
Two Formal Approaches for Approximating
Noninterference Properties

Alessandro Aldini1, Mario Bravetti2, Alessandra Di Pierro3,
Roberto Gorrieri2, Chris Hankin4, and Herbert Wiklicky4

1 Istituto STI, Università di Urbino Carlo Bo, Italy
2 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy

3 Dipartimento di Informatica, Università di Pisa, Italy
4 Department of Computing, Imperial College, London, UK

Abstract. The formalisation of security properties for computer sys-
tems raises the problem of overcoming also in a formal setting the classi-
cal view according to which confidentiality is an absolute property stating
the complete absence of any unauthorised disclosure of information. In
this paper, we present two formal models in which the notion of noninter-
ference, which is at the basis of a large variety of security properties de-
fined in the recent literature, is approximated. To this aim, the definition
of indistinguishability of process behaviour is replaced by a similarity no-
tion, which introduces a quantitative measure ε of the behavioural differ-
ence among processes. The first model relies on a programming paradigm
called Probabilistic Concurrent Constraint Programming, while the sec-
ond one is presented in the setting of a probabilistic process algebra. In
both models, appropriate notions of distance provide information (the ε)
on the security level of the system at hand, in terms of the capability of
an external observer of identifying illegal interferences.

1 Introduction

The correct estimation of properties of concurrent computer systems is a prob-
lem that was widely and successfully attacked via several different formal ap-
proaches [CT02,BHK01,HHHMR94,HS95,Hil96,BDG98,Ber99,Bra02]. However,
a number of factors make the use of approximation techniques necessary to en-
hance the reliability of “exact” solutions obtained through the formal analysis
of the mathematical model of a real, complex system. On the one hand, the
confidence we can have in the answers computed by a software tool, which are
delivered with certainty, strictly depends on the likelihood of obtaining precise
information needed to formally specify the system at hand. On the other hand,
even when such information is exact, the results of the mathematical analysis
definitely assert that the considered property is or is not satisfied by the sys-
tem model, while in practice it often happens that a system that approximately
behaves like a perfect one is not only acceptable but also the only possible im-
plementation. In practice, in a realistic scenario, a qualitative binary answer to
the classical question “does the system satisfy my property?” is too restrictive
and, in many cases, not significant.

In this work, we concentrate on formal techniques that employ probabilistic
information to give a quantitative answer to the kind of question above in the
restricted framework of security properties. Indeed, the motivations surveyed
above apply also to the problem of verifying the security requirements of real
systems. It is well-accepted that the unauthorised disclosure of confidential infor-
mation cannot be completely avoided in real, complex systems, where typically
the interplay between the portion of the system handling secrets and the other
components that instead manage public information is more tight than that we
expect [RMMG01]. In practice, part of the information flowing through the sys-
tem cannot be controlled, and a portion of such an unavoidable information flow
is sometimes illegal, in the sense that it reveals confidential data to unauthorised
users. In such a case, the goal of the designer consists of minimising the illegal
information leakage, and, as a consequence, the aim of the analyst must be the
provision of an approximated estimation of such an information leakage. As a
simple, real example, consider a password-based authentication system, like, e.g.,
an automatic teller machine. It is trivial to verify that absolute secrecy cannot
be guaranteed. In fact, a brute-force based attack has the possibility, even if neg-
ligible, of guessing the password, thus violating the secrecy requirements. The
analysis of such a kind of system is beyond the scope of possibilistic information
flow techniques, which reject programs that do not guarantee absolute secrecy.
A more interesting analysis should state that a potential information leakage is
not troubling. From a quantitative viewpoint, this corresponds to verify whether
or not the probability of detecting a potential illegal information flow is beyond
a threshold for which the observer considers the system to be secure “enough”.
In case of the automatic teller machine, the probability of cracking the system
depends on the length of the password and on the number of attempts at dis-
posal of the attacker. By playing on these parameters, the designer can limit to
a negligible (as desired) value the probability of accessing the system without
knowing the appropriate password.

The approach to information flow analysis we consider is based on the idea
of noninterference, originally proposed in [GM82], which states that “one group
of users, using a certain set of commands, is noninterfering with another group
of users if what the first group does with those commands has no effect on what
the second group of users can see”. In a security context, the first group is repre-
sented by the high-level users, which execute confidential, secret activities, while
the second group is given by the low-level users, which instead see public data
only. The intuition is that the low-level view of the system to be analysed is
not to be altered by the behaviour of the high-level users. If this is the case,
we say that any covert channel cannot be set up from the high level to the
low level. The verification of the condition above is based on the idea of indis-
tinguishability of behaviours: in order to establish that there is no information
flow between a high-level component H and a low-level object L, it is sufficient
to check if for any pair of behaviours of the system that differ only in H’s be-
haviour, L’s observations cannot distinguish these two behaviours. Depending on
the nature of the information flow, an external observer can characterise differ-

ent kinds of interference, due, e.g., to the deterministic, nondeterministic, timed,
or probabilistic behaviour of the system. In particular, possibilistic noninterfer-
ence for nondeterministic programs is weaker than probabilistic noninterference,
which helps to reveal those covert channels that arise from the analysis of the
frequency of the possible observations in several consecutive executions of the
system [Gra90,McL90]. Consider, e.g., a program P that handles pin numbers
needed to access the automatic teller machine mentioned above. At a certain
point of the execution, the following statement is executed:

low variable := PINi +p rand(9999)

where +p is a probabilistic choice operator that selects the left-hand command
(which assigns a secret pin to a public, low variable) with probability p and the
right-hand command (which assigns a random value from the range [0 . . . 9999] to
the low variable) with probability 1− p. According to a purely nondeterministic
behaviour, the program above is secure, since the set of possible outcomes does
not change depending on which command will be executed. However, statistical
inferences derived from the relative frequency of outcomes of repeated executions
of the program allow an external observer to disclose the secret pin with a
confidence that depends on the number of executed experiments.

Probabilistic noninterference also offers the means for approximating nonin-
terference properties, by quantifying the real effectiveness of each possibilistic
covert channel. More precisely, the key idea of an approach based on probabilistic
noninterference is to replace the notion of indistinguishability by an appropriate
notion of similarity. For instance, consider again program P and assume that
parameter p is a value very close to 0. Obviously, the behaviour of P is not the
same as that of the following secure program P’:

low variable := rand(9999)

since if we execute “infinitely often” both programs, then the limit of the fre-
quencies of the possible outcomes allow the observer to distinguish P from P’.
However, in practice we have that P and P’ are similar and the probability of
distinguishing the two programs is still negligible even after a large number n of
experiments. In other words, P is considered to be an acceptable approximation
of a secure program. As a result of an approach that replaces the restrictive idea
of indistinguishability by a relaxed, more realistic notion of similarity, we can
accept as secure systems a number of programs that somehow suffer from an
information leakage but in practice offer sufficient security guarantees.

In this work, we survey two semantics-based security models (i.e., models
that analyse the program behaviour to verify security properties) in which the
notion of noninterference is approximated in the sense that they allow for some
exactly quantified information leakage. The first one formalises such an approach
in the context of a particular probabilistic declarative language, while the second
one is based on a probabilistic process algebraic framework.

Language-based formalisms provide a suitable framework for analysing the
confidentiality properties of real, complex computing systems. Particularly pro-
mising is the use of program semantics and analysis for the specification of

information-flow policies and information-flow controls which guarantee data
confidentiality (see, e.g., [SM03] for a survey).

On the other hand, process algebras provide all the main ingredients needed
to specify and analyse noninterference properties of computer systems (see, e.g.,
the several process algebraic approaches described in [FG01]). They are designed
with the aim of describing concurrent systems that may interact through the
exchange of messages, so that they can be used to naturally express each infor-
mation flow occurring within the system to be modeled. They deal with both
nondeterminism and, as we will focus in this work, probability, so that several
kinds of information leakage can be revealed. They also deal in an elegant way
with abstraction thanks to the hiding operator, which can be used to specify the
observational power of each external observer, depending on the security level of
such an observer. Last but not least, there exists a strong, natural similarity be-
tween the notion of indistinguishability for processes and semantic equivalences
over process algebraic terms.

In the following, we first introduce the language-based approach by presenting
a formalisation of a noninterference property called confinement together with its
probabilistic and approximated versions in the setting of the probabilistic pro-
gramming language PCCP (Probabilistic Concurrent Constraint Programming)
[DW98a,DW98b]. In this language nondeterminism is completely replaced by
probabilistic choice, which makes it possible to develop a statistical interpreta-
tion of the approximation of the security property. Moreover, the different role
played by variables in imperative and constraint programming hinders a direct
translation of previous formalisation of noninterference based on the imperative
paradigm into the PCCP setting, where a more appropriate notion must consider
process identity rather than variables values.

Then, we introduce a process algebraic framework for approximating prob-
abilistic noninterference. The basic calculus integrates the characteristics of the
classical CCS [Mil89] and CSP [Hoa85] and employs a probabilistic model that is
a mixture of the reactive and generative models of probability [GSS95]. Such an
approach permits the modeler to specify both nondeterministic behaviour and
probabilistic information in the same system model. The behavioural equivalence
of process expressions is defined in terms of weak probabilistic bisimulation,
a probabilistic extension of the classical weak bisimulation by Milner [Mil89].
Moreover, the behavioural similarity among processes is defined in terms of a
relation called weak probabilistic bisimulation with ε-precision, an approximated
version of the weak probabilistic bisimulation, where ε provides information on
“how much” two behaviours differ from each other.

2 Language-based Approach to Noninterference

2.1 Probabilistic Concurrent Constraint Programming

Probabilistic Concurrent Constraint Programming (PCCP) [DW98a,DW98b]
is a probabilistic version of the Concurrent Constraint Programming (CCP)

paradigm [SRP91,SR90]. This can be seen as a kind of process algebra enhanced
with a notion of computational state. More precisely, CCP as well as PCCP
are based on the notion of a generic constraint system C, defined as a cylindric
algebraic complete partial order (see [SRP91,dDP95] for more details), which
encodes the information ordering. This is referred to as the entailment relation
` and is sometimes denoted by w. A cylindric constraint system includes con-
straints of the form ∃xc (cylindric elements) to model hiding of local variables,
and constraints of the form dxy (diagonal elements) to model parameter passing.
The axioms of the constraint system include laws from the theory of cylindric
algebras [HMT71] which model the cylindrification operators ∃x as a kind of
first-order existential quantifiers, and the diagonal elements dxy as the equality
between x and y.

A ::= tell(c) adding a constraint

| n
i=1 ask(ci) → pi : Ai probabilistic choice

| ‖n
i=1 qi : Ai prioritised parallelism

| ∃xA hiding, local variables

| p(x) procedure call, recursion

Table 1. The Syntax of PCCP Agents

In PCCP probability is introduced via a probabilistic choice and a form
of probabilistic parallelism. The former replaces the nondeterministic choice of
CCP, while the latter replaces the pure nondeterminism in the interleaving se-
mantics of CCP by introducing a probabilistic scheduling. This allows us to
implement mechanisms for differentiating the relative advancing speed of a set
of agents running in parallel.

The concrete syntax of a PCCP agent A is given in Table 1, where c and ci

are finite constraints in C, and pi and qi are real numbers representing proba-
bilities. Note that at the syntactic level no restrictions are needed on the values
of the numbers pi and qi; as explained in the next section, they will be turned
into probability distributions by a normalisation process occurring during the
computation. The meaning of p(x) is given by a procedure declaration of the
form p(y) :−A, where y is the formal parameter. We will assume that for each
procedure name there is at most one definition in a fixed set of declarations (or
program) P .

2.2 Operational Semantics

The operational model of PCCP can be intuitively described as follows. All
processes share a common store consisting of the least upper bound, denoted by

t, (with respect to the inverse v of the entailment relation) of all the constraints
established up to that moment by means of tell actions. These actions allow
for communication. Synchronisation is achieved via an ask guard which tests
whether the store entails a given constraint. The probabilistic choice construct
allows for a random selection of one of the different possible synchronisations
making the program similar to a random walk-like stochastic process. Parts of
the store can be made local by means of a hiding operator corresponding to a
logical existential quantifier.

The operational semantics of PCCP is formally defined in terms of a proba-
bilistic transition system, (Conf,−→p), where Conf is the set of configurations
〈A, d〉 representing the state of the system at a certain moment and the transi-
tion relation −→p is defined in Table 2. The state of the system is described by
the agent A which has still to be executed, and the common store d. The index p
in the transition relation indicates the probability of the transition to take place.
In order to describe all possible stages of the evolution of agents, in Table 2 we
use an extended syntax by introducing an agent stop which represents successful
termination, and an agent ∃d

xA which represents the evolution of an agent of the
form ∃xB where d is the local information on x produced during this evolution.
The agent ∃xB can then be seen as the particular case where the local store is
empty, that is d = true. In the following we will identify all agents of the form
‖n

i=1 qi : stop and ∃d
xstop with the agent stop as they all indicate a successful

termination.
The rules of Table 2 are closely related to the ones for nondeterministic CCP,

and we refer to [dDP95] for a detailed description. The rules for probabilistic
choice and prioritised parallelism involve a normalisation process needed to re-
distribute the probabilities among those agents Ai which can actually be chosen
for execution. Such agents must be enabled (i.e. the corresponding guards ask(ci)
succeed) or active (i.e. able to make a transition). This means that we have to
re-define the probability distribution so that only enabled/active agents have
non-zero probabilities and the sum of these probabilities is one. The probability
after normalisation is denoted by p̃j . For example, in rule R2 the normalised
transition probability can be defined for all enabled agents by

p̃i =
pi∑
`cj

pj
,

where the sum
∑
`cj

pj is over all enabled agents. When there are no enabled
agents normalisation is not necessary. We treat a zero probability in the same
way as a non-entailed guard, i.e. agents with zero probability are not enabled;
this guarantees that normalisation never involves a division by a zero value.
Analogous considerations apply to the normalisation of active agents in R3.
It might be interesting to note that there are alternative ways to deal with
the situation where

∑
`cj

pj = 0 (all enabled agents have probability zero). In
[DW00] normalisation is defined in this case as the assignment of a uniform
distribution on the enabled agents; such a normalisation procedure allows, for
example, to introduce a quasi-sequential composition.

The meaning of rule R4 is intuitively explained by saying that the agent ∃d
xA

behaves “almost” like A, with the difference that the variable x which is possibly
present in A must be considered local, and that the information present in d has
to be taken into account. Thus, if the store which is visible at the external level
is c, then the store which is visible internally by A is dt (∃xc). Now, if A is able
to make a step, thus reducing itself to A′ and transforming the local store into d′,
what we see from the external point of view is that the agent is transformed into
∃d′

x A′, and that the information ∃xd present in the global store is transformed
into ∃xd′.

The semantics of a procedure call p(x), modelled by Rule R5, consists in the
execution of the agent A defining p(x) with a parameter passing mechanism sim-
ilar to call-by-reference: the formal parameter x is linked to the actual parameter
y in such a way that y inherits the constraints established on x and vice-versa.
This is realised in a way to avoid clashes between the formal parameter and
occurrences of y in the agent via the operator ∆x

y defined by:

∆x
yA =

{
∃dxy

y A if x 6= y
A if x = y.

R1 〈tell(c), d〉 −→1 〈stop, c t d〉

R2

 n

i=1 ask(ci) → pi : Ai, d
� −→p̃j 〈Aj , d〉 j ∈ [1, n] and d ` cj

R3
〈Aj , c〉 −→p

A′j , c

′�
〈‖n

i=1 pi : Ai, c〉 −→p·p̃j

‖n
j 6=i=1 pi : Ai ‖ pj : A′j , c

′� j ∈ [1, n]

R4
〈A, d t ∃xc〉 −→p

A′, d′

�D
∃d

xA, c
E
−→p

D
∃d′

x A′, c t ∃xd′
E

R5 〈p(y), c〉 −→1

∆x

yA, c
�

p(x) : −A ∈ P

Table 2. The Transition System for PCCP

Observables We will consider a notion of observables which captures the proba-
bilistic input/output behaviour of a PCCP agent. We will define the observables
O(A, d) of an agent A in store d as a probability distribution on constraints.
Formally, this is defined as an element in the real vector space:

V(C) =
{∑

xcc
∣∣∣ xc ∈ R, c ∈ C

}
,

that is the free vector space obtained as the set of all formal linear combina-
tions of elements in C. The coefficients xc represent the probability associated
to constraints c.

Operationally, a distribution O(A, d) corresponds to the set of all pairs 〈c, p〉,
where c is the result of a computation of A starting in store d and p is the
probability of computing that result. For the purpose of this paper we will restrict
to agents which only exhibit computations whose length is bounded. Note that
since our programs are finitely branching this implies by König’s lemma that the
vector space of constraints is finite-dimensional.

We formally define the set of results for an agent A as follows.

Definition 1. Let A be a PCCP agent. A computational path π for A in store
d is defined by

π ≡ 〈A0, c0〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn
〈An, cn〉 ,

where A0 = A, c0 = d, An = stop and n < ∞.

We denote by Comp(A, d) the set of all computational paths for A in store
d.

Definition 2. Let π ∈ Comp(A, d) be a computational path for A in store d,

π ≡ 〈A, d〉 = 〈A0, c0〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn 〈An, cn〉 .
We define the result of π as res(π) = cn and its probability as prob(π) =

∏n
i=1 pi.

Because of the probabilistic choice, there might be different computational
paths for a given PCCP program which lead to the same result. The probability
associated to a given result c is then the sum of all probabilities prob(π) asso-
ciated to all paths π such that res(π) = c. This suggests that we introduce the
following equivalence relation on Comp(A).

Definition 3. Let π, π′ ∈ Comp(A) be two computational paths for A in store
d. We define π ≈ π′ iff res(π) = res(π′). The equivalence class of π is denoted
by [π].

The definitions of res(π) and prob(π) are extended to Comp(A)/≈ in the
obvious way by res([π]) = res(π) and prob([π]) =

∑
π′∈[π] prob(π′).

We can now define the probabilistic input/output observables of a given agent
A in store d as the set

O(A, d) =
{〈res([π]), prob([π])〉 | [π] ∈ Comp(A)/≈

}
.

In the following we will adopt the convention that whenever the initial store
is omitted then it is intended to be true.

Example 1. [CHM02] Consider an ATM (Automatic Teller Machine) accepting
only a single PIN number n out of m possible PINs, e.g. m = 10000:

ATMn ≡
m

i=1,i6=nask(PINi) → 1 : tell(alarm)
ask(PINn) → 1 : tell(cash)

This agent simulates an ATM which recognises PINn: if PINn has been told
the machine dispenses cash, otherwise — for any incorrect PINi — it sounds an
alarm.

Consider now the following agent representing the client whose PIN is i:

Ci ≡ ask(true) → 1 : tell(PINi).

The computational paths for the parallel composition Mi ≡ p : ATMn ‖
q : Ci are given in Figure 1 respectively for the case in which i = n and
i 6= n. When run in the initial store true, agent ATMn is not active (no con-
straints PINj, 1 ≤ j ≤ m is entailed by the store); thus Ci is scheduled with
probability 1 (obtained by q after normalisation). The resulting configuration
is 〈p : ATMn ‖ q : stop, PINi〉. Now the only active agent is ATMn which is
then executed with (normalised) probability 1 leading to the final configuration
〈stop, cash〉 in the case where the PIN number is correct (right hand side deriva-
tion in Figure 1) and 〈stop, alarm〉 in the case where the PIN number is wrong
(left hand side derivation in Figure 1).

〈p : ATMn ‖ q : Ci, true〉

?
1

〈p : ATMn ‖ q : stop, P INi〉

?
1

〈p : stop ‖ q : stop, alarm t PINi〉

〈p : ATMn ‖ q : Cn, true〉

?
1

〈p : ATMn ‖ q : stop, P INn〉

?
1

〈p : stop ‖ q : stop, cash t PINi〉

Fig. 1. Execution of a program simulating the interaction with an ATM.

The observables are then O(Mi) = {〈PINi t alarm, 1〉} for i 6= n, O(Mi) =
{〈PINn t cash, 1〉} for i = n.

2.3 Probabilistic noninterference and identity confinement

The original idea of noninterference as stated in [GM82] can be expressed in the
PCCP formalism via the notion of identity confinement. Roughly, this notion
establishes whether it is possible to identify which process is running in a given
program. Therefore, given a set of agents and a set of potential intruders, the
latter cannot see what the former set is doing, or more precisely, no spy is able
to find out which of the agents in the first group is actually being executed.

This formulation is the natural translation in the context of PCCP of the notion
of confinement typically expressed in imperative languages via the values of
variables [SS00].

The following example illustrates the notion of identity confinement as com-
pared to the imperative formulation. It also shows the difference between non-
deterministic and probabilistic (identity) confinement.

Example 2. In an imperative language, confinement — as formulated for ex-
ample in [SS99,SS00] — usually refers to a standard two-level security model
consisting of high and low level variables. One then considers the (value of the)
high variable h as confined if the value of the low level variable l is not “in-
fluenced” by the value of the high variable, i.e. if the observed values of l are
independent of h.

The following statement illustrates the difference between nondeterministic
and probabilistic confinement:

h := h mod 2; (l := h 1
2

1
2

(l := 0 1
2

1
2

l := 1))

The value of l clearly depends “somehow” on h. However, if we resolve the choice
nondeterministically it is impossible to say anything about the value of h by
observing the possible values of l. Concretely, we get the following dependencies
between h and possible values of l:

– For h mod 2 = 0: {l = 0, l = 1}
– For h mod 2 = 1: {l = 1, l = 0},

i.e. the possible values of l are the same independently from the fact that h is
even or odd. In other words, h is nondeterministically confined.

In a probabilistic setting the observed values for l and their probabilities
allow us to distinguish cases where h is even from those where h is odd. We have
the following situation:

– For h mod 2 = 0:
{〈

l = 0, 3
4

〉
,
〈
l = 1, 1

4

〉}
– For h mod 2 = 1:

{〈
l = 0, 1

4

〉
,
〈
l = 1, 3

4

〉}

Therefore, the probabilities to get l = 0 and l = 1 reveal if h is even or odd, i.e.
h is probabilistically not confined.

Example 3. We can re-formulate the situation above in our declarative setting
by considering the following agents:

hOn ≡ ask(true) → 1
2

: tell(on) ask(true) → 1
2

: Rand

hOff ≡ ask(true) → 1
2

: tell(off) ask(true) → 1
2

: Rand

Rand ≡ ask(true) → 1
2

: tell(on) ask(true) → 1
2

: tell(off)

The constraint system consists of four elements:

C = {true, on, off, false = on t off} ,

where true v on v false and true v off v false.
The constraints on and off represent the situations in which the low variable

l = 1 or l = 0 respectively. The agent hOn corresponds then to the behaviour
of the imperative program fragment in case that h mod 2 = 1, while hOff
corresponds to the case where h mod 2 = 0. The auxiliary agent Rand corre-
sponds to the second choice in the above imperative fragment. The imperative
notion of confinement now translate in our framework into a problem of identity
confinement: getting information about h in the previous setting is equivalent
to discriminating between hOn and hOff, i.e. revealing their identity. The two
agents will be identity confined if they are observationally equivalent in any
context.

As explained in Section 2.2, the observables of a PCCP agent correspond
to a distribution on the constraint system, that is a vector in the space V(C).
Thus, the difference between two observables corresponds to the vector difference
between the given observables and can be measured by means of a norm. We
adopt here the supremum norm ‖ · ‖∞ formally defined as

‖(xi)i∈I‖∞ = sup
i∈I

|xi|,

where (xi)i∈I represents a probability distribution. However, as long as we are
interested in defining the identity of two vectors, any p-norm: ‖(xi)i∈I‖p =
p
√∑

i∈I |xi|p would be appropriate.
Probabilistic identity confinement is then defined as follows [DHW01]:

Definition 4. Two agents A and B are probabilistically identity confined iff
their observables are identical in any context, that is for all agent S,

O(p : A ‖ q : S) = O(p : B ‖ q : S)

or equivalently,
∥∥∥O(p : A ‖ q : S)−O(p : B ‖ q : S)

∥∥∥ = 0,

for all scheduling probabilities p and q = 1− p.

Example 4. It is easy to check that any context can distinguish between the
agents hOn and hOff of Example 3. In fact, even if executed on their own their
observables are different (cf. Figure 2):

∥∥∥O(hOn, true)−O(hOff.true)
∥∥∥ =

∥∥∥∥
{〈

on,
3
4

〉
,

〈
off,

1
4

〉}
−

{〈
on,

1
4

〉
,

〈
off,

3
4

〉}∥∥∥∥ =
1
2
.

Therefore hOn and hOff are not probabilistically identity confined.

〈hOn, true〉

〈Rand, true〉

〈stop, on〉 〈stop, off〉
?

1
2

@
@

@@R

1
2

?

1
2

¡
¡

¡¡ª

1
2

〈hOff, true〉

〈Rand, true〉

〈stop, off〉 〈stop, on〉
?

1
2

@
@

@@R

1
2

?

1
2

¡
¡

¡¡ª

1
2

Fig. 2. Transitions for hOn and hOff

1
2

: tell(c) ‖ 1
2

: tell(d), true
�

〈tell(d), c〉 〈tell(c), d〉

〈stop, c t d〉

¡
¡

¡¡ª

1
2

@
@

@@R

1
2

@
@

@@R
1

¡
¡

¡¡ª
1

〈tell(c t d), true〉

〈stop, c t d〉
?
1

Fig. 3. Independent Executions of A and B

Example 5. Consider the following two PCCP agents [DHW01]:

A ≡ 1
2

: tell(c) ‖ 1
2

: tell(d)

B ≡ tell(c t d).

It is easy to see that in their nondeterministic versions A and B executed in
any context give the same observables. A and B are thus nondeterministically
identity confined.

Treating the choice probabilistically still gives us the same observables for
A and B if they are executed on their own (cf. Figure 3), but they are not
probabilistically confined. A context which reveals the identity of A and B is for
example the agent:

C ≡ ask(c) → 2
3

: tell(e) ask(d) → 1
3

: tell(f),

1
2

: A ‖ 1
2

: C, true
�

1
2

: tell(d) ‖ 1
2

: C, c
�

1
2

: tell(c) ‖ 1
2

: C, d
�

〈tell(d), c t e〉 〈tell(c), d t f〉〈C, c t d〉

〈stop, c t d t e〉 〈stop, c t d t f〉

¡
¡

¡¡ª

1
2

@
@

@@R

1
2

@
@

@@R

1
2

¡
¡

¡¡ª

1
2

¡
¡

¡¡ª

1
2

@
@

@@R

1
2

@
@

@@R
1

¡
¡

¡¡ª
1

¡
¡

¡¡ª
2
3

@
@

@@R
1
3

Fig. 4. Executions of A in Context C

1
2

: B ‖ 1
2

: C, true
�

〈C, c t d〉

〈stop, c t d t e〉 〈stop, c t d t f〉

?
1

¡
¡

¡¡ª

2
3

@
@

@@R

1
3

Fig. 5. Executions of B in Context C

as the executions of A and B in this context give different observables (cf. Fig-
ure 4 and Figure 5):

O
(

1
2

: A ‖ 1
2

: C

)
=

{〈
c t d t e,

7
12

〉
,

〈
c t d t f,

5
12

〉}

O
(

1
2

: B ‖ 1
2

: C

)
=

{〈
c t d t e,

2
3

〉
,

〈
c t d t f,

1
3

〉}
.

We observe that if we restrict to a particular class of contexts, namely those
of the form:

D ≡ ask(g) → 1 : tell(h),

then A and B are probabilistically identity confined with respect to these agents:
for any choice of the scheduling probabilities p and q = 1−p, we obtain the same
observables for the parallel compositions of D with A and B respectively.

If neither c nor d entails g then D will never be executed, and the executions
of p : A ‖ q : D and p : B ‖ q : D are essentially the same as for A and B alone
(cf. Figure 3).

〈p : A ‖ q : D, true〉

〈p : tell(d) ‖ q : D, c〉 〈p : tell(c) ‖ q : D, d〉

〈tell(c), d t h〉〈D, c t d〉

〈stop, c t d t h〉

¡
¡

¡¡ª

1
2

@
@

@@R

1
2

@
@

@@R

1 ¡
¡

¡¡ª

p @
@

@@R

q

¡
¡

¡¡ª
1

@
@

@@R
1

〈p : B ‖ q : D, true〉

〈D, c t d〉

〈stop, c t d t h〉

?
1

?
1

Fig. 6. Executions in Context D when d entails g

If only d entails g we obtain the derivations in Figure 6. The case where g
is entailed by c alone is analogous. In all cases we end up with a single result
c t d t h with probability one.

The derivations of p : A ‖ q : D and p : B ‖ q : D in the case that both c
and d entail g are depicted in Figure 7: again we obtain the same result ctdth
with probability one.

〈p : A ‖ q : D, true〉

〈p : tell(d) ‖ q : D, c〉 〈p : tell(c) ‖ q : D, d〉

〈tell(c), d t h〉〈tell(d), c t h〉 〈D, c t d〉

〈stop, c t d t h〉

¡
¡

¡¡ª

1
2

@
@

@@R

1
2

@
@

@@R

p ¡
¡

¡¡ª

p

?

q

?

q

¡
¡

¡¡ª
1

@
@

@@R
1

?
1

〈p : B ‖ q : D, true〉

〈D, c t d〉

〈stop, c t d t h〉

?
1

?
1

Fig. 7. Executions in Context D when both c and d entail g

In general, identical behaviour in all contexts is hardly ever achievable. It
therefore makes sense to ask for identical observables if A and B are executed
in parallel with agents with only limited capabilities. Moreover, the power of a
context can be evaluated in terms of its ability to distinguish the behaviours
of two agents. It is also reasonable to think that its effectiveness will depend
on the probabilities of the scheduling in the interleaving with the given agents.
This leads to the definition of a weaker (and yet more practical) notion of prob-
abilistic identity confinement which is parametric in the type of context S and
the scheduling probability p. We will introduce such a notion, which we call
approximate identity confinement, in the next section.

2.4 Approximate Identity Confinement

In Section 1 we argued that it is practically more useful to base noninterference
properties on some similarity notions instead of equivalence once.

The confinement notion discussed above is exact in the sense that it refers to
the equivalence of the agents’ behaviour. In this section, we introduce a technique
which allows us to relax confinement to an approximate and yet more effective
notion.

The intuitive idea behind such a notion is that we look at how much the
behaviours of two agents differ, instead of qualitatively asserting whether they
are identical or not. In particular, in the probabilistic case we can measure the
distance ε between the distributions representing the agents’ observables instead
of checking whether this difference is 0. We can then say that the agents are ε-
confined for some ε ≥ 0.

We illustrate this idea by means of the ATM example introduced in Sec-
tion 2.2.

Example 6. Consider the program in Example 1 which simulates an ATM (Au-
tomatic Teller Machine) accepting only a single PIN number n out of m possible
PINs, e.g. m = 10000:

ATMn ≡
m

i=1,i6=nask(PINi) → 1 : tell(alarm)
ask(PINn) → 1 : tell(cash)

The following agent simulates a spy which tries a random PIN number i:

S ≡
m

i=1ask(true) → 1 : tell(PINi)

If we consider two such machines ATMn1 and ATMn2 for n1 6= n2 and
execute them in context S we obtain two slightly different observables, namely:

O (p : ATMn1 ‖ q : S) =
{〈

PINn1 t cash,
1
m

〉}

∪
m⋃

i=1,i6=n1

{〈
PINi t alarm,

1
m

〉}

and

O (p : ATMn2 ‖ q : S) =
{〈

PINn2 t cash,
1
m

〉}

∪
m⋃

i=1,i6=n2

{〈
PINi t alarm,

1
m

〉}
.

Clearly, O(p : ATMn1 ‖ q : S) and O(p : ATMn2 ‖ q : S) are different.
For most PINs both machines will sound an alarm in most cases, but if we are

lucky, the spy will use the correct PINs in which case we are able to distinguish
the two machines (besides earning some cash). The chances for this happening
are small but are captured essentially if we look at the difference between the
observables:

∥∥∥O(p : ATMn1 ‖ q : S)−O(p : ATMn2 ‖ q : S)
∥∥∥ =

1
m

.

The set {ATMn}n is ε-confined with respect to S with ε = 1
m but not strictly

confined. In the practical applications, m is usually very large, that is ε is very
small, which makes it reasonable to assume the ATM’s agents as secure although
not exactly confined.

The notion of approximate identity confinement we will define in the follow-
ing is based on the idea of measuring how much the behaviour of two agents
differs if we put them in a certain context. We will refer to such a context as
spy or attacker. This restriction makes sense as no system is secure against an

omnipotent attacker [LMMS98] and its security depends on the quality of the
possible attacker. We will discuss in the following different kinds of such attack-
ers.

As an example, consider the class of attackers expressed in PCCP by:

Sn =
{ n

i=1ask(ci) → pi : tell(fi)
}

,

where fi ∈ C are fresh constraints, that is constraints which never appear in the
execution of the host agents, and ci ∈ C. These agents are passive and memo-
ryless attackers. They do not change the behaviour of the hosts, and are only
allowed to interact with the store in one step. Nevertheless, they are sufficient
for formalising quite powerful attacks such as the timing attacks in [Koc95].

A generalisation of this class is to consider active spies (e.g. Example 7 and
Example 1) and/or spies with memory such as ask(c) → p : ask(d) → q : tell(f).

Example 7. Consider the two agents:

A ≡ ask(c) → 1 : tell(d)
B ≡ stop.

If executed in store true, A and B are obviously confined with respect to any
passive spy. They both do nothing, and it is therefore impossible to distinguish
them by just observing. However, for an active spy like S ≡ tell(c) it is easy to
determine if it is being executed in parallel with A or B. Note that if executed in
any store d such that d ` c, the two agents A and B are always distinguishable
because their observables are different.

The notion of approximate confinement which we introduce in the following is
a generalisation of the identity confinement introduced in [DHW01] and defined
in Section 2.3. The definition we give is parametric with respect to a set of
admissible spies S and scheduling probabilities p and q = 1−p. We say that two
agents A and B are approximately confined with respect to a set of spies S iff
there exists an ε ≥ 0 such that for all S ∈ S the distance between the observables
of p : A ‖ q : S and p : B ‖ q : S is smaller than ε. We consider as a measure
for this distance the supremum norm ‖ · ‖∞ as in Definition 4. In this case, the
choice of this norm is particularly appropriate because it allows us to identify a
single constraint c for which the associated probabilities are maximally different.
In the following we will usually omit the index ∞.

Definition 5. Given a set of admissible spies S, we call two agents A and B
ε-confined for some ε ≥ 0 iff:

sup
S∈S

∥∥∥O(p : A ‖ q : S)−O(p : B ‖ q : S)
∥∥∥ = ε.

This definition can be generalised to a set of more than two agents.
The number ε associated to a given class of spies S can be seen as a measure

of the “power” of S. In fact, it is strongly related to the number of tests a spy

needs to perform in order to reveal the identity of the host agents. We will make
this argument more precise in the next section. Note that this number depends
on the scheduling probability. This is because the effectiveness of a spy can only
be evaluated depending on the internal design of the host system which is in
general not known to the spy. For example, in [DHW03b] we have presented an
analysis which shows that the “best” spy of the class S2 defined above is one
with a choice distribution where p1 is very close to 0 and p2 is very close to 1,
or vice versa.

Obviously, if two agents A and B are ε-confined with ε(p) = 0 for all schedul-
ing probability p then they are probabilistically identity confined.

2.5 Statistical Interpretation

The notion of approximate confinement is strongly related to statistical concepts,
in particular to so-called hypothesis testing (see e.g. [Sha99]).

Identification by Testing Let us consider the following situation. We have
two agents A and B which are attacked by a spy S. Furthermore, we assume
that A and B are ε-confined with respect to S. This means that the observables
O(p : A ‖ q : S) and O(p : B ‖ q : S) are ε-similar. In particular, as the
observables do not include infinite results, we can identify some constraint c ∈ C
such that |pA(c) − pB(c)| = ε, where pA(c) is the probability of the result c in
an execution of p : A ‖ q : S and pB(c) is the probability that c is a result of
p : B ‖ q : S.

Following the standard interpretation of probabilities as “long-run” relative
frequencies, we can thus expect that the number of times we get c as result of an
execution of p : A ‖ q : S and p : B ‖ q : S will differ “on the long run” by exactly
a factor ε. That means if we execute p : A ‖ q : S or p : B ‖ q : S “infinitely”
often we can determine pA(c) and pB(c) as the limit of the frequencies with
which we obtain c as result.

In fact, for any unknown agent X we can attempt do determine pX(c) ex-
perimentally by executing p : X ‖ q : S over and over again. Assuming that X
is actually the same as either A or B we know that the pX(c) we obtain must
be either pA(c) or pB(c). We thus can easily determine this way if X = A or
X = B, i.e. reveal the identity of X (if ε 6= 0), simply by testing.

Unfortunately — as J.M. Keynes pointed out — we are all dead on the long
run. The above described experimental setup is therefore only of theoretical
value. For practical purposes we need a way to distinguish A and B by finite
executions of p : A ‖ q : S and p : B ‖ q : S. If we execute p : A ‖ q : S and
p : B ‖ q : S only a finite number of — say n — times, we can observe a certain
experimental frequency pn

A(c) and pn
B(c) for getting c as a result. Each time we

repeat this finite sequence of n executions we may get different values for pn
A(c)

and pn
B(c) (only the infinite experiments will eventually converge to the same

constant values pA(c) and pB(c)).
Analogously, we can determine the frequency pn

X(c) for an unknown agent X
by testing, i.e. by looking at n executions of p : X ‖ q : S. We can then try to

compare pn
X(c) with pn

A(c) and pn
B(c) or with pA(c) and pB(c) in order to find

out if X = A or X = B. Unfortunately, there is neither a single value for either
pn

X(c), pn
A(c) or pn

B(c) (each experiment may give us different values) nor can we
test if pn

X(c) = pn
A(c) or pn

X(c) = pn
B(c) nor if pn

X(c) = pA(c) or pn
X(c) = pB(c).

For example, it is possible that c is (coincidentally) not the result of the first
execution of p : X ‖ q : S, although the (long-run) probabilities of obtaining c
by executing p : A ‖ q : S or p : B ‖ q : S are, let’s say, pA = 0.1 and pB = 0.5.
If we stop our experiment after n = 1 executions we get p1

X(c) = 0. We know
that X = A or X = B but the observed p1

X(c) is different from both pA and pB .

Nevertheless, we could argue that it is more likely that X = A as the observed
p1

X(c) = 0 is closer to pA = 0.1 than to pB = 0.5. The problem is now to
determine, on the basis of such experiments, how much the identification of
X with A is “more correct” than identifying X with B on the basis of such
experiments.

For finite experiments we can only make a guess about the true identity of X,
but never definitely reveal its identity. The confidence we can have in our guess
or hypothesis about the identity of an unknown agent X — i.e. the probability
that we make a correct guess — depends obviously on two factors: the number
of tests n and the difference ε between the observables of p : A ‖ q : S and
p : B ‖ q : S.

Hypothesis Testing The problem is to determine experimentally if the un-
known agent X is one of two known agents A and B. The only way we can
obtain information about X is by executing it in parallel with a spy S. In this
way we can get an experimental estimate for the observables of p : X ‖ q : S.
We then can compare this estimate with the observables of p : A ‖ q : S and
p : B ‖ q : S.

That means: based on the outcome of some finite experiments (involving an
unknown agent X) we formulate a hypothesis H about the identity of X, namely
either that “X is A” or that “X is B”. Our hypothesis about the identity of X
will be formulated according to a simple rule: depending if the experimental
estimate for the observables of p : X ‖ q : S are closer to O(p : A ‖ q : S) or to
O(p : B ‖ q : S) we will identify X with A or B respectively.

More precisely, the method to formulate the hypothesis H about the identity
of the unknown process X consists of the two following steps:

1. We execute p : X ‖ q : S exactly n times in order to obtain an experimental
approximation, i.e. average, for its observables

On(p : X ‖ q : S) =
{〈

c,
of times c is the result

n

〉}

c∈C
,

2. Depending if On(p : X ‖ q : S) is closer to the observables On(p : A ‖ q : S)
or On(p : B ‖ q : S) we formulate the hypothesis

H :

X = A if
∥∥∥On(p : X ‖ q : S)−O(p : A ‖ q : S)

∥∥∥
≤

∥∥∥On(p : X ‖ q : S)−O(p : B ‖ q : S)
∥∥∥

X = B otherwise.

The question is now whether the guess expressed by the hypothesis H about
the true identity of the black box X, which we formulate according to the above
procedure, is correct; or more precisely: what is the probability that the hypoth-
esis H holds? To do this we have to distinguish two cases or scenarios:

X is actually A: What is the probability (in this case) that we formulate the
correct hypothesis H : X is A and what is the probability that we formulate
the incorrect hypothesis H : X is B?

X is actually B: What is the probability (in this case) that we formulate the
correct hypothesis H : X is B and what is the probability that we formulate
the incorrect hypothesis H : X is A?

Clearly, in each case the probability to formulate a correct hypothesis and
the probability to formulate an incorrect hypothesis add up to one. Furthermore,
it is obvious that both scenarios “X is actually A” and “X is actually B” are
symmetric. We will therefore investigate only one particular problem. Suppose
that X is actually agent A, what is the probability that — according to the above
procedure — we formulate the — in this case — correct hypothesis H : X is A.

In the following we use the notation pX(c) and pn
X(c) to denote the probability

assigned to c ∈ C in the distribution representing the observablesO(p : X ‖ q : S)
and in the experimental average On(p : X ‖ q : S) respectively. Furthermore, we
look at a simplified situation where we are considering only a single constraint c
where the difference between pA(c) and pB(c) is maximal. Let us assume without
loss of generality that pA(c) < pB(c) as in the diagram below:

0 1
pA(c) pB(c)

-¾ ε

-¾-¾
“X is A” ‘X is B”

If the experimental value pn
X(c) = pn

A(c) we obtained in our test is anywhere
to the left of pA(c) + ε/2 then the hypothesis H we formulate (based on pn

A(c))
will be the correct one: “X is A”; if the experimental value is to the right of
pA(c) + ε/2 we will formulate the incorrect hypothesis: “X is B”.

Under the assumption that “X is actually A” the probability P(H) that we
will formulate the correct hypothesis “X is A” is therefore:

P
(
pn

A(c) < pA(c) +
ε

2

)
= 1−P

(
pA(c) +

ε

2
< pn

A(c)
)

.

To estimate P(H) we have just to estimate the probability P(pn
A(c) < pA(c) +

ε/2), i.e. that the experimental value pn
A(c) will be left of pA(c) + ε/2.

Confidence Estimation The confidence we can have in the hypothesis H
we formulate is true can be determined by various statistical methods. These
methods allow us to estimate the probability that an experimental average Xn

— in our case pn
A(c) — is within a certain distance from the corresponding

expectation value E(X) — here pA(c) — i.e. the probability

P (|Xn −E(X)| ≤ ε)

for some ε ≥ 0. These statistical methods are essentially all based on the central
limit theorem, e.g. [Bil86,GS97,Sha99].

The type of tests we consider here to formulate a hypothesis about the iden-
tity of the unknown agent X are described in statistical terms by so called
Bernoulli Trials which are parametric with respect to two probabilities p and
q = 1 − p (which have nothing to do with the scheduling probabilities above).
The central limit theorem for this type of tests [GS97, Thm 9.2] gives us an
estimate for the probability that the experimental value Sn = n · Xn after n
repetitions of the test will be in a certain interval [a, b]:

lim
n→∞

P(a ≤ Sn ≤ b) =
1√
2π

∫ b∗

a∗
exp

(−x2

2

)

where
a∗ =

a− np√
npq

and b∗ =
b− np√

npq
.

Unfortunately, the integral of the so called standard normal density on the
right hand side of the above expression is not easy to obtain. In practical situa-
tions one has to resort to numerical methods or statistical tables, but it allows
us — at least in principle — to say something about P(H).

Identifying Sn with n ·pn
A we can utilise the above expression to estimate the

probability P(pA(c)+ ε/2 ≤ pn
A) which determines P(H). In order to do this we

have to take:

a = pA(c) +
ε

2
b = ∞
p = pA(c)
q = 1− pA(c).

This allows us — in principle — to compute the probability:

lim
n→∞

P
(
pA(c) +

ε

2
≤ pn

A(c) ≤ ∞
)

.

Approximating — as it is common in statistics — P(pA(c) + ε/2 ≤ pn
A) by

limP(pA(c) + ε/2 ≤ pn
A) we get:

P(H) = 1−P
(
pA(c) +

ε

2
≤ pn

A(c)
)

≈ 1− lim
n→∞

P
(
pA(c) +

ε

2
≤ pn

A(c)
)

= 1−
∫ ∞

a0

exp
(−x2

2

)

with

a0 =
nε

2
1√
npq

=
ε
√

n

2
√

pq
=

ε
√

n

2
√

pA(c)(1− pA(c))
.

We see that the only way to increase the probability P(H), i.e. the confidence
that we formulate the right hypothesis about the identity of X, is by minimising
the integral. In order to do this we have to increase the lower bound a0 of
the integral. This can be achieved — as one would expect — by increasing the
number n of experiments.

We can also see that for a smaller ε we have to perform more tests n to reach
the same level of confidence, P(H): The smaller n the harder it is to distinguish
A and B experimentally. Note that for ε = 0, the probability of correctly guessing
which of the agents A and B is in the black box is 1

2 , which is the best blind
guess we can make anyway. In other words: for ε = 0 we cannot distinguish
between A and B.

Example 8. Consider the agents in Example 5. The problem is to determine from
the experimentally obtained approximation of the observablesOn

(
1
2 : X ‖ 1

2 : C
)

for X = A or X = B the true identity of X. If, for example, X is actually agent
A and if we concentrate on the constraint c t d t e we have

ε =
1
12

and p = pA(c t d t e) =
7
12

The probability P(H) to formulate the correct hypothesis H depends on the
lower bound a0 of the above integral, i.e. the normal distribution N(a0,∞):

P(H) = 1−
∫ ∞

a0(n)

exp
(−x2

2

)
= 1−N(a0,∞).

The bound a0 in turn depends on the number n of experiments we perform. The
value of a0 for 9 tests is:

a0(9) =
√

9
24

1√
7
12 − (7

12)2
=

1
8

12√
35

=
3√
140

≈ 0.25355

while for 144 tests we get:

a0(144) =
√

144
24

1√
7
12 − (7

12)2
=

1
2

12√
35

=
6√
35
≈ 1.0142

In other words, if we repeat the execution of 1
2 : X ‖ 1

2 : C exactly 9 times,
the probability of formulating a correct hypothesis H about the identity of X is

about (using a normal distribution table, e.g. [GS97, p499]):

P(H) = 1−
∫ ∞

0.25

exp
(−x2

2

)
≈ 0.5987,

but if we perform 144 test our confidence level will rise to

P(H) = 1−
∫ ∞

1.0

exp
(−x2

2

)
≈ 0.8413.

For 9 tests the hypothesis formulated will be right with an about 60% chance,
while for 144 tests it will be correct with about 85%.

3 Process Algebra Formulation of Noninterference

3.1 Probabilistic Process Algebra

Process algebras are specification languages (see, e.g., [BW90,BPS01]) that de-
scribe the behaviour of concurrent systems through actions, which in our setting
are syntactically divided into output actions and input actions, and through
algebraic operators, which in our setting are enriched with probabilistic infor-
mation (see, e.g., [BBS95]). The algebraic model of a system communicates with
the environment through its inputs and outputs and performs internal compu-
tations through special, unobservable actions, termed τ actions. Formally, we
denote with AType the set of visible action types, ranged over by a, b, For
each visible action type a, we distinguish the output action a and the input
action a∗. The complete set of actions, termed Act and ranged over by π, π′, . . .,
contains the input actions and the output actions with type in AType and the
action τ . The set L of process terms, ranged over by P, Q, . . ., is generated by
the syntax:

P ::= 0 |π.P |P +p P |P ‖p
S P |P\L |P/p

a |A
where S, L ⊆ AType, a ∈ AType, and p ∈]0, 1[. 0 expresses the null, deadlocked
term 1, and ., +p, ‖p

S , \L, and /p
a denote the prefix, alternative, parallel, restric-

tion, and hiding operators, respectively. Constants A are used to specify recursive
systems. In particular, we assume a set of constants defining equations of the
form A

∆= P to be given. In the rest of the paper, we restrict ourselves to the set
G of finite state, closed, guarded terms of L, which we call processes [Mil89].

Now, we informally describe the algebraic operators and the probabilistic
model through an example. The reader interested in details and proofs should
refer to [ABG03].

Example 9. Consider the following abstraction of the Automatic Teller Machine
interacting with a client (cf. Example 1 in Section 2.2):

Client ‖p
S ATM .

1 We omit 0 when it is clear from the context.

The communication interface between processes Client and ATM , defined by
set S = {insert pin, cash, fail}, says that the two processes (i) interact by syn-
chronously executing actions of type in S, and (ii) asynchronously and inde-
pendently execute each other local action. Probability p is the parameter of
a probabilistic scheduler that, in each system state, decides which of the two
processes must be scheduled, i.e. Client with probability p and ATM with prob-
ability 1− p.

Now, let us detail each component in isolation. Process Client repeatedly
tries to insert a pin until the right number allows it to withdraw the cash:

Client ∆= insert pin.Client ′ +q τ.Client .

The alternative choice operator “ +q ” says that process Client can either insert
a pin (output action insert pin) with probability q, and afterwards behaving as
process Client ′, or stay idle (action τ) with probability 1 − q, and afterwards
behaving as the same process Client . The actions insert pin and τ follow the
generative model of probabilities [GSS95], which is the same model adopted
by PCCP (cf. Section 2). In essence, the process autonomously decides, on the
basis of a probability distribution (guided by parameter q), which action will be
executed and how to behave after such an event.

Client ′ ∆= cash∗.0 +q′ fail∗.Client .

Process Client ′ waits for the answer provided by the environment, i.e., it can
either withdraw cash in case the pin number is right (input action cash∗), and
afterwards stopping its execution (see the null term 0), or receive an unsuccessful
message (input action fail∗), and afterwards behaving as process Client again.
In practice, process Client ′ internally reacts to the choice of the action type,
cash or fail , performed by the environment (i.e., the machine). Formally, the
input actions fail∗ and cash∗ follow the reactive model of probabilities [GSS95].
In particular, if the machine decides to communicate the action of type fail , then
the client performs with probability 1 the unique input action of that type, which
leads to process Client . Similarly, if the machine outputs the action of type cash,
then the client chooses the input action cash∗ and then stops its execution. As a
consequence of such a behaviour, parameter q′ is not considered or, equivalently,
from the viewpoint of process Client ′ in isolation, the choice between such actions
is purely nondeterministic, because their execution is entirely guided by the
external environment.

Process ATM , instead, is ready to accept new incoming pins or it stays idle:

ATM ∆= (insert pin∗.fail .ATM +r insert pin∗.cash.ATM) +r′ τ.ATM .

The two actions insert pin∗ model the internal reaction of process ATM to
the choice of the action type insert pin performed by its environment (i.e., the
client). Such a reaction is guided by a probability distribution associated with
the input actions of type insert pin that process ATM can perform. More pre-
cisely, whenever the action type insert pin is chosen by the client, process ATM

reacts by choosing either the first action insert pin∗ with probability r and
then refusing the pin (output action fail), or the second action insert pin∗ with
probability 1 − r and then delivering cash (output action cash). Alternatively,
if process ATM is not accepting pins from the environment, the internal action
τ is repeatedly executed to model the idle periods of the machine. The choice
between the input actions insert pin∗ and such an internal event is nondeter-
ministic (parameter r′ is not considered), because the execution of an action
insert pin∗ is entirely guided by the external environment.

According to the considerations above, the processes interact in the composed
system as follows. In the initial state of our example, the system executes a move
of process Client with probability p: it executes either the internal move τ with
probability p · (1− q), or the synchronising move insert pin with probability p · q
(with probability p · q · r it executes an insert pin action synchronised with the
first input action of process ATM and with probability p ·q ·(1−r) an insert pin
action synchronised with the second input action of process ATM). Note that
the result of a synchronisation between an output action insert pin and an input
action insert pin∗ is again an output action of type insert pin (similarly as in
CSP [Hoa85]). On the other hand, the system may schedule with probability
1 − p process ATM by executing its internal action τ , which gets the entire
probability 1 − p associated to process ATM . Afterwards, if, e.g., the winning
action is the action insert pin leading to term Client ′ ‖p

S cash.ATM , then the
system executes the synchronising action cash with probability 1, because it is
the unique action that can be performed by the composed system. In particular,
note that action fail∗ of process Client ′ is blocked, because the environment of
process Client ′, represented by process cash.ATM , is not available to output a
corresponding output action fail . In Figure 8 we report the labeled transition
systems that are associated with processes Client and ATM in isolation and
with the composed system.

The example above emphasises some features of the probabilistic process
algebra that we now describe in more detail.

pqr
, r

p

insert_pin insert_pin , 1−r

fail cash

1−q

fail

cash

insert_pin,
insert_pin,

fail

cash

q
insert_pin, pq(1−r)

p(1−q) + (1−p)τ

*

SATM

*

τ,

Client

*

τ

ATMClient

*

τ,

Fig. 8. Labeled transition systems associated to different process terms. Transitions
are labeled with an action and a probability, which is equal to 1 if omitted.

As far as the CSP-like communication policy is concerned, in any binary
synchronisation at most one output action can be involved and, in such a case,
the result is an output action of the same type. Instead, in case two input actions
of type a synchronise, then the result is again an input action of type a. We recall
that the actions belonging to the communication interface are constrained to
synchronise, while all the other actions are locally and independently executed
by the processes that compose the system.

As far as the probability model is concerned, we have seen that output and
internal actions follow the generative model, while input actions follow the reac-
tive model. Probabilistic choices among output/internal actions or among input
actions of the same type are fully probabilistic, while in each other case the
choice is purely nondeterministic. This is because input actions are underspeci-
fied, in the sense that their execution is guided by the environment behaviour.
Hence, the parameters that probabilistically guide the choices come into play if
and only if a probabilistic choice is really to be performed. Moreover, Example 9
has emphasised the following behaviors of the parallel operator:

– In case the execution of some output actions of P is prevented in P ‖p
S Q

(P\L), the probabilities of executing the remaining output/internal actions
of P are proportionally redistributed (similarly for Q). That is a stan-
dard approach when restricting actions in the generative model of proba-
bilities [GSS95], as also seen in case of PCCP (cf. Section 2).

– In case of synchronising output actions a of P in P ‖p
S Q, their probability

is distributed among the multiple actions a obtained by synchronising with
input actions a∗ executable by Q, according to the probability the actions
a∗ are chosen in Q.

As a consequence of the policies specified above, we point out that in each
system state of a process term, the sum of the probabilities of output and internal
actions (input actions of a given type a), if there are any, is always equal to 1.

Now, we informally describe the behaviour of the hiding operator, which is
needed to specify security properties. The hiding operator P/p

a turns output and
input actions of type a into actions τ , by changing the probabilities according
to the following rules.

– As far as output/internal actions executable by P/p
a are concerned, we dis-

tinguish the following cases:
1. If P enables both some output/internal actions and some input actions

a∗, then P/p
a chooses an action τ (obtained by hiding an action a∗ of

P) with probability p and an output/internal action previously enabled
in P with probability 1 − p. Such a rule guarantees that the hiding
operator does not introduce nondeterminism among actions that follow
the generative model of probability.

2. If either P does not enable output/internal actions, or P does not enable
input actions a∗, then in P/p

a parameter p is not considered.
– As far as input actions are concerned, P/p

a enables the same input actions
(with the same probability distribution) of type b 6= a enabled in P .

Example 10. Consider process P
∆= a∗+q′ (b+qc), where the choice among a∗ and

the output actions is purely nondeterministic (parameter q′ is not considered).
The semantics of P/p

a, which corresponds to process τ+p(b+qc), is a probabilistic
choice between τ , executed with probability p, and the actions b and c, executed
with probability (1− p) · q and (1− p) · (1− q), respectively. Hence, parameter p
expresses the probability that the action τ obtained by hiding the input action
a∗ of P is executed with respect to the output actions previously enabled by P .

A goal of the hiding operator consists of turning open systems (i.e., systems
enabling reactive choices due to input actions) into fully specified systems (i.e.,
fully generative systems, which do not include nondeterministic behaviours). In
particular, the hiding operator resolves all the nondeterministic choices due to
possible interactions with the environment by turning them into probabilistic
choices. Intuitively, the effect of hiding an input action a∗ corresponds to the
execution of a synchronisation between a∗ and an output action a offered by
the environment. Such an interaction gives rise to an internal action τ whose
probability distribution depends on parameter p of the hiding operator. When
analysing security properties that employ the hiding operator, we will show that
the low-level behaviour of a secure system does not depend on the choice of
parameter p.

In the rest of the paper we use the following abbreviations. We assume pa-
rameter p to be equal to 1

2 whenever it is omitted from any probabilistic operator.
Moreover, when it is clear from the context, we use the abbreviation P/S, with
S = {a1, . . . , an} ⊆ AType, to denote the expression P/a1 . . . /an .

3.2 Operational Semantics and Equivalence

In this section, we provide a brief formal presentation of the semantics of the
calculus. The reader not interested in such details can skip the rest of the section
and proceed with the description of the security model.

The operational semantics of the probabilistic process algebra is given by
the labeled transition system (G,Act , T), whose states are process terms and
the transition relation T is the least multiset satisfying the operational rules
reported in Table 3 and in Table 4. For a formal presentation of the semantics
rules, the reader should refer to [BA03,ABG03], while here we just discuss some
general aspects.

As far as the notation is concerned, we denote with RAct and GAct the sets
of input actions, termed reactive actions, and of output and internal actions,
termed generative actions, respectively. Then, we use the abbreviations P

π−−−→
to stand for ∃p, P ′ : P

π, p−−−→ P ′, denoting that P can execute action π with

probability p and then behave as P ′, and P
G−−−→ , with G ⊆ GAct , to stand for

∃a ∈ G : P
a−−−→ , meaning that P can execute a generative action belonging to

set G.
As far as the rules for P +pQ and P ‖p

S Q are concerned, note that in addition
to the reported rules, which refer to the local moves of the left-hand process P ,

we also consider the symmetric rules taking into account the local moves of the
right-hand process Q. Such symmetric rules are obtained by exchanging the roles
of terms P and Q in the premises and by replacing p with 1 − p in the label
of the derived transitions. Moreover, we also point out that for both operators,
parameter p comes into play if and only if a probabilistic choice between P and Q
is really to be performed. For instance, in case of the alternative choice operator,
if P enables at least a generative action and Q does not, then P +p Q performs a
generative transition of P with probability 1. Otherwise, if both P and Q enable
some generative actions, then P +p Q performs a generative transition of P with
probability p.

Two important remarks are in order in case of the parallel operator. On the
one hand, if both P and Q can execute some synchronising actions a∗ in P ‖p

S Q,
then the composed system can execute some actions a∗: the probability of each
action a∗ executable by P ‖p

S Q is the product of the probabilities of the two
actions a∗ (one of P and one of Q) that are involved in the synchronisation.
On the other hand, as also explained in the previous section, when considering
P ‖p

S Q we must pay attention to the computation of the probability distribution
of its generative actions, whose overall probability must sum up to 1. To this aim,
in semantics rules we employ the function νP (GS,Q) : P(AType ∪ {τ}) −→]0, 1],
which computes the sum of the probabilities of the generative transitions of
P (executable by P ‖p

S Q) whose type belongs to set GS,Q ⊆ AType ∪ {τ}. In

particular, set GS,Q = {a ∈ AType ∪ {τ} | a 6∈ S ∨ (a ∈ S ∧ Q
a∗−−−→)} contains

the action types not belonging to the synchronisation set S and the action types
belonging to S for which an input action of Q can be performed. Hence, νP (GS,Q)
computes the aggregate probability of the generative transitions of P that can
be executed by P ‖p

S Q and can be used to normalise the probabilities of the
generative transitions of P .

Finally, note that the tables omit the rules for the restriction operator. This
is because it can be easily derived from the parallel operator. Indeed, we have
that P\L corresponds to process P ‖L 0.

Since the security model we are going to present is based on the semantics of
processes (i.e., the security check considers the program behaviour), we need an
equivalence relation allowing for a comparison among the observable behaviours
of different systems. To this aim, we resort to a probabilistic variant of the
weak bisimulation [BH97], which abstracts away from τ actions and is able to
identify deadlock. More precisely, such a relation, termed ≈PB, is a probabilistic
extension of the nondeterministic weak bisimulation (≈B) of [Mil89]. In essence,
≈PB replaces the classical weak transitions of ≈B by the probability of reaching
classes of equivalent states. The notion of weak probabilistic bisimulation is based
on the following definitions (for more details, see [ABG03]). We use a function
Prob such that Prob(P, a∗, C) denotes the aggregate probability of going from
P to a term in the class (of equivalent terms) C by executing an action a∗.
Moreover, Prob(P, τ∗a,C) expresses the aggregate probability of going from P
to a term in the equivalence class C via sequences of the form τ∗a (if a 6= τ) or
τ∗ (if a = τ). Formally:

π.P
π,1−−−→ P

P
a∗,q−−−→ P ′ Q

a∗−−−→
P +p Q

a∗,p·q−−−→ P ′

P
a∗,q−−−→ P ′ Q

a∗−−−→/
P +p Q

a∗,q−−−→ P ′

P
a,q−−−→ P ′ Q

GAct−−−→
P +p Q

a,p·q−−−→ P ′

P
a,q−−−→ P ′ Q

GAct−−−→/
P +p Q

a,q−−−→ P ′

P
a∗,q−−−→ P ′ P

GAct−−−→
P/p

a

τ,p·q−−−→ P ′/p
a

P
a∗,q−−−→ P ′ P

GAct−−−→/
P/p

a

τ,q−−−→ P ′/p
a

P
b∗,q−−−→ P ′

P/p
a

b∗,q−−−→ P ′/p
a

a 6= b

P
b,q−−−→ P ′ P

a∗−−−→
P/p

a

b,(1−p)·q
−−−−−−−−→ P ′/p

a

a 6= b
P

a,q−−−→ P ′ P
a∗−−−→

P/p
a

τ,(1−p)·q
−−−−−−−−→ P ′/p

a

P
b,q−−−→ P ′ P

a∗−−−→/
P/p

a

b,q−−−→ P ′/p
a

a 6= b
P

a,q−−−→ P ′ P
a∗−−−→/

P/p
a

τ,q−−−→ P ′/p
a

P
π,q−−−→ P ′

A
π,q−−−→ P ′

if A
∆
= P

Table 3. Operational semantics (part I)

Prob(P, τ∗a,C) =

1 if a = τ ∧ P ∈ C∑
Q∈G Prob(P, τ,Q) · Prob(Q, τ∗, C) if a = τ ∧ P 6∈ C∑
Q∈G Prob(P, τ,Q) · Prob(Q, τ∗a,C) + Prob(P, a, C) if a 6= τ.

Definition 6. An equivalence relation R ⊆ G × G is a weak probabilistic bisim-
ulation if and only if, whenever (P,Q) ∈ R, then for all C ∈ G/R:

– Prob(P, τ∗a,C) = Prob(Q, τ∗a, C) ∀a ∈ GAct
– Prob(P, a∗, C) = Prob(Q, a∗, C) ∀a∗ ∈ RAct .

Two terms P,Q ∈ G are weakly probabilistically bisimulation equivalent,
denoted P ≈PB Q, if there exists a weak probabilistic bisimulation R containing
the pair (P,Q).

P
a∗,q−−−→ P ′ Q

a∗−−−→
P ‖p

S Q
a∗,p·q−−−→ P ′ ‖p

S Q
a 6∈ S

P
a∗,q−−−→ P ′ Q

a∗−−−→/
P ‖p

S Q
a∗,q−−−→ P ′ ‖p

S Q
a 6∈ S

P
a∗,q−−−→ P ′ Q

a∗,q′−−−→Q′

P ‖p
S Q

a∗,q·q′−−−→ P ′ ‖p
S Q′

a ∈ S

P
a,q−−−→ P ′ Q

GS,P−−−→

P ‖p
S Q

a,p·q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖p
S Q

a 6∈ S

P
a,q−−−→ P ′ Q

GS,P−−−→/

P ‖p
S Q

a,q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖p
S Q

a 6∈ S

P
a,q−−−→ P ′ Q

a∗,q′−−−→Q′ Q
GS,P−−−→

P ‖p
S Q

a,p·q′·q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖p
S Q′

a ∈ S

P
a,q−−−→ P ′ Q

a∗,q′−−−→Q′ Q
GS,P−−−→/

P ‖p
S Q

a,q′·q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖p
S Q′

a ∈ S

Table 4. Operational semantics (part II)

Note that such a definition requires two equivalent terms to be strongly
equivalent in case of reactive actions and weakly equivalent in case of generative
actions. This is because τ is a generative action, therefore the computation of
the probability of executing a mixed trace of generative/reactive actions (like,
e.g., τ∗a∗) does not actually make sense.

Example 11. Consider the processes P
∆= a +

1
2 b and Q

∆= τ.Q +
1
3 (a +

1
2 b),

which, from an external observer viewpoint, behave the same since they execute
either an output action a or an output action b with equal probabilities. We now
want to formally verify such an intuition, i.e. we show that P and Q are weakly
probabilistically bisimulation equivalent. Let R be the relation that considers
the classes {C, [0]}, where C = {P,Q} and [0] = {0}. The only interesting case
is given by Prob(P, τ∗π, [0]) = 1

2 , where π ∈ {a, b}. In order to compute the
probability Prob(Q, τ∗π, [0]) we must consider that Q can execute an arbitrary
number of times the action τ before reaching state 0 via an action a (b). To this
aim, we redistribute the probability 1

3 associated with the outgoing internal tran-
sition of Q among the other outgoing transitions of Q. Formally, by applying the

definition of function Prob, we obtain Prob(Q, τ∗a, [0]) = 1
3 ·Prob(Q, τ∗a, [0])+ 1

3 ,
from which we derive Prob(Q, τ∗a, [0]) = 1

2 (similarly for b). Hence, R is a weak
probabilistic bisimulation and P ≈PB Q.

3.3 Probabilistic Noninterference

Probabilistic noninterference extends the classical, possibilistic definition of non-
interference by providing the means for:

1. capturing those covert channels that are not observable in a purely nonde-
terministic setting, and

2. measuring the information leakage in terms of probability of observing the
related covert channel.

In this section, we show how to formalise probabilistic noninterference in
our process algebraic framework, while in the next one we extend the same
approach in order to deal with the problem of giving a quantitative estimation
of the information leakage.

As usual in security models, in our process algebraic framework we distin-
guish among high-level visible actions and low-level visible actions by defining
two disjoint sets ATypeH of high-level types and ATypeL of low-level types, which
form a covering of AType, such that the output action a and the input action
a∗ are high- (low-) level actions if a ∈ ATypeH (a ∈ ATypeL). Usually, we use
l, l′, . . . to denote low-level types and h, h′, . . . to denote high-level types. Then,
in such a setting, we provide a semantics-based approach to noninterference, i.e.,
an approach where different program behaviours are compared to analyse a se-
curity property. Roughly, we derive two models from the algebraic specification
of the system at hand, and then check the semantic equivalence between such
derived models. On the one hand, the definition of semantic equivalence between
processes is based on the weak probabilistic bisimulation equivalence ≈PB. On
the other hand, the choice of the sub-models to be compared depends on the def-
inition of the security property. Here, we consider the noninterference property
of [Ald01,ABG03], which in turn is the probabilistic version of the Strong Nonde-
terministic Noninterference property proposed in [FG95] to express the classical
noninterference idea of [GM82]. In essence, in order to detect potential high-level
interferences, we compare the low-level behaviours of the system model P that
can be observed in two different scenarios differing in the high-level behaviours
only. In the former scenario, P is isolated from the high-level environment, so
that all its high-level interactions are prevented, while in the latter scenario, P
interacts with any high-level user that enables all the high-level actions of P .

The definition of Probabilistic Noninterference, here termed PNI , is as fol-
lows. For the sake of conciseness, we denote with hP

1 , . . . , hP
n the sequence (in

alphabetic order) of high-level types that syntactically occur in the action prefix
operators within P .

Definition 7. P ∈ PNI ⇔ P\ATypeH ≈PB P/p1

hP
1

. . . /pn

hP
n
∀p1, . . . , pn ∈]0, 1[.

Such a formulation also defines the particular class of adversaries (high-level
users) with respect to which the probabilistic noninterference property is param-
eterised. Formally, according to the PNI definition, we can argue as follows.

On the one hand, P\ATypeH expresses the low-level view of the system in
isolation (without high-level interactions with the environment), since all the
high-level actions are prevented.

On the other hand, P/p1

hP
1

. . . /pn

hP
n
∀p1, . . . , pn ∈]0, 1[, where all the high-level

actions are hidden, expresses the low-level view of P in case all the high-level in-
teractions with the environment are enabled. In this formula, the hiding operator
models the behaviour of any high-level user H that allows all the high-level ac-
tions enabled by P to be executed. More precisely, H allows the high-level output
actions of P (turned into internal τ actions) to be executed with the probability
distribution chosen by P itself. On the other hand, H allows the high-level input
actions of P (turned into internal τ actions) to be executed with a probability
distribution chosen by H itself according to parameters p1, . . . , pn.

The class of attackers considered by the PNI property, here called APNI ,
contains active and memoryless high-level users. More precisely, they are active
as they can affect the probabilistic behaviour of the system activities, and they
are memoryless as they cannot alter their behaviour depending on the previous
history. In particular, as stated by the hiding operators, the probability distri-
butions for the high-level inputs are chosen a priori and do not change during
the system execution.

Example 12. Consider a program that writes a low-level variable in two possible
ways, only one being legal, and represented by the following system:

P
∆= τ . (copy secret PIN +0.001 copy random value) +p

high . (copy secret PIN +0.5 copy random value).

If the high-level user interacts with the system (such a communication is mod-
eled by the execution of the high-level action high), then the program assigns to
the public variable either a confidential value (low-level action copy secret PIN)
with probability 0.5 or a random value (low-level action copy random value)
with equal probability 0.5. On the other hand, if the high-level user does not
interfere, then the program performs an internal activity that leads to the execu-
tion of the illegal assignment with a negligible probability. The choice between
the interaction with the high-level user and the internal action is left to the
system, which performs it according to parameter p.

A nondeterministic approach to noninterference 2 does not reveal any covert
channel. This is because independently of the high-level behaviour, the low-
level view of the system is always the same. However, if an external observer
considers the outcomes of repeated executions of the system, then the rela-
tive frequency of such outcomes reveals the high-level interference. Formally,

2 [Ald02,ABG03] rephrase the approach of [FG95] in a nondeterministic simplification
of our process algebra, thus obtaining the same security property taxonomy.

we have that P\ATypeH and P/ATypeH are not weakly probabilistically bisim-
ulation equivalent. For instance, we have that P\ATypeH performs the action
copy secret PIN (preceded by an invisible transition) with probability 0.001,
while P/ATypeH executes the same observable action (preceded by an invisible
transition) with probability p · 0.001 + (1− p) · 0.5. Therefore, the PNI property
is more than enough to capture the probabilistic covert channel described above.

3.4 Approximate Noninterference

In this section, we show how the knowledge about the probabilistic behaviour of
a system may help the modeler to give a quantitative estimation of each informa-
tion leakage, thus overcoming the qualitative view according to which a system
is or is not secure. More precisely, given a covert channel that is responsible for
an illegal information flow (which, e.g., could be revealed also in the possibilistic
setting), we can evaluate the effectiveness of such a covert channel, by measuring
the probability for an external observer of detecting it.

From a practical standpoint, a quantitative (probabilistic) approach to infor-
mation flow analysis is useful for the verification of the security level of systems
for which probabilities play an important role. For instance, many problems
can be solved by using deterministic algorithms that turn out to be secure and
require exponential time. On the other hand, probabilistic algorithms are of-
ten implemented that solve the same problems in polynomial time (see, e.g.,
[CKV00,MR99]). In such a case, the price to pay for a computational gain is the
possibility for the observer of detecting an illegal information flow. Because of
such a possibility, a probabilistic algorithm cannot be secure in case we limit the
information flow analysis to the nondeterministic case. Instead, if we resort to
a probabilistic approach, we can formally prove that the same algorithm has an
illegal information flow, which, however, occurs with probability close to 0 (see,
e.g., [AG02]). Based on these considerations, we need a quantitative approach
in order to estimate the difference between the non-secure system and a secure
one.

In our process algebraic setting, we may try to analyse the labeled transition
system underlying an algebraic specification, in order to compute the probability
that an information flow (from high level to low level) really happens. Unfortu-
nately, a solution to such a problem cannot be provided if the verification of the
security properties depends on a behavioural equivalence relation like the weak
probabilistic bisimulation considered in the previous sections. This is because
any equivalence relation states whether or not two given transition systems be-
have exactly the same. From a security standpoint, such an approach simply
provides a binary answer: the system suffers or does not suffer an information
leakage. Hence, small fluctuations in the system behaviour cannot be tolerated.
Instead, we need a relaxed relation, which cannot be an equivalence relation,
allowing for similar processes to be related, where the term similar stands for
“behave almost the same up to small fluctuations”.

On the basis of the considerations above, we now introduce a quantitative
notion of behavioural similarity for deciding if two probabilistic processes are

confined or, more precisely, for measuring the distance between probabilistic
transition systems.

Formally, we now introduce the definition of weak probabilistic bisimulation
with ε-precision, which is a relaxed version of the weak probabilistic bisimulation
≈PB presented in Section 3.2.

Definition 8. A relation R ⊆ G × G is a weak probabilistic bisimulation with
ε-precision, where ε ∈]0, 1[, if and only if, whenever (P,Q) ∈ R, then for all
C ∈ G/R :

– |Prob(P, τ∗a, C)− Prob(Q, τ∗a, C) | ≤ ε ∀a ∈ GAct
– |Prob(P, a∗, C)− Prob(Q, a∗, C) | ≤ ε ∀a∗ ∈ RAct .

We use the abbreviation P ≈PBε Q to denote that there exists a weak proba-
bilistic bisimulation with ε-precision R containing the pair (P, Q); alternatively,
we say that P (Q) is a ε-perturbation of Q (P). Note that ≈PBε is not a tran-
sitive relation and, therefore, it cannot be an equivalence relation.

Example 13. Let us consider the fully specified transition systems depicted in
Figure 9, which enable generative transitions only. It is easy to see that they
cannot be weakly probabilistically bisimulation equivalent according to the def-
inition of ≈PB . Indeed, we have that s2 and s4 belong to the same equivalence
class, while s0, s1, and s3 are in three separate classes, since they have different
probabilities of reaching the class [0] of the null term by executing the sequence
τ∗a (τ∗b). However, we can observe that the observable behaviours of such sys-
tems are almost the same up to a perturbation ε. More formally, if we tolerate
a distance at most equal to ε, we can define a relation that is a weak probabilis-
tic bisimulation with ε-precision as follows. First, we immediately obtain that s1

and s2 (s4) are similar, i.e. they belong to the same class C. For the same reason,
we have that s0 is in C, since Prob(s0, τ

∗a, [0]) = 1
2 · (1

2 + ε)+ 1
4 = 1

2 + 1
2 · ε (sim-

ilarly, for b we obtain 1
2 − 1

2 · ε). Finally, s3 is in C too, since Prob(s3, τ
∗a, [0]) =

ε+ 1
2 · (1− ε) = 1

2 + 1
2 · ε and Prob(s3, τ

∗b, [0]) = 1
2 · (1− ε) = 1

2 − 1
2 · ε. Therefore,

we have obtained a weak probabilistic bisimulation with ε-precision including
the pair (s0, s3), i.e. the two transition systems are a ε-perturbation of the same
system.

3.5 Approximating PNI

The similarity relation can be used to approximate the noninterference property
by simply replacing the equivalence relation in its formulation with such a sim-
ilarity relation. In essence, instead of qualitatively asserting whether or not two
sub-models of the system are equivalent, we just look at how much they differ.
Since the sub-models to be compared express the low-level behaviour in case
the system is isolated from the high environment and the low-level behaviour in
case the system interacts with high users, respectively, an approximated nonin-
terference property quantitatively states the capacity of a low-level observer of
guessing the high environment behaviour by observing the system execution.

ba

s 2

00 00

ττ
1
2

s 0

ba

00

1
2

s 1

1
2

− ε
1
2

τ

s

a

ba

s 4

00 00

00

1
2

1
2

ε

3

1 − ε1
2

1
2

+ ε

Fig. 9. Example of weak probabilistic bisimulation with ε-precision

In our setting, the definition of process similarity is not parametric with re-
spect to a specific set of adversaries (admissible spies, as termed in Section 2.4).
Instead, the given security property is parameterised by a particular class of
adversaries. Hence, security strictly depends on the definition of the property.
In particular, here we show what happens when approximating the PNI prop-
erty, which, as we have seen, is parameterised with respect to a particular class
APNI of adversaries. In particular, if we replace in the definition of PNI the
weak probabilistic bisimulation with the weak probabilistic bisimulation with
ε-precision, we obtain a relaxed property that states if the behaviour of P in
isolation is close (according to the distance ε) to that observed when P interacts
with anyone of the high-level users in APNI .

Example 14. Consider the system of Figure 10:

P
∆= h.l′.0 +p τ.(l.0 +q h.l.0)

where it can be observed that:

– the left-hand component, which is chosen with probability p, is clearly non-
secure, since the execution of the action l′ reveals to the low-level observer
that the action h occurred;

– the right-hand component, which is chosen with probability 1− p, is secure,
since independently of the (probabilistic) high behaviour a low-level observer
always sees the action l with probability 1.

We point out that the probabilistic information is not necessary to capture a
covert channel in P , which is easily revealed as a “1-bit covert channel” by the
nondeterministic counterpart of the PNI property [ABG03]. In other words, the
probabilistic information described in P is not responsible for the information
leakage. In spite of this, such an information turns out to be useful to analyse
the security level of P . Indeed, the observation of the frequency of the possible
outcomes of repeated executions of the system reveals that the behaviour of P
is secure with probability 1−p and discloses an unwanted information flow with
probability p. In practice, after a certain number, let us say n, of experiments
during which the high-level user interacts with P , it turns out that the mean

number of l′ that have occurred is n · p, while the mean number of l that have
occurred is n · (1− p). Instead, after n experiments during which the high-level
user does not interact with P , it turns out that the number of l that have
occurred is n. Obviously, by observing the relative frequencies “on the long run”
of the observable results, we have that P\ATypeH and P/ATypeH will differ by
exactly a factor p. That means if an external observer executes the system (under
one of the two scenarios) “infinitely often”, then it can determine whether or
not the high-level user was interfering. However, in a realistic scenario, after a
finite number n of experiments and in case p is a value very close to 0, it is
very hard for an external observer to understand whether or not the system was
interacting with the high-level user. In such a case, the covert channel occurs
with a negligible probability and P may be considered as a good approximation
of a secure system.

The standard interpretation of probabilities as relative frequencies also helps
to give an estimation of the covert channel capacity. Indeed, if we assume, e.g.,
that the system above is executed n times per week, then we can conclude that
such a system suffers an information leakage equal to n · p bits per week, since
that is (on average) the number of experiments that reveals the high-level user
behaviour.

h

P

τ

0 +

l’ l

h . l .0

0

h

l .
l

p

l’. l . 0

0

1−p

1−qq

Fig. 10. Example of probabilistic information flow

Now, we formally show how the weak probabilistic bisimulation with ε-
precision is able to determine the security level of P . According to the PNI
definition, we have P\ATypeH 6≈PB P/ATypeH . However, P\ATypeH is a p-
perturbation of P/ATypeH , since P\ATypeH ≈PB τ.l.0 ≈PB τ.(l.0 +q τ.l.0)
≈PBp τ.l′.0 +p τ.(l.0 +q τ.l.0) ≈PB P/ATypeH . Therefore, the system can be
considered secure enough as p tends to the value 0. Note that, according to the
definition of weak probabilistic bisimulation with ε-precision, if p is less than the
threshold ε, then the subsystem P ′ reached from P/ATypeH by executing the
hidden high-level action h is simply disregarded, since it expresses a behaviour
of the system reachable with a negligible probability. Therefore P ′ is not to be
related with any corresponding behaviour of the system P\ATypeH .

Example 15. As another example, consider the following probabilistic process:

P
∆= (l.0 +p l.l′.0) +q l.h.l′.0.

It is easy to see that P is not PNI secure. Formally, let us denote by C1

the equivalence class of the null term 0 and by C2 the equivalence class of
term l′.0. On the one hand, we have Prob(P\ATypeH , τ∗l, C1) = q · p + 1 −
q and Prob(P\ATypeH , τ∗l, C2) = q · (1 − p). On the other hand, we have
Prob(P/ATypeH , τ∗l, C1) = q · p and Prob(P/ATypeH , τ∗l, C2) = 1 − q · p.
Therefore, |Prob(P\ATypeH , τ∗l, C1) − Prob(P/ATypeH , τ∗l, C1)| = 1 − q =
|Prob(P\ATypeH , τ∗l, C2) − Prob(P/ATypeH , τ∗l, C2)|, from which we derive
that (i) process P does not satisfy the PNI property, and (ii) P\ATypeH ≈PBε

P/ATypeH if q ≥ 1 − ε. Intuitively, if q is close to 1, then the low view of P ,
with or without the interaction with the high-level user, changes according to
a small ε-fluctuation. While on the long run such a difference can be precisely
identified, for a finite number of experiments P\ATypeH and P/ATypeH turn
out to behave almost the same. That means if we observe the low-level outcome
of repeated executions of the system we are not able to notice the behaviour of
the high-level user, since the high interference changes the frequency associated
with each possible low-level outcome according to small, negligible fluctuations.

3.6 Statistical Interpretation

In a realistic scenario, an external observer makes a guess about the high environ-
ment behaviour after a certain number of tests (system executions). That means
we need a formal way to measure the difference (by a finite number of experi-
ments) between the low view of P in isolation, modeled by process P\ATypeH ,
and the low view of P interacting with any high user in APNI , expressed by
process P/p1

hP
1

. . . /pn

hP
n

for any sequence of probabilities p1, . . . , pn ∈]0, 1[. The
capability of the observer of revealing the difference between such processes ex-
presses a measure of the effectiveness of the covert channel from high level to
low level.

As an expected result, we can rephrase in our setting the same approach
described in Section 2.5 to evaluate the confidence we can have in our hypothesis
about the identity of a process after a finite number of experiments. We omit
the technical part concerning the statistical methods behind such an approach
(see Section 2.5) and we directly proceed with some clarifying examples.

Example 16. Consider the system:

P
∆= h∗.(l.0 +

2
3 l′.0) + (l.0 +

7
12 l′.0) such that

P\ATypeH ≈PB (l.0 +
7
12 l′.0) and

P/p
h ≈PB τ.(l.0 +

2
3 l′.0) +p (l.0 +

7
12 l′.0).

According to the low view of the system in isolation, expressed by term
P\ATypeH , a low-level observer sees the action l with probability 7

12 and the

action l′ with probability 5
12 . On the other hand, if P interacts with a high-level

user that synchronises with the reactive action h∗ with probability p, then the
low view of the system changes. In particular, a low-level observer sees the action
l with probability 7

12 + 1
12 · p and the action l′ with probability 5

12 − 1
12 · p. That

means for p ∈]0, 1[the probability of observing the action l varies in the range
] 7
12 , 2

3 [and the probability of observing the action l′ is in the range] 13 , 5
12 [. As

a consequence, it turns out that P/p
h is a 1

12−perturbation of P\ATypeH for
all p ∈]0, 1[. Formally, it is easy to verify that P\ATypeH ≈PB 1

12
P/p

h, for all
p ∈]0, 1[.

An external low-level observer tries to distinguish the case in which P is
isolated from the high environment from the case in which P interacts with
a high-level user. To this purpose, he observes the relative frequencies of the
low-level outcomes that derive from repeated executions of the system. After
a number n of experiments, he formulates a hypothesis about the scenario in
which P has been executed. The confidence he can have in such a hypothesis
can be determined as reported in Section 2.5. In particular, we know that an
upper bound for the distance between processes P\ATypeH and P/p

h is ε = 1
12 .

If we consider the scenario in which P is isolated from the high environment and
we concentrate on the low-level outcome l (whose probability is equal to 7

12), we
obtain the same results shown in Example 8. More precisely, if we assume n = 9,
we have that the hypothesis formulated by the low-level observer will be right
with an about 60% chance, while for n = 144 it will be correct with about 85%.

Example 17. Now, let us consider again the same process P of Example 15. We
want to estimate the confidence an external observer can have in a hypothesis
about the high environment behaviour after a finite number n of experiments. To
this purpose, let us assume p = 0.5 and q = 0.99. Such a scenario expresses the
fact that the two possible behaviours (i.e. the single output l and the sequence
l.l′) are chosen by the system with equal probabilities except for a small fluctua-
tion due to scarce interferences by the high-level user. Formally, in P\ATypeH the
probability of observing the sequence l.l′ is equal to 0.495, while in P/ATypeH
such a probability is equal to 0.505. Symmetrically, we can compute the prob-
ability of observing a single l, which is equal to 0.505 for P\ATypeH and equal
to 0.495 for P/ATypeH . According to what we have shown in Example 15, the
distance between such processes is ε = 0.01. Now, we assume that the high-
level user is interacting with the system and we concentrate on the sequence of
events l.l′. The probability P for an external low-level observer to identify the
correct high environment behaviour depends on the number n of experiments.
In particular, for n = 10 we have (cf. Section 2.5):

a0(10) =
10 · 0.01

2
1√

10 · 0.505 · 0.495
≈ 0.03

and

P = 1−
∫ ∞

0.03

exp
(−x2

2

)
≈ 0.512

Hence, for 10 tests the hypothesis that the observer formulates will be right
with about 51%. Note that the probability of the best blind guess the observer
can make is exactly 50%. We also emphasise that if we want such a probability
to reach about 90%, then the external observer should execute about 16640
experiments.

3.7 The ATM example

We present a simple but real example showing the need for a quantitative es-
timation of illegal information flows. In particular, we consider an Automatic
Teller Machine (ATM), which gives cash if and only if the client inserts the
unique, correct PIN number i (of m possible PINs) within a fixed number, say
n, of attempts, after which the ATM retires the card:

ATM k
∆= insPIN i∗ .cash.ATM 1 +

∑m
j=1,j 6=i insPIN j∗ .fail .ATM k+1 0 < k < n

ATM n
∆= insPIN i∗ .cash.ATM 1 +

∑m
j=1,j 6=i insPIN j∗ .retire.ATM 1

An attacker that is in possession of the card (but not of the PIN) may try to
illegally withdraw cash:

Spy ∆= insPIN 1.Spy ′ +p1 (insPIN 2.Spy ′ +p2 . . .)
Spy ′ ∆= cash∗.spend .0 + fail∗.Spy + retire∗.flee.0

We can assume that cash is the unique low-level action, since it expresses the
tangible proof that a dishonest spy withdrew cash, while all the other events are
considered to be high-level actions. If we take the composed system

ATMSys ∆= ATM 1 ‖{cash,retire,fail,insPIN i, i=1,...,m} Spy

and check the nondeterministic counterpart of PNI [ABG03], we observe that the
system is clearly non-secure. Indeed, if we hide the high-level actions, expressing
the fact that the attacker interacts with the machine, then the action cash is
observable. On the contrary, if we purge the system of the high-level actions,
modeling the lack of any interaction between the machine and the attacker,
then the action cash is not executable. Obviously, a purely nondeterministic
approach captures the fact that an illegal behaviour can be observed in case the
spy guesses the right PIN. In a realistic scenario, such an event is possible but
negligible. For instance, assume that for any attempt the spy randomly samples a
PIN value according to a uniform distribution, and take two realistic parameters,
i.e. m = 100000 and n = 3. Then, denoted C the equivalence class of the null
term, we have that Prob(ATMSys/ATypeH , τ∗cash, C) ≈ 0.00003. Formally, if
we employ the weak probabilistic bisimulation with ε-precision (ε = 0.00003),
then the system turns out to satisfy the approximated PNI property. This is
because the probability of observing the illegal cash leakage is considered to be
negligible.

4 Related Work and Conclusion

In this paper, we presented two techniques for approximating noninterference
properties, thus enriching the intuition behind the definition of probabilistic
noninterference, which appeared in the literature to overcome the limitations
of classical possibilistic approaches to information flow analysis. Initially, a for-
mulation of probabilistic covert channel was proposed in [McL90,Gra90], and
later on in [Gra92] and in [GS92,SG95]. More recently, in [SS00] the same intu-
ition has been rephrased in the setting of an imperative language with dynamic
thread creation, where, as a novelty, a probabilistic notion of bisimulation is
used to formalise a security condition. In [Smi01], a type system is presented
that aims to ensure secure information flow in a simple multi threaded imper-
ative programming language running under a uniform probabilistic scheduler.
The same author also employs a definition of weak probabilistic bisimulation
(inspired by [BH97]) in [Smi03].

In the first approach presented in this paper we have concentrated on a
notion of observable behaviour for programs in the PCCP language, which cor-
responds to the probabilistic input/output observables. These can be described
by probability distributions on the underlying space of constraints, and we used
a vector norm to measure their similarity. By considering the observables of two
processes executed in the context of a spy we were then able to measure their
confinement. Different analyses can be constructed depending on the type of at-
tacks we consider. For example, in [DHW03b,DHW02b] a control-flow analysis
for the confinement property is presented which refers to internal attacks. This
is the case where the attacker is part of the observed system and is therefore
subject to the same scheduler as the host system. In another context one might
be interested in external attacks, where the attacker is only allowed to observe
the system from the outside and is thus scheduled in a different way, or one
might impose other restrictions on the way a spy may observe the agents in
question. In [DHW02a], an analysis is presented for the case of external attacks,
which exploits information about the average store of an agent in some specified
number of steps (the observation time).

In the second approach we described, the notion of observable behaviour for
processes is formalised in a process algebraic calculus, whose semantics is given
in terms of a probabilistic version of the weak bisimulation equivalence. In this
setting, we have shown that the robustness of a system against a specified class
of attackers (as defined by the probabilistic noninterference property) can be
checked by following the same approach introduced in [FG95] in a purely non-
deterministic framework. Along this line, in [ABG03] a complete taxonomy of
probabilistic security properties is described. The expressiveness of the proba-
bilistic process algebra and of the particular model of probability we adopted
allow us to model and analyse real, complex systems. For example, in [AG02],
a case study shows the adequacy of such an approach for analysing the secu-
rity level (under any probabilistic adversary) of a probabilistic cryptographic
protocol [MR99] implemented to achieve a fairness property.

In the literature, other works propose a formal definition of approximated
bisimilarity. For example, in [vBW01,DGJP99] different pseudometrics are in-
troduced that quantify the similarity of the behavior of probabilistic transition
systems that are not bisimilar. In particular, in [DGJP99] the authors consider a
metric on partial labeled Markov chains, which are a generalization of the fully
specified transition systems described in Sect. 3, in that for each state the sum
of the probabilities of the outgoing transitions, if there are any, is less than (or
equal to) 1, while in our case such a sum sums up to 1. Moreover, they extend
the same approach to the weak bisimulation case in [DGJP02]. With respect to
such pseudometrics, the notion of approximated weak probabilistic bisimulation
≈PBε allows systems that can have largely different possible behaviours to be
related under the condition that such behaviours are observable with a negligible
probability. Another approach to the approximation of bisimilarity has been re-
cently proposed in [DHW03c,DHW03a], which extends the approach presented
in this paper to probabilistic transition systems and is based on the definition of
bisimulation via a linear operator and the use of an operator norm for measuring
noninterference.

Acknowledgement
This work has been partially funded by Progetto MEFISTO (Metodi Formali
per la Sicurezza e il Tempo) and the EU FET open projects SecSafe and Degas.

References

[Ald01] A. Aldini. Probabilistic Information Flow in a Process Algebra. In Proc.
of 12th Int. Conf. on Concurrency Theory (CONCUR’01), Springer
LNCS 2154:152–168, 2001.

[Ald02] A. Aldini. On the Extension of Non-interference with Probabilities. In
Proc. of WITS’02 – 2nd Workshop on Issues in the Theory of Security
(J. Guttman, Ed.), Portland, OR (USA), 2002.

[ABG03] A. Aldini, M. Bravetti, and R. Gorrieri. A Process-algebraic Approach
for the Analysis of Probabilistic Noninterference. Journal of Computer
Security, to appear.

[AG02] A. Aldini and R. Gorrieri. Security Analysis of a Probabilistic Non-
repudiation Protocol. In Proc. of 2nd Joint Int. Workshop on Process
Algebra and Performance Modelling, Probabilistic Methods in Verifica-
tion (PAPM-ProbMiV’02), Springer LNCS 2399:17–36, 2002.

[BW90] J.C.M. Baeten and W.P. Weijland. “Process Algebra”, Cambridge Uni-
versity Press, 1990.

[BBS95] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing Proba-
bilistic Processes: ACP with Generative Probabilities. Information and
Computation 121:234–255, 1995.

[BH97] C. Baier, and H. Hermanns. Weak Bisimulation for Fully Probabilistic
Processes. In Proc. of 9th Int. Conf. on Computer Aided Verification
(CAV’97), Springer LNCS 1254:119–130, 1997.

[BPS01] J.A. Bergstra, A. Ponse, and S.A. Smolka (Eds.) Handbook of Process
Algebra, Elsevier Science Publishers B.V., Amsterdam, 2001.

[Ber99] M. Bernardo. Theory and Application of Extended Markovian Process
Algebra. Ph.D. Thesis, University of Bologna, Italy, 1999.
ftp://ftp.cs.unibo.it/pub/techreports/99-13.ps.gz

[BDG98] M. Bernardo, L. Donatiello, and R. Gorrieri. A Formal Approach to
the Integration of Performance Aspects in the Modeling and Analysis of
Concurrent Systems. Information and Computation 144(2):83–154, 1998.

[Bil86] P. Billingsley. Probability and Measure. Wiley & Sons, New York, 2nd
edition, 1986.

[Bra02] M. Bravetti. Specification and Analysis of Stochastic Real-
Time Systems. Ph.D. Thesis, University of Bologna (Italy), 2002.
ftp://ftp.cs.unibo.it/pub/techreports/2002-04.ps.gz

[BA03] M. Bravetti and A. Aldini. Discrete Time Generative-reactive Proba-
bilistic Processes with Different Advancing Speeds. Theoretical Computer
Science 290(1):355–406, 2003.

[vBW01] F. van Breugel, and J. Worrell. Towards Quantitative Verification of
Probabilistic Systems (extended abstract). In Proc. of 28th Int. Collo-
quium on Automata, Languages and Programming (ICALP’01), Springer
LNCS 2076:421–432, 2001.

[BHK01] E. Brinksma, H. Hermanns, and J.-P. Katoen (Eds.) Lectures on Formal
Methods and Performance Analysis, Springer LNCS 2090, 2001.

[CKV00] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantipole:
Practical Asynchronous Byzantine Agreement Using Cryptography (ex-
tended abstract). In Proc. of 19th Symposium on Principles of Distributed
Computing, ACM Press, pp. 123–132, 2000.

[CT02] M.C. Calzarossa and S. Tucci (Eds.) Performance Evaluation of Com-
plex Systems: Techniques and Tools, Performance 2002 Tutorial Lectures,
Springer LNCS 2459, 2002.

[CHM02] D. Clark, S. Hunt, and P. Malacaria. Quantitative Analysis of Leakage
of Confidential Data. In QAPL 2001 - First International Workshop on
Quantitative Aspects of Programming Laguages, volume 59 of Electronic
Notes in Theoretical Computer Science, Elsevier, 2002.

[dDP95] F.S. de Boer, A. Di Pierro, and C. Palamidessi. Nondeterminism and In-
finite Computations in Constraint Programming. Theoretical Computer
Science, 151(1):37–78, 1995.

[DGJP99] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for
Labeled Markov Processes. In Proc. of 10th Int. Conf. on Concurrency
Theory (CONCUR’99), Springer LNCS 1664:258–273, 1999.

[DGJP02] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. The Metric
Analogue of Weak Bisimulation for Probabilistic Processes. In Proc. of
17th Symposium on Logic in Computer Science (LICS), IEEE CS Press,
pp. 413–422, 2002.

[DHW01] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic Confinement in
a Declarative Framework. In Declarative Programming – Selected Papers
from AGP 2000 – La Havana, Cuba, volume 48 of Electronic Notes in
Theoretical Computer Science, Elsevier, 2001.

[DHW02a] A. Di Pierro, C. Hankin, and H. Wiklicky. Analysing Approximate Con-
finement under Uniform Attacks. In Proc. of SAS 2002 - 9th Int. Sym-
posium on Static Analysis, Springer LNCS 2477:310–326, 2002.

[DHW02b] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate Non-interference.
In Proc. of 15th IEEE Computer Security Foundations Workshop, pages
3–17, Cape Breton, Nova Scotia, Canada, 2002.

[DHW03a] A. Di Pierro, , C. Hankin, and H. Wiklicky. Measuring the Confinement
of Concurrent Probabilistic Systems. In Proc. of WITS’03 – Workshop
on Issues in the Theory of Security (R. Gorrieri, Ed.), Warsaw, Poland,
2003. http://www.dsi.unive.it/IFIPWG1_7/wits2003.html.

[DHW03b] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate Non-interference.
Journal of Computer Security, 2003. To appear.

[DHW03c] A. Di Pierro, C. Hankin, and H. Wiklicky. Quantitative Relations and
Approximate Process Equivalences. In Proc. of 14th Int. Conf. on Con-
currency Theory (CONCUR’03), Lecture Notes in Computer Science,
Springer Verlag, 2003. To appear.

[DW98a] A. Di Pierro and H. Wiklicky. An Operational Semantics for Probabilistic
Concurrent Constraint Programming. In Proc. of ICCL’98 – Int. Conf.
on Computer Languages, P. Iyer, Y. Choo, and D. Schmidt, Eds., pp. 174–
183, IEEE Computer Society Press, 1998.

[DW98b] A. Di Pierro and H. Wiklicky. Probabilistic Concurrent Constraint Pro-
gramming: Towards a Fully Abstract Model. In Proc. of MFCS’98 –
Mathematical Foundations of Computer Science, L. Brim, J. Gruska, and
J. Zlatuska, Eds., Springer LNCS 1450:446–455, 1998.

[DW00] A. Di Pierro and H. Wiklicky. Quantitative Observables and Averages
in Probabilistic Concurrent Constraint Programming. In New Trends in
Constraints – Selected Papers of the 1999 ERCIM/Compulog Workshop
on Constraints, K.R. Apt, T. Kakas, E. Monfroy, and F. Rossi, Eds.,
Springer LNCS 1865, 2000.

[GM82] J.A. Goguen and J. Meseguer. Security Policy and Security Models. In
Proc. of Symposium on Security and Privacy (SSP’82), IEEE CS Press,
pp. 11–20, 1982.

[FG95] R. Focardi and R. Gorrieri. A Classification of Security Properties. Jour-
nal of Computer Security 3(1):5–33, 1995.

[FG01] R. Focardi and R. Gorrieri (Eds.) Foundations of Security Analysis and
Design - Tutorial Lectures, Springer LNCS 2171, 2001.

[GSS95] R. J. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, Genera-
tive and Stratified Models of Probabilistic Processes. Information and
Computation 121:59–80, 1995.

[Gra90] J. W. Gray III. Probabilistic Interference. In Proc. of Symposium on
Security and Privacy (SSP’90), IEEE CS Press, pp. 170–179, 1990.

[Gra92] J. W. Gray III. Toward a Mathematical Foundation for Information Flow
Security. Journal of Computer Security 1:255–294, 1992.

[GS92] J. W. Gray III and P. F. Syverson. A Logical Approach to Multilevel
Security of Probabilistic Systems. In Proc. of Symposium on Security
and Privacy (SSP’92), IEEE CS Press, pp. 164–176, 1992.

[GS97] C.M. Grinstead and J.L. Snell. Introduction to Probability. American
Mathematical Society, Providence, Rhode Island, second revised edition,
1997.

[HS95] P. Harrison and B. Strulo. Stochastic Process Algebra for Discrete Event
Simulation. In Quantitative Methods in Parallel Systems, ESPRIT Basic
Research Series, pp. 18–37, Springer, 1995.

[HMT71] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras (Part I). North-
Holland, 1971.

[HHHMR94] H. Hermanns, U. Herzog, J. Hillston, V. Mertsiotakis, and M. Rettelbach.
Stochastic Process Algebras: Integrating Qualitative and Quantitative

Modelling. In 7th Conf. on Formal Description Techniques (FORTE’94),
pp. 449–451, 1994.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cam-
bridge University Press, 1996.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes, Prentice Hall,
1985.

[Koc95] P.C. Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS, and Other
Cryptosystems Using Timing Attacks. In Advances in Cryptology,
CRYPTO’95: 15th Annual Int. Cryptology Conf., D. Coppersmith, Ed.,
Springer LNCS 963:171–183, 1995.

[LMMS98] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A Probabilistic
Poly-time Framework for Protocol Analysis. In ACM Conf. on Computer
and Communications Security, pp. 112-121, ACM Press, 1998.

[MR99] O. Markowitch and Y. Roggeman. Probabilistic Non-Repudiation With-
out Trusted Third Party. In 2nd Conf. on Security in Communication
Networks, Amalfi, Italy, 1999.

[McL90] J. McLean. Security Models and Information Flow. In Proc. of Sympo-
sium on Security and Privacy (SSP’90), IEEE CS Press, pp. 180–189,
1990.

[Mil89] R. Milner. Communication and Concurrency, Prentice Hall, 1989.
[RMMG01] P.Y.A. Ryan, J. McLean, J. Millen, and V. Gligor. Non-interference: Who

needs It? In Proc. of 14th Computer Security Foundations Workshop
(CSFW’01), IEEE CS Press, pp. 237–238, 2001.

[SS99] A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow
in Sequential Programs. In Proc. of European Symp. on Programming
(ESOP’99), Springer LNCS 1576:40–58, 1999.

[SS00] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-
threaded Programs. In Proc. of 13th Computer Security Foundations
Workshop (CSFW’00), IEEE CS Press, pp. 200–215, 2000.

[SM03] A. Sabelfeld and A.C. Myers. Language-Based Information Flow Secu-
rity. IEEE Journal on Selected Areas in Communications 21(1):5–19,
2003.

[SR90] V.A. Saraswat and M. Rinard. Concurrent constraint programming. In
Symposium on Principles of Programming Languages (POPL), pp. 232–
245, ACM Press, 1990.

[SRP91] V.A. Saraswat, M. Rinard, and P. Panangaden. Semantics foundations
of concurrent constraint programming. In Symposium on Principles of
Programming Languages (POPL), pp. 333–353, ACM Press, 1991.

[Sha99] J. Shao. Mathematical Statistics. Springer Texts in Statistics. Springer
Verlag, 1999.

[Smi01] G. Smith. A new Type System for Secure Information Flow. In Proc. of
14th Computer Security Foundations Workshop (CSFW’01), IEEE CS
Press, pp. 115–125, 2001.

[Smi03] G. Smith. Probabilistic Noninterference through Weak Probabilistic
Bisimulation. In Proc. of 16th Computer Security Foundations Workshop
(CSFW’03), IEEE CS Press, pp. 3–13, 2003.

[SG95] P. Syverson and J. W. Gray III. The Epistemic Representation of Infor-
mation Flow Security in Probabilistic Systems. In Proc. of 8th Computer
Security Foundations Workshop (CSFW’95), IEEE CS Press, pp. 152–
166, 1995.

