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Abstract. We introduce a characterisation of probabilistic transition
systems (PTS) in terms of linear operators on some suitably defined
vector space representing the set of states. Various notions of process
equivalences can then be re-formulated as abstract linear operators re-
lated to the concrete PTS semantics via a probabilistic abstract inter-
pretation. These process equivalences can be turned into corresponding
approximate notions by identifying processes whose abstract operators
“differ” by a given quantity, which can be calculated as the norm of the
difference operator. We argue that this number can be given a statistical
interpretation in terms of the tests needed to distinguish two behaviours.

1 Introduction

We study the notion of relation on a set X in terms of linear operators on a space
representing the elements in X. In this setting classical relations corresponds to
0/1 matrices. By considering matrices with generic (numerical) entries, we gen-
eralise the classical notion by introducing quantitative relations. We will concen-
trate on a special type of quantitative relations, namely probabilistic transition
relations. These represent a central notion in probabilistic process algebra [19],
where process semantics and thus the various process equivalences are defined
in terms of probabilistic transition systems (PTS).

We introduce a technique for defining approximated versions of various pro-
cess equivalences, which exploits the operator algebraic view of quantitative rela-
tions. The fact that these quantities correspond in a PTS to probabilities allows
for a statistical interpretation of the approximation according to the “button-
pushing experiments” view of process semantics [22, 31].

The technique is based on the definition of a PTS as a continuous linear oper-
ator on a Hilbert space built out of the states and actions. Process equivalences
are special linear operators which correspond to some probabilistic abstractions
of the PTS semantics. By using some appropriate operator norm we are then
able to quantify equivalences, and use the resulting measure ε to define corre-
sponding notions of approximate equivalences. These ε-relations are no longer
equivalence relations but instead they approximate equivalence relations.
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We will illustrate our approach on two process semantics, namely graph
isomorphism and a generic notion of probabilistic bisimulation, which we will
characterise by using the Probabilistic Abstract Interpretation framework intro-
duced in [13, 14]. The possibility of reasoning in terms of a non-exact semantics
is important for program analysis, where it is often more realistic to consider a
margin of tolerance in the identification of two processes. For example, in the
area of security, approximate versions of process equivalences can be used to
define security properties which reflect more closely the various security prob-
lems which occur in practice. For the approximate version of bisimulation, which
we call ε-bisimulation, we will mention possible applications in this area. This
approach has been adopted in [12, 11], where an approximate notion of observa-
tional equivalence is considered to address the problem of confidentiality.

2 Quantitative Relations

Standard models in semantics are usually based on a qualitative concept of a
relation R ⊆ X×X, which states whether two elements are related or not. We are
concerned here with quantitative (more precisely probabilistic) relations. Such
relations not only specify which elements in X are related, but also how “strong”
this relation is. As an example, probabilistic transition relations are quantitative
relations which specify how likely it is that one state is reachable from another.
We begin with an investigation of the general notion of quantitative relation,
which we characterise as a linear operator; we then apply these general results
to the special case of probabilistic transition relations, which are at the base of
the process equivalences we will study in the following.

Definition 1. (i) A quantitative or weighted relation R over a space X with
weights in W is a subset R ⊆ X ×W×X.

(ii) A labelled quantitative relation L is a subset L ⊆ X × A×W×X, where
A is a set of labels.

(iii) A probabilistic relation P is a quantitative relation with W = [0, 1], i.e.
P ⊆ X × [0, 1] × X, where for each x ∈ X the function µx : X 7→ [0, 1]
defined by µx(y) = p for (x, p, y) ∈ P is a distribution, i.e. for a fixed x ∈ X:∑
y∈X µx(y) =

∑
(x,p,y)∈P p = 1.

We will consider here only quantitative relations over countable sets X and
finite sets of labels A. Furthermore we will assume complex weights, i.e. W = C,
as we can embed the other common weight sets, e.g. Z, . . . , R, easily in C.

Note that for numerical weights — i.e. for W a ring, field, etc. — we can
interpret R ⊆ X ×W × X as a function R : X × X → W by adding all the
weights associated to the same pair (x, y) ∈ X ×X, i.e. R(x, y) =

∑
(x,w,y)∈R w.

2.1 Linear Representations

Qualitative as well as quantitative relations have a simple representation as linear
operators. In order to define the matrix associated to a relation on a set X, we
first have to lift X to a vector space.



Definition 2. The vector space V(X) over a set X is the space of formal linear
combinations of elements in X with coefficients in some field W (e.g. W = C)
which are represented by sequences of elements in W indexed by elements in X:

V(X) = {(cx)x∈X | cx ∈W} .

We associate to each relation R ⊆ X ×X a 0/1-matrix, i.e. a linear operator
M(R) on V(X) defined by:

(M(R))xy =
{

1 iff (x, y) ∈ R
0 otherwise

where x, y ∈ X, and (M(R))xy denotes the entry in column x and row y in the
matrix representing M(R). Analogously, the matrix representing a quantitative
relation R ⊆ X ×W×X is defined by:

(M(R))xy =
{
w iff (x,w, y) ∈ R
0 otherwise

Note that these definitions rely on the interpretation of (numerical) quanti-
tative relations as functions mentioned above. For probabilistic relations, where
W = [0, 1], we obtain a stochastic matrix, that is a positive matrix where the
entries in each row sum up to one.

For finite sets X the representation of (quantitative) relations as linear oper-
ators on V(X) ' Cn is rather straightforward: since all finite dimensional vector
spaces are isomorphic to the n-dimensional complex vector space Cn for some
n <∞, their topological structure is unique [18, 1.22] and every linear operator
is automatically continuous. For infinite (countable) sets, however, the algebra
of infinite matrices which we obtain this way is topologically “unstable”. The al-
gebra of infinite matrices has no universal topological structure and the notions
of linearity and continuity do not coincide. It is therefore difficult, for example,
to define the limit of a sequence of infinite matrices in a general way. In [15] Di
Pierro and Wiklicky address this problem by concentrating on relations which
can be represented as elements of a C∗-algebra, or concretely as elements in
B(`2), i.e. the algebra of bounded, and therefore continuous linear operators on
the standard Hilbert space `2(X) ⊆ V(X). This is the space of infinite vectors:

`2 = `2(X) = {(xi)i∈X | xi ∈ C :
∑
i∈X
|xi|2 <∞}.

The algebraic structure of a C∗-algebra allows for exactly one norm topology
and thus offers the same advantages as the linear algebra of finite dimensional
matrices. A formal justification for this framework is given in [15]. We just
mention here that the representation of (probabilistic transition) relations as
operators on `2(X) — and not for example on `1(S) (which a priori might seem
to be a more appropriate structure, e.g. [20]) — allows us to treat “computational
states” and “observables” as elements of the same space (as Hilbert spaces are
self-dual). Furthermore, this approach is consistent with the well established
study of (countable) infinite graphs via their adjacency operator as an element
in B(`2), e.g. [23].



2.2 Probabilistic Transition Relations

A labelled transition system specifies a class of sequential processes P on which
binary predicates a−→ are defined for each action a a process is capable to per-
form. Probabilistic Transition Systems (PTS) are labelled transition systems
with a probabilistic branching: a process p can be in a relation a−→ with any p′

in a set S of possible successors with a given probability µ(p′) such that µ forms
a distribution over the set S [19, 21].

Given a countable set S, we call a function π : S 7→ [0, 1] a distribution on S
iff
∑
s∈S π(s) = 1. We denote by Dist(S) the set of all distributions on S. Every

distribution corresponds to a vector in the vector space V(S). Furthermore as
x2 ≤ x for x ∈ [0, 1] we have

∑
s∈S π(s)2 ≤

∑
s∈S π(s) = 1, i.e. every distribution

corresponds to a vector in `2(S) ⊆ V(S).
Given an equivalence relation ∼ on S and a distribution π on S, the lifting of

π to the set of equivalence classes of ∼ in S, S/∼, is defined for each equivalence
class [s] ∈ S/∼ by π([s]) =

∑
s′∈[s] π(s′). It is straightforward to show that this

is indeed a distribution on S/∼ (e.g. [19, Def 1 & Thm 1]). We write π ∼ % if
the lifting of π and % coincide.

Definition 3. A probabilistic transition system is a tuple (S,A,−→, π0), where:

– S is a non-empty, countable set of states,
– A is a non-empty, finite set of actions,
– −→ ⊆ S ×A×Dist(S) is a transition relation, and
– π0 ∈ Dist(S) is an initial distribution on S.

For s ∈ S, α ∈ A and π ∈ Dist(S) we write s α−→ π for (s, α, π) ∈ −→. By
s

α−→π(t) t we denote the transition to individual states t with probability π(t).
The above definition of a PTS allows for fully probabilistic as well as non-

deterministic transitions as there might be more than one distribution associated
to a state s and an action α. In this paper we will concentrate on fully proba-
bilistic models where a non-deterministic choice never occurs.

Definition 4. Given a probabilistic transition system X = (S,A,−→, π0), we
define its matrix or operator representation X = (M(X),M(π0)) as the direct
sum of the operator representations of the transition relations for each α ∈ A:

M(X) =
⊕
α∈A

M( α−→),

and |A| copies of the vector representing π0: M(π0) =
⊕

α∈A π0.

In the following we will denote M( α−→) by Mα.
Given a set {Mi}ki=1 of ni×mi matrices, then the direct sum of these matrices

is given by the (
∑k
i=1 ni)× (

∑k
i=1mi) matrix:

M =
⊕
i

Mi =


M1 0 0 . . . 0
0 M2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Mk





Distributions are represented by vectors in the vector space `2(S)⊕ . . .⊕`2(S) =
(`2)|A| ⊆ V(S)|A|. The matrix M(X) represents a linear operator on this space.

It is easy to see that starting with M(π0) and applying M(X) repeatedly for
n steps we get the distributions corresponding to the n-step closure of −→ (by
summing up the factors in the direct sum). More precisely:

– Take an initial π0 ∈ Dist(S) and represent it as a vector M(π0) ∈ V(S)
– Combine |A| copies of M(π0) to obtain M(π0)|A| =

⊕
α∈AM(π0).

– Apply M(X) =
⊕

α∈AMα to this vector.
– Obtain (

⊕
α∈AMα)(M(π0)|A|) =

⊕
α∈AMα(M(π0)).

– Denote the factors by M(π′α) = Mα(M(π0)).
– Construct the compactification M(π1) =

∑
α∈AM(π′α).

– Restart the iteration process with π1.

For the sake of simplicity we will denote by PX the multiplication of a direct
sum

⊕
α P of the same matrix P with the matrix X =

⊕
α Xα. By the properties

of the direct sum this is the same as
⊕

α(PXα).
Given a PTS X = (S,A,−→, π0) and a state p ∈ S, we denote by Sp ⊆ S

the set of all states reachable from p, by T (p) the transition system induced on
the restricted state space Sp, and by M(p) the matrix representation of T (p).

3 Probabilistic Abstract Interpretation

Probabilistic Abstract Interpretation was introduced in [13, 14] as a probabilistic
version of the classical abstract interpretation framework by Cousot & Cousot
[5, 6]. This framework provides general techniques for the analysis of programs
which are based on the construction of safe approximations of concrete semantics
of programs via the notion of Galois connection [7, 25]. Probabilistic abstract
interpretation re-casts these techniques in a probabilistic setting, where linear
spaces replace the classical order-theoretic based domains, and the notion of
Moore-Penrose pseudo-inverse of a linear operator replaces the classical notion
of a Galois connections. It is thus essentially different from approaches applying
classical abstract interpretation to probabilistic domains [24].

By a probabilistic domain we mean a space which represents the distributions
Dist(S) on the state space S of a PTS, i.e. in our setting the Hilbert space `2(S).
For finite state spaces we can identify V(S) ' `2(S).

Definition 5. Let C and D be two probabilistic domains. A probabilistic ab-
stract interpretation is a pair of bounded linear operators A : C → D and
G : D → C, between (the concrete domain) C and (the abstract domain) D,
such that G is the Moore-Penrose pseudo-inverse of A, and vice versa.

The Moore-Penrose pseudo-inverse is usually considered in the context of
so-called least-square approximations as it allows the definition of an optimal
generalised solution of linear equations. The Moore-Penrose pseudo-inverse of a
linear map between two Hilbert spaces is defined as follows (for further details
see e.g. [4], or [3]):



Definition 6. Let C and D be two Hilbert spaces and A : C 7→ D a linear map
between them. A linear map A† = G : D 7→ C is the Moore-Penrose pseudo-
inverse of A iff

A ◦G = PA and G ◦A = PG

where PA and PG denote orthogonal projections onto the ranges of A and G.

A simple method for constructing a probabilistic abstract interpretation
which we will use in this paper is as follows: given a linear operator Φ on some
Hilbert space V expressing the probabilistic semantics of a concrete system, and
a linear abstraction function A : V 7→ W from the concrete domain into an
abstract domain W, we compute the Moore-Penrose pseudo-inverse G = A† of
A. The abstract semantics can then be defined as the linear operator on the
abstract domain W:

Ψ = A ◦ Φ ◦G.

Moore-Penrose inverses always exist for operators on finite dimensional vector
spaces [3]. For operator algebras, i.e. operators over infinite dimensional Hilbert
spaces, the following theorem provides conditions under which the existence of
Moore-Penrose inverses is guaranteed [3, Thm 4.24]:

Theorem 1. An operator A : C → D between two Hilbert spaces is Moore-
Penrose invertible if and only if it is normally solvable, i.e. if its range {Ax | x ∈
C} is closed.

For the special case of operators A which are defined via an approximating
sequence (An)n of finite-dimensional operators, we are not only guaranteed that
the Moore-Penrose pseudo-inverse exists, but we can also construct it via an
approximation sequence provided that the sequence (An)n and the sequence
(A∗n)n of their adjoints converges strongly to A and A∗ [3, Cor 4.34]. In the
strong operator topology a sequence of operators (An)n converges strongly if
there exists an A ∈ B(`2) such that for all x ∈ `2: lim

n→∞
‖Anx−Ax‖ = 0.

Proposition 1. Let A : C → D be an operator between two separable Hilbert
spaces. If there is a sequence An of finite dimensional operators with supn ‖An‖ <
∞ and such that An → A and A∗n → A∗ strongly, then A is normally solvable
and A†n → A† strongly.

This construction is sufficient for most cases as it can be shown that the
operational or collecting semantics of finitely branching processes can always be
approximated in this way [15].

4 Approximate Process Equivalences

In the classical approaches process equivalences are qualitative relations. Alter-
natively, process equivalences can be seen as a kind of quantitative relations,
namely probabilistic relations. One advantage of having a quantity (the proba-
bility) attached to a relation is that we can calculate the behavioural difference



between two processes and use the resulting quantity to define approximate no-
tions of equivalences. The latter weaken strict equivalences by identifying pro-
cesses whose behaviour is “the same up to ε”, ε being the approximation error.

The ε versions of process equivalences are closely related to approaches which
aim to distinguish probabilistic processes by statistical testing. A general set-
ting for a statistical interpretation of ε is provided by the concept of hypothesis
testing, see e.g. [28]. The problem can be stated as follows: given two processes
A and B let us assume that one of these is executed as a black-box process
X, i.e. we know that either X = A or X = B. The idea is to formulate two
(exclusive) hypotheses H0 : X is A and H1 : X is B. The aim is to determine
the probability that either H0 or H1 holds based on a number of statistical tests
performed on X. The number ε gives us a direct measure for how many tests
we have to perform in order to accept H0 or H1 with a certain confidence. In
essence: the smaller the ε, the more tests we have to perform in order to obtain
the same level of confidence.

The details of the exact relation between the number of required tests n to
distinguish H0 and H1 with a certain confidence α are not easy to be worked out
in general, but can in principle be achieved using methods from mathematical
statistics. More details for a concrete case — applied to the problem of proba-
bilistic confinement related to the simple notion of process equivalence based on
input/output observables — can be found in [12, 11].

Approximate equivalences turn out to be very useful in program analysis
where they can be used to define approximate and yet more realistic analyses of
programs properties, such as confinement [12, 11, 10], which are directly defined
in terms of some process equivalences.

In order to define approximate process equivalences we first look at rela-
tions as linear operators; then using an appropriate operator norm we measure
the “distance” between relations. In this way we are able to define a relation
which is ε-close to the strict (original) equivalence. For the characterisation of
equivalence relations as linear operators we use the framework of probabilistic
abstract interpretation. In particular, we will show that each equivalence on
a given system corresponds to a pair of Moore-Penrose pseudo-inverses which
define a probabilistic abstract interpretation of the system.

4.1 Graph Equivalence

To illustrate our basic strategy for approximating process equivalences let us
first look at the strongest — in some sense too strong [31, Fig 1] — notion of
process equivalence, that is tree equivalence. Following [31, Def 1.3] the graph
associated to a process p of a labelled transition system with actions A is a
directed graph rooted in p whose edges are labelled by elements in A. Two
processes are tree equivalent if their associated graphs are isomorphic. Graph
isomorphism is defined as follows ([31, Def 1.3,Def 1.4], [17, p2]):

Definition 7. An isomorphism between directed graphs (V1, E1) and (V2, E2) is
a bijection ϕ : V1 7→ V2 such that 〈v, w〉 ∈ E1 ⇔ 〈ϕ(v), ϕ(w)〉 ∈ E2.



In the usual way, we define the adjacency operator A(X) of a directed graph
X = (V,E) as an operator on `2(V ) representing the edge-relation E [23]. Then
the notion of isomorphism between (finite) graphs can be re-stated in terms of
permutation matrices.

An n × n-matrix P is called a permutation matrix if there exists a permu-
tation π : {1, . . . , n} → {1, . . . , n} such that Pij = 1 iff j = π(i) and otherwise
Pij = 0. This notion can easily be extended to permutation operators for infinite
structures.

We denote by P(n) the set of all n × n permutation matrices and by P(H)
the set of permutation operators on H; obviously we have P(n) = P(Cn).

Proposition 2. For any permutation operator P ∈ P(H) the following holds:
P−1 = P∗ = PT = P†, i.e. inverse, adjoint, transpose, and pseudo-inverse of
permutation operators coincide.

We then have the following result [17, Lemma 8.8.1]:

Proposition 3. Let X = (V,E1) and Y = (V,E2) be two directed graphs on the
same set of nodes V . Then X and Y are isomorphic if and only if there is a
permutation operator P such that the following holds: PTA(X)P = A(Y ).

By using these notions and the operator representation of (probabilistic) tran-
sition systems (cf. Definition 4) we can reformulate tree-equivalence of processes
as follows.

Proposition 4. Given the operator representations X and Y of two probabilis-
tic transition systems X = (S,A,−→, s0) and Y = (S′, A,−→′, s′0) with |S| =
|S′|, then X and Y are tree-equivalent iff there exists P ∈ P(`2(S)) = P(`2(S′)),
such that:

PTXP = Y,

i.e. for all α ∈ A we have PTM( α−→)P = M( α−→
′
) and PTπ0P = π′0.

Therefore, tree equivalence of two systems X and Y corresponds to the exis-
tence of an abstraction operator (the operator P) which induces a probabilistic
abstract interpretation Y of X.

Approximate Graph Equivalence. In the case where there is no P which satisfies
the property in Proposition 4, i.e. X and Y are definitely not isomorphic, we
could still ask how close X and Y are to being isomorphic. The most direct
way to define a kind of “isomorphism defect” would be to look at the difference
X−Y between the operators representing X and Y and then measure in some
way, e.g. using a norm, this difference.

Obviously, this is not the idea we are looking for: it is easy to see that the
same graph — after enumerating its vertices in a different ways — has different
adjacency operators; it would thus have a non-zero “isomorphism defect” with
itself. To remedy this we have to allow first for a reordering of vertices before
we measure the difference between the operators representing two probabilistic
transition systems. This is the underlying idea behind the following definition.



Definition 8. Let X = (S,A,−→, π0) and Y = (S′, A,−→′, π′0) be probabilistic
transition systems over the same set of actions A, and let X and Y be their
operator representations. We say that X and Y are ε-graph equivalent, denoted
by X ∼εi Y , iff

inf
P∈P
‖PTXP−Y‖ = ε

where ‖.‖ denotes an appropriate norm.

Note that, in the case of finite probabilistic transition systems, for ε = 0 we
recover the original notion of (strict) graph equivalence, i.e. ∼i=∼0

i .

Proposition 5. An ε-isomorphism for ε = 0, i.e. ∼0
i , of finite transition sys-

tems is an isomorphism.

We believe that a similar proposition can be stated for infinite PTS’s too.
However, this would require the development of a more elaborate operator alge-
braic framework for modelling PTS’s than the one presented in this paper, and
we refer to [15] for a more detailed treatment of this case.

4.2 Probabilistic Bisimulation Equivalence

The finest process equivalence is bisimulation equivalence [31]. Bisimulation is
a relation on processes, i.e. states of a labelled transition system. Alternatively,
it can be seen as a relation between the transition graphs associated to the
processes. The classical notion of bisimulation equivalence for labelled transition
systems is as follows, e.g. [31, Def 12]:

Definition 9. A bisimulation is a binary relation ∼b on states of a labelled
transition system satisfying for all α ∈ A:

p ∼b q and p α−→ p′ ⇒ ∃q′ : q α−→ q′ and p′ ∼b q′,
p ∼b q and q α−→ q′ ⇒ ∃p′ : p α−→ p′ and q′ ∼b p′.

Given two processes p and q, we say that they are bisimilar if there exists a
bisimulation relation ∼b such that p ∼b q. Bisimulations are equivalence relations
[31, Prop 8.1].

The standard generalisation of this notion to probabilistic transition systems,
i.e. probabilistic bisimulation, is due to [21]. We will concentrate here on fully
probabilistic systems or reactive systems in the terminology of [19]. In this model
all states s ∈ S are deterministic in the sense that for each action α ∈ A, there
is only one distribution π such that s α−→ π.

Definition 10. [19, Def 4][9, Def 3.2] A probabilistic bisimulation is an equiv-
alence relation ∼b on states of a probabilistic transition system satisfying for all
α ∈ A:

p ∼b q and p α−→ π ⇒ q
α−→ % and π ∼b %.



We now introduce the notion of a classification operator which we will use
to define a probabilistic bisimulation equivalence via a probabilistic abstract
interpretation. A classification matrix or classification operator is given by an
(infinite) matrix containing only a single non zero entry equal to one in each row,
and no column with only zero entries. Classification operators simply represent a
classical relation, i.e. is a 0/1 matrix, which happens to be a (surjective) function
from one state space into another.

Classification matrices and operators are thus particular kinds of stochastic
matrices and operators. We denote by C(n,m) the set of all n×m-classification
matrices, and by C(H1,H2) the set of classification operators; again we have
C(n,m) = C(Cn,Cm).

Obviously, every permutation matrix is also a classification matrix: P(n) ⊆
C(n, n), and similarly P(H) ⊆ C(H,H). Furthermore, the multiplication of two
classification operators gives again a classification operator. These properties
follow easily from the following correspondence between classification operators
and equivalence relations:

Proposition 6. Let X be a countable set. Then for each equivalence relation
≈ on X there exists a classification operator K ∈ C(`2(X), `2(X/≈)) and vice
versa.

For finite sets with |X| = n and |X/≈| = m we get a classification matrix in
C(n,m).

Proposition 7. The pseudo-inverse of a classification operator K corresponds
to its normalised transpose or adjoint (these operations coincide for real K).

The normalisation operation N is defined for a matrix A by N (A)ij = Aij

aj
if

aj =
∑
i Aij 6= 0 andN (A)ij = 0 otherwise. Although the classification operator

K represents a classical function, i.e. corresponds to an (infinite) 0/1-matrix, the
pseudo-inverse will in general not be an (infinite) 0/1-matrix.

It is easy to see that a probabilistic bisimulation equivalence ∼ on a PTS
T = (S,A,→, π0) defines a probabilistic abstract interpretation of T . In fact, by
Proposition 6, there is a classification matrix K ∈ C(`2(S), `2(S′), for some S′

which represents ∼. If M(T ) is the operator representation of T then K†M(T )K
is the abstract operator induced by K. Intuitively, this is an operator which
abstracts the original system T by encoding only the transitions between equiv-
alence classes instead of the ones between single states.

Consider now two processes p, q ∈ S and their operator representations M(p)
and M(q). The restrictions of K to these two sets of nodes, which we call Kp

and Kq, are the abstraction operators for the two processes p and q and allow
us to express exactly the condition for the probabilistic bisimilarity of p and q:

Proposition 8. Given the operator representation M(p) and M(q) of two prob-
abilistic processes p and q, then p and q are bisimilar iff there exists a Kp ∈
C(`2(Sp), `2(S)) and Kq ∈ C(`2(Sq), `2(S)) for some set S such that

K†pM(p)Kp = K†qM(q)Kq.



Corollary 1. Given the matrix representation M(p) and M(q) of two processes
p and q. Then p and q are bisimilar, i.e. p ∼b q, iff there exists a PTS x which
is the probabilistic abstract interpretation of both p and q.

Example 1. Consider the following two processes A and B from [21, Fig.4]:

•1
1
3 :a

~~~~~~~~~
1
3 :a

��

1
3 :a

  @@@@@@@

•2

1:b

��

•3

1:b

��

•4

•5 •6

•1
2
3 :a

~~~~~~~~~ 1
3 :a

  @@@@@@@

•2

1:b

��

•3

•4

The corresponding matrices are:

M(A) = Ma(A)⊕Mb(A) =


0 1

3
1
3

1
3 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊕


0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and

M(B) = Ma(B)⊕Mb(B) =


0 2

3
1
3 0

0 0 0 0
0 0 0 0
0 0 0 0

⊕


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


The classification operators and their pseudo-inverses are given by:

KA =


1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 K†A =


1 0 0 0 0 0
0 1

2
1
2 0 0 0

0 0 0 1 0 0
0 0 0 0 1

2
1
2



and KB and K†B are simply 4× 4 identity matrices. We then get:

K†A ·Ma(A) ·KA = Ma(B)

K†A ·Mb(A) ·KA = Mb(B)

which shows that A and B are probabilistically bisimilar.

The matrix formulation of (probabilistic) bisimulation makes it also easy to
see how graph and bisimulation equivalence are related, as P(n) ⊂ C(n, n) we
have:



Proposition 9. If p ∼i q then p ∼b q.

Note that probabilistic bisimulation is only related to a particular kind of
probabilistic abstract interpretation: we consider only abstractions which are
induced by classification matrices and not by more general ones. The relation
between abstract interpretation and (bi)simulation has been recognised before
in the classical Galois connection based setting ([8], [27]), but this appears to be
the first investigation of such a relation in a probabilistic setting.

Approximate Bisimulation Equivalences. When it is not possible to find a bisim-
ulation equivalence for two processes p and q of a PTS T , we can still identify
them although only approximately. In order to do so, we introduce an ε-version
of probabilistic bisimilarity. The intuitive idea is to find a classification operator
K which is the closest one to a bisimulation relation in which p and q are equiv-
alent. The difference between the abstract operators induced by K for the two
processes will give us an estimate of the non-bisimilarity degree of p and q.

Definition 11. Let T = (S,A,−→, π0) be a probabilistic transition systems and
let p and q be two states in S with operator representations X and Y. We say
that p and q are ε-bisimilar, denoted by p ∼εb q, iff

min
Kp,Kq∈C

‖K†pXKp −K†qYKq‖ = ε

where ‖.‖ denotes an appropriate norm.

In determining the “degree of similarity” ε of two processes X and Y our
aim is to identify two “abstract processes” K†pXKp and K†qXKq such that their
behaviour is most similar. The concrete numerical value of ε depends on the norm
we choose and the type of classification operators we consider. In particular,
we can strengthen the above definition by restricting the number of “abstract
states”, i.e. the dimension of Kp and Kq, in order to obtain an estimation ε
relative to only those equivalences with a fixed number of classes.

Note that it is possible to use this definition also to introduce an approximate
version of the classical notion of bisimulation. Furthermore, for ε = 0 we recover
partially the original notion of strict (probabilistic)bisimulation:

Proposition 10. An ε-bisimulation for ε = 0, i.e. ∼0
b , is a (probabilistic) bisim-

ulation for finite transition systems.

For infinite PTS, the same remarks as for Proposition 5 apply.

Example 2. In this example we will use a more “probabilistic” form of PTS
which are called generative in [26]. In this model the probability distribution on
the branching takes into account the internal decision of the process to react to
a given action. Thus the transition relation is a subset of S ×Dist(A× S).

Let us compare the following, obviously somehow “similar”, processes:

A ≡ fix A.b : A+ 1
2
a : 0



B ≡ a : 0 + 3
4

(fix X.b : X + 1
2
a : 0)

C ≡ a : 0 + 1
2

(fix X.b : X + 51
100

a : 0)

Their transition graphs are given by:

•1 1
2 :bgg

1
2 :a

��
•2

•1

1
4 :a

��

3
4 :b

  @@@@@@@

•2 •3 1
2 :bgg

1
2 :a

��
•4

•1

1
2 :a

��

1
2 :b

  @@@@@@@

•2 •3 49
100 :bgg

51
100 :a

��
•4

These processes are not probabilistically bisimilar. However one can try to
determine how similar they are. The matrix representations are as follows:

A = M(A) = Ma(A)⊕Mb(A) =
(

0 1
2

0 0

)
⊕
(

1
2 0
0 0

)

B = M(B) = Ma(B)⊕Mb(B) =


0 1

4 0 0
0 0 0 0
0 0 0 1

2
0 0 0 0

⊕


0 0 3
4 0

0 0 0 0
0 0 1

2 0
0 0 0 0



C = M(C) = Ma(C)⊕Mb(C) =


0 1

2 0 0
0 0 0 0
0 0 0 51

100
0 0 0 0

⊕


0 0 1
2 0

0 0 0 0
0 0 49

100 0
0 0 0 0


The problem is to find a KA,KB , and KC ∈ C such that the norm of the

difference between K†AAKA and K†BBKB or K†CCKC is minimal. There is
only a finite (though exponentially growing) number of possible classification
operators K ∈ C. A brute force approach looking at all possible K allows us
to determine the ε-bisimilarity of A and B, and of A and C. Interestingly the
optimal K = KB = KC is coincidentally the same for both B and C:

K =


1 0
0 1
1 0
0 1

 K† =
(

1
2 0 1

2 0
0 1

2 0 1
2

)
,

while for KA we can take the identity.
Measuring the difference based on the operator norm leads to the following:

inf
K∈C
‖A−K†BK‖ =

1
8
, inf

K∈C
‖A−K†CK‖ =

1
200

.



5 Conclusions

In this paper we have investigated quantitative relations, in particular proba-
bilistic transition relations. We were able to extend the classical framework of
Abstract Interpretation to a quantitative domain by taking the Moore-Penrose
pseudo-inverse as an appropriate replacement for the order-theoretic concept
of Galois connections. Based on this methodology of Probabilistic Abstract In-
terpretation, previously introduced only in a finite dimensional setting [13], we
recast (probabilistic) process equivalences in terms of linear operators. This for-
mulation has a very strong resemblance to notions of similarity in mathematical
control theory, e.g. [29, Def 4.1.1]. Finally we were able to weaken strict process
equivalences to approximate ones. This provides a novel approach towards the
notion of approximative or ε-bisimilarity and adds new aspects to existing ap-
proaches, like those based on metrics [16] or pseudo-metrics [9, 30]. In particular,
our approach allows for a statistical interpretation of the approximation ε which
relates this quantity to the number of tests we need to perform in order to accept
a given hypothesis with a certain confidence in a “hypothesis testing” approach
to statistical testing. This is particularly important in a security context; we
are confident that these notions of approximate similarity can be fruitfully em-
ployed in security related applications, such as approximate confinement, which
provided the original motivation for this work [12]. Aldini et al. adopted a similar
approach to study probabilistic non-interference in a CSP-like language [1].
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