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Abstract. In order to perform probabilistic program analysis we need
to consider probabilistic languages or languages with a probabilistic se-
mantics, as well as a corresponding framework for the analysis which
is able to accomodate probabilistic properties and properties of proba-
bilistic computations. To this purpose we investigate in this paper the
relationship between three different types of probabilisitic semantics for
a core imperative language, namely Kozen’s Fixpoint Semantics (KFS),
our Linear Operator Semantics (LOS) as well as probabilistic versions
of Maximal Trace Semantics (MTS). We also discuss the relationship
between Probabilistic Abstract Interpretation (PAI) and statistical or
linear regression analysis. While classical Abstract Interpretation, based
on Galois connection, allows only for worst-case analyses, the use of the
Moore-Penrose pseudo inverse in PAI opens the possibility of exploiting
statistical and noisy observations in order to analyse and identify various
system properties.

1 Introduction

In this contribution we will address a topic that we believe is dear to the hearts
of Hanne and Flemming, namely Abstract Interpretation based techniques in
program analysis (e.g. [1–4]). We will concentrate on the treatment of the prob-
abilistic setting, where either the program or its semantics or both contain an
element of chance that can be used to refine the possible nondeterminism associ-
ated to their models. As program analysis is essentially based on the semantics of
programs, we will first describe three different probabilistic semantics that could
be used as a basis for probabilistic analysis by clarifying the differences and
relationship between them, and discussing their potential for the construction
of precise program analyses. As a result of this comparison it will be clear that
the Probabilistic Abstract Interpretation (PAI) framework originally introduced
in [5, 6] is not an instance of a probabilistic application of classical Abstract
Interpretation (AI) as recently proposed in [7] in order to analyse probabilistic
programs.

The use of linear operators on vector spaces – more concretely on Hilbert
spaces – for the definition of a probabilistic semantics is an important feature
of the Probabilistic Abstract Interpretation framework for several reasons: (i) it



provides us with a well-defined notion of generalised inverse that enjoys proper-
ties similar to the concretisation/abstraction functions in the Galois connection
framework; (ii) it allows us to exploit a well-defined metric (the Euclidean dis-
tance) in order to achieve quantitative results for our static analyses; (iii) it is an
appropriate setting where statistical models can be used to enhance the power
of static analysis techniques with information gathered via observations.

While we have variously addressed the first two points in our previous work,
the potentiality of probabilistic abstract interpretation for performing a kind of
statistical program analysis was never completely explored before. As another
result we will show in this paper that, contrary to the typical computer scientist
approach that constructs observations from models, it is sometimes useful to
define a model starting from observations, as typically done in statistics. To this
end, the particular notion of generalised inverse defining Probabilistic Abstract
Interpretation – namely the Moore-Penrose pseudo-inverse [8–10] – makes it
very natural to use statistical techniques such as linear regression [11, 10] for
constructing abstractions that are as close as possible to the actual system with
respect to the observed behaviour of the system.

2 Probabilistic Semantics

There exist a number of proposals for probabilistic languages. These can be
based on procedural languages, e.g. [12–14], functional ones, e.g. [15–17], but
also declarative ones, like [5, 18]. Besides this there is also a substantial work in
probabilistic process algebras [19, 20]. It would be impossible to discuss or even
to mention all these approaches here in detail, so we will only concentrate on a
small (core) procedural language as it can be found already, for example, in [12]
to which we will refer as pWhile.

Similarly, a number of approaches have been proposed to defining a seman-
tics for probabilistic programs, not least in order to allow for some form of static
program analysis. Usually, it is straightforward to define an operational seman-
tics for a probabilistic extension of a deterministic language; this can be achieved
for example by replacing the original (unlabelled) transition relation of an SOS
semantics with a weighted version, where the weights represent the probabili-
ties associated with random choices or assignments. Some arguably more useful
kinds of semantics are, for example, Kozen’s Fixed-Point Semantics (KFS) [12],
the Linear Operator Semantics (LOS) introduced by the authors in [21], and the
probabilistic Maximal Trace Semantics (MTS) of [7]. We will concentrate in the
following on these three models but again stress that many other approaches
exist, which are based e.g. on domain theory [22–24], weakest preconditions [25,
26], and the ‘monadic’ approach in [16, 27].

2.1 A Probabilistic Language

The syntax of the language we consider is a straightforward extension of an
imperative language with a probabilistic assignment “x ?= ρ” where ρ represents



a probability distribution on the values of x. We denote distributions as a set
of pairs {〈vi, pi〉}i which indicate that a constant value vi has probabilities pi.
As usual we require that pi > 0 (tuples with probability pi = 0 are omitted)
and

∑
i pi = 1; these probabilities are all constant, i.e. we do not consider here

dynamical changes of distributions. For so-called sub-probability distributions
we require only

∑
i pi ≤ 1.

The syntax of statements is given below. We also provide a labelled version
of this syntax (cf. [4]) in order to be able to refer to certain program points
in a program analysis context. For details on expressions f(x1, . . . , xn) (also
sometimes denoted simply by e) etc. we refer to e.g. [4, 14].

S ::= skip

| x := f(x1, . . . , xn)

| x ?= ρ

| S1; S2

| if b then S1 else S2 fi

| while b do S od

S ::= [skip]`

| [x := f(x1, . . . , xn)]`

| [x ?= ρ]`

| S1; S2

| if [b]` then S1 else S2 fi

| while [b]` do S od

It would also be possible to allow for a probabilistic choice construct of the
form “choose p1 : S1 or p2 : S2 ro”, but in order to keep things simple we
omit it in our treatment; this statement can be implemented, for example, as
c ?= ρ; if c == 0 then S1 else S2 fi with ρ = {〈0, p1〉, 〈1, p2〉}. Further details
on the (intuitive and operational) semantics of this language can be found for
example in [21, 14, 28].

Though we only deal with constant probabilities in the following we will
implicitly always normalise probabilities in a distribution (we cannot assume
that a programmer provides the correct probabilities), and we will only allow
for rational values (non-rational real values for pi raise issues of computability
we will avoid). This means that we can also require that the pi are integers
indicating the probability ratio between different alternatives.

Example 1. We will consider the following pWhile program as a running exam-
ple throughout the paper (its labelled version can be found below in Example 5):

while true do

if (x == 1)
then x ?= {〈0, p〉, 〈1, 1− p〉}
else x ?= {〈0, 1− q〉, 〈1, q〉}

fi

od

This program may be thought of implementing a scheduler in some protocol
where x 7→ 0 and x 7→ 1 determines which of two processes has, for example,
control over a communication channel.



For a language extension which allows for a probabilistic choice construct we
can implement this basic ‘scheduler’ directly as:

while true do

if (x == 1)
then choose p : x := 0 or 1− p : x := 1 ro

else choose 1− q : x := 0 or q : x := 1 ro

fi

od

Clearly the execution of this program never terminates: a random switching
between the state x 7→ 0 and x 7→ 1 is performed indefinitely according to the
probabilities p and q.

In the following we will assume that the state space (and thus the set of
configurations) is finite. This makes the treatment substantially simpler as we
can avoid topological and measure theoretic details (for which we refer to [28])
and work with just linear algebraic notions instead of functional analytical or
operator algebraic ones, cf. [29, 30] etc. This finiteness condition is fulfilled by the
example above. It should be noted that the finiteness of the state space however
still allows for infinite executions.

2.2 Kozen’s Fixed-Point Semantics (KFS)

A well-known denotational semantics for probabilistic programs was introduced
by Kozen in the 1980s [12] based on bounded Banach space operators. This is a
fixed-point I/O semantics that describes how an input probability distribution
(or in general a measure) is transformed into an output sub-probability dis-
tribution/measure. It only records contributions of terminating processes. The
probabilities of non-terminating, i.e. infinite, computations “gets lost” so the
final outcome is no longer normalised or a full probability distribution/measure.
As a consequence the semantics of all non-terminating processes is the same (cf.
also [28]).

Kozen’s language in [12] has no probabilistic choices but only random assign-
ments. It is thus only the random assignment which introduces an element of
chance into the execution of a program. However, as discussed before, the two
constructs can simulate each other.

From a conceptual point of view, probabilistic choices (or random assign-
ments) are in fact not even part of the actual executions of a program in this
setting. Instead all possible choices are made beforehand [12, Section 3.2.2,p336].
Before the execution of a program commences, all later probabilistic choices are
already resolved by picking an ω ∈ Ω where (Ω, E , µ) is an appropriate measure
space (with E the σ-algebra of measurable events and µ a probability measure).
The semantics of a program is then parametric in this event or scenario ω which
determines the probability that the otherwise deterministic execution of a pro-
gram may effectively happen.



Example 2. Consider the following simple program:

x ?= {〈0, 1

3
〉, 〈1, 2

3
〉}; x ?= {〈0, 1

2
〉, 〈1, 1

2
〉}.

The minimal event space we need for defining a semantics for this program is
Ω = {0, 1}×{0, 1} and, because this is a finite set, we can take the whole power-
set E = P(Ω) as the σ-algebra of measurable sets. The probability measure of
the elements in Ω is then: µ({(0, 0)}) = 1

6 , µ({(0, 1)}) = 1
6 , µ({(1, 0)}) = 1

3 , and
µ({(1, 1)}) = 1

3 .

After a scenario ω has been picked, the program behaves exactly as one of
the following deterministic programs:

for ω = (0, 0) we execute ”x := 0; x := 0” with probability 1
6 ,

for ω = (0, 1) we execute ”x := 0; x := 1” with probability 1
6 ,

for ω = (1, 0) we execute ”x := 1; x := 0” with probability 1
3 ,

for ω = (1, 1) we execute ”x := 1; x := 1” with probability 1
3 .

In the Kozen semantics we can identify a state with a distribution on Valuen,
where n is the number of variables and Value is the set of possible values of a
variable which we assume here – as said before – to be finite. Thus, a probabilistic
state (as a distribution σ ∈ D(Valuen)) can be seen as a normalised element (in
the sense of the 1-norm) in the vector space V(Valuen). The space V(X), which
allows for the representation of distributions as well as sub-distributions on X,
is defined as the set of linear combinations of elements in X, i.e.

V(X) =

{∑
i

λixi | xi ∈ X ∧ λi ∈ R

}
.

This space is obviously isomorphic to R|X| with |X| the cardinality of X. Vec-
tor addition and scalar product are defined pointwise. We can identify xi ∈ X
with the base vectors of V(X) and any element in V(X) with its coordinates,
i.e. the tuple (λi)i. This space is equipped with an inner product 〈(λi)i|(νi)i〉 =∑
i λiνi and various norms, e.g. ‖(λi)i‖1 =

∑
i |λi| and ‖(λi)i‖2 =

√∑
i |λi|2 =√

〈(λi)i|(λi)i〉. The choice of one norm or another is nevertheless irrelevant in
the finite dimensional case where all norms are equivalent. In fact, the topol-
ogy on finite dimensional vector spaces is uniquely determined by the algebraic
structure, cf. e.g. [31, 1.22].

The Kozen semantics of a program P is then given by the linear operator
[[P ]]KFS ∈ L(V(Valuen)) where L(X) is the set of linear maps T on X, i.e.
T(x+ y) = T(x) + T(y) and T(λx) = λT(x):

[[P ]]KFS : V(Valuen)→ V(Valuen),



which is the solution to the following set of equations:

[[skip]]KFS = I
[[x := f(x1, . . . , xn)]]KFS = U(x← f(x1, . . . , xn))

[[x ?= ρ]]KFS = (
∑
c ρ(c)U(x← c))

[[S1;S2]]KFS = ([[S1]]KFS [[S2]]KFS)
[[if b then S1 else S2 fi]]KFS = (P(b)[[S1]]KFS + P(¬b)[[S2]])

[[while b do S od]]KFS = (P(b)[[S]]KFS [[while b do S od]]KFS + P(¬b)).

The operator I represents the identity matrix on V(Valuen) with (I)vv = 1 and
0 otherwise for v = (v1, . . . , vn) ∈ Valuen. The matrix representation of the
test or projection operators P is given by a diagonal matrix with (P(b))vv = 1
if b(v) holds for v ∈ Valuen and 0 otherwise. Note that P(true) = I and that
P(¬b) = I−P(b). The assignment or update operator U is given by a matrix with
entries (U(xi ← f(x1, . . . , xn)))v,F (v) = 1 for all v ∈ Valuen and 0 otherwise,
where F : Valuen → Valuen is defined as

F (v1, . . . , vi−1, vi, vi+1, . . . , vn) = (v1, . . . , vi−1, f(v1, . . . , vn), vi+1, . . . , vn).

This definition is equivalent to that given in [12, p339]).
The existence of a solution to these equations is guaranteed in general (i.e.

also for infinite state spaces) by the Brouwer-Schauders fixed-point theorem (see
e.g. [32, 30]). The least fixed-point can be constructed iteratively via a “super-
operator” τ : L(V(Valuen)) → L(V(Valuen)) which encodes the above equa-
tions and by exploiting the lifted point-wise order on distributions/measures.

It should be noted that for infinite sets Value we need to be more careful
with respect to the topology of the state space, e.g. by considering a Banach
space like `1(Valuen) or the Hilbert space `2(Valuen), cf e.g. [29, 30]. In this
case we also need to restrict the space of operators and consider only bounded
linear maps in B(`1(Valuen)) or B(`2(Valuen)), respectively.

Example 3. Consider again the program P in Example 1. As no executions of
this program will ever terminate, there is no proper (sub-)probability distribu-
tion describing the final state. Thus Kozen’s semantics, which describes the I/O
behaviour, is trivial:

[[P ]]KFS =

(
0 0
0 0

)
= O

i.e. the zero operator [[P ]]KFS : V({x 7→ 0, x 7→ 1})→ V({x 7→ 0, x 7→ 1}).
This is also justified by the fixed-point construction described in [12, p341].

The semantics of the statement S given by

if (x == 1) then x ?= {〈0, p〉, 〈1, 1− p〉} else x ?= {〈0, 1− q〉, 〈1, q〉} fi

forming the body of the loop is easily computed as:

[[S]]KFS =

(
p 1− p

1− q q

)
,



but whatever the semantics [[S]]KFS of the body of loop is, the Kozen semantics
of the whole program P is the (appropriate) supremum of a sequence of matrices
τn(O) with n = 1, 2, 3, . . . (starting with the zero matrix O):

τn(O) =

n−1∑
k=0

(P(true)[[S]]KFS)kP(false) =

n−1∑
k=0

(I[[S]]KFS)kO = O.

That is, for all n = 1, 2, 3, . . . we have τn(O) = O and thus [[P ]]KFS = O.

To clarify the notation used in this example: We represent (sub-)distributions
(i.e. vectors) as row vectors; the application of an operator or linear map T(x)
is thus expressed by post-multiplication x ·T rather than pre-multiplication as it
can be found elsewhere (e.g. [12]).

Example 3 describes the situation of a program that does never terminate
on all inputs. More interestingly, Kozen’s semantics also allows us to model
programs that terminate with probability 0 < p < 1, as shown in the following
example.

Example 4. Consider the programs Q, Q′ and Q′′ which incorporate the program
P in Example 3:

if (x == 1)
then x := 0
else P

fi

x := 1;
if (x == 1)

then x := 0
else P

fi

x ?= {〈0, 12 〉, 〈1,
1
2 〉;

if (x == 1)
then x := 0
else P

fi

The operator [[Q]]KFS of the first program can be easily computed (based on
[[P ]]KFS in Example 3). We have the Kozen semantics of the two branches of the
if statements:

[[x := 0]]KFS =

(
1 0
1 0

)
[[P ]]KFS =

(
0 0
0 0

)
as well as for the tests guarding the if statement:

[[x = 0]]KFS =

(
1 0
0 0

)
[[x = 1]]KFS =

(
1 0
0 0

)
= I− [[x = 0]]KFS

Thus by the fifth equation in the definition of the KFS (or section (3.3.4) in [12,
p340]) we get:

[[Q]]KFS = [[x = 1]]KFS [[x := 0]]KFS + [[x = 0]]KFS [[P ]]KFS =

(
1 0
0 0

)
This means that if we have an initial state σ = (p, 1 − p)t which describes the
fact that the initial value of x is zero with probability p, and one with probability
1 − p, then σ[[Q]]KFS = (p, 0)t (where .t denotes the transposition). This is in



general (unless p = 1) only a sub-probability distribution expressing the fact
that this program will terminate with probability p with a zero value for x and
that with probability 1− p we have non-termination.

If we consider instead the second program Q′ then we have

[[x := 1]]KFS =

(
0 1
0 1

)
and thus [[Q′]]KFS = [[x := 1]]KFS [[Q′]]KFS =

(
1 0
1 0

)
That means that independently of the initial value of x we always get (i.e. with
probability one) a termination and a zero value for x.

Finally, if we consider the program Q′′ we get

[[Q′′]]KFS =

(
1

2
[[x := 0]]KFS +

1

2
[[x := 1]]KFS

)
[[Q]]KFS =

(
1
2 0
1
2 0

)
Here we terminate (again with the resulting x being zero) with a half probability,
independently from the initial value of x.

2.3 Linear Operator Semantics (LOS)

The Linear Operator Semantics in [21, 28] constructs the generator of a Discrete
Time Markov Chain (DTMC) in a syntax directed fashion. Like Kozen’s seman-
tics we can represent the LOS as an operator on the vector space of probabilistic
states, i.e. in the finite case as a matrix. In the general case of infinite dimen-
sional state spaces, the LOS is defined on Hilbert spaces instead of the Banach
spaces used in the Kozen semantics. This difference is however irrelevant in the
finite case.

It is possible to obtain the DTMC generator representing the LOS of a pro-
gram in an unstructured way, simply as a translation of the SOS transition
relation (e.g. [5]) into a corresponding (adjacency) matrix. The structured, i.e.
syntax directed, approach at the base of LOS is based in particular on a tensor
(or Kronecker) product construction “⊗” (cf. e.g. [33, 34] or [21]).

The state space is constructed starting from the classical states, i.e. states
that associate concrete values in vi ∈ Value to variables xi ∈ Var = {x1, . . . , xn}.
The classical state space can therefore be defined as State = Var → Value or
equivalently State = Value1 × . . .×Valuen = Valuen.

In order to describe the probabilistic state of a computation we consider
(probability) distributions over (classical) states again – as in Kozen’s con-
struction – as elements in V(Valuen). However, we can use the tensor prod-
uct operation “⊗” to decompose this probabilistic state space, i.e. V(X × Y ) =
V(X)⊗V(Y ) and represent probabilistic states thus as elements in V(Valuen) =
V(Value1)⊗ V(Value2)⊗ . . .⊗ V(Valuen) = V(Value)⊗n.

The LOS is based on the labelled version of the syntax of pWhile. This
means that we can record not only the values of all variables but also the cur-
rent point in the program we are executing, the “program counter” value. That
means that the state space of the corresponding DTMC are (probabilistic) con-
figurations which also contain information about the current label, i.e. with



Conf = State × Label we consider distributions in D(Conf) ⊆ V(Conf) =
V(State)⊗ V(Label) = V(Value)⊗n ⊗ V(Label).

The LOS, [[P ]]LOS , of a program P is constructed by means of a set, {{P}}LOS
which associated to a program P is a set of linear operators which describe
local changes (at individual labels). From {{P}}LOS we can construct the DTMC
generator [[P ]]LOS then as an operator

[[P ]]LOS : V(Valuen)⊗ V(Label)→ V(Valuen)⊗ V(Label)

or simply [[P ]]LOS ∈ L(V(Conf)). We obtain it by combining all the individual
effects which are described in {{P}}LOS :

[[P ]]LOS =
∑
{{P}}LOS =

∑
{G | G ∈ {{P}}LOS}.

The {{S}}LOS associated to a statement S is given by a set of global and
local operators, i.e. {{.}}LOS : Stmt → P(Γ ∪ Λ). Global operators are linear
operators on V(Conf) i.e. Γ = L(V(Valuen) ⊗ V(Label)) = L(V(Conf)), and
local operators are pairs of operators on V(State) and labels ` ∈ Label, i.e.
Λ = L(V(Valuen))× Label.

Global operators are providing information about how the computational
state changes at a label as well as the control flow, i.e. what is the label of the
next statement to be executed. Local operators are representing statements for
which the “continuation” is not yet known. In order to transform local operators
into global ones (once the “continuation” is known) we define a “continuation”
operation 〈F, `〉� `′ = F⊗E(`, `′) which we extend in the obvious way to sets of
(local) operators as {〈Fi, `i〉}}�`′ = {Fi⊗E(`i, `

′)} (for global operators, clearly,
we have G� `′ = G). We denote by E(i, j) matrix units, i.e. (E(i, j))ij = 1 and
0 otherwise.

The set {{S}}LOS of operators for a statement S is defined inductively (based
on the syntax of S) as follows:

{{[skip]`}}LOS = {〈I, `〉}
{{[x := e]`}}LOS = {〈U(x← e), `〉}
{{[x ?= ρ]`}}LOS = {〈

∑
〈r,p〉∈ρ

p ·U(x← r), `〉}

{{S1; S2}}LOS = ([[S1]] � init(S2)) ∪ [[S2]]

{{if [b]` then S1 else S2 fi}}LOS = {〈P(b), `〉}� init(S1)} ∪ {{S1}}LOS ∪
{〈P(b)⊥, `〉}� init(S2)} ∪ {{S2}}LOS

{{while [b]` do S od}}LOS = {〈P(b), `〉}� init(S)} ∪ {{S}}LOS ∪ {〈P(b)⊥, `〉}

We use elementary update and test operators U and P (and its complement
P⊥ = I − P) as in Kozen’s semantics. However, the tensor product structure
allows us to define these operators in a different (but equivalent) way.

For a single variable the assignment to a constant value v ∈ Value is repre-
sented by the operator on V(Value) given by U(v) = 1 if v = i and 0 otherwise.



Testing if a single variable satisfies a boolean test b is achieved by a (diagonal)
projection operator on V(Value) with (P(b))ii = 1 if b(i) holds and 0 otherwise.

We extend these to the multivariable case, i.e. for |Var| = n > 1. For testing if
we are in a classical state s ∈ Valuen or if an expression e evaluates to a constant
v (assuming an appropriate evaluation function E : Expr → State → Value)
we have operators on V(Value)⊗n:

P(s) =

n⊗
i=1

P(xi = s(xi)) P(e = v) =
∑
E(e)s=v

P(s).

We also have operators on V(Value)⊗n for updating a variable xk in the context
of other variables to a constant v or to the value of an expression e:

U(xk ← v) =

k−1⊗
i=1

I⊗U(v)⊗
n⊗

i=k+1

I U(xk ← e) =
∑
v

P(e = v)U(xk ← v)

As we model the semantics of a program as DTMC’s we are also adding a
final loop `∗ (for `∗ a fresh label not appearing already in P ) when we consider
a complete program (DTMC never terminate and thus we have to simulate
termination by an infinite repetition of the final state), i.e. we actually have to
use ({{P}}LOS � `∗)∪ {I⊗E(`∗, `∗)} when we construct [[P ]]LOS . In this way we
also resolve all open or dangling control flow steps, i.e. we deal ultimately with
a set containing only global operators.

Example 5. Consider the labelled version of the program in Example 1

while [true]1 do

if [(x == 1)]2

then [x ?= {〈0, p〉, 〈1, 1− p〉}]3
else [x ?= {〈0, 1− q〉, 〈1, q〉}]4

fi

od

In order to define the LOS of this program we construct the state space as
V({x 7→ 0, x 7→ 1}) = R2 (since we have only one variable we do not need
the tensor product for this). The space of configurations is V({x 7→ 0, x 7→
1}) ⊗ V({1, 2, 3, 4, 5}), where label 5 is the label of the additional final loop.
We will omit the final label (which in this program we actually never reach)
in order to keep things a bit smaller. Nothing important would change if we
considered label 5 except that we had to include also the operator I⊗E(5, 5) as
an element in {{P}}LOS and we had to consider 5× 5 matrices rather than just
4× 4 matrixes in order to represent the control flow steps E(i, j). The LOS set
of operators {{P}}LOS of our program P is given by the following set of (global)
operators:

{{P}}LOS = {P(true)⊗E(1, 2),P(x = 1)⊗E(2, 3),P(x = 1)⊥ ⊗E(2, 4),

(p ·U(x← 0) + (1− p) ·U(x← 1)⊗E(3, 1),

((1− q) ·U(x← 0) + q ·U(x← 1)⊗E(4, 1)}



The concrete matrices representing the operators on V({x 7→ 0, x 7→ 1}) ⊗
V({1, 2, 3, 4}) are of the following form:

{{P}}LOS =

{(
1 0
0 1

)
⊗E(1, 2),

(
0 0
0 1

)
⊗E(2, 3),

(
1 0
0 0

)
⊗E(2, 4),((

p 0
p 0

)
+

(
0 (1− p)
0 (1− p)

))
⊗E(3, 1),

((
(1− q) 0
(1− q) 0

)
+

(
0 q
0 q

))
⊗E(4, 1)

}
or

{{P}}LOS =


(

1 0
0 1

)
⊗


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

(
0 0
0 1

)
⊗


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

(
1 0
0 0

)
⊗


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

(
p (1− p)
p (1− p)

)
⊗


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,

(
(1− q) q
(1− q) q

)
⊗


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0




The sum of these five 8 × 8 matrices gives the operator [[P ]]LOS which is the
generator of the corresponding DTMC. If we consider also the final label `∗ = 5
then we get a 10× 10 matrix. For p = q = 1

2 this has, for example, the form:

[[P ]]LOS =



0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0
1
2 0 0 0 0 1

2 0 0 0 0
1
2 0 0 0 0 1

2 0 0 0 0

0 0 0 0 0 0 0 0 0 1



. . . x 7→ 0, ` = 1

. . . x 7→ 0, ` = 2

. . . x 7→ 0, ` = 3

. . . x 7→ 0, ` = 4

. . . x 7→ 0, ` = 5

. . . x 7→ 1, ` = 1

. . . x 7→ 1, ` = 2

. . . x 7→ 1, ` = 3

. . . x 7→ 1, ` = 4

. . . x 7→ 1, ` = 5

where we indicate the configuration (i.e. value of x and current label `) each row
and column corresponds to. It is perhaps worth noting that this – as one would
expect for a DTMC – is indeed a stochastic matrix, i.e. all row sums are one.

There is a close relationship between the KFS and the LOS as for basic
blocks B – i.e. (random) assignments, tests and skips – the LOS operator is
the same as the KFS operator except for an additional control flow step. That
means that {{. . . [B]i . . .}}LOS = {. . . , 〈[[B]]KFS , i〉, . . .} or {{. . . [B]i . . .}}LOS =
{. . . , [[B]]KFS ⊗E(i, j), . . .} for some label j.



Example 6. For the programs in Example 4, labelling them as follows:

if [(x == 1)]1

then [x := 0]2

then P
fi

[x := 1]0;
if [(x == 1)]1

then [x := 0]2

then P
fi

[x ?= {〈0, 12 〉, 〈1,
1
2 〉]

0;
if [x == 1]1

then [x := 0]2

then P
fi

(the labels of P are as in the previous example shifted by an offset of 2) we can
describe the LOS using the KFS operators as follows:

{{Q}}LOS = {[[x = 1]]KFS ⊗E(1, 2), [[x = 0]]KFS ⊗E(1, 3),

〈[[x := 0]]KFS , 2〉, 〈[[false]]KFS , 3〉} ∪ {{P}}LOS
{{Q′}}LOS = {[[x := 1]]KFS ⊗E(0, 1)} ∪ {{Q}}LOS

{{Q′′}}LOS = {(1

2
[[x := 1]]KFS +

1

2
[[x := 1]]KFS)⊗E(0, 1), } ∪ {{Q}}LOS

where we can re-use the LOS semantics of program P (with shifted labelling):

{{P}}LOS = {[[true]]KFS ⊗E(3, 4), [[x = 1]]KFS ⊗E(4, 5), [[x = 0]]KFS ⊗E(4, 6),

(p[[x := 0]]KFS + (p− 1)[[x := 1]]KFS)⊗E(5, 3),

((q − 1)[[x := 0]]KFS + q[[x := 1]]KFS)⊗E(6, 3)}

Note that the LOS of our three small programs contain not just global but
also local operators, namely 〈[[x := 0]]KFS , 2〉 and 〈[[false]]KFS , 3〉. This is be-
cause we still have to add a terminal label `∗ = 7 for the construction of the
complete DTMC generators [[Q]]LOS , etc. The terminal label can be reached
from both branches of the if statement which have the (final) labels 2 and
3. However, as [[false]]KFS is O this operator (which would correspond to a
terminating program P ) does actually not contribute to the DTMC generator.

2.4 Maximal Trace Semantics (MTS)

Maximal Trace Semantics for non-probabilistic programs has been discussed in
[35, 36] and shown to be the most concrete semantics in a hierarchy of various
semantics for (non-)deterministic programs. In [7] the MTS is extended to the
probabilistic case.

Similar to the Kozen semantics, the conceptual idea is to ban any probabilis-
tic steps from the actual execution of the program: Before we actually execute
the program all probabilistic choices (coin flips, rolling of dices) have already
been performed. The actual execution of a program then is purely determin-
istic (or purely non-deterministic) but parameterised by the results ω ∈ Ω of
the “pre-run” choices or (cf. [7, p171]). Therefore, the execution traces/paths
depend on the outcomes of these “pre-run” events or scenarios in Ω.

Given a set of states Σ, we use the notation of [7] and denote the set of
finite traces by Σ+, by Σ∗ the set Σ+ ∪ {ε}, where ε is the empty trace of



length 0, by Σ∞ the infinite traces, by Σ+∞ = Σ+ ∪Σ∞ and by Σ∗∞ = Σ∗ ∪
Σ∞. For sets of traces X,Y, . . . in Σ∗∞, we can define the following operations:
X∞ = X ∩ Σ∞, X+ = X ∩ Σ+, X|Y = {sσX ∈ X | ∃σ : σs ∈ Y +}, and
X;Y = X∞ ∪ {σXsσY | σXs ∈ X+ ∧ sσY ∈ Y }.

The MTS is then defined as [[S]]MTS : Stmt → Ω → P(Σ+∞) where Σ =
State (one could also consider Σ = Conf, more on this later). In order to
combine non-determinism with probabilities each scenario ω ∈ Ω is associated
to a whole set of possible traces. Thus [[S]]MTS is defined by (cf [7, Example 4]):

[[skip]]MTS(ω) = {ss | s ∈ Σ}
[[x := e]]MTS(ω) = {ss[x 7→ [[e]](ω)s] | s ∈ Σ}
[[S1;S2]]MTS(ω) = [[S1]]MTS(ω); [[S2]]MTS(ω)

[[b]]MTS(ω) = {s | [[b]](ω)s}
[[if b then S1 else S2 fi]]MTS(ω) = [[b]]MTS(ω); [[S1]]MTS(ω) ∪ [[¬b]]MTS(ω); [[S2]]MTS(ω)

[[while b do S od]]MTS(ω) = lfpλX.[[b]]MTS(ω) ∪ [[¬b]]MTS(ω); [[S]]MTS(ω);X

According to the definition in [7, Example 4] the evaluation [[e]] of an expression
e depends on the scenario ω, i.e. [[e]] : Ω → (Σ → Σ), and in a similar way
for Boolean expressions b. The language considered in [7] does actually not have
neither random assignments nor a choice construct; the former, i.e. x ?= ρ, is
instead implemented via a kind of “system call”, i.e. x := random(ρ).

We can reformulate the MTS in the case of the pWhile language where no
non-determinism is present: Once a scenario ω is fixed there is only one trace
for every initial state or configuration which is actually executed. We are not
interested in the scenarios in Ω themselves but only in their probabilities µ(ω)
for ω ∈ Ω, i.e. the probability that a certain trace gets executed. Thus, for a
fixed initial state or configuration s the MTS of a program in pWhile can be
seen as a distribution over traces. The probability for each trace σ is inherited
from the scenario ω it depends on. We will use in the following the notation
{〈σ, µ(ω)〉} to express that a trace σ is executed with probability µ(σ).

It is possible to define the MTS for purely probabilistic programs – like
the ones in pWhile – directly as a map from statements to weighted traces.
[[.]]MTS : Stmt→ V(Σ+∞) is defined implicitly, i.e. as solution to the following
equations:

[[skip]]MTS = {〈ss, 1〉 | s ∈ Σ}
[[x := e]]MTS = {〈ss[x 7→ [[e]]s], 1〉 | s ∈ Σ}
[[x ?= ρ]]MTS = {〈ss[x 7→ r], ρ(r)〉 | s ∈ Σ ∧ ρ(r) 6= 0}
[[S1;S2]]MTS = [[S1]]MTS ; [[S2]]MTS

[[if b then S1 else S2 fi]]MTS = {〈s, 1〉 | for [[b]](s) = true}; [[S1]]MTS

∪ {〈s, 1〉 | for [[b]](s) = false}; [[S2]]MTS

[[while b do S od]]MTS = {〈s, 1〉 | for [[b]](s) = true}; [[S; while b do S od]]MTS

∪ {〈s, 1〉 | for [[b]](s) = false};

For the evaluation of deterministic functions or expressions e the footnotes
in [7, p173] apply, namely that [[e]] is now independent of the scenario ω. For
random assignments we produce a set of weighted traces, one trace for each



r with non-vanishing probability according to the distribution ρ. We extend
the concatenation operation for traces to probabilistic ones in the obvious way:
〈X, pX〉; 〈Y, pY 〉 = 〈X;Y, pXpY 〉 in oder to define the semantics of sequential
statements. The operation “;” also extends pointwise to sets of weighted traces
in V(Σ+∞). The union construction ∪ of sets of weighted tuples corresponds to
a sum if we take them as elements in the vector space V(Σ+∞).

It should be noted that this formulation of the MTS for a purely probabilistic
language eliminates the dependency on the scenarios ω ∈ Ω but not on the
initial state s ∈ Σ. That means that for a statement S the weighted set of traces
[[S]]MTS ∈ V(Σ+∞) does in general itself not represent a distribution (on traces)
but just a (positive) vector in V(Σ+∞). However, if we collect all those traces
which start with the same state s then we obtain a distribution over traces, i.e.∑
{p | 〈σ, p〉 with σ = s . . .} = 1.
It would be possible to formulate the MTS also as a map which expresses the

dependency on the initial state explicitly and returns directly distributions over
traces, i.e. [[.]]MTS : Stmt→ Σ → D(Σ+∞) ⊆ V(Σ+∞) in which case [[S]]MTS(s)
would simply represent a distribution over traces. However, our aim is to stay as
possible to the formulation in [7], which is based on the typing [[.]]MTS : Stmt→
Ω → P(Σ+∞) rather than, for example, [[.]]MTS : Stmt→ Ω → Σ → P(Σ+∞).

We omit the discussion of the necessary measure theoretic constructions in
the case of infinite spaces (like prefixes and so-called cylinders in order to define
an appropriate σ-algebra for infinite traces, cf [37] or [38, 39], etc.) as in the
following we will only consider finite traces as computationally significant.

Example 7. In order to illustrate the basic construction of the MTS we consider
the following unlabelled or labelled program with x, y ∈ {0, 1}:

if (y < 1)
then x ?= {〈0, p〉, 〈1, 1− p〉}
else x := 0

fi;
if (x < 1)
then y ?= {〈0, q〉, 〈1, 1− q〉}
else y := 0

fi

if [(y < 1)]1

then [x ?= {〈0, p〉, 〈1, 1− p〉}]2
else [x := 0]3

fi;
if [(x < 1)]4

then [y ?= {〈0, q〉, 〈1, 1− q〉}]5
else [y := 0]6

fi

In this example we have no loops or recursions, so we know that we will need
(at most) two “coin flips”. That is the space of scenarios Ω is defined via the
two choices, one for x and one for y.

The state space is defined as Σ = {x 7→ 0, x 7→ 1} × {y 7→ 0, y 7→ 1} which
we denote by Σ = {[00], [01], [10], [11]}, i.e. [00] denotes the state with x 7→ 0
and y 7→ 0, etc. Following the reformulation of the MTS we have:

[[x := 0]]MTS =

= {〈[00][00], 1〉, 〈[01][01], 1〉, 〈[10][00], 1〉, 〈[11][01], 1〉}
[[y := 0]]MTS =



= {〈[00][00], 1〉, 〈[01][00], 1〉, 〈[10][10], 1〉, 〈[11][10], 1〉}
[[x ?= {〈0, p〉, 〈1, 1− p〉}]]MTS =

= {〈[00][00], p〉, 〈[01][01], p〉, 〈[10][00], p〉, 〈[11][01], p〉,
〈[00][10], 1− p〉, 〈[01][11], 1− p〉, 〈[10][10], 1− p〉, 〈[11][11], 1− p〉}

[[y ?= {〈0, q〉, 〈1, 1− q〉}]]MTS =

= {〈[00][00], q〉, 〈[01][00], q〉, 〈[10][10], q〉, 〈[11][10], q〉,
〈[00][01], 1− q〉, 〈[01][01], 1− q〉, 〈[10][11], 1− q〉, 〈[11][11], 1− q〉}

With these sets of weighted traces we can easily construct the MTS for the
two if statements:

[[if (y < 1) then x ?= {〈0, p〉, 〈1, 1− p〉} else x := 0 fi]]MTS =

= {〈[00][00][00], p〉, 〈[10][10][00], p〉, 〈[00][00][10], 1− p〉,
〈[10][10][10], 1− p〉, 〈[01][01][01], 1〉, 〈[11][11][01], 1〉}

[[if (x < 1) then y ?= {〈0, q〉, 〈1, 1− q〉} else y := 0 fi]]MTS =

= {〈[00][00][00], q〉, 〈[01][01][00], q〉, 〈[00][00][01], 1− q〉,
〈[01][01][01], 1− q〉, 〈[10][10][10], 1〉, 〈[11][11][10], 1〉}

Note that some traces which we constructed for the branches disappear be-
cause when we apply the operator “;” the last state of the first (one step) trace
(representing the test) and the first state of the continuation (in one of the two
branches) do not match.

The traces for the whole program are then given by:

[[P ]]MTS = {〈[00][00][00], p〉; 〈[00][00][00], q〉, 〈[00][00][00], p〉; 〈[00][00][01], 1− q〉,
〈[10][10][00], p〉; 〈[00][00][00], q〉, 〈[10][10][00], p〉; 〈[00][00][01], 1− q〉;
〈[00][00][10], 1− p〉; 〈[10][10][10], 1〉, 〈[10][10][10], 1− p〉; 〈[10][10][10], 1〉,
〈[01][01][01], 1〉; 〈[01][01][00], q〉, 〈[01][01][01], 1〉; 〈[01][01][01], 1− q〉,
〈[11][11][01], 1〉; 〈[01][01][00], q〉, 〈[11][11][01], 1〉; 〈[01][01][01], 1− q〉}

where again the matching condition eliminates a number of possible traces. Fi-
nally we get:

[[P ]]MTS = {〈[00][00][00][00][00], pq〉, 〈[00][00][00][00][01], p(1− q)〉,
〈[10][10][00][00][00], pq〉, 〈[10][10][00][00][01], p(1− q)〉;
〈[00][00][10][10][10], 1− p〉, 〈[10][10][10][10][10], 1− p〉,
〈[01][01][01][01][00], q〉, 〈[01][01][01][01][01], 1− q〉,
〈[11][11][01][01][00], q〉, 〈[11][11][01][01][01], 1− q〉}



Here we have three possible traces starting with the initial state s = [00] or
s = [10] but only two for s = [01] and [11]. We also observe that the probabilities
associated to the traces starting with each of the four initial states sum up to
one, e.g. for s = [00] we have the probabilities (pq) + (p− pq) + (1− p) = 1.

In this presentation of the MTS we followed the presentation given also in, for
example, [7, Fig.1]. The states only record the values of the variables but not the
current label (or program counter). That means that it is possible to obtain “co-
incidentally” the same trace for completely different executions of the program.
To keep track of the control flow through a program we can also record infor-
mation about the configurations executed and not just the states. For a labelled
version of the program we would then replace a trace like [00][00][00][00][00] by
〈[00], 1〉〈[00], 2〉〈[00], 4〉〈[00], 5〉〈[00], `∗〉 with `∗ the (additional) final label indi-
cating termination.

3 Probabilistic vs Classical Abstract Interpretation

Abstract Interpretation (AI) is a well known mathematical theory at the base
of a number of static analysis techniques, e.g. [40, 4]. Because of the need to
consider computable domains for performing the analysis of programs proper-
ties, abstraction and approximation are essential features of any static analysis
technique. The theory of AI establishes when the approximation is such that
an analysis can be safely performed on an abstract rather than the concrete
domain of computation. More precisely, the correctness of an abstract seman-
tics is guaranteed by ensuring that a pair of functions α and γ can be de-
fined which form a Galois connection between two lattices C and D representing
concrete and abstract properties. This classical theory originally introduced for
(non-)deterministic programs can be extended so as to include the treatment of
probabilistic programs by considering the appropriate (abstract and concrete)
domains as recently shown in [7] (see also [41]).

Though the approximations allowed by the AI theory will always be safe,
they might also be quite unrealistic, addressing a worst case scenario rather
than the average case [42]. This latter is typically the aim of a probabilistic
analysis which is therefore hardly correct in the classical sense of the AI theory.
However, although such an average case analysis is not guaranteed to ‘err on
the safe side’, we can still define it so as to reduce the error margin. In order to
provide a mathematical framework for probabilistic analysis, we have previously
introduced in [5, 6], a theory of linear operators on Hilbert spaces (i.e. here just
finite dimensional spaces as discussed before) where the notion of approximation
is characterised in terms of least square approximation, which we have called
Probabilistic Abstract Interpretation (PAI) [5].

The PAI approach is based, as in the classical case, on a concrete and abstract
domain C and D – except that C and D are now vector spaces (or in general,
Hilbert spaces which are equipped with the notion of an inner product and
consequently of orthogonality, adjoint operators, etc.) instead of lattices. We
assume that the pair of abstraction and concretisation function A : C → D and



G : D → C are again structure preserving, i.e. in our setting they are (bounded)
linear maps represented by matrices A and G. Finally, we replace the notion of
a Galois connection by the notion of a Moore-Penrose pseudo-inverse [8, 10].

Definition 1. Let C and D be two finite dimensional vector spaces, and let
A : C → D be a linear map between them. The linear map A† = G : D → C is
the Moore-Penrose pseudo-inverse of A iff

A ◦G = PA and G ◦A = PG

where PA and PG denote orthogonal projections (i.e. P∗A = PA = P2
A and

P∗G = PG = P2
G where .∗ denotes the adjoint [33, Ch 10]) onto the ranges of A

and G.

Alternatively, if A is Moore-Penrose invertible (and all finite dimensional
operators or matrices are), its Moore-Penrose pseudo-inverse, A† satisfies the
following:

(i) AA†A = A,
(ii) A†AA† = A†,
(iii) (AA†)∗ = AA†,
(iv) (A†A)∗ = A†A.

It is instructive to compare these equations with the classical setting. For exam-
ple, if (α, γ) is a Galois connection we similarly have α◦γ◦α = α and γ◦α◦γ = γ.
We also have in a similar way as in the AI setting that A and A† determine
each other uniquely (i.e. (A†)† = A, e.g. [10, EX. 18,p49]).

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e.
least square) approximation T# : D → D of a concrete semantics T : C → C as:

T# = G ·T ·A = A† ·T ·A = A ◦T ◦G.

In [5] we show how we can transform a Probabilistic Abstract Interpreta-
tion into a classical Abstract Interpretation, simply by forgetting the concrete
(non-zero) values of probabilities and only considering the support set of a dis-
tribution as the set of “possibilities”. One can also lift (in a non-unique way) a
classical Abstract Interpretation to a Probabilistic Abstract Interpretation (e.g.
by using uniform distributions). This method is conceptually equivalent to the
probabilistic version of Abstract Interpretation presented in [7], although the
result does not refer explicitly to the Maximal Trace Semantics. However, AI
and PAI are not equivalent in terms of the analyses that they support. As we
will show in Section 5, PAI is not only a base for probabilistic static analysis but
also a suitable mathematical framework for testing.

4 Comparison of Probabilistic Semantics

For the language pWhile (with finite values or states) we have described in
the above section three different semantics that we can summarise as follows.



The Kozen semantics gives the I/O behaviour of (terminating) programs, the
LOS semantics gives the generator for a stepwise execution of the program (as
a DTMC), and the MTS determines the possible traces and their corresponding
probabilities (inherited from the scenarios).

In this section we will discuss in some detail the relationship between them
with the aim of clarifying their different role in the static analysis of programs.

Kozen’s Semantics and LOS. One important difference between the LOS and
Kozen’s semantics (Semantics 2 in [12]) is the use of labels (as a kind of program
counter) to model the computational steps.

As already mentioned, in Kozen’s semantics all non-terminating executions
are treated equally, i.e. have a trivial or zero semantics. Another difference is
that Kozen’s semantics is based on a state space V(Valuen) as opposed to the
LOS state space V(Value)⊗n which allows for an independent treatment of
each variable. In general, the tensor construction of the LOS allows for a kind
of ‘compositional’ program analysis where the various syntactic components of
a program can be analysed individually, which is not possible with Kozen’s
semantics.

In [28] we have shown that Kozen’s operator [[P ]]KFS is an abstraction of a
limit of of iterations of the LOS semantics [[P ]]LOS . This abstraction is defined
by the PAI operator which “forgets” about the computational state at all labels
except `:

A` = I⊗ . . .⊗ I⊗ e`,

where e` is a unit or base vector in V(Label) corresponding to label ` ∈ Label,
i.e. e` = (0, 0, . . . , 0, 1, 0 . . . , 0) with only one non-zero entry for the coordinate `.
This can also be seen as 1× |Label| matrix. This operation keeps all the infor-
mation about the state, i.e. values of the variables, but only when the execution
is in label `. If we take for ` = `∗, i.e. the terminal looping state in the semantics
of a program, then this gives clearly the probabilities of the values of all variables
for those computations which have already reached the end. So for any initial
(classical) state s0 and initial label ` = 0 we can obtain the computational state
in the final label `∗ by iteration. The following propositions holds (cf. [28]):

Proposition 1. Given a pWhile program P and an initial (probabilistic) state
s0 in V(Value)⊗n, then (s0 ⊗ e0)[[P ]]tLOSA`∗ corresponds to the distributions
over all states on which P terminates in t or fewer computational steps.

This covers all finite computations of t steps or fewer. In order to get the I/O
behaviour for all terminating computations, i.e. the Kozen semantics, we need
just to consider the limit of all computations of any length:

Proposition 2. Given a pWhile program P and an initial (probabilistic) state
s0 in V(Value)⊗n, let [[P ]]KFS be Kozen’s semantics of P and [[P ]]LOS the
DTMC generator for P . Then

(s0 ⊗ e0)( lim
t→∞

[[P ]]tLOS)A`∗ = s0[[P ]]KFS .



Maximal Trace Semantics and LOS. Following the programme of [36] the authors
present in [7] a classical abstraction for probabilistic MTS corresponding to
a “strongest postcondition semantics”. This is in effect an operator semantics
which maps input distributions into some output distributions, cf. formula (2) in
[7, 7.4]. A common but incorrect interpretation of the claims made in Section 7.3
of [7] is that the LOS is just an abstraction of the probabilistic MTS.

To investigate the relationship between LOS and MTS in more detail let us
look at a concrete construction of probabilistic traces based on the LOS. It is
somewhat not really clear if the MTS in [7] should be based on Σ = State or
Σ = Conf. In the first case it is straightforward to see that the LOS actually
contains more information than an MTS based only on state information. We
will thus consider the MTS based on Σ = Conf, i.e. the reformulation of the
probabilistic MTS as an element in V(Conf+∞), which associates with every
possible trace a probability that this is indeed the trace which will be executed
during the program run. We will then relate this set of ‘weighted’ traces to the
LOS as an operator on V(Conf) where we also provide the initial distribution
so ⊗ e0 = ρ0 ∈ V(Conf).

The central issue is that the LOS allows for the construction of fronts, i.e.
given an initial state we know for every time step t (in the future) all the prob-
abilities that we will be in a certain state by considering the t iterations of the
LOS (applied to the initial state). The MTS instead gives us for an initial state
the probabilities of a particular execution trace (starting from that initial state).
The LOS allows for the construction of a sequence of distributions over states
(fronts) while the MTS gives a distribution over sequences (traces). The two
notions are thus somewhat ‘orthogonal’. However for a language like pWhile,
with a semantics that can be modelled via a DTMC, the two approaches are
equivalent. This is because DTMC’s abstract from the history of a computation
as only the current configuration determines the probabilities of the successor
configurations. However, transition probabilities are exactly what is specified
in the generator matrix of the DTMC and is all one needs to reconstruct the
computational traces and their probabilities.

Instantiated for purely probabilistic languages the classical abstraction given
by formula (2) in [7, 7.4] is an operator from distributions over traces to distri-
bution transformers (for a fixed initial state/configuration s), i.e.

αs : V(Conf+∞)→ L(V(Conf))

rather than (Ω → P(Conf+∞)) → (V(Conf) → V(Conf)) as in [7, 7.4]. The
abstraction map, if we consider the purely probabilistic case, becomes:

((αs({〈p,X〉})(δ))(s′) =
∑
s∈Σ
{δ(s) · p | for sσs′ ∈ X+}.

In other words, we associate to every distribution over traces {〈p,X〉} a linear
operator (αs({〈p,X〉}) ∈ L(V(Conf)). To see how this operator transforms a dis-
tribution δ ∈ V(Conf) into another distribution αs({〈p,X〉})(δ) = δ′ ∈ V(Conf)



we describe the probability of every configuration s′ ∈ Conf in the new distri-
bution δ′. This is the sum of all products of the probabilities associated with
all the traces which starting from any s reach s′ in finitely many steps and the
probability δ(s) that we start indeed with s. In other words the probability δ′(s′)
describes the probability that we terminate with s′. Therefore this abstraction
gives the Kozen I/O semantics. However, it does not give the LOS which instead
would require a classical abstraction of the form

((ᾱs({〈p,X〉})(δ))(s′) =
∑
s∈Σ
{δ(s) · p | if ss′ . . . ∈ X}

i.e. an operator that collects the probabilities that in one step we reach s′,
rather than eventually. Note that this abstraction does not require that s′ is a
terminating state.

The question is if αs or ᾱs are actually abstractions, i.e. if indeed infor-
mation is lost. If we consider the dimension of the spaces involved it seems
obvious that this is the case; in fact, for a finite Conf with n states we have that
dim(L(V(Conf))) = n2 (as the space of n× n matrices), while for the distribu-
tions V(Conft) for traces of just finite length t we have dim(V(Conf)⊗t) = nt.
So this looks like a big reduction in dimensions. However, due to the memory-
less property of DTMC (that is the case we are really interested in as for pro-
gramming languages the current state gives all the information we need to con-
tinue the computation) we only need to consider traces of length 2 (i.e. transi-
tion steps) when we work with the abstraction αt. In this case we have again
dim(V(Conf)⊗V(Conf)) = n2. Thus, no information is lost and the abstraction
is not really an abstraction but only a recasting of the MTS. If the MTS is the
most concrete semantics (in the sense of [36]) then so is the LOS. In fact, we can
show the following proposition.

Proposition 3. Given a pWhile program P , then the LOS [[P ]]LOS and the
(configuration based) MTS [[P ]]MTS are equivalent, i.e. it is possible to construct
either semantics from the other one.

If we base the MTS on configurations (not just on states) then it is, on
one hand, straightforward to construct the LOS operator out of the MTS by
considering for all initial configurations (i.e. point-distributions) the single step
traces (or single step trace-prefixes) starting from this initial configuration: The
probability associated to these (short) traces is exactly the transition probability
recorded in the DTMC generator, i.e. the LOS – this is indeed what the map
ᾱs above achieves. On the other hand, if we have the DTMC generator then for
a trace si1si2si3 . . . the probability associated to this trace is the product of the
transition probabilities ([[P ]]LOS)i1i2 , ([[P ]]LOS)i2i3 etc. – i.e.

∏
j([[P ]]LOS)ijij+1 –

times the probabilities given by the initial distribution δ(si1).
As said before these constructions requires that the semantics of pWhile is

modelled by a homogenous DTMC, i.e. that the transition probabilities from one
configuration to another one do not change over time. This and the memory-less
property of DTMC’s seems to be a reasonable requirement for a programming
language.



5 Statistical Analysis of Probabilistic Programs via PAI

Probabilistic semantics provides the basis for the static analysis of probabilis-
tic programs. In [7] this semantics is the MTS [[P ]]MTS explained in the pre-
vious sections. The probabilistic information in such a semantics depends on
the choice of an appropriate measure space which attaches probabilities to the
(non)deterministic program traces.

While the AI as well as the PAI framework allow us to use traces (quasi as
the ‘concretest’ semantics) as a basis to construct more abstract semantics, e.g.
the generator of the underlying DTMC, there is an important difference: In the
AI setting these traces are assumed to be the ones which are indeed the true
ones which we obtain when a program is executed; in the PAI setting – similar
to the situation in statistical analysis, learning etc. – we can attempt to utilise
not just ideal traces but also experimentally observed, maybe corrupted traces
(which might be distorted by noise) in order to (re)construct the (most plausible)
underlying abstract semantics (e.g. the DTMC generator).

In this section we show an approach where the probabilistic information
about the program’s executions is inferred by observing some sample runs. This
way we establish in some sense a link between static program analysis and test-
ing. Based on this, we can use PAI to calculate best estimates of the program’s
properties in a way similar to the so-called linear statistical model or, equiva-
lently, the linear regression method.

The approach we are going to present is based on the idea of identifying obser-
vations with a linear combination of a set of random variables xi, whose weights
are chosen with the method of least squares so as to minimise the distance from
the observations and the actual model expressing the program’s behaviour. Thus
the framework of Probabilistic Abstract Interpretation is particularly appropri-
ate as a base of this approach.

5.1 The Linear Statistical Model

In several contexts it is often useful to predict or estimate a variable β (or a
vector of variables), given that we have the opportunity to observe variables
y1, y2, . . . , yn which somehow (statistically) depend on β. This is a very impor-
tant statistical problem which is typically faced by using so-called linear regres-
sion analysis, also known as linear statistical model (cf e.g. [11], [10, Section 8.3]
or [8, Section 6.4]). This widely used statistical technique applies to situations
such as the one mentioned above, where a random vector y depends linearly on
a vector of parameters β, i.e. (using post-multiplication)

y = βX + ε, (1)

where y represents some measurement results and the parameters β are unknown,
the matrix X is the design matrix, and ε is a random vector representing the er-
rors of observing y which is conventionally assumed to have expected value equal
to zero (as well as some further mild statistical conditions regarding the variance



and co-variance of ε). These requirements mean that there is no underlying or
systematic reason for the distortions ε (but only ‘random’ noise).

The role of least square approximations and the Moore-Penrose pseudo-
inverse in this context is of particular relevance for the well-known Gauss-Markov
theorem (e.g. [10, Section 8.3, Thm. 1] for B = I, i.e. a naive least-square esti-
mator):

Theorem 1 (Gauss-Markov). Consider the linear model y = βX + ε with X
of full column rank and ε fulfilling the conditions in [10, Section 8.3]. Then the
Best Linear Unbiased Estimator (BLUE) is given by

β̂ = yX†.

In its simplest version, the Gauss-Markov theorem thus asserts that the best
estimate β̂ of the unknown parameters β can be obtained from some experimen-
tally observed y by calculating yX† , i.e. via the Moore-Penrose pseudo-inverse
of the design matrix X, cf. [10, Section 8.3, eqn (35)].

5.2 Application to Security Analysis

In order to give a motivation for why the reconstruction of unknown parameters
or properties of a (computational) system is relevant let us consider an example
from Computer Security, namely Kocher’s attack on crypto protocols [43].

Modular exponentiation is a basic operation for computing the private key in
crypto systems using the Diffie-Hellman or the RSA protocols. In [43], it is shown
that by carefully measuring the time required to perform such an operation, an
attacker may be able to find the Diffie-Hellman exponents or factor the RSA
keys and break the cryptosystems.

The crucial point is the estimation of a single bit b in the secret key k. Since
modular exponentiation takes very different execution times depending on the
value of a certain bit b being 0 or 1, what the attacker needs are good estimate
of these execution times in order to deduce the value of each bit of the key.
Thus, linear statistical models play a crucial role in the analysis of security. We
show how the problem of the timing attacks can be described as a statistical
analysis problem, by using as an example a simplified implementation of the
RSA exponentiation algorithm. By doing this we can also sketch the relationship
between PAI and linear regression.

Suppose that t0 is the time it takes to perform multiplication in the modular
exponentiation procedure if a single bit b of the cryptographic key k is b = 0
and t1 if b = 1. We thus need to consider two possible DTMC models (or
generators) one for the case b = 0 and one b = 1 which realise the corresponding
exponentiation processes (incorporating maybe also some noise which we do
not control which is due to the fact that the physical device we observe is also
involved in other tasks/threads like network communication etc.). If we observe
the (maybe distorted) running time (without knowing b) the aim is to guess
correctly which of the two models is actually being executed (i.e. the value of



b). We can also set the vector β to represent the strength/weights/probabilities
that in a given model b = 0 or b = 1, respectively.

More concretely, we can set the vector β0 = (1, 0) to represent the models
of the system where the bit b of the key is b = 0 and β1 = (0, 1) to the key
with b = 1. We can now define a linear statistical model by constructing a
design matrix X (in the PAI sense a concretisation operator), which maps a
model (element in the abstract domain) onto its timing behaviour (element in
the concrete domain). As an example, we can consider the situation where we
can observe ten possible execution times ti that we enumerate and use as column
indices for X. Suppose that t0 corresponds to the 3rd and t1 to the 7th column
in this enumeration. In this case we obtain a design matrix of the form:

X =

(
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

)
,

and we can calculate

β0X = (1, 0) ·X = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

which tells us that for b = 0 the chances of observing any other time signature
than t0 is zero, and that t0 will definitively be observed. Similarly, we could have
also used β1 = (0, 1).

If we begin instead by observing the time behaviour, i.e. if we test the program
and obtain, for example, an (undistorted) observation vector of the form

y = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

then, by calculating

yX† = (1, 0)

we will get that b is definitely 0. If we now add a (Gaussian) error to our exper-
iment then the observed times, corresponding to an estimate y would perhaps
be something like (cf. Figures 1 and 2 in [43]):

ŷ = (0.1, 0.2, 0.7, 0.2, 0.1, 0, 0, 0, 0, 0)

i.e. we get a distorted observation result (e.g. because in 10 measurements we
have observed once the first possible time, twice the second, etc.) The estimation
(based on these observations) leads to a guess of the weights of the parameters
in β that we calculate as

ŷX† = (0.7, 0).

This result reflects the fact that it is very likely that the value of bit b is 0 as
we have observed, although with some errors, a time behaviour where the times
cluster around the value t0.



5.3 Abstraction and Linear Regression

Our aim is to show how statistics can be used in static analysis in all those cases
where we have some observations at hand and we want to use them in order
to improve the precision of the analysis. To this purpose we can use the theory
of linear regression in order to determine a best estimate of the model underly-
ing those observations, e.g. the DTMC generator that with highest probability
produces the traces that we observe.

Note that classical abstract interpretation cannot be used in this scenario
even in its probabilistic re-formulation as given e.g. in [7]; this is because the
safety constraint at the base of the framework does not permit the consideration
of expectation values in the analysis result, as these would not guarantee the
(classical) correctness of the analysis (cf. Section 3).

In the setting of linear statistical models, the concretisation operator G of the
PAI framework is a mapping from an abstract domain consisting of all possible
Markov models for the observed program to all possible observable traces corre-
sponding to the different runnings of the program. G plays the role of the design
matrix of the statistical model. Thus, if y is a vector defining the probabilities of
certain traces according to some observations and β represents a parameterised
Markov model, then we can use the linear statistical equation (1) in its simplest
instance, i.e. with ε = 0, y ∈ Rn,X ∈ Rn×p and β ∈ Rp, and obtain the best
estimate of the concrete Markov model by β̂ = yX†.

Example 8. Consider the following simple examples of DTMC’s:
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The generator matrices of these probabilistic transition relations are

T0,1 =

(
0 1
0 1

)
T 1
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=

(
1
2

1
2

0 1

)
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=

(
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1
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)
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1
2

)
Clearly with T 1

2 ,
1
2

we can generate all infinite 0/1 sequences. Note that since
these are uncountably many, the probability structure on the maximal trace
space will thus require a measure theoretical modelling.

These DTMC’s are in essence the processes (for different values of p and q)
which describe the core (loop body) of our Example 1 in the LOS or Kozen
semantics, cf. also [[S]]KFS in Example 3.



The processes above depend on the parameters p and q in the real interval
[0, 1] which we can see as the probability to remain in state 0 and state 1,
respectively. They are represented by the DTMC

0 1p

1− p

1− q

q

with generator

Tpq =

(
p 1− p

1− q q

)
Clearly any property of a program whose behaviour can be described as above

depends on the parameters p and q. Moreover, observing the property may be
influenced by some distorted execution of Tpq. By applying the statistical linear
model we can find best estimates for the parameters p and q. In the next example
we show that this corresponds to performing a static analysis based on PAI. The
application of the linear statistical model allows us to compute best estimates
for some properties of the models encoded in a vector β. Alternatively, we can
use the linear statistical model to establish a weighting β of some given DTMC’s
generating some observed traces. These weighting are guaranteed to be the best
linear unbiased estimators by the least squares property of the Moore-Penrose
pseudo-inverse and can be used as a base for trade-off or speculative analysis.

In the following example we show how a concrete and abstract space for PAI
can be constructed for supporting statistical analysis.

Example 9. Consider the DTMC in Example 8 with DTMC generator

Tpq =

(
p 1− p

1− q q

)
This system is completely specified when both the values of p and q and the

initial state s are specified. Thus we can identify the abstract semantic domain
with the set of all pairs of initial states s ∈ {0, 1} and matrices Tpq of the form
above.

M = {〈s,Tpq〉} =

{
〈s,
(

p 1− p
1− q q

)
〉
}

or equivalently with the set of triples M = {〈s, p, q〉 | s ∈ {0, 1}, p, q ∈ [0, 1]}.
Note that this parametric DTMC generator encodes the same information

as the set of all parametric traces starting from any initial state (cf. Section 4).
In order to apply PAI we consider the distributions overM, i.e. the normalised,
positive elements in the vector space over M, i.e. we take D = V(M).

The concrete domain consists of the set of all (infinite) sequences of 0 and 1,
T = Σ+∞ = {0, 1}+∞, representing the execution traces resulting from fixing
actual values of the parameters p and q and the input state. The concrete domain
of PAI is therefore the space of distributions on traces C = V(T ).
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Fig. 1. Relating models and traces (for the cut-down version)

Numerical Experiments. Even for the simple example given above, the sets in-
volved are uncountably infinite. In order to be able to compute an analysis of
the system in Example 8 we will consider here the simple case where transition
probabilities can only assume values in a finite set, i.e. p, q ∈ {p0, . . . , pn} and
where traces can only be of length t, for a given t.

If we consider p, q ∈ {0, 12 , 1}, we obtain 9 possible semantics, i.e. DTMC
generators while we can choose among two possible initial states, namely either
0 or 1. We will also restrict to traces of length t = 10. The abstract domain is thus
specified by D = V({0, 1}) ⊗ V({0, 12 , 1}) ⊗ V({0, 12 , 1}) = R2 ⊗ R3 ⊗ R3 = R18,
while the concrete traces are modelled by C = V({0, 1}10) = V({0, 1})⊗10 =
(R2)⊗10 = R1024. We can now construct a linear map G : D → C that associates
to each instance model and initial input the distributions over the traces that
are obtained in that model. As we have 18 possible models and 1024 possible
traces, the operator G is given by the 18× 1024 matrix.

As it is impossible to present here the actual 18 × 1024 matrix G (due to
its size) we just try to illustrate how it looks like by restricting us to the case



of 8 possible traces of at most 3 steps. However, it should be stressed that in
this case the (abstract) space of models M is larger than that of the (concrete)
space of traces T , which is not what we have in mind. For this cut-down case we
can explicitly state the matrix G with rows representing the possible instance
models and the columns representing the possible traces as depicted in Figure 1.
The entries of this matrix specify the probabilities that a given model (row)
generates a certain trace (column). For example, the entry G33 = 1

2 means that
with the third model in the enumeration given above, i.e. for initial state s = 0,
p = 1

2 and p = 0, we get the third trace, i.e. 010, with probability 1
2 .

We then compute the Moore-Penrose pseudo-inverse of the G matrix which
we can use to calculate the best estimator of the parameters p and q. Intuitively,
G† gives us the probabilities that when a certain trace is observed this comes
from a certain model. In order to illustrate how G† looks like we also present it
for the cut-down version in Figure 1.

We undertook some numerical experiments and we report below some of
results we obtained. For p = 0 = q we simulated 10000 times the execution of
the system (including random noise) and observed traces with a length t = 10.
This gives a concrete domain of dim(C) = 210 = 1024, i.e. there are about one
thousand possible traces we can observe. We have considered DTMC without
distortion, i.e. no error, as well as the case where a noise of strength ε was applied
according to a normal distribution (mean zero and variance one, cf. randn() in
Octave 3.8.0, p391). The simulations resulted in an estimated distribution over
all possible 210 traces. For the undistorted case we denote this distribution vector
by y, for ε = 0.01 by y′ and for ε = 0.1 by y′′. The initial state was always chosen
with probability 1

2 as state 0 or state 1. The resulting distributions over possible
models we obtained are listed below:

yG† =
(

1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)
y′G† =

(
0.48 0.48 0.02 0.01 0 0 0.01 0.02 −0.02 −0.01 0 0 0 0 0 0 0 0

)
y′′G† =

(
0.33 0.33 0.17 0.11 0 0 0.11 0.18 −0.12 −0.12 0 0 0 0 0 0 0 0

)
These results mean that if we observe the undisturbed DTMC in order to

obtain experimentally the probabilities for all possible 210 traces then we can
identify the underlying model uniquely. The β̂ = yG† describes an “estimate”
corresponding to the statement that the actual process which was running when
we observed y is a mixture of the first two models which are given by s = 0 or
s = 1 and p = 0 and q = 0. Indeed these are exactly the two models we used in
the simulation.

For ε = 0.01 we also identify the unknown system (parameters) with high
probability but there is some tendency to mismatch the observations with a
system or model that was actually not used in the simulation (namely the 3rd,
4th, etc model with either p or q being equal to 1

2 – interestingly, the case were
p = 1

2 = q gets a negative weighting).
If we increase the error term in the simulation, i.e. for the distortion ε = 0.1,

the possibility of a wrong identification of the actual model(s) is reinforced: The
weights associated to the actual systems (i.e. β1 and β2) decreases further, while



other possible models get stronger. Clearly, if we further increase ε the estimate
for β will still be the optimal one (BLUE) but ultimately it will not allow any
meaningful identification of the actual system – we will get only (white) noise.
We also get the same (qualitative) results for other choices of p and q.

6 Conclusions

We have presented a comparison of three different probabilistic semantics: (i)
Kozen’s I/O Fixed-Point Semantics, (ii) a Linear Operator Semantics previously
introduced by the authors, and finally (iii) a probabilistic version of the Maxi-
mal Trace Semantics. We have argued that Kozen’s semantics can be recovered
from the LOS as an abstract limit of the LOS (cf. [28]) and that the abstraction
αs in [7, Section 7.4] in fact gives Kozen’s semantics (by collecting the informa-
tion/probability along finite, i.e. terminating, traces in the MTS) rather than
the LOS. We also demonstrated that the LOS in fact contains more information
than the MTS (namely information about the label or program counter) but
that otherwise LOS and MTS are essentially equivalent.

The second part of this paper relates the Probabilistic Abstract Interpreta-
tion framework introduced in [5] with the most widely used statistical technique,
namely Linear Regression. We have already shown in [5] that classical Abstract
Interpretations can be recovered (as the support of a PAI) from a Probabilistic
Abstract Interpretation. We have extended the (re)construction of the LOS from
the MTS alluded to in [7] – though this involves the ”abstraction” ᾱs rather than
αs – to deal also with distorted observation of traces. This allows for a bridge be-
tween statistics (testing) and static program analysis. Intended application areas
include problems in computer security like covert channels and non-interference
notions reinterpreted as concepts related to system identification.

Our semantical presentation was restricted to finite state spaces. However
a full treatment of the different semantical models is possible though slightly
more complex as it involves a deeper study of the underlying measure-theoretic
notion (e.g. the σ-algebras generated by trace pre-fixes) as well as topological
notions (e.g. Hilbert vs Banach spaces and their operators, weak limits etc.,
cf. [28]). Another restriction is the exclusion of (pure) non-determinism in our
model. The reason for this is more a conceptual than a technical one (though
the absence of a normalisation condition seems to require a consideration, for
example, of unbounded operators for pure non-determinism). Arguably, we can
simulate non-determinism by parametric, unknown probabilities.

Finally, it might be worth pointing out the rich literature on filtering, system
identification, Hidden Markov Models (e.g. [44–46]), and related topics which we
did not discuss but which are clearly related. Our approach to Linear Regression
could be considered to be very simple and basic. However, we think it is worth to
highlighten the relationship between PAI and statistics. Given the role of least
square methods – i.e. the Moore-Penrose pseudo-inverse – play in control theory
etc. – for example, for the well-known and celebrated technique of Kalman filters
[11] – we aim to further explore this field.
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