover, as we have shown in Section 4.2, PAI can be used to
develop (semi)-automatic tools for average-case complexity analysis.

References

1. Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Prob-
abilistic Abstract Interpretation. In: PPDP’00, ACM (2000) 127–138

2. Di Pierro, A., Hankin, C., Wiklicky, H.: A systematic approach to probabilistic
pointer analysis. In: APLAS’07. Volume 4807 of LNCS., Springer (2007) 335–350

3. Di Pierro, A., Sotin, P., Wiklicky, H.: Relational analysis and precision via proba-
bilistic abstract interpretation. In: QAPL’08. Volume 220(3) of ENTCS., Elsevier
(2008) 23–42

17

4. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Proceedings of POPL’79. (1979) 269–282

5. Kubrusly, C.S.: The Elements of Operator Theory. second edn. Birkhäuser (2011)
6. Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Volume

1894 of Lecture Notes in Mathematics. Springer (2007)
7. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3) (1981)

328–350
8. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer

(1999)
9. Roman, S.: Advanced Linear Algebra. second edn. Springer (2005)

10. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras:
Elementary Theory. AMS (1997) reprint from Academic Press edition 1983.

11. Di Pierro, A., Wiklicky, H.: Semantics of probabilistic programs: A weak limit
approach. In: Proc. APLAS’13. Volume 8301 of LNCS., Springer (2013) 241–256

12. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations.
In: Proc. of LOPSTR’00. Volume 2042 of LNCS., Springer (2001) 147–164

13. Di Pierro, A., Hankin, C., Wiklicky, H.: Measuring the confinement of probabilistic
systems. Theoretical Computer Science 340(1) (2005) 3–56

14. Ben-Israel, A., Greville, T.N.E.: Gereralized Inverses – Theory and Applications.
second edn. CMS Books in Mathematics. Springer, New York (2003)

15. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices.
Springer (1999)

16. Deutsch, F.: Best Approximation in Inner-Product Spaces. Springer (2001)
17. Pinkus, A.M.: On L1-Approximation. Cambridge University Press (1989)
18. Di Pierro, A., Wiklicky, H.: Probabilistic data flow analysis: a linear equational

approach. In: Proc. GandALF’13. Volume 119 of EPTCS. (2013) 150–165
19. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory

– The Basis for Linear and Nonlinear Analysis. Springer (2011)
20. Atkinson, K., Han, W.: Theoretical Numerical Analysis – A Functional Analysis

Framework. third edn. Springer (2009)
21. Nailin, D.: Finite-dimensional approximation settings for infinite-dimensional

Moore-Penrose inverses. SIAM J. of Numerical Analysis 46(3) (2008) 1454–1482
22. Kulkarni, S., Ramesh, G.: Projection methods for computing Moore-Penrose in-

verses of unbounded operators. Indian J. Pure Appl.Math. 41(5) (2010) 647–662
23. Groetsch, C.: Spectral methods for linear inverse problems with unbounded oper-

ators. Journal of Approximation Theory 70 (1992) 16–28
24. Groetsch, C.: Dykstra’s algorithm and a representation of the Moore-Penrose

inverse. Journal of Approximation Theory 117 (2002) 179–184
25. Groetsch, C.: An iterative stabilization method for the evaluation of unbounded

operators. Proceedings of the AMS 134 (2005) 1173–1181
26. Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems.

IEEE Trans. Softw. Eng. 17(10) (1991) 1093–1108
27. Fourneau, J.M., Plateau, B., Stewart, W.: Product form for stochastic automata

networks. In: Proceedings of ValueTools ’07, ICST (2007) 32:1–32:10
28. Gugercin, S., Antoulas, A.: Model reduction of large-scale systems by least squares.

Linear Algebra and its Applications 415 (2006) 290–321
29. Buchholz, P., Kriege, J.: Aggregation of markovian models - an alternating least

squares approach. In: QEST. (2012) 43–52
30. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In Seidel, H., ed.:

ESOP12. Volume 7211 of LNCS., Springer (2012) 166–190

18

