
Semantics of Probabilistic Programs:
A Weak Limit Approach

Alessandra Di Pierro1 and Herbert Wiklicky2

1 Dipartimento di Informatica, Università di Verona, Italy
2 Department of Computing, Imperial College London, UK

Abstract. For a simple probabilistic language we present a semantics
based on linear operators on infinite dimensional Hilbert spaces. We show
the equivalence of this semantics with a standard operational one and
we discuss its relationship with the well-known denotational semantics
introduced by Kozen. For probabilistic programs, it is typical to use
Banach spaces and their norm topology to model the properties to be
analysed (observables). We discuss the advantages in considering instead
Hilbert spaces as denotational domains, and we present a weak limit
construction of the semantics of probabilistic programs which is based
on the inner product structure of this space, i.e. the duality between
states and observables.

1 Introduction

The formal analysis of probabilistic systems is gaining increasing importance
for its recognised benefits in various areas such as distributed systems, where
randomised schemes are used to enhance efficiency, and in general to the de-
sign of systems with unreliable and unpredictable behaviour, where probability
provides a means to make predictions based on the evaluation of performance
characteristics (see e.g. [1] and the references therein). A recent trend in system
design is highlighting the need for formal analysis techniques that are able to
provide quantitative estimates of a system property and mathematical tools for
cost optimisation. Several of our own recent works have shown how probabilistic
static analysis can serve this purpose (see e.g. [2, 3]).

In order to have a sound basis for such an analysis we need a formal se-
mantics of probabilistic programs. A popular choice for this is the denotational
semantics introduced by Kozen in [4]. Despite its mathematical simplicity and
clarity this semantics presents some limitations when used for program analysis.
One problem is that it is mainly concerned with I/O behaviours, i.e. it only
takes into account the final results of a program execution. This implies the
identification of a number of behaviours and consequently a loss of precision of
any static analyses based on it. Another limitation is that it does not provide
a good basis for a relational analysis as correlations between program variables
and properties are not made explicit.

We will investigate in this paper an alternative approach to probabilistic
semantics which we argue is better suited for probabilistic program analysis. It

essentially constructs the generator of a Discrete Time Markov Chain (DTMC)
in a syntax-driven way similarly to the collecting semantics in classical program
analysis [5]. The topological aspects of the resulting so-called Linear Operator
Semantics (LOS) stem from the theory of infinite-dimensional Hilbert spaces.
The choice of Hilbert spaces instead of the Banach spaces used in [4] is mainly
motivated by the presence of an inner product. More precisely, the notion of an
observable as a functional in the dual space of the state space coincides here
with the notion of a state (i.e. a probability distribution) as Hilbert spaces are
self-dual. We will show that this allows us to define a semantics based on a notion
of equivalence which is finer than I/O semantics.

An additional aspect of our construction is an explicit consideration of pro-
gram labels which are used on one hand to identify particular intermediate ex-
ecution points but which also allow us to investigate the control flow within
a program explicitly. The importance of considering labels has been discussed
recently, for example, in the context of program obfuscation [6]. The removal
of label information makes it more difficult to de-obfuscate programs via static
program analysis, even if one can develop ways to reconstruct such information
later. We compare in Section 4 the LOS semantics with Kozen’s approach which
does not consider program labels.

The main drawback of the construction of semantical operators on infinite-
dimensional Hilbert spaces is the fact that even for simple programs, e.g. a
constant assignment, it leads to unbounded operators, making it problematic the
construction of a well-defined semantics for the program. Ideally, for semantical
purposes one would like to consider only operators which are bounded as this
requirement is equivalent to continuity of set-theoretical structures.

In order to overcome this problem we replace the notion of norm limit used in
[4] by a weaker one, namely the weak limit, where convergence is defined directly
in terms of inner product. Using weak limit constructions we can approximate
the object we are interested in (i.e. the semantics T(P) of a program P) even
though it is not in the semantical domain by considering the effects of its finite
dimensional (and thus bounded) approximations on the state space. The classi-
cal concept which this approach resembles is the theory of generalised function
(developed by Schwartz, Sobolev, et.al.), in particular Dirac’s δ “function” which
is not a function and yet can be modelled as the weak, more precisely weak−∗,
limit of functions [7, 8].

As already mentioned, the weak limit semantics we introduce in this paper
is intended to provide a sound mathematical basis for program analysis and in
particular for probabilistic abstract interpretation [9–11]. This technique allows
us to obtain a simplified semantics via an abstraction A and its corresponding
concretisation A† defined by the so-called Moore-Penrose pseudo-inverse. The
abstract semantics for a program P is then obtained as T#(P) = A†T(P)A
and can be constructed compositionally thanks to the properties of the tensor
product operation and of the particular notion of generalised inverse we use for
the abstraction on infinite-dimensional Hilbert space. In fact, these properties

2

allow us to construct both concrete and abstract semantics by combining (via
the tensor product) the effects of individual statements and their local effects.

Mathematical Background and Notation. For the mathematical notions and no-
tation used in this paper we refer to the standard literature and, in particular, to
the recent monograph by Kubrusly [12] for the functional analytical and opera-
tor algebraic concepts and to the presentation in [13] for the measure theoretic
notions.

2 The Language

We will discuss our approach by referring to a probabilistic language which is a
simplified version of the language in [10] and essentially the same as the one used
[4]. In this section we introduce both the syntax and the operational semantics
for this language, which we call pWhile.

Syntax. In a style typical of static analysis [5], we introduce labels in the syntax
of the language. Labels are used to identify the programs points and are crucial
for defining a formal semantics that is suitable for static analysis.

S::=[skip]` | [x := e]` | [x ?= ρ]` | S1; S2 | if [b]` then S1 else S2 fi | while [b]` do S od

We denote by Stmt the set of all pWhile statements S and assume a unique
labelling (by numbers ` ∈ Lab).

The statement skip does not have any operational effect but can be used,
for example, as a placeholder in conditional statements. We have the usual (de-
terministic) assignment x := e, sometimes also in the form x := f(x1, . . . , xn).

In the random assignment x ?= ρ, the value of a variable x is set to a value
according to some random distribution ρ. In [4] it is left open how to define
or specify distributions ρ in detail. We will use occasionally an ad-hoc notation
as sets of tuples {(vi, pi)} expressing the fact that value vi will be selected with
probability pi; or just as a set {vi} assuming a uniform distribution on the values
vi. It might be useful to assume that the random number generator or scheduler
which implements this construct can only implement choices over finite ranges,
but in principle we can also use distributions with infinite support.

For the rest we have the usual sequential composition, conditional statement
and loop. We leave the detailed syntax of functions f or expressions e open as
well as for boolean expressions or test b in conditionals and loop statements.

SOS Semantics. The operational semantics of pWhile is defined in the SOS
style [14] by means of a probabilistic transition system on the set Conf of
configurations 〈S, s〉, where S is a pWhile program and s a classical state
s : Var → Value. The transition rules are given in Table 1. We assume an
evaluation function E : Expr→ (State→ Value) for expressions defined in the
usual way (assuming that Value contains e.g. integers as well as booleans true
and false).

3

R0 〈stop, s〉−→1〈stop, s〉
R1 〈skip, s〉−→1〈stop, s〉
R2 〈v := e, s〉−→1〈stop, s[v 7→ E(e)s]〉
R3 〈v ?= ρ, s〉−→ρ(r)〈stop, s[v 7→ r]〉

R41
〈S1, s〉−→p〈S′1, s′〉

〈S1;S2, s〉−→p〈S′1;S2, s
′〉

R42
〈S1, s〉−→p〈stop, s′〉
〈S1;S2, s〉−→p〈S2, s

′〉
R51 〈if b then S1 else S2 fi, s〉−→1〈S1, s〉 if E(b)s = true

R52 〈if b then S1 else S2 fi, s〉−→1〈S2, s〉 if E(b)s = false

R61 〈while b do S od, s〉−→1〈S; while b do S od, s〉 if E(b)s = true

R62 〈while b do S od, s〉−→1〈stop, s〉 if E(b)s = false

Table 1. The rules of the SOS semantics of pWhile

Our aim is to identify the execution (process) of a program P according
to the SOS rules as the realisation of a Discrete Time Markov Chain (DTMC)
[15]. Markov chains are essentially transition systems where the successor state
of a state is chosen according to a probability distribution. This probability
distribution only depends on the current state, so that the system evolution is
independent of the history. This is known as the memoryless property. The name
Discrete Time Markov Chain refers to the fact that Markov chains are used as a
time-abstract model (like transition systems): each transition is assumed to take
a single time unit.

DTMC are non-terminating processes: it is assumed that there is always a
next state and the process goes on forever. In order to reflect this property in
our semantics, we introduce a terminal statement stop which indicates success-
ful termination. Then the termination with a state s in the classical setting is
represented here by reaching the final configuration 〈stop, s〉 which then ‘loops’
forever after. This means that we implicitly extend a statement S to construct
full programs of the form P ≡ S; [stop]`

∗
.

The probabilistic transition system defined in Table 1 is indeed describing a
DTMC, as we obviously have a memoryless process: the transitions in Rules R0
to R6 depend only on the current configuration and not on the sequence of the
configurations that preceded it. It is well-known that the matrix of transition
probabilities of a DTMC on a countable state space is a stochastic matrix, i.e. a
square (possibly infinite) matrix P = (pij) whose elements are real numbers in
the closed interval [0, 1], for which

∑
j pij = 1 for all i [15, 16]. We can therefore

represent the SOS semantics for a pWhile program P by the stochastic matrix
on the vector space over the set Conf of all configurations of a program P defined
by the rules in Table 1.

3 Linear Operator Semantics

The SOS semantics introduced in Section 2 specifies effectively the generator of a
DTMC representing all executions of the program. However, the representation
of this operator as a single unstructured matrix is not a convenient one for a
denotational approach as it is not compositional (it stems from the SOS).

4

The labelled version of the syntax introduced in Section 2 allows us to use
labels as a kind of program counter. Labels in Lab can therefore be used as
delimiters of those relevant parts of the program that effectively correspond to
the application of each language constructor. Moreover, they allow us to track the
computational progress through the program execution, so yielding a semantics
which is not only concerned with the I/O behaviour of the program but can also
capture some finer notions of observables.

In the following we will present a semantics that we call Linear Operator
Semantics (LOS), as it is the composition of different linear operators on the
Hilbert space `2(Conf) over configurations, each expressing a particular opera-
tion, and contributing to the overall behaviour of the program. More precisely,
the LOS is constructed compositionally by means of the operators representing
each block of the program. The resulting operator T(P) is represented by an
infinite matrix which we will show to be equivalent to the SOS matrix from
Section 2. Moreover, we will show how this can be constructed as the weak limit
of a sequence of finite approximations.

States and Observables. We assume that variables occurring in a pWhile
program can take values in some countable set X that might be finite (e.g.
Booleans) or infinite (typically Z or N). We will refer to an implicitly given enu-
meration ξ : X → N of X (e.g. ξ = id for X = N). For high-order languages or
languages with e.g. real-valued variables one might need to work with uncount-
able sets (e.g. X = Z → Z or X = R). However, for imperative languages like
the one we consider in this paper a finite or countable infinite value space will
do. We can nevertheless extend our framework also to deal with the uncountable
case.

The classical state is defined as a map s : Var→ X. For a set of v variables
Var = {x1, . . . , xv} we can identify the classical state space with the v-fold
cartesian product Xv = X×. . .×X. Concretely, the classical state [x1 7→ v1, x2 7→
v2, . . . xv 7→ vv] corresponds to the v-tuple (v1, v2, . . . , vv).

In our model probabilistic states σ are vectors of a Hilbert space, i.e. an inner
product space that is complete under the metric induced by the inner product,
[17, 12]. We recall that an inner product space H (over the reals R) is a vector
space H together with an inner product 〈·, ·〉 : H × H → R, that is a function
that is linear and continuous in both its arguments. An inner product induces a
norm on H defined by ‖x‖ =

√
〈x, x〉.

The concrete Hilbert space we will consider is `2(X), i.e. the space of all
sequences x = (xi)i∈X for which

∑
i |xi|2 < ∞ holds [18, Def 1.14]. In fact,

all Hilbert spaces with a countable infinite base are isomorphic to `2(N) = `2

[17, Thm 2.2.12]. With the 2-norm ‖x‖2 = ‖(xi)‖2 =
(∑

i∈X |xi|2
) 1

2 this is

a Hilbert space as its norm ‖x‖2 =
√
〈x, x〉 is induced by the inner product

〈(xi), (yi)〉 =
∑

i xiyi. It contains as a dense sub-space the Banach space `1(X)
which is equipped with the 1-norm ‖x‖1 = ‖(xi)‖1 =

∑
i∈X |xi| < ∞ [18, Exer-

cise 1.14]. We can represent the state of several variables x1, . . . , xv by a vector
in the tensor product `2(X)⊗ . . .⊗ `2(X) = `2(Xv).

5

flow([skip]`) = flow([v := e]`) = flow([v ?= e]`) = ∅
flow(S1;S2) = flow(S1) ∪ flow(S2) ∪ {(`, init(S2)) | ` ∈ final(S1)}

flow(if [b]` then S1 else S2 fi) = flow(S1) ∪ flow(S2) ∪ {(`, init(S1)), (`, init(S2))}
flow(while [b]` do S od) = flow(S) ∪ {(`, init(S))} ∪ {(`′, `) | `′ ∈ final(S)}

Table 2. The control flow

The tensor product is an essential element of the description of probabilistic
states. This tensor product – more precisely, the Kronecker product, i.e. the coor-
dinate based version of the abstract concept of a tensor product – of two vectors
(x1, . . . , xn) and (y1, . . . , ym) is given by (x1y1, . . . , x1ym, . . . , xny1, . . . , xnym)
an nm dimensional vector. For an n × m matrix A = (Aij) and an n′ × m′

matrix B = (Bkl) we construct similarly an nn′×mm′ matrix A⊗B = (AijB),
i.e. each entry Aij in A is multiplied with a copy of the matrix or block B. The
tensor product of two vector spaces V ⊗W can be defined as the formal linear
combinations of the tensor products vi ⊗ wj with vi and wj base vectors in V
and W, respectively. For further details we refer e.g to [19, Chap. 14] and for a
detailed discussion of tensor products of Hilbert spaces to [17, Sect.2.6].

The notions of semantic states and observables – which are typically both
identified with the subsets of some appropriate cpo in the standard approach to
nondeterministic semantics – are in the probabilistic case two distinct geomet-
rical aspects that are dual to each other in the sense that they belong to dual
spaces. The dual space of a normed space X , denoted X ∗, is the normed space
of all continuous linear functionals on X . If X is a Hilbert spaces then its dual is
again a Hilbert space. Thus, as `2(X)∗ = `2(X), we have for states y ∈ `2(X) that
observables x are also in `2(X). They are related to each other by the notion of
expected value, E(x, y), which represents the probability that we will observe a
certain property x when the state of the system is described by y. In `2(X) we
can take E(x, y) = 〈x, y〉. Duality is more involved for general Banach spaces,
where for example the dual, `1(X)∗, of the space `1(X) is `∞(X), i.e. the space
of all sequences with ‖(xi)‖∞ = sup(xi) <∞.

The Control Flow. For the definition of the control flow of a program we follow
the presentation in [5]. It is based on two auxiliary operations init : Stmt→ Lab
and final : Stmt → P(Lab) which return the initial and the final labels of a
statement. The control flow in a statement S is then defined by the function flow :
Stmt→ P(Lab×Lab) which maps statements to sets of pairs which represent
the control flow graph. It is defined in Table 2. This only records that a certain
control flow step is possible. For tests b in conditionals and loops we indicate
the branch corresponding to the case when the test succeeds by underlining it.
As our semantics is ultimately modelling the semantics of a program via the
generator of a DTMC we are also confronted with the fact that such processes
never terminate. This can be fixed by adding an additional label `∗ to the set

6

of labels and define the flow of a program P as F(P) = flow(P) ∪ {(`, `∗) | ` ∈
final(P)} ∪ {(`∗, `∗)}.

Infinite Generator Matrix. Given a program P , our aim is to define com-
positionally an infinite matrix representing the program behaviour as a DTMC.
The domain of the associated linear operator T(P) is the space of probabilis-
tic configurations, that is distributions over classical configurations, defined by
Dist(Conf) = Dist(Xv ×Lab) ⊆ `2(Xv ×Lab), where we identify a statement
with its label or, more precisely, an SOS configuration 〈S, s〉 ∈ Conf with the
pair 〈s, init(S)〉 ∈ Xv × Lab.

Among the building blocks of the construction of T(P) are the identity matrix
I and the matrix units Eij containing only a single non zero entry (Eij)ij = 1 and
zero otherwise. We denote by ei the unit vector with (ei)i = 1 and zero otherwise.
As we represent distributions by row vectors we use post-multiplication, i.e.
T(x) = x ·T.

A basic operator is the update matrix U(c) which implements state changes.
The intention is that from an initial probabilistic state σ, e.g. a distribution over
classical states, we get a new probabilistic state σ′ by the product σ′ = σ ·U.
The matrix U(c) implements the deterministic update of a variable to a constant
c via (U(c))ij = 1 if ξ(c) = j and 0 otherwise, with ξ : X → N the underlying
enumeration of values in X. In other words, this is a (possibly infinite) matrix
which has only one column (corresponding to c) containing 1s while all other
entries are 0. Whatever the value of a variable is, after applying U(c) to the state
vector describing the current situation we get a point distribution expressing the
fact that the value of our variable is now c.

We also define for any Boolean expression b on X a diagonal projection matrix
P with (P(b))ii = 1 if b(c) holds and ξ(c) = i and 0 otherwise. The purpose of
this diagonal matrix is to “filter out” only those states which fulfil the condition
b. If we want to apply an operator with matrix representation T only if a certain
condition b is fulfilled then pre-multiplying this P(b) ·T achieves this effect.

In Table 3 we first define a multi-variable versions of the test matrices and
the update matrices via the tensor product ‘⊗’. We define with P(s) an operator
which tests if the current state is the same as the (classical) state s: Given the
state s = [xi 7→ s(xi)] we test for each variable xi with i = 1, . . . , v if it has the
same value as specified in s by applying P(s) in each factor of the tensor product,
i.e. P(s(xi)) = P(xi = s(xi)). If we apply P(s) to a probabilistic state σ then
P(s) filters out the probabilities that each variable has exactly the value specified
by the state s. The operator P(e = c) tests in a similar way if the current state is
such that the expression e evaluates to the constant c. In order to accommodate
for general expressions e (not just constants) we collect (sum up) the matrices for
which E(e)s = e. The update operator U(xk ← c) assigns a definitive constant
value c to variable xk, all other variables remain unchanged (which is expressed
by the fact that the factors corresponding to the other variables in the tensor
product are all the identity I). Finally, the operator U(xk ← e) assigns the value

7

P(s) =

v⊗
i=1

P(s(xi))

P(e = c) =
∑
E(e)s=c

P(s)

U(xk ← c) =

k−1⊗
i=1

I⊗U(c)⊗
v⊗

i=k+1

I

U(xk ← e) =
∑
c

P(e = c)U(xk ← c)

Table 3. Elementary Operators

[[[x := e]`]]] = U(x← e) [[[v ?= ρ]`]] =
∑
c∈X ρ(c)U(x← c)

[[[b]`]] = P(b = false) [[[b]`]] = P(b = true)

[[[skip]`]] = [[[skip]`]] = [[[x := e]`]]] = [[[v ?= ρ]`]] = I

Table 4. Elements of the LOS

of an expression e to xk. This is achieved by testing whether in the current state
e evaluates to any of the possible constants c, and if so to assign c to xk.

With the help of the auxiliary matrices we can now define for every program
P the matrix T(P) of the DTMC representing the program executions as the sum
of the effects of the individual control flow steps. For each individual control flow
step it is of the form [[[B]`]]⊗E`,`′ or [[[B]`]]⊗E`,`′ , where (`, `′) or (`, `′) ∈ F(P)

and [[[B]`]] represents the semantics of the block B labelled by `. The matrix
E`,`′ represents the control flow from label ` to `′; it is a finite l × l matrix,
where l is the number of (unique) distinct labels in P .

The definitions of [[[B]`]] and [[[B]`]] are given in Table 4. The semantics of an
assignment block is obviously given by U(x← e). For the random assignment we
simply take the linear combination of assignments to all possible values, weighted
by the corresponding probability given by the distribution ρ. The semantics of
a test block [b]` is given by its positive and its negative part, both are test
operators P(b = true) and P(b = false) as described before. The meaning of
[[[B]`]] is non-trivial only for tests b while it is the identity for all the other blocks.
The positive and negative semantics of all blocks is independent of the context
and can be studied and analysed in isolation from the rest of the program P .

Based on the local (forward) semantics of each labelled block, i.e. [[[B]`]] and
[[[B]`]], in P we can define the LOS semantics of P as:

T(P) =
∑

(`,`′)∈F(P)

[[[B]`]]⊗E`,`′ +
∑

(`,`′)∈F(P)

[[[B]`]]⊗E`,`′

A minor adjustment is required to make our semantics conform to the DTMC
model. As paths in a DTMC are maximal (i.e. infinite) in the underlying directed
graph, we will add a single final loop via a virtual label `∗ as discussed in
Section 2. This corresponds to adding to T(P) the factor I⊗E`∗,`∗ .

Correspondence between SOS and LOS. As T(P) operates on Dist(Conf),
we can index the entries in its matrix representation by pairs of classical states

8

s and program labels `. We can show that these entries are in a one-to-one cor-
respondence with the generator matrix of the operational semantics in Table 1.

Proposition 1. Let P be a pWhile program and T(P) its LOS operator. We
have that if init(P) = ` and init(P ′) = `′ and s, s′ are classical states, then
〈P, s〉 −→p 〈P ′, s′〉if and only if (T(P))(s,`)(s′,`′) = p.

The Weak Limit of T(P). In the standard denotational approach to the
semantics of programming languages continuity is an essential requirement for
the semantical functions: it guarantees the existence of fixpoints and therefore
that the semantics is well-defined. For linear operators the concept of continuity
is equivalent to the concept of boundedness. This is a basic result in functional
analysis and operator theory (see, e.g. [12, Thm. 4.14]). We recall that a linear
operator T : X → Y between two normed vector spaces X and Y is bounded if
‖T‖ = sup ‖T(x)‖/‖x‖ <∞.

One feature of Markov chains is that, due to their memoryless property, we
can obtain the future of an initial situation x = x(0) (a given distribution)
by iterating the generator matrix. The distribution at time t is simply x(t) =
x(0)Tt.This can be extended to infinity, i.e. we can compute the limit state
distribution as x(∞) = limt→∞ x(0)Tt. The question is therefore: does this limit
exist for T(P) for all P and input x(0) ∈ `2(X)? The answer obviously depends
on the notion of limit we have in mind. If we refer to the norm limit then the
question boils down to whether T(P) is a bounded operator on `2(X) and the
answer is negative as the following example shows.

Example 1. The operator represented by the matrix U(x← e) is in general not
bounded on `2(X). To see this, consider x = (xi)

∞
i=0 = (1, 12 ,

1
3 , . . .). Then calcu-

lating the 2-norm, ‖x‖2, gives rise to a well-known convergent series3, whereas
‖U(x ← 1)‖2 = ‖x‖1 corresponds to the harmonic series which is a well-known
divergent infinite series.

However, in our setting it makes sense to consider a particular notion of limit,
namely the weak limit, which allows us to look at the computation as the physical
process of measuring an observable by means of successive approximations each
constructed as the inner product between the observable and an approximation
of its dual state.

Definition 1 (Weak Limit [12, Sect 5.11]). A sequence of vectors {xn}n in

a Hilbert space H converges weakly to x ∈ H, denoted by xn
w→ x or w- limn xn =

x, iff for all y ∈ H we have limn→∞ 〈xn, y〉 = 〈x, y〉.

With respect to this notion of limit we can show that the LOS operator
T(P) converges weakly for any initial state and any observable (specified as
vector distributions in `2(Conf)).

3 The problem of finding the closed form of the infinite series 1+ 1
22

+ 1
32

+ 1
42

+ . . ., aka
the Basel problem, was solved by Euler who showed that the series is approximately
equal to 1.644934.

9

Definition 2 (Weak Limit of Operators[12, Sect 5.11]). A sequence of
linear operators An on a Hilbert space H is said to converge weakly to a linear
operator A, denoted by An

w→ A iff for all x ∈ H we have An(x)
w→ A(x).

We first need to introduce the following definition of finite approximations
(or sections) of a matrix. Let Pn be the orthogonal projection onto the spaces
spanned by the first n base vectors; then its matrix representation is given by
Pn = diag(1, . . . , 1, 0, 0, . . .), i.e. a diagonal matrix with only the first n diagonal
entries being one and the rest all zero. For any infinite matrix T representing
a bounded or unbounded operator, we can define its finite approximations as
Tn = PnTPn, that is the effect of T only on the sub-space spanned by the the
first n dimensions.

We will show that the numerical series obtained by calculating the inner
products between the n-th approximation vector x · (T(P))n and an observable
y always converges in R, and we will take this limit to define 〈x ·T(P), y〉.

Proposition 2. Given a program P and its LOS operator T(P), we have that
for all x, y ∈ Dist(Conf) ⊂ `2(Conf) converges, limn→∞ 〈x ·T(P)n, y〉 <∞.

Proof. Let xn = x · T(P)n and y ∈ Dist(Conf) ⊂ `1(Conf) ⊂ `2(Conf). We
need to show that 〈xn, y〉 =

∑∞
k=1(xn)k · yk converges in R. Since the T(P)n are

(sub-)stochastic matrices and x is a distribution with ‖x‖1 = 1, we have that
‖xn‖1 ≤ 1 and 〈xn, y〉 ≤ 〈xn+1, y〉, i.e. monotone. Moreover, by the Cauchy-
Schwarz inequality (e.g. [17, Prop. 2.1.1]) we have 〈xn, y〉 ≤ ‖xn‖2‖y‖2, Thus, as
in general ‖v‖2 ≤ ‖v‖1 holds for all v(cf. [18, Exercise 1.14]), we have 〈xn, y〉 ≤
‖xn‖2‖y‖2 ≤ ‖xn‖1‖y‖1 ≤ 1, i.e. 〈xn, y〉 is a bounded, monotone sequence of
real numbers. ut

Example 2. Consider T = U(x ← 1), a distribution s = (si) as input and
observables represented by the base vectors ei. Then we have

lim
n→∞

〈s ·Tn, ei〉 =

{
1 for i = 1
0 otherwise

In fact, we have that limn→∞ 〈s ·Tn, e1〉 = limn→∞
∑n

i=1 si = 1, while for ei
with i 6= 1 it is either always zero or converges towards zero. The probability of
observing [x 7→ 1] after executing x := 1 is 1 and 0 for all other possible values.

Based on the weak limit we can also assert the adequacy of the LOS.

Proposition 3. Given programs P and P ′ with init(P) = ` and init(P ′) = `′,
if 〈P, s〉 −→p 〈P ′, s′〉 then limn→∞ 〈(s⊗ e`) ·Tn, (s

′ ⊗ e`′)〉 = p.

The weak limit construction also allows us to work with measures on X which
are not representable by distributions. This is important as it is a well known
problem that not all semantically interesting probabilistic behaviours (even on
countable infinite spaces) can be described by distributions.

10

[[skip]] = I
[[x := f(x1, . . . , xn)]] = U(x← f(x1, . . . , xn))
[[x ?= ρ]] = (

∑
c ρ(c)U(x← c))

[[S1;S2]] = ([[S1]][[S2]])
[[if b then S1 else S2 fi]] = (P(b)[[S1]] + P(¬b)[[S2]])
[[while b do S od]] = (P(b)[[S]][[while b do S od]] + P(¬b))

Table 5. Kozen’s semantics

Example 3. Consider the program fragment P ≡ x := 2x. Its LOS operator
is given by a bounded operator T(P) = U(x ← 2x). If we are interested in
the probability of obtaining any even number as the result of executing P on
an initial distribution x then we can test it on an elementary observable, i.e.
a test which can return only ‘yes’ or ‘no’. This implements a kind of uniform
measure over all even numbers. Strictly speaking, no measure can exists on Z
which would give equal probability to each even number and 1

2 to the set of
all evens. Such a uniform measure µev cannot be represented by a distribution.
However, we can approximate it by considering the distributions evn over the
first n even numbers, i.e. ev1 = (1, 0, 0, . . .), ev2 = (1

2 , 0,
1
2 , 0, . . .), Then we

get limn→∞ 〈x ·T(P), evn〉 = 1 for any initial distribution x – as expected. In
other words, µev = w- lim evn.

By measure on Z we usually mean a measure based on the σ-algebra P(Z) of
all subsets of Z. On this σ-algebra it is obviously impossible to define an atomic
measure – i.e. one which is generated by the point measures µ({n}) of singletons
n ∈ Z – which reflects the fact that half of all numbers are even and half are odd.
However, it is possible to define such a measure on the (non-standard) σ-algebra
{∅, E,O,Z} with E and O the set of all even and odd numbers, respectively. In
fact, on this σ-algebra we can introduce the measure µ(E) = µ(O) = 1

2 . Thus, the
weak limit construction can simulate this measure. This appears to be consistent
with classical results in measure theory like the Portemanteau theorem, e.g. [13,
Thm 13.16], which allows the representation of certain measures as weak limits.

4 Comparison with Kozen’s Semantics

In this section we develop a comparison with the well-known probabilistic seman-
tics defined in [4]. We consider here the formulation which in the original paper
is referred to as Semantics 2 and which is based on an iterative construction
of the fixed point in the style of Knaster-Tarski [20]. Contrary to the LOS we
introduced before, which describes the stepwise behaviour of a program, Kozen’s
semantics captures the I/O behaviour of a program by means of the probability
measure reached after termination (possibly after an infinite number of steps).

Kozen’s semantics 2 is defined as the fixed point of a bounded operator on a
Banach space which fulfils the recursive equations in Table 5.

11

There are several features of Kozen’s semantics which are in striking contrast
with LOS. The first one consists in the fact that all probabilistic choices are
assumed to be made before the program execution starts rather than during the
execution as in the LOS. This seems to prevent any (non-terminating) program
with infinitely many probabilistic assignments (e.g. while true do x ?= {0, 1} od)
from ever starting. A second issue is the fact that it treats all execution paths
which do not terminate in the same way, namely as the zero operator Not least
in the context of program analysis this seems to be rather imprecise as it might
well be interesting what happens during an infinite execution path, e.g. if a non-
terminating program such as an operating system will cause a variable overflow
or not, c.f. while true do x := x+1 od. Another difference is related to the fact
that Kozen’s semantics does not explicitly refer to relational aspects, e.g. the
fact that the values of two variables might be correlated. The LOS semantics on
the other hand is essentially constructed using a tensor product which models
conditional probabilities in a compositional way.

It might be worth noting that in later work [21] Kozen also presents a back-
ward semantics [21, p165] which is concerned with how measurable functions,
which represent observables, need to be transformed in order to define the se-
mantics of a program S. This is intuitively the reverse of the measure transformer
semantics in [4]. This backward semantics also appears to be strongly related to
the weakest pre-condition calculus. In our self-dual setting the backward seman-
tics is easily identified as the adjoint operator of [[S]] via the conditions

〈x · [[S]], f〉 = 〈x, f · [[S]]∗〉

for a state x and an observable f in `2(Conf).

Recovering Kozen’s Semantics. We can use the LOS to reconstruct the
semantics of Kozen by simply taking the limit of T(S)n(s0) for n → ∞ for all
initial states s0. The limit state T(S)n(s0) still contains too much information in
relation to Kozen’s semantics; in fact we only need the probability distributions
on the possible values of the variables at the final label.

In order to extract information about the probability that variables have
certain values at a certain label, i.e. program point `, we can use the operator
I⊗. . .⊗I⊗E`,`. In particular, for extracting the information about a probabilistic
state we will use S` = I ⊗ . . . ⊗ I ⊗ e` which forgets about all distributions at
other labels than `. In particular we use Sf = S`∗ for the final looping stop

statement and Si for the initial label init(P) of the program. We denote by e0
the base vector in Rl which expresses the fact that we are in the initial label,
i.e. e0 = einit(P).

Proposition 4. Given a program P and an initial state s0 as a distribution over
the program variables, then (s0⊗e0)T(P)nSf corresponds to the distribution over
all states on which P terminates in n or less computational steps.

We can now show that the effect of the operator we obtain as solution to
Kozen’s fixed-point equations agrees with the “output” limn→∞(s0 ⊗ e0)TnSf

12

we get via the LOS. Essentially, both semantics define the same I/O operator,
provided we supply them with the appropriate input. However, the LOS also
provides information about internal labels and reflects the relation between dif-
ferent variables via the tensor product representation. It is therefore not possible
to reconstruct the LOS from Kozen’s semantics.

Proposition 5. Given a program P and an initial probabilistic state s0 as a
distribution over the program variables, let [[P]] be Kozen’s semantics of P and
T(P) the LOS. Then (s0 ⊗ e0)(limn→∞Tn)Sf = s0[[P]].

The proof follows by induction.

5 Semantics-based Analysis

Although the LOS semantics we presented here is of interest in itself its main mo-
tivation is to provide a basis for a semantics based program analysis. Classically
the correctness of a program analysis is asserted with respect to the semantics
in terms of a correctness relation. The theory of Abstract Interpretation allows
for constructing analyses that are automatically correct without having to prove
it a posteriori [22, 23]. The main applications of this theory are for the analysis
of safety-critical systems as it guarantees correct answers at the cost of preci-
sion. For probabilistic systems or the probabilistic analysis of (non-)deterministic
ones, the theory of Probabilistic Abstract Interpretation (PAI) allows for the con-
struction of analyses that are possibly unsafe but maximally precise [9, 11]. Its
main applications are therefore in fields like speculative optimisation and the
analysis of trade-offs. PAI has been used for the definition of various analyses
based on the LOS (see e.g. [3, 24, 25] and all involving finite-dimensional spaces.

PAI relies on the notion of generalised (or pseudo-)inverse. This notion is
well-established in mathematics where it is used for finding approximate, so-
called least-square solutions (cf. e.g. [26]).

Definition 3. Let H1 and H2 be two Hilbert spaces and A : H1 7→ H2 a linear
map between them. A linear map A† = G : H2 7→ H1 is the Moore-Penrose
pseudo-inverse of A iff A ◦ G = PA and G ◦ A = PG, where PA and PG

denote orthogonal projections onto the ranges of A and G.

A linear operator P : H → H is an orthogonal projection if P∗ = P2 = P,
where (.)

∗
denotes the adjoint. The adjoint is defined implicitly via the condition

〈x ·P, y〉 = 〈x, y ·P∗〉 for all x, y ∈ H. For real matrices the adjoint correspond
simply to the transpose matrix P∗ = Pt [19, Ch 10].

If C an D are two Hilbert spaces, and A : C → D and G : D → C are linear
operators between C and D, such that G is the Moore-Penrose pseudo-inverse
of A, then we say that (C,A,D,G) forms a probabilistic abstract interpretation,
with C the concrete domain and D the abstract one.

Important for the applicability of PAI is the fact that it possesses some nice
compositionality properties. These allow us to construct the abstract seman-
tics T(P)# by abstracting the single blocks of the concrete semantics T(P) as

13

follows:

T(P)# = A†T(P)A = A†(
∑

(`,`′)∈F(P)

[[[B]`]]⊗E``′)A =

=
∑

(`,`′)∈F(P)

(A†[[[B]`]]A)⊗E``′ =
∑

(`,`′)∈F(P)

[[[B]`]]# ⊗E``′ ,

where, for simplicity, we do not distinguish between the positive and negative
semantics of blocks, and we assume that A does not abstract E``′ . The fact that
we can work with the abstract semantics of individual blocks instead of the full
operator obviously reduces the complexity of the analysis substantially.

Another important fact is that the Moore-Penrose pseudo-inverse of a tensor
product can be computed as (A1 ⊗ A2 ⊗ . . . ⊗ Av)† = A†1 ⊗ A†2 ⊗ . . . ⊗ A†v
[26, 2.1,Ex 3]. We can therefore abstract properties of individual variables and
then combine them in the global abstraction. This is also made possible by the
definition of the concrete LOS semantics which is heavily based on the use of
tensor product. Typically we have [[[B]`]] = (

⊗v
i=1 Ti`) ⊗ E``′ or a sum of a

few of such terms. The Ti` represents the effect of T(S), and in particular of
[[[B]`]], on variable i at label ` (both labels and variables only form a finite
set). For example, we can define an abstraction A for one variable and apply
it individually to all variables (e.g. extracting their even/odd property), or use
different abstractions for different variables (maybe even forgetting about some
of them by using Af = (1, 1, . . .)t) and define A =

⊗v
i=1 Ai such that A† =⊗v

i=1 A†i in order to get an analysis on the full state space.
Clearly, for (countably) infinite value spaces X the abstraction maps which

we use in the construction of Probabilistic Abstract Interpretations are often also
represented by unbounded operators (similar to the U(c) of Example 1). The use
of weak limits will again help us in order to construct the Moore-Penrose pseudo-
inverse A†. Fortunately, the approximations by finite dimensional abstractions
An and A†n converge weakly for closed operators and in particular if the range
of the abstraction is finite dimensional, i.e. if A : `2(X) → Rn. Various general
results of operator theory and linear algebra as found, for example in [27–29] offer
a rigorous support for extending PAI to infinite-dimensional Hilbert spaces. We
have dedicated a companion paper to a full treatment of this infinite case [30].

6 Conclusions

We have introduced a linear operator semantics (LOS) for probabilistic programs
based on infinite-dimensional Hilbert space. We have shown how weak limits can
be used to guarantee the existence of observable program properties, even for
unbounded operators. In contrast with the norm limit on Banach spaces used in
the work by Kozen, we are able to capture properties of the intermediate states
of a program execution. This is important for program analysis. In fact, the
aim of the work presented here is to provide a mathematically sound framework
for probabilistic program analysis. The two main elements for this are (i) a

14

compositionally defined semantics, i.e. LOS, and (ii) a way to reduce the concrete
semantics in order to obtain a more manageable abstract one via PAI. The
concepts of a linear operator semantics and probabilistic abstract interpretation
have been used before in the setting of finite domains in [3, 24, 31, 25] for the
analysis of programs and security properties. This paper extends LOS to infinite
(concrete and abstract) domains and informally shows how PAI can be extended
accordingly.

The LOS is closely related to various models used in Performance Analysis,
like Stochastic Automata Networks (SAN) [32, 33]. As performance models are
often based on Continuous Time Markov Chains (CTMC) it would be interesting
to develop a continuous time version of the LOS which might help to establish
a bridge between performance and program analysis.

From a semantical point of view one important feature of LOS is the no-
tion of duality between states and observables and a weak limit construction to
overcome problems with unboundedness. For a more direct approach it would
be interesting to investigate which programs lead directly to bounded operators
in the LOS approach. It seems that this issue is related to reversibility and fi-
nite branching of the reverse computation: for infinite (un-oriented) graphs it
is known that the adjacency operator represents a bounded operator on `2 if
and only if it is finitely branching [34, Thm. 3.1]. Similarly, it is also possible to
model reversible Markov Chains, e.g. [16], via bounded Hilbert space operators.
We aim to explore these aspects further in future work.

References

1. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9) (2010) 76–85

2. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic timing covert channels: To
close or not to close? Int. J. of Inf. Security 10(2) (2011) 83–106

3. Di Pierro, A., Sotin, P., Wiklicky, H.: Relational analysis and precision via proba-
bilistic abstract interpretation. In: QAPL’08. Volume 220(3) of ENTCS., Elsevier
(2008) 23–42

4. Kozen, D.: Semantics of probabilistic programs. J. Comp. Sys. Sci. 22(3) (1981)
328–350

5. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

6. Kinder, J.: Towards static analysis of virtualization-obfuscated binaries. In: 19th
Working Conference on Reverse Engineering, WCRE’12, IEEE (2012) 61–70

7. Lighthill, M.: Introduction to Fourier Analysis and Generalised Functions. Cam-
bridge University Press (1958)

8. Lax, P.D.: Functional Analysis. John Wiley & Sons (2002)
9. Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Prob-

abilistic Abstract Interpretation. In: PPDP’00, ACM (2000) 127–138
10. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic semantics and analysis. In:

Formal Methods for Quantitative Aspects of Programming Languages. Volume
6155 of LNCS. Springer (2010) 1–42

11. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations.
In: LOPSTR’00. Volume 2042 of LNCS., Springer Verlag (2001) 147–164

15

12. Kubrusly, C.S.: The Elements of Operator Theory. second edn. Birkhäuser (2011)
13. Klenke, A.: Probability Theory - A Comprehensive Course. Springer Verlag (2006)
14. Plotkin, G.: A structured approach to operational semantics. Technical Report

DAIMI FN-19, Computer Science Department, Aarhus University (1981)
15. Seneta, E.: Non-negative Matrices and Markov Chains. Springer Verlag (1981)
16. Woess, W.: Denumerable Markov Chains. EMS (2009)
17. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras:

Elementary Theory. AMS (1997) reprint from Academic Press edition 1983.
18. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory

– The Basis for Linear and Nonlinear Analysis. Springer (2011)
19. Roman, S.: Advanced Linear Algebra. second edn. Springer (2005)
20. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University

Press, Cambridge (1990)
21. Kozen, D.: A probabilistic PDL. J. Comp. Sys. Sci. 30(2) (1985) 162–178
22. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In:
POPL’77. (1977) 238–252

23. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
POPL’79. (1979) 269–282

24. Di Pierro, A., Hankin, C., Wiklicky, H.: A systematic approach to probabilistic
pointer analysis. In: APLAS’07. Volume 4807 of LNCS., Springer (2007) 335–350

25. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic timing covert channels: to
close or not to close? Int. Journal of Inform. Security 10(2) (2011) 83–106

26. Ben-Israel, A., Greville, T.N.E.: Gereralized Inverses – Theory and Applications.
second edn. CMS Books in Mathematics. Springer, New York (2003)

27. Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Volume
1894 of Lecture Notes in Mathematics. Springer (2007)

28. Du, N.: Finite-dimensional approximation settings for infinite-dimensional Moore-
Penrose inverses. SIAM Journal of Numerical Analysis 46(3) (2008) 1454–1482

29. Kulkarni, S., Ramesh, G.: Projection methods for computing Moore-Penrose in-
verses of unbounded operators. Indian Journal of Pure and Applied Mathematics
41(5) (2010) 647–662

30. Di Pierro, A., Wiklicky, H.: Probabilistic analysis of programs: A weak limit ap-
proach. Available at http://fopara2013.cs.unibo.it/Proceedings.pdf (2013) [Online
Informal Pre-proceedings].

31. Di Pierro, A., Hankin, C., Wiklicky, H.: Measuring the confinement of probabilistic
systems. Theoretical Computer Science 340(1) (2005) 3–56

32. Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems.
IEEE Trans. Softw. Eng. 17(10) (1991) 1093–1108

33. Fourneau, J.M., Plateau, B., Stewart, W.: Product form for stochastic automata
networks. In: Proceedings of ValueTools ’07, ICST (2007) 32:1–32:10

34. Mohar, B., Woess, W.: A survey on spectra of infinite graphs. Bulletin of the
London Mathematical Society 21 (1988) 209–234

16

